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ABSTRACT

Coordinate network or implicit neural representation (INR) is a fast-emerging
method for encoding natural signals (such as images and videos) with the benefits
of a compact neural representation. While numerous methods have been proposed
to increase the encoding capabilities of an INR, an often overlooked aspect is the
inference efficiency, usually measured in multiply-accumulate (MAC) count. This
is particularly critical in use cases where inference throughput is greatly limited
by hardware constraints. To this end, we propose the Activation-Sharing Multi-
Resolution (ASMR) coordinate network that combines multi-resolution coordi-
nate decomposition with hierarchical modulations. Specifically, an ASMR model
enables the sharing of activations across grids of the data. This largely decouples
its inference cost from its depth which is directly correlated to its reconstruction
capability, and renders a near O(1) inference complexity irrespective of the num-
ber of layers. Experiments show that ASMR can reduce the MAC of a vanilla
SIREN model by up to 500× while achieving an even higher reconstruction qual-
ity than its SIREN baseline.

1 INTRODUCTION

Neural networks have been proven to be very effective at learning representations of various modali-
ties of data such as images, videos, 3D shapes, neural fields, and many more. In particular, Sitzmann
et al. (2020); Mildenhall et al. (2021); Park et al. (2019); Li et al. (2024) have demonstrated that sim-
ple coordinate networks, taking in a coordinate system and outputting the modality-specific data, ex-
hibit state-of-the-art (SOTA) expressivity as an implicit neural representation (INR). However, while
numerous methods have been proposed to improve the encoding capabilities of an INR, an aspect
that is often overlooked is the network’s cost of inference1. A low cost of inference is of particular
importance when the inferencing throughput at test time is restricted by hardware constraints.

Currently, hybrid INRs that make use of explicit representations such as Plenoxels (Fridovich-Keil
et al., 2022) and Instant-NGP (Müller et al., 2022) are the best at low-cost inference as they remove
the need to learn a complex neural network. However, as we will show in Section 4.4, hybrid
methods lose the ability to learn a global implicit representation which is required for tasks such
as dataset learning. On the other hand, KiloNeRF (Reiser et al., 2021) and MINER (Saragadam
et al., 2022) are purely implicit methods that indirectly reduce cost inference through the use of tiny
MLPs. Hao et al. (2022) proposed Level-of-Experts (LoE), which uses shared weights instead of
completely independent MLPs to further reduce the cost of inference. However, we analyze and
show that existing methods that use an ensemble of weights produce undesirable trade-offs between
parameter count and inference cost.

It is remarked that the cost of inference of virtually all existing INR architectures is dependent on
both the depth and width of the neural network, which are the direct indicators of the network’s

∗Equal contribution
1In this paper, we measure the cost of inference by the number of multiply-accumulate (MAC) operations

required by the network’s weights. We will use MAC and “the cost of inference” interchangeably.
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expressivity. While methods that distribute individual MLPs or weights across a grid of the data
can effectively reduce the size of the inference network, the significant increase in parameters goes
against the original intention of reducing the overall memory footprint. To this end, we argue that
a viable way to genuinely reduce the cost of inference is by decoupling the inference cost from
the network depth, which could be achieved by amortizing the per-sample inference cost across the
entire data instance. To do so, we combine three ideas: (1) shared activations; (2) multi-resolution
coordinate decomposition; and (3) position-dependent modulations to formulate “hierarchical
modulation”, resulting in an Activation-Sharing Multi-Resolution (ASMR) network.

As shown in Section 3.3, the immediate benefit of activation sharing is the ability to achieve a near
O(1) inference cost with respect to network depth and hence reconstruction quality. This permits
an ultra-low MAC model with inference cost going even below 2K MAC. This is roughly the cost
of inference of a single hidden layer MLP with 32 hidden units, which has an expressivity barely
sufficient in representing a low-resolution image. We validate the robustness of our method by fitting
a variety of complex signals, and show that the decoupling effect of ASMR does not come at the cost
of affecting the model’s original expressivity. In particular, ASMR even improves upon the original
SIREN model on fitting megapixel images (Section 4.3) and an entire dataset (Section 4.2). Lastly,
we highlight the benefit of using ASMR over hybrid representations (Section 4.4). We demonstrate
that ASMR permits the learning of global latent structure of signals, enabling it to encode an entire
dataset with a single INR, which oftentimes is infeasible for methods employing explicit features.

To summarize, this paper makes four main contributions: (i) We propose a novel hierarchical mod-
ulation scheme that efficiently incorporates multi-resolution coordinates with minimal parameter
increase. (ii) We develop the activation-sharing ASMR, the first INR to decouple MAC from its
depth. This leads to a near O(1) complexity regardless of the number of layers. (iii) The proposed
ASMR achieves better quality reconstruction with 500× fewer MAC than a vanilla SIREN in high-
resolution image fitting tasks. (iv) ASMR remains purely implicit, allowing it to handle tasks that
require global latent structure, such as meta-learning.

2 RELATED WORK

Multi-resolution INR Multi-resolution representation of signals has always been an efficient way
to learn INRs. Training INRs to reconstruct a progressive resolution of the original signal has been
shown to greatly reduce training speed and the number of parameters. For instance, Saragadam
et al. (2022) utilizes Gaussian/Laplacian pyramids to allow INR learning of the much “simpler”
residual signals, while Lindell et al. (2022) and Shekarforoush et al. (2022) constrain the frequency
bands learned by each INR layer in a coarse-to-fine manner for better interpretability. Instead of
training the INR in a multi-resolution manner, some methods have found benefits by simply using
multi-resolution coordinate inputs to an INR. Along this line, Müller et al. (2022); Takikawa et al.
(2021); Dou et al. (2023) belong to a family of hybrid explicit representation INRs that learn a grid
of embeddings at multiple levels of resolution, and concatenate them when feeding into an INR.
Lastly, multi-resolution coordinates can also be used to partition the input space into grids, where
each grid has its specific tiny MLP (Reiser et al., 2021) or weight layer (Hao et al., 2022).

Modulated INR Perez et al. (2018) proposes to modulate a network’s activation with a simple
affine transformation. Although it is designed to enhance visual reasoning abilities, this technique
has proven valuable in the context of INRs. For instance, Chan et al. (2021) injects modulations
to a generative adversarial network (GAN) to generate samples. Skorokhodov et al. (2021) also
utilizes modulation in generative tasks. They employ low-rank modulation which uses parameters
predicted by the hypernetwork as inputs. For minimal overhead, our approach considers bias-only
modulations instead. Our method of hierarchical modulations takes inspiration from Dupont et al.
(2022a;b); Bauer et al. (2023), which proposes to store data in the form of a data-specific bias
vector that serves as the modulator of a SIREN model meta-learned on the entire dataset. In our
case, instead of storing an explicit modulation for the data instance, we generate, at inference time,
a hierarchy of coordinate-dependent modulations for injecting into each network layer. Later, in
Section 4.4, we demonstrate that the data-specific modulation can be used in conjunction with our
proposed hierarchical modulation.
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Figure 1: Overall framework for ASMR. (a) Multi-resolution Coordinates: The original coordi-
nates are decomposed into multiple hierarchical levels, each with its own set of axes. To illustrate
repetitive patterns, the coordinates are folded into a higher-dimensional space. (b) Hierarchical
Modulation: The number of layers in the model is equal to the number of hierarchical levels. At
each level (except level-0), the coordinates are first projected to the hidden dimension via modula-
tors, then added elementwise to the activations of the corresponding layer. (c) Activation-Sharing
Inference: The MAC-saving activation-sharing inference is performed by utilizing upsampling op-
erations on both modulations and hidden features. Here, Bxi

represents the base at level-i along
x-axis, while Cxi

denotes the cumulative product of bases along x-axis from hierarchical level-0 to
level-i (i.e. Bxi

×Bxi−1
× . . .×Bx0

). A uniform base Bxi
= 2 is used in this example.

Low-MAC INR To our best knowledge, no existing INR architecture can decouple the cost of
inference from the depth of the network, where the depth is often the main determining factor of the
INR expressivity (Yüce et al., 2022) and hence signal reconstruction quality. In general, existing
SOTA INRs that achieve low inference cost either do so through learning an explicit representa-
tion (Müller et al., 2022; Takikawa et al., 2021) or learning multiple tiny MLPs (Reiser et al., 2021)
to reduce the required size of the INR, or through weight sharing (Hao et al., 2022). Oftentimes,
these methods achieve a lower cost of inference at the expense of a largely increased parameter
count or decreased reconstruction quality (by reducing hidden dimension). Furthermore, as stated
in Reiser et al. (2021), methods that involve training multiple sets of weights often necessitate the
use of carefully crafted CUDA kernels to handle non-uniform sampling of the training data. We
highlight that ASMR does not suffer from such parallelization constraints due to its nature as a
simple modularized addition to a vanilla backbone model. While Skorokhodov et al. (2021) also
use activation-sharing like us to cut INR inference costs, they fail to decouple the inference cost
from model depth, achieving only minor savings. They utilize multi-scale coordinates, which have
progressively increasing resolutions along the network’s depth. This significantly increases the mod-
ulation cost in the subsequent layers. Contrarily, our ASMR decomposes coordinates considering
hierarchical and periodic data patterns, resulting in a complexity reliant solely on the partition basis.

3 METHOD

3.1 MULTI-RESOLUTION COORDINATES

The idea of multi-resolution coordinates has been introduced in previous literature (Hao et al., 2022;
Bauer et al., 2023), but in different contexts. Here, we revisit this idea and provide more intuition
underlying it. To begin with, Bauer et al. (2023) interprets coordinate decomposition as a change of
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base for the original global coordinates. It is discovered that changing the coordinates into binary
representation gives better results in terms of PSNR on image fitting tasks. However, the work does
not offer further explanation for this observation. On the other hand, Hao et al. (2022) generalizes
this coordinate decomposition motivated by the hierarchical and periodic structure of data. Both
explanations refer to the same concept that we refer to as coordinate decomposition.

Expanding on this, we offer an additional perspective that encompasses both explanations. As de-
picted in Figure 1(a), decomposing global coordinates can be interpreted as an axis partition op-
eration, wherein the axes of the original coordinate system (x, y) are partitioned into shorter axes
at multiple levels ([x0, x1, x2], [y0, y1, y2]), with xi and yi denoting the base of partition. This can
be seen as mapping the original coordinates into a higher-dimensional space, enabling subsequent
coordinate networks to analyze the repetitive pattern of data. Specifically, given a 1D coordinate2

x ∈ {0, 1, . . . , N − 1}, where N is the input data size (e.g. sequence length of an audio input), x
can be decomposed in L hierarchical levels:

x
decomp
:= {x0, x1, . . . , xL−1} ; xi ∈ {0, 1, . . . , Bi − 1}

where Bi is base at i-th level and N =
∏L−1

k=0 Bk. We call [B0, . . . , BL−1] the bases of partition.
Let Ci =

∏i
k=0 Bk be the i-th cumulative base and Gi = ⌊N/Ci⌋ be the grid size of the partitioned

axis at the i-th level. The decomposed coordinates are given by xi = ⌊x/Gi⌋ mod Bi. Such a
coordinate decomposition creates a hierarchical data representation, starting from a coarse level and
progressively refining to a finer level. This computation is only performed once at the beginning of
training, making it an efficient way to encode multi-resolution information into the network.

3.2 HIERARCHICAL MODULATION

Our method encodes information in each resolution level (except level-0) using independent mod-
ulators as illustrated in Fig. 1(b), where the number of modulators is equal to L − 1. The output
activations from each modulator are then treated as the bias of the corresponding resolution level.
Specifically, an L-layer ASMR with hidden dimension di in the i-th layer is defined as follows:

z0 = x0

zi = σ(Wizi−1 + bi +Mi(xi)) i = 1, . . . , L− 1

zL = WLzL−1 + bL

(1)

where zi ∈ Rdi , Wi ∈ Rdi×di−1 , bi ∈ Rdi , Mi(·) : Rd0 → Rdi denote the activations, weight
matrix, bias and modulator at the i-th layer, respectively. σ(x) represents the nonlinear activation.
In this paper, we employ SIREN (Sitzmann et al., 2020) as our backbone where σ(x) = sin (ω0x)
and ω0 ∈ R+ is a predefined positive scalar to control the frequency of the model.

Prior work (Chan et al., 2021; Dupont et al., 2022a;b) applies modulations to INRs in a global
manner, where a low-dimensional latent vector is mapped to a set of global modulations. These
modulations are then applied to hidden activations through scales and shifts. Herein we adopt a
similar approach to Dupont et al. (2022b), where modulation is applied as a bias vector. However,
instead of storing a set of global modulations per INR, we generate “local” modulations by utilizing
a position-dependent modulator whereby independent modulators are employed for each resolution
level. In particular, the modulator is taken in its simplest form as a projection matrix given by
Mi(·) := ω0WMi

∈ Rd0×di , where ω0 is set to be the same as the SIREN backbone and WMi
∼

U(−
√
1/d0,

√
1/d0). The modulator can be interpreted as storing the eigen-modulations for each

hierarchical level. This hierarchical modulation technique serves as a simple but effective way to
utilize multi-resolution decomposed coordinates. It improves reconstruction fidelity with only a
negligible increase in parameter count.

3.3 ACTIVATION-SHARING INFERENCE

The fusion of multi-resolution coordinates and hierarchical modulation permits the sharing of ac-
tivations across data points. In particular, instead of inferring all N data points on every layer,

2For the ease of illustration, we assume 1D data. However, the idea is easily generalized to multi-
dimensional data.
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Figure 2: MAC-#Params curves of SIREN, ASMR, KiloNeRF and LoE. We highlight that ASMR
reduces the MAC of SIREN models of width 256 by 50 ∼ 200× to near the theoretical limit of a
single-layer MLP with 32 hidden units (red dotted line).

each hidden layer and modulator only has to infer on Ci data points and Bi grids, respectively, as
illustrated in Fig. 1(c). By adopting activation-sharing inference, Equation 1 could be rewritten as:

zi = σ(U(Wizi−1 + bi, Bi) +R(Mi(xi), Ci−1)) (2)

here, U(x, r) and R(x, r) represent the nearest neighbor and tile replication upsampling of the input
x, performed r times along the corresponding axis, respectively. Such upsampling operations can be
easily implemented using einops (Rogozhnikov, 2022). This amortizes the inference cost across
the entire data, making the per-sample inference cost of ASMR dependent only on the width of the
model (i.e. number of hidden units) and independent of the depth, which is contrary and superior
to other common INR architecture families such as vanilla SIREN, LoE, and KiloNeRF. This is
particularly important because the number of layers directly correlates to the reconstruction quality.

Proposition 1. ASMR decouples its inference cost (in terms of MAC) from its depth L, and conse-
quently its corresponding reconstruction quality.

Proof. Suppose the ASMR model has L layers and each layer-i inferences with a MAC of Mi. For
notational convenience, we assume that the bases of partition at each level of the ASMR model to
be the same3 (i.e., uniform bases), namely, B. Since the cumulative product of all bases must be
equal to N , i.e. the partitioned grid of the highest resolution must be equal to the resolution of the
data, one gets L = logB N .

For any vanilla MLP, one can approximate its inference cost with the equation MAC =
∑L

i=1 NMi.
Fixing the hidden dimension of each layer gives us an approximation of Mi with M =
max(M1,M2, . . . ,ML). Then, we can simplify the expression for MAC into MAC ≤ NLM and
the per-sample inference cost is MACsample ≈ LM .

For ASMR, layer-i only has to infer Bi times. Hence, the inference cost of ASMR is given by:

MAC =

L∑
i=1

BiMi ≤ M

L∑
i=1

Bi = MB
BL − 1

B − 1
(geometric sum)

≈ MB

B − 1
BL =

MB

B − 1
BlogB N =

B

B − 1
MN ≤ 2MN

since B ≥ 2. This gives us a per-sample inference cost of ASMR of MACsample ≈ 2M which is
solely dependent on the hidden dimension (width) of the model.

3The non-uniform base case will lead to a much more tedious form of expression, but we note that the idea
of amortizing per-sample inference cost could be easily generalized.
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Model MACs #Params
SIREN O(L) O(L)

KiloNeRF O(L) O(L)
LoE O(L) O(log2 N − L)

ASMR O(1) O(L)

Table 1: Relating parameter count
and MACs to network depth L when
network width is fixed.

Table 1 and Figure 2 summarize the MAC-to-parameter
count relationships among low-inference cost architectures
analytically and empirically, respectively. For KiloNeRF, its
inference cost increases with network depth and hence its
overall signal-fitting ability. On the other hand for LoE, its
multi-resolution weight-sharing approach induces a nega-
tive correlation between its parameter count and depth. This
is because an increase in network depth must be accompa-
nied by a decrease in the number of weight tiles at a partic-
ular layer by a multiplicative factor that depends on the way
of partition. LoE asserts that the cumulative product of its weight tile dimensions is equal to the data
size, and the smallest weight tile size is 2. Hence, the maximum value of L is log2 N . Note that
both LoE and KiloNeRF reduce their inference cost by increasing their grid resolutions which leads
to a significant increase in their parameter counts.

4 EXPERIMENTS

All codes are implemented using the PyTorch (Paszke et al., 2019) framework. The baselines are
adopted from the official codes provided by the authors, except LoE (Hao et al., 2022) which has no
publicly available code, and KiloNeRF (Reiser et al., 2021) and Instant-NGP (Müller et al., 2022)
which the original implementation could not conveniently accommodate for our use cases.

4.1 ULTRA-LOW MAC TRAINING

To test the performance of ASMR under an ultra-low inference cost scenario, we train the models
to fit a 512×512 gray-scale Cameraman (Van der Walt et al., 2014) image. We train 2 sets of
SIREN models and apply ASMR to show that our method could achieve more than 50× reduction in
inference cost while also increasing the model’s reconstruction quality. For the 3-layer SIREN, our
ASMR uses partition bases of [8, 8, 8], while the 4-layer SIREN uses partition bases of [4, 4, 4, 8].
As the only additional weights are contributed by the single-layer linear modulators, the increase in
parameter count is nearly negligible, especially when considering the significant increase in PSNR
for a 4-layer SIREN mode from 32.4dB to 37.8dB. It should also be noted that the reduction in
inference cost results in a decrease in training time by 46% from 389s to 210s for the 3-layer SIREN
and by 45% from 509s to 280s for the 4-layer SIREN.

Model (#layers) #Params (K) MACs (K) PSNR(dB)

KiloNeRF (3) 250 0.98 34.35
LoE (4) 126 2.07 33.27

SIREN (3) 66.8 66.3 28.62
SIREN (4) 133 132 32.37

ASMR (3) 67.8 1.29 31.44
ASMR (4) 134 1.35 37.84

Table 2: Ultra-low MAC fitting results on Cam-
eraman image.

Figure 3: Comparison of MAC-PSNR curves.
Circle’s area is proportional to #Params.

We also compare ASMR with SOTA low inference cost methods, namely KiloNeRF and LoE, under
the ultra-low MAC regime. To simulate a real-life situation where hardware resources are highly
restrictive, we limit the parameter counts to less than 150K except for KiloNeRF4. It should be
noted that even though KiloNeRF and LoE could further reduce MACs by increasing their grid
resolutions, our experiments show that they fail to reach > 30dB PSNR at a low parameter count.
Figure 3 extends the results of KiloNeRF, LoE, and ASMR from Table 2 to include their full MAC-
PSNR curves at 3-7 hidden layers. We highlight that the ASMR’s near-constant trade-off between
inference footprint and reconstruction quality is superior to KiloNeRF’s positive linear and LoE’s
negative linear trade-off.

4Our experiments in Appendix A show that a KiloNeRF configuration with less than 150K parameters does
not achieve > 30dB PSNR.
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Method #Params (K) MACs (K) PSNR (dB)↑ SSIM↑ Latency (ms) ↓
Server Desktop Raspberry Pi

FFN 132.4 131.8 31.037±3.233 0.841±0.045 369.5 2859.2 8975.4
SIREN 133.1 132.4 32.398±3.331 0.890±0.037 441.4 4400.0 13476.6
MFN 134.7 133.4 27.565±3.132 0.782±0.078 459.9 10291.4 (Failed)
WIRE 136.8 135.9 31.266±2.055 0.854±0.066 2296.5 (Failed) (Failed)

ASMR 134.7 1.85 33.087±2.704 0.892±0.021 143.9 957.7 3202.0

Table 3: Image fitting results (mean ± std.) on the Kodak dataset. The mean ± std. across all
images is reported. ASMR achieves the best results in terms of both PSNR and SSIM while having
the lowest MACs and latency across various hardware platforms. The reported latency is an average
across 10 runs. Processes that are too computationally intensive and result in hanging or being
automatically killed due to excessive RAM usage are indicated by (Failed).

4.2 NATURAL IMAGE FITTING

To test the robustness of our method on a wide variety of natural images we conduct image fitting
on the entire Kodak (Eastman Kodak Company, 1999) dataset. Each image is of either 512×768
or 768×512 resolution with RGB channels. The mean and standard deviation across all images
are reported. We benchmark ASMR against various baselines, including Fourier Feature Net-
work (FFN) (Tancik et al., 2020), SIREN (Sitzmann et al., 2020), MFN (Fathony et al., 2020),
WIRE (Saragadam et al., 2023). Table 3 demonstrates that ASMR surpasses all other baselines in
both PSNR and SSIM metrics with a matching number of parameters (approximately 130K), while
operating in the ultra-low MAC regime, highlighting the efficiency of our approach. For full imple-
mentation details and qualitative results, please refer to Appendix C and Appendix L, respectively.

To demonstrate the improved inference speed of our ASMR method on resource-limited devices,
we also measure the rendering latency on various hardware platforms. These platforms range from
high-end to low-end CPUs. As shown in Table 3, ASMR consistently speeds up SIREN by > 3× in
terms of latency, and the speed-up becomes more significant when tested on devices with reduced
computation power (viz. > 4× on Raspberry Pi).

4.3 OTHER MODALITIES

Method #Params (K) MACs (K) PSNR (dB)↑
Instant-NGP 32.9 1.0 47.30±3.74
KiloNeRF 33.4 8.16 42.20±2.39
SIREN 33.4 33.0 46.21±3.30

ASMR 33.8 1.0 61.66±1.61

Table 4: Audio fitting results on the Lib-
riSpeech dataset. The mean ± std. across all
samples is reported.

Method #Params (M) MACs (M) PSNR(dB)↑ SSIM↑
Instant-NGP 1.229 0.006 33.61 0.892
KiloNeRF 1.459 0.004 27.91 0.804
SIREN 1.054 1.054 31.66 0.825
SIREN-BIG 4.205 4.205 35.66 0.895

ASMR 1.059 0.006 33.10 0.857
ASMR-BIG 4.215 0.008 38.73 0.938

Table 5: Megapixel image fitting on the
8192×8192 Pluto image.

To showcase the versatility of ASMR across different modalities, we present additional experimental
results on audio, megapixel images, video, and 3D shapes.

Audio. We evaluate ASMR’s performance on an audio-fitting task, using the LibriSpeech (Panay-
otov et al., 2015) dataset as the benchmark. Our findings suggest that ASMR is particularly effective
with low-dimensional data like audio. As shown in Table 4, ASMR, with a matching parameter count
of around 33K, significantly outperforms other baselines, including Instant-NGP, KiloNeRF and its
SIREN counterpart, with an absolute gain of over 14dB in PSNR, while also exhibiting the lowest
MAC of around 1K. Moreover, we also find that ASMR converges much more quickly as compared
to the standard SIREN model. For detailed settings, please refer to Appendix D.

Megapixel Image. Learning to fit a high-resolution megapixel image is an example where de-
coupling network parameter count from inference cost is particularly important since oftentimes
a significantly larger model is required. Here, we trained our models to fit the 8192×8192 RGB
Pluto (NASA, 2018) image. To achieve >30dB PSNR, a SIREN model must have at least 1M pa-
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Figure 4: Visual comparison of video fitting results. The mean together with the standard deviation
of PSNR across all frames of each model is labeled at the top-left corner of each image. Qualita-
tively, it is clearly seen that SIREN reconstructs the video with serious smoothing effects while both
ASMR models are able to learn the finer details (e.g. whiskers).

rameters (6 layers with 512 hidden dimensions), bringing the cost of inference to more than 1M
MACs. However, by applying ASMR to the same SIREN model, we not only could reduce the cost
of inference by ∼175× to only 6K MACs, but also increase the reconstruction quality from 31.66dB
to 33.10dB PSNR. The reduction in MAC is more significant (> 500×) when applying ASMR to
a larger SIREN with 1024 hidden units (SIREN-BIG), improving the PSNR by more than 3dB. We
also benchmark ASMR against the KiloNeRF and Instant-NGP models at similar inference costs
and parameter counts. We found that KiloNeRF does not achieve a reconstruction quality compa-
rable to the other models, while Instant-NGP reaches similar levels in both PSNR and SSIM. For
detailed settings, please refer to Appendix E.

Video. Compared to megapixel images, video data is a complex signal with even more pixels. The
additional time dimension also differentiates the nature of video data from that of an image. Here,
we follow Sitzmann et al. (2020) and train our models on an RGB cat video (Ehlers, 2019) with
300 frames of 512×512 resolution. The two different configurations of ASMR share the same set of
partition bases but have different permutations. This results in varying inference costs, as discussed
in Appendix K. A frame where the cat is relatively static is visualized in Figure 4. Despite the
original SIREN having a higher PSNR score, we can clearly see that ASMR reconstructs the video
at a much higher visual fidelity with fine details encoded. While SIREN has shown significant
improvement from the original ReLU MLP with the use of sine activations, we hypothesize that
SIREN still suffers from a certain degree of spectral bias due to a fixed scaling factor of ω0 = 30.
On the other hand, KiloNeRF, fitting independent MLPs, exhibits tiling effects where the borders
can be seen in the enlarged section. For additional results on the UVG dataset and detailed model
configurations, please refer to Appendix G and F respectively.

Method MACs (M) #Params (M) IoU ↑
SIREN 2.100 2.10 89.27±6.43
ASMR 0.039 2.12 89.57±6.72

Table 6: 3D shape reconstruction results
(mean ± std.) on the ShapeNet dataset.

3D Shapes. A direct extension of ASMR to 3D data is
demonstrated by training it to fit occupancy grids. One
random sample from each category of ShapeNet is se-
lected, amounting to a total of 55 objects, and evaluated
with intersection-over-union (IoU). A 10-layer SIREN
with 512 hidden units, along with its ASMR counterpart
with a basis of partition of 2, are trained over 200 epochs.
All hyperparameters remain constant across both models
(see Appendix H for details). The results in Table 6 indicate that ASMR retains the reconstruction
quality of SIREN, while significantly reducing inference cost (> 50× MAC reduction). However,
it is worth noting that ASMR performs significantly worse when trained on continuous 3D signals
such as signed distance fields (SDFs) (refer to Appendix M for qualitative results). This suggests
that the coordinate decomposition in ASMR has a strong bias towards rasterized data.
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4.4 META-LEARNED INITIALIZATION

Figure 5: Selected reconstructions from the CIFAR-10 dataset by taking 3 gradient updates from the
meta-learned initialization of (Top) ASMR (Bottom) Instant-NGP.

One distinct advantage that sets ASMR apart from explicit or hybrid INRs, like Instant-NGP (Müller
et al., 2022), is its ability to handle tasks that require a global implicit representation, such as gen-
erative tasks and tasks involving the use of meta-learning. Here, we follow the setting described in
Dupont et al. (2022b) to meta-learn an INR for an entire dataset and learn an instance-specific global
latent vector of size 128 to encode each image. Each latent vector is then injected into the INRs as
a modulation. Our experiment is conducted on the CIFAR-10 dataset. Fig. 5 displays the selected
reconstructions after taking 3 gradient steps from the learned meta-initialization. It is evident that
additional instance-specific modulations can be used in conjunction with our hierarchical modula-
tion. Furthermore, it also demonstrates that the multi-resolution hierarchical structure of ASMR
can be generalized to effectively encode shared structures across images. In contrast, Instant-NGP
fails to learn the shared structure. We argue that this is primarily due to the distortion caused by the
highly nonlinear coordinate transformation to an unbounded input space resulting from the hashed
encoding in Instant-NGP. For implementation details, please refer to Appendix I.

5 LIMITATIONS AND DISCUSSION

Incorporating hierarchical modulations into SIREN introduces a beneficial inductive bias, leading
to higher fidelity reconstructions of rasterized data. However, this also causes AMSR to struggle
with smooth signals, such as SDFs. The grid-like symmetry bias results in noisy artifacts, especially
noticeable when visualizing smooth 3D objects. Furthermore, it also disrupts the clean analytical
gradients typically possessed by SIREN. Exploring methods to smoothly extend ASMR to continu-
ous data would be an interesting direction for future research. It is also worth noting that grid-based
INRs like Instant-NGP can maintain a fixed MLP’s width and depth while enhancing the model’s
expressivity by enlarging the hash grid embedding. Although ASMR’s expressivity is not tied to the
MLP’s depth, it still depends on the width of the network. Therefore, exploring methods that enable
purely implicit INRs to also separate expressivity from the network’s width could be valuable.

6 CONCLUSION

A novel Activation-Sharing Multi-Resolution (ASMR) coordinate network has been proposed which
operates at very low inference costs while maintaining all benefits of an implicit representation.
This model combines multi-resolution coordinate decomposition with hierarchical modulations, to
allow for the sharing of activations across data grids and the decoupling of inference cost from
network depth and reconstruction capability. As a result, ASMR achieves near O(1) inference
complexity regardless of the number of layers. We demonstrate that ASMR is the only model,
among all baselines, that can work in the ultra-low MAC regime with less than 2K MACs, while
achieving a reconstruction result of >30dB PSNR on low-resolution RGB images. Furthermore,
ASMR outperforms its SIREN counterpart on large-scale megapixel image fitting tasks with the
same parameter count, while significantly reducing MACs by 500×.
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A MODEL CONFIGURATIONS IN FIG. 2

The idea of Fig. 2 is to show that our ASMR method allows ultra-low MAC inference and near-
constant MAC when increasing the number of layers and hence parameter count. This is a desirable
property of an INR as increasing parameter count is a direct indicator of its reconstruction quality.

We compare with two other SOTA INR frameworks that reduce inference cost, namely the Kilo-
NeRF family and the LoE family. For all 4 models, we plot their MAC-parameter curve by fixing
the hidden dimension and increasing the number of layers progressively. For a fair comparison, we
tune the hidden dimension for each model such that the number of parameters is roughly in the same
range.

The configurations of all 4 models are summarized in the following table. The configuration of the
SIREN model is identical to that of the ASMR model. Note that the “Partition bases (Bi)” for LoE is
equivalent to weight tile dimensions while that for KiloNeRF is equivalent to grid dimension. Other
hyperparameters such as learning rates and position encodings are the same as those presented in
the next section.

Model hidden dim L Partition bases (Bi) # Param (K) MACs (K)

SIREN

256 7 N/A 329 323.0

256 6 N/A 263 264.2

256 5 N/A 197 198.4

256 4 N/A 132 132.6

256 3 N/A 66 66.8

ASMR

256 7 [2,2,2,2,2,2,8] 333 1.6

256 6 [4,2,2,2,2,8] 267 1.6

256 5 [8,2,2,2,8] 200 1.6

256 4 [4,4,4,8] 134 1.3

256 3 [8,8,8] 68 1.3

LoE

50 10 [2,2,2,2,2,2,2,2,2] 87 21.8

50 9 [4,2,2,2,2,2,2,2] 98 19.3

50 8 [4,4,2,2,2,2,2] 118 16.8

50 7 [4,4,4,2,2,2] 138 14.3

50 6 [4,4,4,4,2] 158 11.8

KiloNeRF

32 6 [16] 361 5.5

32 5 [16] 293 4.4

32 4 [16] 225 3.4

32 3 [16] 158 2.4

Table 7: Model configurations of Figure 2.

B IMPLEMENTATION DETAILS OF ULTRA-LOW MAC EXPERIMENT

All models are trained for 10K iterations and configured optimally to have inference costs as low as
possible while maintaining a low parameter count and having at least 1 hidden layer.
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Learning Rate For KiloNeRF, we follow the learning rate stated in Reiser et al. (2021) and use
a starting learning rate of 5e-4. For both SIREN and LoE, we did a simple grid search over the set
{1e-2, 1e-3, 1e-4} and realized a learning rate of 1e-4 for SIREN and 1e-2 for LoE are the best. For
all models, we use the cosine annealing scheduler with a minimum learning rate of 1e-6.

Position Encoding Both KiloNeRF and LoE use position encoding as the input to their first layer.
We follow the original setting in their papers and set the number of frequencies to 10 for KiloNeRF
and 8 for LoE.

The optimal set of hyperparameters obtained in this experiment is also used for the other experiments
in this paper.

The following table presents the “boundary” configurations we tested for KiloNeRF and LoE. We
show that reducing KiloNeRF’s parameter count to a number closer to our SIREN baseline while
maintaining a low MAC leads to a sub-30dB PSNR. This explains why we chose to use the config-
urations in the second row for comparison in Table 2. We also show that further reducing the MACs
of LoE while not decreasing parameter count (which makes it unfair to compare with our SIREN
(4) and ASMR (4) model) will require reducing the number of layers from 4 to 3. However, this
implies that even with a very small number of hidden units (8), the parameter count is still way over
our SIREN/ASMR baseline.

Model hidden dim L Grid Sizes/ Bases # Param (K) MACs (K) PSNR (dB)

KiloNeRF 8 3 16×16 108.8 0.425 23.05

KiloNeRF (in Table 2) 16 3 16×16 250.1 0.977 34.30

LoE 8 3 [[32,16], [32,16]] 294.9 0.361 39.47

LoE (in Table 2) 24 4 [[8,8,8], [8,8,8]] 126.0 1.992 36.24

Table 8: Boundary configurations and results for KiloNeRF and LoE.

We also include the detailed model configurations of Figure 3, which is an extension of Table 2:

Model hidden dim L Partition bases (Bi) # Param (K) MACs (K)

ASMR

256 6 [4,2,2,2,2,8] 267 1.60

256 5 [8,2,2,2,8] 200 1.60

256 4 [4,4,4,8] 134 1.30

256 3 [8,8,8] 68 1.30

LoE

24 7 [4,4,4,2,2,2] 38.6 3.72

24 6 [4,4,4,4,2] 43.2 3.14

24 5 [8,4,4,4] 80.0 2.57

24 4 [8,8,8] 126 1.99

KiloNeRF

16 6 [16] 459 1.79

16 5 [16] 389 1.52

16 4 [16] 320 1.25

16 3 [16] 250 0.98

Table 9: Model configurations for Figure 3.
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C IMPLEMENTATION DETAILS OF NATURAL IMAGE FITTING EXPERIMENT

All models are trained for 10K iterations and have around 130K total parameters. FFN is basically
ReLU MLP with Gaussian random Fourier features. For MFN, we use the FourierNet instantiation
as described in Fathony et al. (2020). Below is the complete set of hyperparameters for all models:

• FFN: lr=1e-3, embedding size=128, σ = 10, 3 layers, 256 units
• SIREN: lr=1e-4, ω0 = 30, 4 layers, 256 units
• MFN (FourierNet): lr=1e-2, input scale=256, weight scale=1, 4 layers, 256 units
• WIRE: lr=1e-3, ω0 = 20, s0 = 20, 4 layers, 212 units
• ASMR: lr=1e-4, ω0 = 30, bases=([4,4,4,8], [4,4,6,8]), 4 layers, 256 units

Latency results are gathered from various hardware platforms. These include a server-level AMD
7413 2.65GHz 24-Core CPU, a desktop 3.1 GHz Dual-Core Intel Core i5 CPU, and a Quad-core
Cortex-A72 (ARM v8) 1.8GHz CPU of Raspberry Pi 4 model B.

D IMPLEMENTATION DETAILS OF AUDIO EXPERIMENT

The first 100 samples with a minimum duration of 2 seconds are selected from the test-clean split
of the LibriSpeech dataset. All models undergo training for 10K iterations at a learning rate of le-4,
using only the initial 2 seconds of each sample. The full set of hyperparameters is detailed below:

• Instant-NGP: levels=7, features per level=2, size of hash map=216, base resolution=125,
finest resolution=8000, per level scale=2, 2 layers, 64 units

• KiloNeRF: number of frequencies=12, grid dimensions=[4], 5 layers, 48 units
• SIREN: ω0 = 30, 4 layers, 128 units
• ASMR: ω0 = 30, bases=[10, 10, 16, 20], 4 layers, 128 units

E IMPLEMENTATION DETAILS OF MEGAPIXEL IMAGE FITTING EXPERIMENT

All models are trained for 500 epochs. We count 1 epoch each time when all pixels in the Pluto
image have been sampled once. For KiloNeRF, we randomly sample 222 = 4, 194, 304 per training
step, while for NGP/SIREN/ASMR, we randomly sample 218 = 262, 144 pixels per training step.
We train these four models on a single RTX3090. For SIREN-BIG and ASMR, we sample 220 =
1, 048, 576 pixels per step and train the models on two RTX A6000s.

The full set of hyperparameters is detailed below:

• Instant-NGP: levels=16, features per level=2, size of hash map=216, base resolution=16,
finest resolution=4096, 3 layers, 64 units

• KiloNeRF: number of frequencies=10, grid dimensions=[16, 16], 6 layers, 32 units
• SIREN: ω0 = 30, 6 layers, 512 units
• ASMR: ω0 = 30, bases=[[4,4,4,4,4,8],[4,4,4,4,4,8]], 6 layers, 512 units
• SIREN-BIG: ω0 = 30, 6 layers, 1024 units
• ASMR-BIG: ω0 = 30, bases=[[4,4,4,4,2,16],[4,4,4,4,2,16]], 6 layers, 1024 units

In Figure 6, we visualize the reconstructed image at 10 training epochs for all 4 models and realize
that ASMR, compared to its SIREN counterpart, can learn the high-fidelity features faster in terms
of training steps. This is similar to that of Instant-NGP. On the other hand, KiloNeRF exhibits very
blurry tiling effects at such an early stage. Combining the findings from Takikawa et al. (2021)
which also uses a set of multi-resolution embeddings, we believe that this is a benefit contributed by
the multi-resolution coordinate system.

We also attempted to train a LoE model but the lack of original code made the training for megapixel
images prohibitive (days on NVIDIA RTX3090). As random sampling is required for training a
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Figure 6: Comparison of reconstruction quality of the Pluto Image at 100 and 500 training epochs.

megapixel image (as well as other large-scale data formats such as video), carefully written CUDA
routines become necessary for the parallel training of weights. In order to match the low MACs of
our ASMR model while maintaining a similar parameter count, the only possible configuration of
LoE is to either have two hidden layers of 16 hidden units and weight tile dimensions of 32 × 32,
16× 16, and 16× 16, or a single hidden layer and only 4 hidden units.

F IMPLEMENTATION DETAILS OF VIDEO FITTING EXPERIMENT

All models are trained for 200 epochs. We count 1 epoch each time when all pixels in the Cat
video have been sampled once. For all models, we randomly sample 153600 pixels per training. We
measure the PSNR and SSIM scores per frame and take the average across all 300 frames.

The full set of hyperparameters is detailed below:

• KiloNeRF: number of frequencies=10, grid dimensions=[16,16], 6 layers, 32 units
• SIREN: ω0 = 30, 7 layers, 512 units
• ASMR-1: ω0 = 30, bases=[[5,3,1,2,1,2,5], [4,2,2,2,2,2,4], [4,2,2,2,2,2,4]], 7 layers, 512

units
• ASMR-1: ω0 = 30, bases=[[5,5,3,2,1,1,2], [4,4,2,2,2,2,2], [4,4,2,2,2,2,2]], 7 layers, 512

units

The rest of the configurations of each model and their video-fitting results are presented in the
following table.

Model # Param (M) MACs (K) PSNR (dB) ± std SSIM ± std

SIREN 1.314 1313.79 34.641 ± 1.159 0.9079 ± 0.01062
KiloNeRF 1.223 6.21 29.560 ± 1.208 0.8289 ± 0.0228
ASMR-1 1.326 5.36 31.506 ± 1.401 0.8536 ± 0.0340
ASMR-2 1.326 44.99 31.596 ± 0.751 0.8189 ± 0.0122

Table 10: Video fitting results on the Cat video.

G ADDITIONAL VIDEO FITTING RESULTS

To further validate ASMR’s performance on video data, ASMR is evaluated on the UVG dataset,
a common video benchmark consisting of 7 HD videos captured at 120fps. Due to hardware con-
straints, we downsampled the videos by a factor of 4 to 150 frames with a resolution of 270 × 480.
This allows a model to achieve good reconstruction quality while fitting into a single NVIDIA 3090
GPU. For the “shakendry” video, however, there are only 75 frames. During each training iteration,
we sample 194,400 pixels.
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The full set of hyperparameters is detailed below:

• Instant-NGP: levels=17, features per level=2, size of hash map=216, base resolution=[5, 9,
12], finest resolution=[75, 135, 240], 3 layers, 64 units

• KiloNeRF: number of frequencies=10, grid dimensions=[3, 5, 5], 8 layers, 64 units

• SIREN: ω0 = 30, 10 layers, 512 units

• ASMR: ω0 = 30, bases=[[5,1,1,5,1,1,3,1,1,2], [5,1,3,1,3,1,3,1,2,1], [5,3,2,2,1,2,1,2,1,2]],
10 layers, 512 units

Method #Params (M) MACs (M) PSNR(dB)↑ SSIM↑
Instant-NGP 1.990 0.006 29.8 ± 3.4 0.83 ± 0.07
KiloNeRF 2.194 0.025 30.3 ± 4.3 0.83 ± 0.09
SIREN 2.105 2.105 33.6 ± 3.6 0.91 ± 0.04

ASMR 2.119 0.120 32.3 ± 4.2 0.86 ± 0.07

Table 11: Video fitting results on the UVG dataset.

H IMPLEMENTATION DETAILS OF 3D SHAPES EXPERIMENT

We modified the NGLOD (Takikawa et al., 2021) repository for our occupancy grid experiments.
Both SIREN and ASMR are trained for 200 epochs, where each epoch samples 250k points and
each training step has a batch size of 4096. Among the sampled points, 60% are sampled randomly,
20% are sampled on the surface, and 20% are sampled near the surface.

The full set of hyperparameters is detailed below:

• SIREN: ω0 = 30, 10 layers, 512 units

• ASMR: ω0 = 30, bases=[[2,2,2,2,2,2,2,2,2,2], [2,2,2,2,2,2,2,2,2,2], [2,2,2,2,2,2,2,2,2,2]],
10 layers, 512 units

I IMPLEMENTATION DETAILS OF META-LEARNING EXPERIMENT

We use the same setting as in Dupont et al. (2022b), where SGD is used for the inner loop with
a learning rate of 1e-2, and the Adam optimizer is used for the outer loop with a learning rate of
3e-6. We set the size of the latent vector to be 128 and allow 3 gradient updates to generate the
reconstruction. The latent vector is first mapped to the instance-specific modulation with a size
equal to the hidden size multiplied by the number of layers minus 1.

To train ASMR under COIN++ (Dupont et al., 2022b) framework, one can rewrite Equation 1 as

zi = σ(Wizi−1 + bi +Mi(xi) + ϕi−1) i = 1, . . . , L− 1 (3)

where ϕ = [ϕ0, ϕ1, . . . , ϕL−2] is the instance-specific modulation vector to encode each image.

For Instant-NGP, we directly use the hashed encoding implementation provided by
tiny-cuda-nn (Müller, 2021). The meta-learning code is adapted from the official code
released by the author (Dupont et al., 2022b). We use a batch size of 64 during training. The set of
hyperparameters used by each model is given:

• Instant-NGP: levels=4, features per level=2, size of hash map=216, base resolution=2, per
level scale=2, 5 layers, 512 units

• ASMR: ω0 = 50, bases=[2,2,2,2,2], 5 layers, 512 units
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J INDUCTIVE BIAS OF ASMR

The strong performance of ASMR can be attributed to its assumption of a hierarchical, multi-
resolution structure in the underlying data. This assumption provides a powerful inductive bias,
allowing ASMR to effectively represent the high-frequency components of the data. Fig. 7 com-
pares the reconstructed outputs of ASMR and SIREN during the early training stage on the Cam-
eraman image. It shows that ASMR starts with a predefined hierarchical repeating pattern on the
underlying image, while SIREN begins with a relatively low-frequency reconstruction. This induc-
tive bias allows ASMR to converge more quickly in the early iterations as well as achieving better
reconstruction quality at the end.

SIREN

ASMR

200 steps

22.995dB

26.092 dB

24.540 dB

28.994 dB

26.147 dB

30.893 dB

27.580 dB

32.062 dB

600 steps400 steps 800 steps

Figure 7: A comparison of inductive bias between ASMR and SIREN, wherein reconstructed im-
ages at the early training stage (200, 400, 600, 800 steps) are shown. By imposing a multi-resolution
hierarchical structure on the target image, ASMR can achieve faster convergence and accurately
represent fine details from the start. In contrast, SIREN initially produces a relatively blurry recon-
struction.

Level-0: 8×8
Level-1: 64×64

Level-2: 512×512

Figure 8: Feature maps obtained from a selected hidden unit of a 3-layer ASMR. It is worth noting
that the feature maps shown here are not to scale, and we specify their dimension at the bottom of
each feature map.

To provide a better understanding of the underlying activation-sharing mechanism of ASMR, we
visualize the hidden activations of ASMR. The ASMR we employ consists of 3 layers with 256
hidden units. In the case of ASMR, we use uniform bases of [8,8,8] for axis partitioning along both
the horizontal and vertical dimensions. For brevity and better visualization, we display the activation
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of only one selected channel for illustrative purposes. Figure 8 depicts the concept of activation-
sharing inference in ASMR. In this approach, a modulation vector is shared among coordinates
within the same partitioned grid. Subsequently, a sequence of upsampling operations is performed,
leading to a progressively larger feature map in ASMR. Each layer contributes more details, and finer
details are repeated more frequently due to the hierarchical structure of decomposed coordinates.

K PERMUTATION OF BASES

To provide a good heuristic for choosing the appropriate partition pattern, we conducted a set of
experiments on the Cameraman image. In particular, we permute the bases of an ASMR model with
4 layers and 512 units, totaling 134K parameters. Table 12 shows that when more activations are
shared at a later stage of the ASMR model using a larger base B3 or equivalently a smaller grid size
G3, it reduces the number of MACs without compromising the performance in terms of PSNR and
SSIM. This entails that ASMR is insensitive to the permutation of bases, avoiding an exponential
increase in hyperparameters to tune during training.

Partition MACs (K) PSNR (dB) ↑ SSIM ↑
[B0, B1, B2, B3]

[4, 4, 4, 8] 1.34 37.755 0.930
[4, 4, 8, 4] 4.42 37.442 0.925
[4, 8, 4, 4] 4.61 37.776 0.928
[8, 4, 4, 4] 4.61 37.574 0.927

Table 12: The effect of the bases permutation.
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L QUALITATIVE RESULTS ON KODAK IMAGE FITTING TASK

In this section, we present some qualitative results on selected images from the natural image fitting
task in Section 4.2.

ASMR

SIREN

MFN

WIRE

FFN

SIREN

FFN

ASMR

MFN

WIRE

SIREN

FFN

ASMR

MFN

WIRE

Figure 9: Qualitative results of natural image fitting tasks are shown. The selected images for
comparison, from top to bottom, are Kodak03, Kodak15, and Kodak23.
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M QUALITATIVE RESULTS ON SDF FITTING TASK

In this section, we showcase qualitative results from selected objects in the SDF fitting task. The
strong inductive bias of ASMR towards rasterized data hinders its ability to encode continuous
signals like SDFs. This deficiency is evident in Figure 10 and Figure 11, where ASMR struggles to
capture sharp edges and generates noisy samples.

(a) GT (b) SIREN (c) ASMR

Figure 10: SDF of a piano object.

(a) SIREN (b) ASMR

Figure 11: Cross section of a simple pyramid object.
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