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ABSTRACT

We introduce Geometric Multigrid Neural Networks (GMNN), a novel network
structure for geometric deep learning on point clouds and surfaces. Convolutional
neural networks face a common challenge: how can relevant features be commu-
nicated over longer distances? Our architecture facilitates long-distance commu-
nication with Geometric Multigrid Convolution (GMC) blocks, which apply con-
volutions in parallel to features defined on each level of a multigrid representation
of the surface, and enable communication all the way up and down the hierarchy.
We observe two major structural advantages of such a network: First, because
each GMC operates on all levels of the multigrid hierarchy, even early stages can
make use of coarse-scale information and receptive field grows rapidly with depth.
Second, networks built with this backbone have the freedom to route information
between different scales, including in ways not possible for other architectures.
Because of these advantages, we find that a GMNN can combine the fast training
of a shallow network with the greater expressiveness of a deeper, larger network.
We build a GMNN from the components of a state-of-the-art U-Net, and find that
on real tasks it can match or exceed the accuracy of the base network while using
fewer epochs and roughly half the parameter count.

1 INTRODUCTION

Advances in 3D capture and modeling technologies have made geometric data increasingly acces-
sible, with applications spanning from computer graphics and medical imaging to engineering and
manufacturing. As a result, the analysis and processing of geometric data have become key prob-
lems, with advances benefiting a wide range of use cases. Over the past decade, successful deep
learning techniques from the image and language domains have been adapted to geometric data.
These geometric deep learning methods have achieved breakthroughs for various challenging prob-
lems in 3D data processing and analysis.

Convolutional neural networks improve efficiency and introduce useful priors by using local op-
erators. However, this localization comes with limitations: multiple layers are required to inte-
grate information across distant regions of the domain and to capture coarse-scale features. Several
strategies have been proposed to address this, including augmenting networks with non-local, low-
frequency Laplace eigenfunctions (Sharp et al., 2022), introducing additional non-local connections
based on feature-space proximity (Wang et al., 2019), and applying convolutions to progressively
coarser point clouds (Qi et al., 2017). Despite these advances, limitations remain on the efficient
extraction and combination of features at different spatial locations and across scales.

We introduce a novel architecture: the Geometric Multigrid Neural Network (GMNN, fig. 1). It
represents features in each layer using a multigrid representation of the domain. By storing features
on different levels of the multigrid hierarchy, the network can efficiently represent information at
multiple scales. Layers are connected through Geometric Multigrid Convolution (GMC) blocks,
which perform convolutions within the same level of the multigrid hierarchy and between different
levels, enabling effective extraction and integration of multiscale features. GMNNs are constructed
by chaining GMC blocks in series.

This architecture equips the network with flexible mechanisms for multi-scale feature extraction and
integration, enabling appropriate organization of information flow for the task at hand. To illustrate
how it differs from other architectures, consider the receptive field: since each GMC block links
features in each level to features on coarser levels of the multigrid hierarchy in the preceding layer,
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Figure 1: Geometric Multigrid Convolutions operate on features defined on the levels of a multigrid.
This allows Geometric Multigrid Neural Networks to extract features at a range of scales, starting
at the earliest layers, and to efficiently fuse information both across scales and between spatially
distant regions on the surface.

the receptive field in a GMNN expands rapidly. We quantify this effect in our experiments and
compare GMNN against other architectures.

Comparing GMNN with alternative architectures such as U-Net (Ronneberger et al., 2015) high-
lights fundamental differences. In a U-Net, information follows a fixed trajectory: features are first
extracted at fine scales and then progressively aggregated at coarser levels. In contrast, GMNN offers
greater flexibility. It can follow the same fine-to-coarse pathway, but it can also exploit alternative
routes, such as coarse-to-fine or paths that traverse up and down the multigrid hierarchy multiple
times. This flexibility translates into greater expressive power for GMNN, which we demonstrate on
a synthetic function approximation task. In comparisons on benchmark segmentation tasks, GMNN
matches or surpasses the accuracy of state-of-the-art models, while converging in fewer epochs and
using roughly half as many parameters.

2 RELATED WORK

Here, we provide a summary of existing architectural solutions to enable long-range communication
in convolutional neural networks, starting on other domains, and then on meshes and point clouds.

Multiscale architectures for images and non-geometric graphs The U-Net, first introduced in
Ronneberger et al. (2015), enables segmentation of large images with fewer convolutions by oper-
ating on progressively coarser (lower resolution) domains before expanding to progressively finer
domains. Multigrid Neural Architectures (Ke et al., 2016) demonstrated the potential of multigrid
convolutions on the image domain. The authors augment well-known architectures with multi-
grid convolutional layers and demonstrate accuracy improvements on common segmentation bench-
marks while retaining efficiency in parameters and compute. Feature Pyramid Networks (Lin et al.,
2017) (FPN) construct features on multiple scales and apply convolutions to those scales; features
from all scales are merged at the end of the network before producing labels. UNet++ (Zhou et al.,
2018) extends the U-Net architecture by keeping the convolutions in higher resolutions, where the
original U-Net would downsample and only continue in the lower resolution, proverbially ‘filling
in’ the U-shape. They also connect adjacent scales in each layer. Multigrid Graph Neural Net-
works (Taghibakhshi et al., 2023) (MG-GNN) adapts a limited multigrid architecture to the graph
learning domain, and shows that a two-level multigrid structure has benefits for graph-partitioning
tasks. Closest to our approach, IM-MPNN (Finder et al., 2025) implements a more complete multi-
grid architecture for graph learning, with 4 scales and communication between adjacent scales. It
confirms advantages on large-diameter graph problems, where communication across the original
graph requires many convolutions. Each of these approaches show that variations on the U-Net
structure can benefit deep learning on other domains; our architecture incorporates some of these
ideas for use on point clouds.

U-Nets on point clouds The structure of PointNet++ (Qi et al., 2017), a pioneering method for
learning on point clouds, resembles that of a U-Net (Ronneberger et al., 2015). In the ‘encoder,’ the
features in the point cloud are progressively downsampled with farthest point sampling (FPS) fol-
lowed by max-pooling in a local neighborhood (KNN or ball query). The ‘decoder’ then upsamples
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the features with linear interpolation. Features from the encoder are connected to the decoder using
skip-connections between corresponding scales. This base structure has been adapted and developed
by many follow-up works. Among many others, PointCNN (Li et al., 2018), KPConv (Thomas et al.,
2019), KPConvX (Thomas et al., 2024), PointTransformer v2 (Wu et al., 2022) and v3 (Wu et al.,
2024) also employ U-Net architectures. The main contributions of these works lie in improving the
convolution operator, e.g., with a graph- or point-based variant of convolution or attention (trans-
former). While the works also change the architecture, e.g., by adding residual connections, they
do not fundamentally alter the U-Net structure. More recently, PointNeXT (Qian et al., 2022) and
DeLA (Yang et al., 2024), show that applying these changes in architecture and training procedure
with PointNet-style convolutions can lead to state-of-the-art results. Our work is orthogonal to the
contributions on the convolution operators, as we explore different ways to connect scales in the
hierarchy, regardless of the operations within the scales. Therefore, we employ simple building
blocks, such as the MLPs and max-aggregation used in PointNet++ and DeLA. In practice, the in-
sights from our work could be combined with different blocks such as graph-based, convolution-like
or transformer-style layers in a neural network for point clouds.

Alternative architectures on Point Clouds On point clouds, works like DGCNN (Wang et al.,
2019) and DiffusionNet (Sharp et al., 2022) have explored non-architectural ways to connect infor-
mation at longer ranges, but fewer works have explored alternatives to the U-Net. Multiresolution
Tree Networks (Gadelha et al., 2018) (MTN) adopt a multigrid architecture (Ke et al., 2016) for
point clouds. Rather than working natively in 3D, they use spatial sorting to represent point clouds
as a 1D structure and apply a 1D convolution on the point clouds. They maintain 3 scales of a
multigrid through much of the network, but eventually pool all scales to a global node (to enable
use as an auto-encoder). PointHR (Qiu et al., 2023) resembles the augmentation of UNet++, ‘filling
in’ convolutions in the higher resolutions throughout the network. Our architecture goes beyond
both MTN and PointHR by performing convolutions on all resolutions throughout the network; at
no point does it operate exclusively on coarse scales (as MTN does at the end of its encoder) or
exclusively at fine scales (as PointHR does at the beginning of its encoder).

3 METHOD

A GMNN is designed to learn to communicate information between finer and coarser scales as
needed, rather than following a predefined path. This is achieved with a multigrid feature repre-
sentation and a geometric multigrid convolution block. We define generic versions of these in this
section, with sampling procedures, convolution operators, and other components left unspecified. In
section 4, we instantiate GMNNs for each task by adapting components from other networks.

3.1 MULTIGRID FEATURES

Throughout a GMNN, features are defined over a ‘multigrid’ representation of the input domain.
Given an input point cloud P 1 ∈ RN×3 and a desired number of levels S, we construct a sampling
hierarchy of point clouds, {P 1, . . . , P s, . . . PS}, with point counts Ns. Each sampling P s repre-
sents one level of the multigrid hierarchy. The point cloud hierarchy is associated with multigrid
features: a set of C features Xs ∈ RNs×C per level P s .

3.2 GEOMETRIC MULTIGRID CONVOLUTION BLOCKS

A Geometric Multigrid Convolution (GMC) Block enables multigrid connectivity by composing
convolutions with upsampling and downsampling stages to connect different levels of the multigrid
hierarchy.

Parallel convolutions Point cloud convolutions, such as PointNet (Qi et al., 2017), are applied
to each level in parallel to produce a new set of multigrid features Xs′ , as shown in fig. 2a. These
convolutions have independent parameters and are not shared, because we expect that different types
of features can be found at different levels.
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(a) Convolution (b) Adjacent (c) Progressive
Figure 2: Multigrid operations on 4 scales. Parallel convolution (left), adjacent and progressive
downsampling (right). Upsampling operations are the inverse of downsampling.

Transfers between scales We can use down- and upsampling to match spatial resolutions and
communicate the new features Xs′ to the adjacent levels s+ 1 or s− 1 (fig. 2b).

We aim to design a transfer block that can communicate between each pair of multigrid levels.
Naively, this would require S(S − 1)/2 upsampling operations and S(S − 1)/2 downsampling op-
erations. Instead, we achieve this universal connectivity more efficiently by performing transfers
progressively, rather than in parallel. This reduces our requirement to S − 1 upsampling operations
and S − 1 downsampling operations (fig. 2c). Progressive prolongation produces new features on
all levels except for the coarsest level (S), restriction on all except for the finest level (1). There
are many options for incorporating the level-transferred features before the next stage. In our im-
plementations, we use a linear layer to match dimensionality and add them to the features of each
level.

Transfer layouts Given components for communicating features within each level (parallel con-
volutions) and between levels (progressive upsampling, downsampling), there is a degree of freedom
in how we arrange the connections. We explored arrangements which alternate between convolu-
tions and transfers, and found that a sufficiently deep GMNN is not strongly sensitive to their or-
dering. For most tasks, we use a GMC block that first performs progressive downsampling, then
upsampling, and finally applies parallel convolutions.

3.3 GEOMETRIC MULTIGRID NEURAL NETWORKS

A GMNN is made up of D multigrid convolution layers, each with S levels, placed in series (fig. 1).
Because the neighborhood queries used in convolutions and pooling operations will be used in every
block of the network, we precompute the point hierarchy and neighborhoods once and reuse them
throughout. A GMC block expects input features on all levels. For the first layer, this can be achieved
by extracting local shape information independently on each level or by progressively downsampling
the finest-level features X1 from the input point cloud P 1 to generate representations for all coarser
levels.

For segmentation, progressive upsampling is applied at the end of the network, ensuring features
learned on all levels contribute to the final output on the finest level. After this, a conventional
segmentation head (point-wise MLP) is used. Classification can be done with the reverse of this
approach — ending with progressive downsampling to collect all features to one node per point
cloud, and then applying an MLP-based classification head to the features of that point.

3.4 PROPERTIES

The GMNN architecture allows information to be represented at multiple scales within the multi-
grid hierarchy of each layer, with GMC blocks extracting and combining features across these scales.
Unlike other networks, where information flow is prescribed—such as the fine-to-coarse progression
in U-Nets—GMNN can flexibly organize information flow to suit the learning task. We discuss two
major advantages of a GMNN over other architectures: First, its convolutions have larger receptive
fields, stemming from an ability to communicate information across long distances with fewer in-
termediate steps (section 3.4.1). Second, a GMNN offers greater expressiveness, arising from its
ability to route information flexibly between levels (section 3.4.2).

Similar benefits could be obtained by building a deeper conventional model, however, an overlong
gradient path can increase training time and exacerbate problems such as vanishing gradients. By
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arranging its convolutions in parallel, a GMNN obtains some advantages of deeper networks while
avoiding these drawbacks.

3.4.1 COMMUNICATION ADVANTAGE

The first stage of a U-Net allows information to travel only along the finest level of multigrid hier-
archy, but the first stage of a GMNN can propagate signals much further using the coarser levels. In
section 4.1, we measure this property for several model architectures and show the advantages of a
GMNN. In section 4.2 and appendix A.1, we find that this greater connectivity allows the network to
converge quickly. This difference is intuitive because a U-Net must learn to carry useful information
on the fine scales deeper into the network in order to propagate it further, where in a GMNN each
layer after the first has direct access to information from longer distances.

3.4.2 EXPRESSIVENESS ADVANTAGE

A U-Net has a prescribed path for how information must flow through a network: first between
fine-level nodes, then progressively coarser. In contrast, a GMNN allows for the free exchange of
information between levels. A sufficiently deep GMNN is a superset of a U-Net; it contains the
fine-coarse-fine route, but also more complex routes, including the ability to make multiple trips
from fine to coarse and back. Because of this, a GMNN can organize the communication of features
between scales according to the specific characteristics of the learning target. We find that this
translates to greater expressiveness across tasks. In section 4.3, we show how this translates to
higher accuracy on a difficult synthetic function approximation task. In section 4.4, we find that
on real segmentation tasks, our architecture allows us to compete with state-of-the-art models using
only half the parameters. We note that in our experiments the GMNN tends to achieve much higher
accuracy on the training set than the base U-Net, even when its advantage on the validation set is
small. This indicates possible overfitting, which is expected of a more expressive model. This could
be specific to factors like the complexity of the task or the size of the dataset. Mitigating this with
standard regularization techniques could further improve validation accuracy.

4 EXPERIMENTS

When comparing architectures, we consider three types of networks: a flat network, which simply
chains convolutions on the input (finest) level; a U-Net, which is a typical depth-scaled design,
applying blocks of convolutions to each level in series from finest to coarsest, followed by a simple
MLP-based upsampling stage; and GMNN, which chains GMC blocks, described in the previous
section. Unless otherwise stated, these networks all use PointNet++-style convolutions. U-Net and
GMNN networks are used with identical hierarchy-construction procedures, so the message-passing
is done over equivalent nodes and edges on each level.

4.1 RECEPTIVE FIELD

We expect that early access to coarse levels provides GMNN with a structural advantage in expand-
ing its receptive field. This advantage is quantified by evaluating the receptive fields of different
convolutions within a network. Receptive fields are estimated by tracking how information propa-
gates from a single starting node across the domain. As a test case, we use the Stanford bunny mesh,
chosen for its relatively low connectivity, with convolutions applied over the original mesh edges.
Coarser levels are generated using 50% FPS sampling. Downsampling relies on edges from the
fine scale, while upsampling connections are formed via nearest-neighbor clustering. Convolutions
operate on the connectivity between clusters. Starting from node 0, we record the depth at which
each node becomes reachable.

Figure 3 illustrates how the receptive field grows with network depth for different architectures. In
the flat network, communication is restricted to the finest scale, so the receptive field remains small.
The U-Net performs better; while its early convolutions behave like those of the flat network, later
stages operate on coarser meshes and therefore reach further. In contrast, the GMNN achieves rapid
growth in receptive field even at shallow depths, since its early stages already include convolutions
on coarse scales. The accompanying images show the receptive field of a convolution at the green-
marked node after 8 stages. In the flat network, 8 fine-scale convolutions cover only a limited range.
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In the U-Net, 4 fine scales and 4 secondary scales moderately extend the range. In the GMNN, 8
GMC blocks — each operating on all scales — enable long-range communication.
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Figure 3: Left, receptive field of models at different depths. Right, receptive fields at a depth of 8;
query node marked in green, contributing nodes in black.

4.2 FAST CONVERGENCE

We expect that broader access to non-local information in a GMNN allows it to more readily discover
useful ways features from different parts of the domain can be combined. In practice, this implies
that a GMNN can achieve higher accuracy in fewer epochs than comparable architectures. This trend
is evident in the early stages of long training runs (see appendix A.1), and is even more pronounced
under accelerated training schedules.

Table 1: ShapeNet, 10 epochs.
Model Ins. IoU Cat. IoU

Flat 82.1 ± 0.1 77.8 ± 0.1
U-Net 84.5 ± 0.1 80.2 ± 0.2
GMNN 84.7 ± 0.1 81.3 ± 0.3

Table 2: S3DIS, 10 epochs.
Model mIoU Cls. Acc OA

Flat (Omitted, high memory requirements)
U-Net 39.0 ± 0.3 46.5 ± 0.4 78.0 ± 0.3
GMNN 63.0 ± 0.7 71.2 ± 0.2 88.0 ± 0.3

Parameter-count-matched networks with different backbones. Other hyperparameters are identical
between models. 3 trials were used for each run.

We build several models of different architectures, each with exactly 16 PointNet++-style convolu-
tions (the GMNN contains 4 GMC blocks) and channel counts chosen so that all have approximately
0.9M parameters. We use a similar training procedure to DeLA and PointNeXT, except for the learn-
ing rate schedule which is compressed to 10 epochs, a fraction of the normal training time. We find
that on ShapeNet (table 1), both the U-Net and GMNN converge quickly on common classes, but
the GMNN converges to a much higher accuracy on less common classes (Cat. IoU). On the larger
point clouds of S3DIS (table 2), where information must be communicated further, this gap widens.
The U-Net struggles to reach high accuracy in such a short training cycle. GMNN reliably reaches
10% higher overall accuracy (OA) than the U-Net, with even wider margins on uncommon classes
(mIoU, Cls. Acc).

4.3 EXPRESSIVENESS

We expect that the additional flexibility of our architecture allows for increased expressiveness.
That is, given similar parameter counts, a GMNN can express more complex functionality than a
flat network or a U-Net. We can evaluate this flexibility with a difficult function approximation task:
Given a large mesh of a crumpled ball of paper, we train models to map points to their locations on
the original flat sheet (fig. 4). Relative point positions (pj−pi) are provided by the PointNet++-style
convolutions to ensure that the network does not simply learn a mapping on the embedding space,
but learns from local surface features.
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Table 3: Paper Un-crumpling Task,
after 10,000 training iterations.
Model MAE MSE

Flat 1.69 ± 0.21 20.4 ± 1.6
U-Net 0.67 ± 0.14 2.0 ± 1.2
GMNN 0.45 ± 0.02 0.9 ± 0.1

Flat U GMNN

Figure 4: Paper un-crumpling task (left).
Localization of error for different architectures (right).

We adapt the architectures from section 4.2, configured so that each has just over 0.5M parameters.
The dataset consists of a single mesh of approximately 150,000 vertices (IndefinGaming (2021)).
Convolutions are performed using neighborhoods based on edges of the original mesh, and for the
U-Net and GMNN the hierarchy is produced using a similar approach to section 4.1. In table 3 we
find that switching from a U-Net to a GMNN reduces absolute error by over 30% vs. the U-Net, and
squared error by more than a factor of two.

4.4 COMPARISONS

Our goal is to test the effect of multigrid connections when augmenting existing networks. To
simplify the analysis, we start from a PointNet-style (MLP followed by maximum aggregation)
U-Net. In our comparisons against state-of-the-art, we use DeLA (Yang et al., 2024) as the base
network, replicated in our own codebase, and augment it by placing its convolutions into a series of
GMC layers. We denote the DeLA architecture as U-Net and our augmented variant as GMNN.

The original U-Net backbone for DeLA part-segmentation is shown in fig. 5a. It uses a single
set of PointNet-style convolutions at the start of the network to embed spatial information (yellow
arrows). This information is passed through convolutions (blue) containing efficient ‘decoupled’
local aggregations, downsampling (red), and a spatial regularization step (yellow dots) computes a
loss encouraging the network to preserve spatial information throughout. Finally, point-wise MLPs
convert the features on all scales to the same channel count, so that a progressive upsampling step
can add all outputs before the segmentation head. For part-segmentation, category labels are also
provided as features on a global node.

ShapeNet-Part Segmentation To assess part segmentation performance, we use the ShapeNet-
Part dataset (Wu et al., 2015), a common benchmark that consists of 13 categories of clean object
point clouds (e.g. plane, chair) divided into 50 total parts (e.g. wing, seat). As input, the model
takes point coordinates, normals, and category labels (provided just before the segmentation head).
As output, the model produces logits indicating the associated part for each point. We configure
GMNN with the same number of channels as DeLA on the finest scale, and set the number of
channels on the other scales to produce a small version of the model and a wider version with more
parameters. Both models have a depth of 4 GMC layers, with half as many local aggregations
per point convolution, so that the effective model depth is shallower than that of DeLA. We find
that this task is prone to overfitting with deep networks. To mitigate, we make GMNN shallower
without reducing parameter count by placing upsampling and downsampling blocks in parallel. For
fair comparison, we use the same sampling procedures, dataset regularization, train/test split, and

N1 = 2048

N2 = 512

N3 = 192

N4 = 64(
NG = 1

)
(a) DeLA (b) GMNN

Point-MLP

Convolution

Restriction

Prolongation

(Category Injection)

Spatial Regularization
Spatial Embedding

Figure 5: Architecture comparison. The part-segmentation variant of DeLA (U-Net) and the same
convolutions incorporated into a GMNN. Each arrow represents an operation with input and output
features (channel counts left unspecified) on the points of the network. Where lines meet, features
are added as residuals.
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Table 4: Segmentation results on ShapeNet-Part.

Method Ins. IoU Cat. IoU Params.

PointNet++ (Qi et al., 2017) 85.1 81.9 1.0 M
PointNeXT-S (C=64) (Qian et al., 2022) 86.9 84.8 3.7 M
PointNeXT-S (C=160) (Qian et al., 2022) 87.0 85.2 22.5 M
PTv1 (Zhao et al., 2021) 86.6 83.7 7.8 M
SPoTr (Park et al., 2023) 87.2 85.4 1.7 M
AVS-Net (Zhang et al., 2023) 87.3 85.7 -
PointHR (Qiu et al., 2023) 87.2 - 7.4 M
DeLA (Yang et al., 2024) 87.5 86.0 7.0 M

GMNN 87.6 85.8 3.0 M
GMNN (Scaled) 87.7 86.0 8.1 M

Table 5: Segmentation results on S3DIS Area 5,
++ indicates pretraining on extra data was used.

Method mIoU Cls. Acc OA Params.

PTv2 Wu et al. (2022) ++ 72.7 78.0 91.6 12.8 M
PTv3 Wu et al. (2024) ++ 74.3 80.1 92.0 124.8 M
PTv3+Sonata Wu et al. (2025) ++ 76.0 81.6 93.0 124.8 M

PointNet++ Qi et al. (2017) 53.5 - 83.0 1.0 M
PointNeXT Qian et al. (2022) 71.1 77.2 91.0 41.6 M
KPConv Thomas et al. (2019) 67.1 72.8 - 14.9 M
PTv1 Zhao et al. (2021) 70.4 76.5 90.8 4.9 M
PTv2 Wu et al. (2022) 71.6 77.9 91.1 12.8 M
PTv3 Wu et al. (2024) 73.4 78.9 91.7 124.8 M
PointHR Qiu et al. (2023) 73.2 78.7 91.8 -
DeLA Yang et al. (2024) 74.1 80.0 92.2 7.0 M

GMNN 74.4 80.8 92.1 3.4 M

postprocessing techniques as used by PointNeXT and DeLA. The training cycle is reduced to 150
epochs (vs. 250), with the learning rate schedule adjusted to match.

Table 4 places the performance of our adapted models in context with the original DeLA and other
state-of-the-art approaches. We find that the smaller multigrid model matches DeLA with half the
parameters. Scaling the model allows it to exceed DeLA on common categories. Both versions of
the model also outperform state-of-the-art approaches, including modern transformers like SPoTr,
AVS-Net, and PointHR.

S3DIS Semantic Segmentation We measure point cloud semantic segmentation performance on
S3DIS (Armeni et al., 2016), a commonly used indoor-segmentation benchmark. It consists of
high-resolution scans of rooms from 6 different parts of the Stanford offices. In line with common
practice, we measure accuracy on Area 5. The trained model takes positions and RGB colors for
each point and produces logits assigning the points to one of 13 classes (e.g., wall, chair, door).
For this task, we configure a version of GMNN with the same base channels as DeLA and six
shallow GMC layers, again with half as many local aggregations to create a shallower model. We
keep the same training procedures as DeLA and PointNeXT, including dataset regularization, point
cloud voxelization (with interpolation), and training scene cropping. The training schedule is again
shortened, from 100 epochs to 75.

Table 5 places our results in context. We see that with a narrower, shallower network for half the total
parameters, we match the accuracy of DeLA (OA) and significantly outperform it on uncommon
classes (mIoU, Cls. Acc). Our network’s performance improves over all state-of-the-art transformer
models, given the same training data, with substantially fewer (1/35th) parameters. We include the
results for PTv2 and PTv3 with pretraining for reference, but note that these results should not be
directly compared to the other methods in the table, as they include extra training data.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.5 TRANSFER CONNECTIVITY ABLATION

A novel aspect of GMNN is its use of progressive up- and downsampling stages to enable full
connectivity between scales, as shown in fig. 2c. We can isolate the advantage of this by train-
ing networks with connections only between adjacent scales, as in fig. 2b. For reference, we also
compare against networks that have no communication between scales, aside from the final pooling
stage. This is similar to a feature pyramid network (Lin et al., 2017).

Table 6: Grid-transfer connectivity
ablation on S3DIS, 75 epochs.

Connectivity mIoU

None 71.0 ± 0.1
Adjacent 72.3 ± 0.1
Progressive 72.6 ± 0.2

We set up an experiment on S3DIS with modified versions of a GMNN using DeLA convolutions.
Table 6 shows how the connectivity between scales affects accuracy. We find that connections
between scales are critical for producing an accurate network. Using progressive connections all the
way up and down the network adds a consistent improvement over adjacent connections in mIoU at
negligible additional compute or parameter cost.

4.6 TRAINING SPEED

A GMNN configuration may use more convolutions than competing architectures, like U-Net, es-
pecially on the finest scale. Edges can be precomputed and convolutions are performed in parallel,
reducing runtime, but some additional cost remains. On S3DIS, we measure the performance of
our best network against a re-implementation of DeLA (using the same convolutions) and find that
each epoch takes 62% longer (173 vs. 281s). On the smaller meshes of ShapeNet, we find the dif-
ference narrows to 42% (59 vs. 82s). In both cases, the difference is partially compensated by the
accelerated training schedule, making the GMNN 14% and 20% slower to train, respectively.

5 CONCLUSION

In this work, we introduce Geometric Multigrid Neural Networks (GMNN), a novel architecture
that addresses key limitations in existing architectures for learning on point clouds. By operating on
novel multigrid features with multigrid convolutional blocks, GMNN enables the representation and
integration of features across multiple spatial scales within each layer, facilitating early coarse-scale
processing and efficient information exchange across the point cloud. We showed that GMNN can
be constructed from common components of other architectures and demonstrated its effectiveness
through experiments. Our results show consistent improvements in performance, reduced parameter
counts, faster convergence during training, and more efficient information propagation compared to
state-of-the-art architectures such as U-Nets.

We view GMNN as a fundamentally novel framework for neural network design on point clouds.
As our paper aims to isolate the advantages that come from an architectural change, several avenues
for future improvement have not yet been explored. In particular, our work focuses on PointNet++-
like convolutions, but the attentional convolutions of patch-transformer models like PTv3 could also
be used with our backbone. Training technique changes like the use of pretraining could also be
adopted from the transformer lineage, and may be appropriate because of the expressiveness of our
model.

As our network is a superset of other architectures, we see potential for it as a tool for further design
exploration. With targeted ablations, it may be possible to determine which connections are the most
useful. Given this information, the GMNN could be ’pruned’, leaving the necessary subset to create
a bespoke architecture for a given task. Beyond producing a better architecture, this could give us
more fundamental insights into how networks learn to route information.
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Reproducibility Statement A complete implementation of our method will be made available
upon publication. Model configurations and scripts for running different experiments will be in-
cluded alongside the implementation.
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A APPENDIX

A.1 EARLY SATURATION

We find that during training, our multigrid adaptation of DeLA tends to reach high accuracy on
common classes much faster than its U-Net counterpart. This difference is clearest for instance-
weighted accuracy metrics. Figure 6 shows relevant metrics for our implementations of GMNN and
DeLA over the course of a training run, with identical training procedures. The multigrid model
converges more quickly to high accuracy in both tests, and the accuracy of the U-Net only becomes
competitive later in training.
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Figure 6: Convergence plots over the course of training on different datasets. We observe that the
multigrid network converges faster than the U-Net in the early epochs.

A.2 ROBUSTNESS AGAINST EDGE SELECTION

In a CNN, the primary way of increasing receptive field size is to increase the size of the kernel. In
a graph convolutional network, the equivalent is to increase the number of neighbors, k. Section 4.1
indicated that GMNN has an architectural advantage in receptive field size, independent of k. Table 7
shows how the performance of DeLA and our multigrid adaptation compare when k is modified. At
k = 20 (the original setting), both models perform near their best. As k decreases below 16, the
accuracy of DeLA falls off rapidly. The multigrid model is much more robust and maintains an
accuracy closer to its best accuracy, all the way to k = 8. This suggests that the improved receptive
field translates to an improved robustness to under-connected networks. More surprisingly, the
accuracy of DeLA also falls off when k is increased. This may be due to a combination of overfitting
and a missing ability to reject spurious edges. The multigrid network is similarly robust against this
type of problem, possibly because it does not have the same dependency on spurious edges for
longer-range communication.

Table 7: Effects of k-nearest neighbors on ShapeNet, 25 epochs, 3 trials.

Model Accuracy % (mIoU, mean ± std)

k = 8 k = 12 k = 16 k = 20 k = 24 k = 28 k = 32

DeLA 84.1 ± 0.2 84.3 ± 0.1 84.7 ± 0.2 84.8 ± 0.0 84.7 ± 0.2 84.6 ± 0.1 84.6 ± 0.1
GMNN 84.8 ± 0.2 84.9 ± 0.1 85.0 ± 0.1 85.0 ± 0.0 85.0 ± 0.1 84.9 ± 0.3 84.8 ± 0.1
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