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ABSTRACT

Auto-bidding serves as a critical tool for advertisers to improve their advertis-
ing performance. Recent progress has demonstrated that Al-Generated Bidding
(AIGB), which learns a conditional generative planner from offline data, achieves
superior performance compared to typical offline reinforcement learning (RL)-
based auto-bidding methods. However, existing AIGB methods still face a perfor-
mance bottleneck due to their inherent inability to explore beyond the static of-
fline dataset. To address this, we propose AIGB-Pearl (Planning with EvaluAtor
via RL), a novel method that integrates generative planning and policy optimiza-
tion. The core of AIGB-Pearl lies in constructing a trajectory evaluator for scor-
ing generation quality and designing a provably sound KL-Lipschitz-constrained
score maximization scheme to ensure safe and efficient exploration beyond the of-
fline dataset. A practical algorithm incorporating the synchronous coupling tech-
nique is further devised to ensure the model regularity required by the proposed
scheme. Extensive experiments on both simulated and real-world advertising sys-
tems demonstrate the state-of-the-art performance of our approach.

1 INTRODUCTION

The increasing demand for commercial digitalization has facilitated the development of the auto-
bidding technique in online advertising. Distinguished from traditional manual bidding products,
auto-bidding provides advertisers with an efficient and flexible scheme to automatically optimize
bids in dynamic and competitive environments (Balseiro et al., 2021a; Deng et al., 2021} |[Balseiro
et all 2021b). Technically, auto-bidding can be viewed as an offline sequential decision-making
problem, which aims to maximize the advertising performance over the bidding episode, relying
solely on a static offline dataset due to system limitations (Mou et al.,[2022), such as safety concerns.

As a standard approach to offline decision-making problems, offline reinforcement learning (RL)
(Kumar et al.|, [2020) is widely adopted to solve the auto-bidding problem. By employing conser-
vative policy search schemes, offline RL mitigates the infamous out-of-distribution (OOD) problem
(Fujimoto et al., 2019)), enabling reliable generalization beyond the offline dataset. However, due
to the employment of bootstrapped value estimations, offline RL methods typically suffer from the
training instability issue (Peng et al.| [2024), risking policy performance degradation and instability.

Recent advances in generative models shed new light on offline decision-making problems (Zhu
et al.,[2023; Kang et al., 2023). Specifically, Al-generated bidding (AIGB) models the auto-bidding
as a trajectory generation task and employs a generative model to approximate the conditional trajec-
tory distribution of the offline dataset (Guo et al.,|2024). AIGB avoids the requirement for bootstrap-
ping and exhibits more stable training and superior performance. However, the modeling approach
in AIGB does not explicitly align with the performance optimization objective of the auto-bidding
problem, preventing it from actively improving toward higher performance. As a result, AIGB
primarily imitates well-behaved trajectories from the offline dataset, lacking the ability to explore
higher-quality trajectories beyond the offline data (Ajay et al., [2023).

Hence, there arises a question: built on AIGB, the latest state-of-the-art auto-bidding method, can
we devise a plausible scheme to involve policy optimization in its generative model? To this end,
a natural idea is to integrate offline RL methods into AIGB. However, it is nontrivial to implement
in the auto-bidding problem since (i) there is a lack of reward signals in AIGB to guide the gener-
ative model. Specifically, the generation quality of the generative model remains unknown during
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training, making it infeasible to explore new trajectories beyond the offline dataset; (ii) no dedicated
offline RL algorithm exists for AIGB. In particular, theoretical analysis that guarantees safe general-
ization and mitigates OOD issues for generative models in auto-bidding remains largely unexplored.

To address these critical challenges, we propose AIGB-Pearl (Planning with EvaluAtor via RL),
an RL-enhanced version of AIGB that learns a trajectory evaluator to score generation quality and
drive exploration of the generative model through continuous interaction. The evaluator is trained
through supervised learning on the offline dataset. Crucially, to mitigate the OOD problem and en-
sure reliable evaluator utilization, we examine the theoretical upper bound on the evaluator’s bias.
Then, guided by this analysis, we establish a KL-Lipschitz-constrained score maximization objec-
tive with a provable sub-optimality bound, enabling safe and effective exploration beyond the offline
data. Moreover, to perform constrained score maximization, we design a practical algorithm incor-
porating the synchronous coupling technique, which helps ensure the Lipschitz requirement of the
generative model. In addition, we note that AIGB-Pearl operates without the need for bootstrapping,
exhibiting greater training stability compared to offline RL methods.

To summarize, our contributions in this paper are fourfold: (i) we propose a novel generative auto-
bidding method, AIGB-Pearl, that enables continuous improvement in generation quality through
exploration beyond the offline dataset; (ii) we propose a provable KL-Lipschitz constrained score
maximization objective with a sub-optimality bound, ensuring a safe and effective generalization
beyond the offline dataset; (iii) we devise a practical algorithm with synchronous coupling that
effectively ensures the Lipschitz requirement for the generative model; (iv) extensive simulated and
real-world experiments demonstrate that AIGB-Pearl achieves SOTA performance and verify the
effectiveness of the developed techniques in enhancing safe and effective generalization.

2 PRELIMINARIES

2.1 PROBLEM STATEMENT

This work studies the auto-bidding problem for a single advertiser subject to a budget constraint.
The auction mechanism follows a sealed-bid, second-price rule. The objective is to devise a bidding
policy that maximizes the cumulative value of the impressions won over a finite bidding episode
(e.g., a day) within a budget B > 0. As established in (He et al.,|2021)), the optimal bid for each
impression 7 is proportional to its intrinsic value v; > 0, scaled by a non-negative factor ¢ > 0 that
remains consistent across all impressions. Under this strategy, the advertiser wins an impression ¢ if
av; > p; and pays p; upon winning, where p; > 0 is the market price. The Return on Investment
(ROI) of impression i is defined as v; /p;, and we denote its upper bound as R,, £ max; v; /Di-

However, the scaling factor is unknown in advance, and the volatility of impressions drives its con-
tinual change throughout the bidding process. Hence, a standard practice involves recalibrating the
scaling factor a at fixed intervals of T € N time steps (Guo et al., 2024; |He et al.|[2021; Mou et al .}
2022). This casts the auto-bidding to a sequential decision-making problem.

Specifically, the auto-bidding problem can be modeled as a Markov Decision Process (MDP) <
S, A, R,P >. The state s; = [t,¢_1,z] € S is composed of the current time step ¢ € [T], the
costratio ¢;_1 = ¢;—1/B > 0 where ¢;_ is the advertiser’s cost for impressions won between time
step ¢ — 1 and ¢, and a static advertiser-specific feature x that includes the budget and many other
individual information. The action a; € A denotes the calibrated scaling factor at time step t. The
reward r; > 0 describes the value of the impressions won between time steps ¢ and ¢ + 1, and P
denotes the state transition rule. The auto-bidding problem can be formulated as:

T

T
max : Eq, i ~P(Iss,a0) {Zrt}, s.t.th <B. (D
t=1

a1,a2,,a
t=1

Offline Setting. Due to safety concerns—common in real-world advertising systems—we are re-
stricted to learning the optimal bidding policy from a static offline dataset D composed of historical
states and actions along with associated rewards. This makes the considered auto-bidding problem
an offline sequential decision-making task.
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2.2  OFFLINE RL METHODS

RL constitutes a standard approach for auto-bidding problems, seeking an optimal bidding policy
m: S — A that maximizes cumulative rewards. Specifically, this is typically achieved by learning a

Q-value function, Q(s¢, a;) = E, [ZtT,:t ry/], through temporal difference (TD) error minimization:
mqign E(ssar,re,s040)~D Q(5¢,at) — 18 — g}?f@(sml, ar+1)]?, 2

where Q is a target Q-value function with parameters updated via Polyak averaging (Mnih et al.,
2015). Upon convergence, the optimal bidding policy is derived as 7(s;) = arg max,, Q(st, at).

Due to the offline setting of the considered auto-bidding problem, directly employing Eq. [2]results
in the infamous out-of-distribution (OOD) problem (Fujimoto et al., 2019), making the policy er-
roneously deviate from the offline dataset D. As a standard solution, offline RL (Yu et al., |2020;
Kumar et al. 2020} Kidambi et al., 2020; Wang et al., 2022)) constrains the policy’s behavior near D
during TD learning, enabling reliable generalization beyond the offline dataset.

However, offline RL methods notoriously suffer from training instability caused by TD-learning
(Peng et al., 2024)), where the bootstrapped value of the Q function serves as its training label,
resulting in an erroneous ground truth. Training stability is critical in auto-bidding due to the absence
of an accurate offline policy evaluation method and the high cost of online policy examination in a
real-world advertising system (Mou et al.| [2022)).

2.3  GENERATIVE AUTO-BIDDING METHODS

Definition 1 (Trajectory and Trajectory Quality). The trajectory is formalized as the state sequence
throughout the bidding episode, i.e., T = [s1,82,- -, s7]. The trajectory quality is defined as the
normalized cumulative reward of the trajectory, i.e., y(T) = Zthl Ftlzl where Ty = r¢/B.

Unlike RL methods, the Al-generated auto-bidding (AIGB) (Guo et al.|2024)) treats the auto-bidding
problem as a sequence generation task. Specifically, a conditional generative model is employed to
fit the conditional trajectory distribution pg(7|y(7)) within the offline dataset D, i.e.,

max B y(r))~p(log po(7ly(7))], 3)

where 6 denotes the parameter. Let y,,, > 0 be the maximum trajectory quality in D, we have Vy €
D,y € [0, y,]. During inference, AIGB follows a planning-and-control architecture. Specifically,
at each time step, a trajectory is sampled from the trained generative model that acts as the planner,
with a manually set condition y* £ (1 + €)yy,, where € > 0 is a hyper-parameter with usually a
small value. Then, an extra off-the-shelf inverse dynamic model (Agrawal et al., [2016)), acting as
the controller, is employed to compute the action. See Appendix [B|for detailed descriptions. AIGB
avoids TD learning and generally outperforms offline RL methods (Guo et al., 2024).

However, the modeling approach in AIGB modeling does not explicitly align with the performance
optimization objective of the auto-bidding problem. As a result, AIGB primarily relies on imitating
trajectories from the offline dataset, lacking the ability to actively explore higher-quality trajectories
and improve its generation quality from the performance feedback. This limitation imposes a funda-
mental performance ceiling. Particularly, as generative models (e.g., diffusion models) are prone to
overfitting with limited data (Ajay et al.,[2022)), their generalization ability beyond the offline dataset
can be restricted, especially when there is a lack of high-quality trajectories in the offline dataset.

3 METHOD

Enabling AIGB to explore higher-quality trajectories actively beyond the offline dataset can enhance
its performance and generalization ability. To this end, we propose AIGB-Pearl (Planning with
EvaluAtor via RL) that constructs a trajectory evaluator (referred to as the evaluator for simplicity)

"Note that, as in real-world advertising systems, the bidding process will automatically suspend once the
advertiser’s budget runs out, and thereby, any action sequence will not violate the budget constraint. Hence, the
trajectory quality can be directly defined as the cumulative reward of the trajectory.
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to integrate RL methods into AIGB’s planner training. Specifically, the evaluator learns a score
§(T) to estimate the trajectory quality y(7) via supervised learning based on the offline dataset D,
i.e., ming B, p[(§4(7) —y(7))?], where ¢ denotes the evaluator parameter. Then, with ¢ fixed, the
planner tries to maximize the score of its generation through iterative interactions with the evaluator,
as shown in Fig. [I] Formally, this can be formulated as:

IH;%X L(G) é ETNI)Q(TH/*)[ZQ(ﬁ(T)]? (4)
where the condition is fixed to * in both training and inference stages to ensure consistency.

As can be seen, the effectiveness of AIGB-Pearl fundamentally hinges on the evaluator’s reliability.
However, given the offline nature of the considered auto-bidding problem, evaluator training is con-
fined to the fixed dataset D. Directly solving Eq. f]can induce the infamous OOD problem due to the
evaluator’s generalization limits, potentially degrading the planner’s true performance. Importantly,
there is a notable lack of theoretical approaches to this OOD problem.

To address this challenge, we examine the theoretical bounds on the evaluator’s bias. Then, guided
by this analysis, we propose a KL-Lipschitz-constrained score maximization objective for the plan-
ner in Section to ensure reliable utilization of the evaluator. Notably, this objective is theoreti-
cally justified by a sub-optimality bound established in Section[3.1.1] Finally, a practical algorithm is
presented in Section[3.2] where a synchronous coupling method is employed to realize the planner’s
Lipschitz constraint.

3.1 KL-LIPSCHITZ-CONSTRAINED SCORE MAXIMIZATION

This section focuses on the reliable exploitation of the evaluator-guided score maximization.

Our basic idea is to optimize 6 within a domain where the gap between the planner’s score L(6)
and its true performance J(0) £ E,.p, (r|y)[y(7)] is bounded by a small certifiable upper bound.
This ensures the score maximization occurs only in regions where the evaluator is reliable.

| J(0) = L(O)| = |Errepy(ry) [W(T)] = Erpy (riy=) [T (T)]]- (5)

In the following, we investigate this gap. Specifically, we find that the trajectory quality y(7) is a
Lipschitz continuous function as stated in Theorem|[I] and the proof is given in Appendix [C.T}

Theorem 1 (Lipschitz Continuous of 3(7).). The trajectory quality y(7) is /T Ry,-Lipschitz con-
tinuous with respect to the Frobenius norm.

Motivated by Theorem |1} we enforce a /T R,,,-Lipschitz regularity on the evaluator’s training to
inherit the Lipschitz continuity of the true trajectory quality y(7) (as described in Section [3.2.1).

Since the Lipschitz constant of the trained evaluator may not be exactly VT R,,, we denote its
value as kv/T R,,, where k > 0 reflects the violation degree. Note that a tighter satisfaction of the
Lipschitz constraint by the evaluator results in k closer to 1.

Equipped with Theorem|[T]and the Lipschitz property of the evaluator, we derive the following upper
bound on the performance gap between J () and L(6), and the proof is given in Appendix

Theorem 2 (Evaluator Bias in Planning Performance Bound). Let the upper bound of the evaluator’s
bias on its training dataset D be §p > 0, i.e., B p|y(T) — Js(7)| < 0p, and let the Lipschitz

constant of 44 () be k\/TR,,,. The gap between the planner’s score L(0) and its true performance
J(0) can be bounded by:

[7(0) = L(O)] < bp + (L + B)VT RinEypyy () | Wapo(7ly*). po(71y)) + Wi (po(7ly). po(rly))

Lipschitz sensitivity to y imitation error on D

where W1 denotes the 1-Wasserstein distance.

Note that §p could be regulated to a small value via supervised training of the evaluator, and k
depends on the Lipschitz property of the resulting evaluator Consequently, bounding the evaluator
bias in the planner’s performance requires constraining the following two factors:

Note that k cannot approach zero without compromising & p, as excessively small k prevents the evaluator
from fitting the offline dataset D.
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* the planner’s Lipschitz sensitivity to condition y (the first Wasserstein term)

* the planner’s imitation error on the offline dataset (the second Wasserstein term).

Formally, we establish that the expectation of the first Wasserstein term can be bounded by the
Lipschitz constant Lipy;, (pe(7|y)) of the planner with respect to the condition y measured by W;:

Eypp () W1 (o (T1y"), 2o (T]y))] < (1 + €)ymLipyy, (po(Tly))- (6)

The proof is given in Appendix [C.3] Therefore, we constrain the planner’s Lipschitz constant to
a positive value L, > 0 to ensure the boundedness of the first Wasserstein term, where L,, is a
hyperparameter whose lower bound is provided later in Eq. [I0]

Moreover, we establish that a constrained KL divergence E, ., , () [DxL(pp(T|y)|lpe(T|y))] < 0k
could bound the expectation of the second Wasserstein distance term as follows, where 5 > 0 is a
hyperparameter and can be set to a small value, close to zero. See Appendix [C.4]for the proof. Note
that the KL divergence constraint here inherently makes the planner perform conditional behavior
cloning on the offline dataset D (Guo et al., [2025).

Eypn (o) [W1(po(71y), pp(7]y))] < V/0x- 7

Collectively, to effectively perform score maximization with a small and certifiable evaluator bias,
we enforce Lipschitz continuity of the planner with respect to the condition y while preserving its
behavior cloning fidelity to the offline dataset D. Formally, Eq. ]is transformed to:

max L(6) (Score Maximization) (8
st. Eyopp ) [Dxe(po(Tly)lIpe(7]y))] < 0x (KL Constraint) ((52))
Lipyy, (pe(7ly)) < Ly (Lipschitz Constraint) @b)

Eq. [ forms the score maximization objective in AIGB-Pearl.

Remark 1. Intuitively, the KL and Lipschitz constraints jointly ensure the planner’s generation
under condition y* remains within a certified neighborhood of the offline dataset D. Meanwhile, the
evaluator trained on D maintains high accuracy within this D-proximal region, and the Lipschitz
regularization on the evaluator bounds its sensitivity to input perturbations, preventing drastic value
fluctuations in OOD regions and promoting more reliable extrapolation. Therefore, Eq. [§ with a
Lipschitz-regularized evaluator can realize reliable evaluator-guided score maximization.

3.1.1 SUB-OPTIMALITY GAP BOUND

This section focuses on presenting and analyzing the sub-optimality bound of the solution to the pro-
posed Eq. |8 Specifically, denote the solution to the true performance .J(6) as 8* £ arg maxy J(6),

and denote the solution to the proposed Eq. as 0. The following theorem gives the sub-optimality
bound of the planner’s performance, and the proof is given in Appendix [C.3]

Theorem 3 (Sub-optimality Gap Bound). Let 6y £ Ey o) [Dicr(po(7|y)|Ipe- (7]y))] be the
expected distance between the optimal trajectory distribution and the trajectory distribution of the

offline dataset D. The true performance gap between the optimal parameter 0* and the solution 6
to Eq. [8is bounded by:

'](9*) - J(é) S 25D =+ (1 + Qk)\/TRm V 6M + \/@‘F (1 + E)ymLp . (9)

Theoretical Result Analysis. In Theorem [3| the constants d,;, R, T, €, ¥, characterize domain-
specific properties of the auto-bidding task and the offline dataset D. Nonetheless, a lower training
error p of the evaluator and a closer & to 1 correspond to a smaller sub-optimality gap. Note that
k cannot be smaller than 1 without compromising dp, as excessively small k prevents the evaluator
from fitting the offline dataset D.

Moreover, in Theorem a lower behavior cloning error dx and a lower Lipschitz constant L, of the
planner lead to a smaller sub-optimality gap. However, an excessively small L,, prevents the planner
from behavior cloning the offline dataset D (as required by the KL constraint), resulting in a large
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0x . Actually, a theoretical lower bound for L,, is given by the Lipschitz constant of the conditional
trajectory distribution of the offline dataset pp (7]y):

L,> sup W1(pD(T|Z/1)7pD(T|Z/2)). (10)

Y17Y2 ly1 — vl

where ¥, y2 € D. Consequently, we leverage this lower bound of L, in AIGB-Pearl.

3.2 PRACTICAL ALGORITHM DESIGN

This section focuses on the practical algorithm implementation of Eq. [§] Section[3.2.1]first presents
our reliability-enhanced evaluator architecture, followed by the synchronous-coupling-based Lips-
chitz planner design in Section [3.2.2]

3.2.1 LIPSCHITZ TRAJECTORY EVALUATOR

As shown in Fig. E], the evaluator processes the trajectory 7 to predict a score g, (7) for quality
estimation. The evaluator is trained via supervised learning using the offline dataset D. Besides, to

satisfy v/ T R,,,-Lipschitz constraint requirement according to Theorem we add Lipschitz regular-
ization term to the training loss of the evaluator, which can be expressed as:

ze<¢>ET~D[@¢<T>y<7>>2] B Enym [|y¢<n>y¢<m>|ﬁ3m Im =7l | .
+

fitting the ground truth Lipschitz penalty

where 3; > 0 is a hyper-parameter, [-]; = max{0, -}. Moreover, to further enhance the accuracy of
the evaluator, we devise two specific techniques, including the LLM Embedding enhancement and
pair-wise learning, whose details are given in Appendix [D.1]

3.2.2 LIPSCHITZ PLANNER WITH SYNCHRONOUS COUPLING

As shown in Fig. the planner is implemented by a Causal Transformer (Chen et al., |2021b)
that generates trajectories in an auto-regressive manner. Specifically, the model takes the condi-
tion y and history states s1.; as input tokens, and predicts the next state as a Gaussian distribution,
Po(st+1]51:6,y) = N (po(s1:, Y, t), 05 (s1:4, Y, 1)), where g denotes the mean and o > 0 the stan-
dard deviation. During the auto-regressive generation process, each output state is sampled from the
Gaussian distribution using the reparameterization trick, i.e., st+1 = po(s1:4, 4, t)+00(s1:¢, ¥, t) -1t
where n; ~ N'(0, 1)

Regularized Planner Training Loss. To perform the score maximization in Eq. [8} we involve two
regularization terms in the planner’s training loss [,(6), including a conditional behavior cloning
loss, corresponding to the KL constraint Eq. [8a] and a Lipschitz penalty loss, corresponding to the
Lipschitz constraint Eq. [8p] i.e.,

lp(e) = - ETNpg (Tly*) [g¢(7—)] _52 E(T,y)wpp [lngg (T‘y)]

planner score L(0) conditional behavior clone

+ B3 By, yoenuty=y |Wipe(Tly1), po(Tly2)) — Lplyr — w2l| (12)
+

Lipschitz penalty, where W1 (pg (7|y1), po(7|y2)) is replaced by W (y1,y2;0)

where 2, 83 > 0 are two hyper-parameters. With prior RL works (Sutton et al., [1999), we can
derive the closed-form expression of planner’s score gradient VL (6) as shown in Appendix
The core of the planner loss lies in the computation of W1 (pg(7|y1), po(T|y2))-

Wasserstein Upper Bound as Surrogate. Accurate computation of this Wasserstein distance
term is challenging, as it requires finding the optimal coupling between py(7|y1) and pg(7|y2)

3Note that the time step ¢ and the static advertiser feature x in the state s; = [t, ¢;—1, 2] do not need to be
generated. We only generate the next cost ratio ¢; in practice.
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Figure 1: AIGB-Pearl (Planning with EvaluAtor via RL) constructs a trajectory evaluator to score
the trajectory quality and let the planner maximize the obtained score under the KL-Lipschitz con-
straint through continuous interaction with the evaluator. A synchronous coupling method is used to
estimate the Wasserstein term in the Lipschitz penalty.

that minimizes the expected transportation cost. Nonetheless, we can choose a certain coupling
v € I'(po(7|y1), pe(T|y2)) to obtain an upper bound of this Wasserstein term, i.e.,

Wi (po(rlyn), po(rlys)) 2 in Ery rayn [Z st — sfn]
t

YET (o (Tly1),pe(T]y2))
<Ejr~non) [Z lsg — S?HI} 2 Wiy, y2:0). (13)
t

where T, (y1,y2; ) denotes the upper bound, and s! is the ¢-th state in trajectory 7;. It can be seen

that W1 (y1,y2;0) < Lp|y1 — y2| acts as a sufficient condition to make the planner L,-Lipschitz
continuous. Thus, we replace W1 (po(7|y1), po(7|y2)) by this upper bound in the planner loss.

Synchronous Coupling Wasserstein. Instead of using random couplings, we employ a synchronous
coupling ~ysync to make the upper bound tighter Specifically, two trajectories 7, and T,—conditioned
on y; and ¥, respectlvely—are generated using the same sequence of Gaussian noise {71, 92, ...n1 }.
The definition of WW; (Y1, yo; 9) is given in Eq. . 3l Compared to random couplings, the synchronous
coupling reduces spurious variance in the trajectory comparison by aligning stochasticity through
shared noise, resulting in a tighter upper bound on the Wasserstein distance (Lindvall, 2002).

Moreover, if we make the predicted variance oy of the planner as a fixed constant, then the expression

of W1 (y1,y2;0) can be further simplified to W1 (y1,y2;0) = 3, 1o (510, v1,t) — o (534, y2, ).
The overall AIGB-Pearl algorithm is summarized in Algorithm [I)in Appendix [D]due to page limits.

4 EXPERIMENTS

We conduct both simulated and real-world experiments to validate the effectiveness of our approach.
In the experiments, we mainly investigate the following Research Questions (RQs): (1) Does en-
hancing AIGB with policy optimization improve overall performance, and can it generalize better
to unseen data compared to existing AIGB methods? (Section[4.2) (2) How does the KL-Lipschitz
constraint affect the performance of the planner? (Section[d.3)) (3) Can the proposed method guaran-
tee the Lipschitz property of the evaluator and the planner? (Section[4.4). (4) What is the evaluator’s
accuracy on the training data, and how well does it generalize to unseen data? (Section [4.5). The
training stability of AIGB-Pearl is studied in Appendix [E.5]

4.1 EXPERIMENT SETUP

Experiment Environment. We conduct simulated experiments in an open-source offline advertis-
ing system with 30 advertisers of four budget levels (1.5k, 2.0k, 2.5k, and 3.0k), as in (Mou et al.,
2022; |Guo et al.| [2024). The offline dataset comprises 5k trajectories generated by 20 advertisers.
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Table 1: Overall performance (GMV) in simulated experiments with 30 advertisers. A indicates the
relative improvement of AIGB-Pearl against the most competitive baseline (which is underlined).
Note that the absolute values are normalized without specific meanings; only A matters.

Budget| USCB BCQ CQL IQL Diff-QL MOPO DT DiffBid | AIGB-Pearl A

1.5k |454.25 454.72 461.82 456.80 469.73 470.38 477.39 480.76 502.98 +4.62%
2.0k |482.67 483.50 475.78 486.56 48791 489.27 507.30 511.17 521.84 +2.09 %
2.5k [497.66 498.77 481.37 51827 510.83 52391 527.88 531.29 545.03 +2.59%
3.0k |500.60 501.86 491.36 549.19 552.73 549.01 550.66 556.32 574.17 +3.21%

Table 2: Overall performance in real-world A/B tests, involving 6k advertisers over 19 days.
Methods | GMV  BuyCnt ROI Cost | Methods | GMV  BuyCnt ROI Cost

DiffBid |76,390,174 650,962 531 14,395,290 USCB 52,182,805 516,994 4.92 10,598,486
AIGB-Pearl | 78,676,009 665,173  5.41 14,551,054 | AIGB-Pearl | 53,973,101 520,796 5.13 10,515,772
A +3.00% +2.20% +1.89% +1.10% A +3.43% +0.74% +4.24% -0.78%

Methods | GMV  BuyCnt ROI Cost | Methods | GMV  BuyCnt ROI Cost

DT 34,808,665 341,995 5.61 6,205,665 MOPO 51,674,071 579,332 3.08 16,771,892
AIGB-Pearl | 35,957,933 344,194 5777 6,246,512 | AIGB-Pearl | 53,292,945 591,741 3.23 16,475,670
A +3.30% +0.64% +0.16% +0.66% A +3.13% +2.14% +4.87% -1.77%

Extra detailed settings of simulated experiments are given in Appendix [E.I} For real-world experi-
ments, we conduct online A/B tests on one of the world’s largest E-commerce platforms, TaoBao.
The offline dataset comprises 200k trajectories of 10k advertisers. See Appendix [E.2] for extra de-
tailed settings of real-world experiments. In both simulated and real-world experiments, we employ
the same inverse dynamics model from |Agrawal et al.| (2016)) as used in AIGB to serve as the con-
troller. Moreover, the evaluator is trained on the entire offline dataset, and its generalization ability
is evaluated using K -fold cross-validation with K = 5.

Baselines. We compare our method with the state-of-the-art AIGB methods, including DiffBid
(Guo et al., 2024) and DT (Chen et al., 2021a)) that learn from conditional behavior cloning of the
offline dataset with a diffusion model and a Causal Transformer, respectively. We also compare
our method with RL auto-bidding methods, including USCB (He et al.,[2021) that learns the auto-
bidding policy in a manually constructed advertising system with DDPG (Silver et al., 2014); and
offline RL auto-bidding methods, including model-free offline RL methods BCQ (Fujimoto et al.,
2019), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022)) and Diff-QL (Wang et al, [2022),
and model-based offline RL method MOPO (Yu et al., 2020).

Performance Index. The objective in the auto-bidding problem Eq. |1} i.e., the cumulative rewards
over the bidding episode, acts as the main performance index in our experiments and is referred to
as the gross merchandise volume, GMV. In addition, we utilize three other metrics commonly used
in the auto-bidding problem to evaluate the performance of our approach. The first metric is the total
number of impressions won over the bidding episode, referred to as the BuyCnt. The second metric
is the Cost over the bidding episode, and the third one is the return on investment ROI defined as
the ratio between the GMV and the Cost. Note that larger values of GMV, BuyCnt, and ROI with a
Cost oscillating within an acceptable tolerance (+2%) indicate a better performance.

4.2 OVERALL PERFORMANCE

To answer RQ(1): Table(l|shows that our method consistently outperforms all baselines in GMV
across all four budget levels in simulated experiments. In real-world experiments, the results in Table
[2) show that our method also achieves superior performance in GMV, BuyCnt, and ROIL, with Cost
fluctuations within 2%. Notably, both simulated and real-world experiments consistently demon-
strate that AIGB-Pearl achieves a +3% improvement in GMV over the AIGB, the state-of-the-art
auto-bidding method. Since our method and DiffBid share the same controller, the performance gain
stems solely from the planner. This provides strong empirical evidence that the proposed conserva-
tive RL learning for score maximization effectively enhances overall performance.

Notably, we also apply AIGB-Pearl to another important auto-bidding problem, named TargetROAS.
As shown in Appendix real-world experiments show that AIGB-Pearl achieves a +5% improve-
ment in GMV compared to AIGB.



Under review as a conference paper at ICLR 2026

Table 3: Generalization performance in real-world A/B tests with unseen advertisers against AIGB
methods, involving 4k advertisers over 19 days.

Methods | GMV ~ BuyCnt ROI Cost | Methods | GMV  BuyCnt ROI Cost

DiffBid | 67,092,973 553,020 5.39 12,444,306 DT 30,562,007 300,271  5.61 5,450,573
AIGB-Pearl | 69,252,539 565,776  5.53 12,534,379 | AIGB-Pearl | 31,502,309 305,202 5.74 5,484,473
A +3.32% +2.31% +248% +0.72% A +3.08% +1.64% +2.32% +0.62%

Table 4: Ablation Study. The effectiveness of the KL constraint and the Lipschitz constraint in Real-
world A/B tests, involving 6k advertisers over 8 days.

AIGB-Pearl| GMV  BuyCnt ROI Cost | Methods | GMV  BuyCnt ROI Cost

w/o KL | 30,906,963 292,605 4.25 7,269,018 | w/o Lipschitz |32,284,972 268,551 5.73 5,634,304
with KL | 31,243,688 292,783 4.26 7,342,485 | with Lipschitz | 32,869,329 281,979 5.79 5,678,252
A +1.09% +0.06% +0.08% +1.01% A +1.81% +0.50% +1.05% +0.78%

It is worth noting that in auto-bidding systems, a +3% GMV uplift is highly significant, translating
to millions of RMB in additional daily GMV on Taobao-scale advertising platforms.

Generalization Ability. We examine the performance of AIGB-Pearl on advertisers that are not
used to generate trajectories in the offline dataset, comparing it against existing AIGB methods. For
simplicity, we refer to these advertisers as advertisers outside the offline dataset. Table |3| reports
the performance on 4k advertisers outside the offline dataset in real-world experiments. AIGB-
Pearl demonstrates consistently better results in terms of GMV (+3%), BuyCnt, and ROI, while
maintaining Cost fluctuations within 2% compared to baselines. These results indicate that the
proposed method has better generalization ability than existing AIGB methods.

4.3 ABLATION STUDY

To answer RQ(2): We remove the KL constraint and the Lipschitz constraint from AIGB-Pearl indi-
vidually and evaluate the model’s performance in each ablated variant with real-world A/B tests. The
results are presented in Table[d] It can be seen that the KL constraint contributes +1.1% improve-
ment in GMV, and the Lipschitz constraint provides +1.8% improvement in GMV, demonstrating
their respective roles in enhancing AIGB-Pearl’s performance.

Visualization. Three AIGB-Pearl-generated trajectory examples are presented in Fig. [2] As can
be observed, the trajectories generated by AIGB-Pearl are plausible. In contrast, the ablated variant
without the KL and Lipschitz constraints produces trajectories that significantly deviate from the
optimal trajectory in the offline dataset and exhibit clear pathological behaviors—such as exces-
sive budget consumption, backward-trending pacing, and underutilization of available budgets (see
Appendix for explanation)—which further validate the KL-Lipschitz constraint necessity.

4.4 LIPSCHITZ VALUE EXAMINATION

To answer RQ(3): We report that the Lips-
chitz value of the trajectory quality y(7) and the
conditional trajectory distribution pp of the of-
fline dataset are 1.62 and 0.38, respectively. We ¢,
set L, = 0.50, which is near its lower bound = -
estimation 0.38 F] To calculate the Lipschitz
constants of the evaluator and the planner, we
sample 8, 000 pairs of trajectories and compute
their Lipschitz constants. The results are shown
in Fig. [3|and Fig. ] It can be observed that most sample values satisfy the Lipschitz constraint, and
the Lipschitz constants of the evaluator 34 (7) and planner py(7|y) are 2.2 and 0.56, respectively,
near 1.62 and 0.50. This indicates that the Lipschitz constraints of the evaluator and the planner are
successfully satisfied.

Figure 3: Examination Figure 4: Examination
of Evaluator Lipschitz. of Planner Lipschitz.

“The optimal trajectory in the offline dataset can act as a reference trajectory, and empirically, optimal
trajectories should not deviate from this reference largely.

SConsidering that the lower bound estimation is computed solely in a data-driven manner and may be
underestimated, we conservatively increase its value accordingly.
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Figure 2: Trajectory Generation Visualization. Three cases are presented. Here, the AIGB-Pearl
generates plausible trajectories, whereas its variant without the KL-Lipschitz constraint produces
generations that significantly deviate from the reference and exhibit evident issues.

Table 5: Evaluator accuracy for simulated and real-world experiments. Results are reported for
training data and OOD data evaluated using 5-fold cross-validation.
Simulated Exp Training Data OOD Data (Cross-Validation) \ Real-world Exp Training Data OOD Data (Cross-Validation)

MAE | 0.6 0.7 £0.06 MAE | 1.0 1.2£0.03
AUC T 89.9% 85.5% + 0.5% AUC 1T 77.4% 75.1% + 0.2%

4.5 EVALUATOR ACCURACY EXAMINATION

Accuracy Metrics. The evaluator’s accuracy is assessed along two dimensions, including the abso-
lute accuracy measured by mean absolute error (MAE) metrics, reflecting how close the predicted
scores are to ground truth scores, and the ranking accuracy by AUC metric, reflecting the correctness
of relative rankings between trajectory pairs. Note that the MAE of each advertiser’s data sample is
normalized by its budget to ensure comparability across advertisers. A lower MAE, together with a
higher AUC, indicate better evaluator accuracy.

To answer RQ(4): We report the accuracy of the trained evaluator in both simulated and real-
world experiments in Table [5] We evaluate the evaluator’s accuracy on the training data and its
generalization ability using K'-fold cross-validation, where X = 5. To the best of our knowledge,
we are the first to introduce the trajectory evaluator into the generative auto-bidding framework.
The reasonableness of our evaluator is evidenced by its pairwise ranking accuracy of 86% AUC and
75% AUC on OOD trajectories in the simulated and real-world experiments, respectively, which are
substantially above the 50% random chance level, despite the high complexity and dynamic nature
of the bidding environment. Importantly, with the guidance of the trained evaluator, the planner
outperforms state-of-the-art AIGB methods even on OOD data, as demonstrated in the Table. [3]

5 CONCLUSIONS

This paper proposes AIGB-Pearl to enhance AIGB with reward evaluation and policy optimization.
By introducing a trajectory evaluator and a provable KL-Lipschitz-constrained score maximization
objective, our approach ensures safe and efficient generalization beyond the offline dataset, sup-
ported by theoretical guarantees. Extensive simulated and real-world experiments validate the SOTA
performance of our approach.
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A RELATED WORKS

A.1 RL-BASED AUTO-BIDDING METHODS

Auto-bidding plays a critical role in online advertising by automatically placing bids, allowing ad-
vertisers to participate efficiently in real-time auctions (Balseiro et al.l 2021a; Deng et al., 2021}
Balseiro et al., 2021b). The auto-bidding problem can be modeled as a Markov Decision Process
and addressed using reinforcement learning techniques. USCB (He et al., 2021} proposes a uni-
fied solution to the constrained bidding problem, employing an RL method, DDPG (Silver et al.,
2014), to dynamically adjust parameters to an optimal bidding strategy. Mou et al.|(2022)) design a
sustainable online reinforcement learning framework that iteratively alternates between online ex-
plorations and offline training, alleviating the sim2rel problem. A few studies explore multi-agent
RL for auto-bidding (Jin et al., 2018} |Guan et al.l 2021} |Wen et al., 2022), while several focus
on budget allocation and bidding strategies in multi-channel scenarios using RL-based approaches
(Wang et al.|, 2023} [Deng et al., [2023; [Duan et al., 2025). Importantly, offline RL methods such as
BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020), IQL (Kostrikov et al., |2022), and MOPO
(Yu et al., 2020) have demonstrated significant potential in this domain. These methods allow pol-
icy learning from pre-collected datasets without requiring online interaction. Moreover, offline RL,
such as Diffusion-QL (Wang et al.,[2022)), adopts generative models as the policy model architecture
for better expressive capacity.

However, RL-based methods often suffer from training instability caused by bootstrapping and al-
ternating training paradigms between critics and actors. Training instability typically deteriorates
policy performance (Sutton et al.l [1998). Moreover, training stability is even more critical in auto-
bidding considering two domain-specific challenges: the absence of an accurate offline policy eval-
uation method and the high cost of online policy examination in a real-world advertising system
(Mou et al}|2022). Therefore, stable convergence to a well-performed policy is essential to ensure
deployment reliability and system safety.

A.2 GENERATIVE AUTO-BIDDING METHODS

Generative models exhibit strong capabilities in capturing and replicating the underlying data distri-
butions across a wide range of fields (Kingma & Welling| 2022} |Goodfellow et al.l 2020; |Pan et al.|
2023} Sohl-Dickstein et al., 2015 |[Ho et al., 2020; Vaswani et al., [2017). They can be effectively
incorporated into decision-making systems by generating complete trajectories to guide agents to-
ward high reward behaviors (Zhu et al.| [2023; Kang et al., [2023; [Li et al.| [2025). In particular,
Decision Transformer (DT) (Chen et al., 2021a) reframes RL as a conditional sequence modeling
problem and leverages transformer architectures to generate actions conditioned on desired returns,
historical states, and actions. AIGB (Guo et al.,|2024) extends the generative perspective to the auto-
bidding domain by formulating auto-bidding as a conditional generative modeling problem. DiffBid
generates a state trajectory based on the desired return utilizing a conditional diffusion model, and
then generates actions aligned with the optimized trajectory. These methods achieve superior per-
formance in auto-bidding and offer distinct advantages over traditional RL methods. They do not
rely on the bootstrapping mechanism commonly used in RL, thereby avoiding the instability caused
by the deadly triad. Even so, these generative auto-bidding methods still encounter a performance
bottleneck due to their neglect of fine-grained generation quality evaluation and inability to explore
beyond static datasets. In contrast, our method facilitates both reward evaluation and policy search
through a learned trajectory evaluator.

B AIGB METHOD DETAILS

AIGB models the sequential decision-making problem through conditional diffusion modeling, en-
abling effective trajectory generation for auto-bidding scenarios. Specifically, AIGB utilizes the
denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) for generation. The forward and
reverse processes are modeled as:

A(Tr11r)s  Po(Th|Tht1, y(7)), (14)

respectively, where g represents the forward noising process while py the reverse denoising process.
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Forward Process. In the forward process, the noise is gradually added to the latent variable by a
Markov chain with pre-defined variance schedule S:

q(1|Th=1) = N (163 /1 — BrT—1, Brl) (15)

where k € [K] refers to the diffusion step, 7, = [s1, 52, , 57|, represents the latent variable in
the k-th diffusion step, and 7y is the original trajectory. A notable property of the forward process is
that 7 at an arbitrary time-step & can be sampled in closed form as:

q(Ti|m0) = N (T3 VauTo, (1 — ag)I), (16)

where ap, = 1 — B and &, = Hle ag. When k& — oo, 75 approaches a standard Gaussian
distribution. In particular, AIGB employs a cosine noise schedule (Nichol & Dhariwal, |2021) to
control the schedule [j.

Reverse Process. In the reverse process, diffusion models aim to remove the added noise on 7% and
recursively recover 7. This process is governed by the conditional model pg(7x—1|7x, y(7)), which
is parameterized through a noise prediction model ey (7%, y(7), k). AIGB adopts a temporal U-Net
(Ronneberger et al., [2015) for the noise prediction model, a common choice in diffusion-based
decision-making methods (Ajay et al.,[2022).

B.1 TRAINING STAGE

The training of the diffusion model is typically formulated as minimizing the mean squared error
between the predicted noise €9 and the true noise applied during the forward diffusion process.
Specifically, during each iteration, we randomly sample a trajectory from the offline dataset D and
pick a time step ¢ € [T]. We recursively add the Gaussian noise € to the states in 7 with time steps
bigger than ¢ and predict the added noises with ey (7%, y(7), k), where the states between 0 and ¢
in 73 are set to real history states s, s2,--- , ;. In addition to this standard objective, AIGB also
incorporates a supervised loss that measures the discrepancy between the true actions and the actions
predicted by an inverse dynamics model f¢(st7 St41). Overall, the complete training objective of
AIGB can be expressed as:

£(8,9) = Ex,renllle = eo(mi, y(7), B)|P) + sy ar,5050eplllae — folse, 3l A7)

During training, the condition y(7) is randomly dropped to enhance model robustness. This tech-
nique ensures that both the unconditional model ey(7%, k) and the conditional model ey (1%, y(7), k)
are effectively trained together.

B.2 INFERENCE STAGE

Starting with Gaussian noise, trajectories are iteratively generated through a series of denoising
steps. Specifically, AIGB uses a classifier-free guidance strategy (Ho & Salimans, 2021) to guide
the generation of bidding and extract high-likelihood trajectories in the dataset. During generation,
AIGB combines conditional and unconditional score estimates linearly:

€ = €g(T, k) +w (e (T, y(7), k) — g (11, k), (18)

where w is the guidance scale that controls the influence of the condition y(7). This formulation
effectively steers the trajectory generation towards regions of the data distribution most consistent
with the given condition. The predicted state at each step is sampled from pg(75—1|7%, y(7)):

The1 ~ N (Tk—1|po (T, y(7), k) , 2o (T, k)) (19)

. . 1 N N
with mean and variance defined as g (7%, y(7), k) = M(Tk - \/%7@6’“) and Xy (-) = B. Note
that the initial noisy trajectory 75 ~ N (0, I) is assigned with history states s;.; for the first ¢ states
to ensure history consistency. This is consistent with the training process. By recursively applying

the reverse diffusion process using:

Tllc—l = M@(Tllcv y(T)a k) + Bkza (20)
where z ~ N(0,I), we obtain the final denoised trajectory 7, from which the next state §;41 is
derived. Then the action is generated through an inverse dynamics a; = fy(s¢, $¢41).
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Figure 5: The impression opportunities within time step ¢ and ¢ + 1, where pi/v} is the 1/ROI of
impression 7. Without loss of generality, consider two actions a1+ and as ¢, and let az s > a; ;. The
impressions within the shadow area are the impressions won by action as ¢ but lost by action a; ;.

C THEORETICAL PROOFS

C.1 PROOF OF THEOREM[I]

Theorem 1 (Lipschitz Continuous of 3(7).). The trajectory quality y(7) is /T Ry, -Lipschitz con-
tinuous with respect to the Frobenius norm.

Proof. Recall from Section @] that the cost ¢; and reward r; under action a; between time step ¢
and ¢ 4+ 1 can be written as:

p p
Ct:;]l{at t}pt and rt:z;l{at> v:}vt, 21
where p! and v} denote the market price and the value of the i-th impression between time step ¢ and
t 4+ 1. Accordingly, the cost ratio ¢; and the normalized reward 7; can be written as:

- 1 pi i - i
Gt = 5 zzz ]l{at > 172 p; and 7= 5 Z ar > vt, 22)
Consider two different trajectories 7 and 7o with actions, cost ratios and normalized rewards se-

quences {ay;, 14,71 }1—q and {a2,Coy, 724 }i_, respectively. The trajectory quality gap be-
tween 7, and 75 holds that:

ly(m1) — y(72) ‘—’ZTIt_ZTZt‘<Z|f1,t_F2,t|~ (23)

Consider the reward gap between time step ¢ and ¢+ 1, as shown in Fig[5] Without loss of generality,
let as; > aq,¢. We have:

_ _ 1 Pi pt
1.4 — ——E 1{as; > —p—1<a vl
| b , B i |: { 2= 'U;L} { 1t B vt ‘
P} :
== § {(1215 2 >a1,t}v§
_ Zl S P, L
=B ' 112,7:_17% a,¢ Ept

Z {au > > al,t}pf;. (24)
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Note that the cost ratio gap between time step ¢ and ¢ + 1 can be written as:

N | P Pl 1 P} ;
|Cl,tC2,t|—BZ{1{a2,t2vz}]l{al,tzvi pt—ﬁzi:]l a2,t2;2a1,t Dy

P t t

(25)
Therefore, combining Eq. 24]and Eq. 23] we have:
|71, — T2t| < Rm|Cie — Cal. (26)
We examine the Frobenius norm of the gap between 7 and 7o:
1 C1,0 x 1 C2,0 Y
2 5171 x 2 5271 xr
I = ralle = | -
F
T cor-1 = T ér-1 =
= Z(El,t — Ca,t)?
t
>1Z|f Co.t| (Cauchy-Schwarz lity) 27)
> — C1t— Cay auchy-Schwarz Inequality
VT 4
Combining Eq. 23] Eq. 26]and Eq. [27] we can obtain that:
ly(m1) = y(r2)| <D 1F1s — Paul
t
<R, Z |G1,0 — Ca
t
1
SVTRn—=) 614 — Cay
V>
< VTR, |11 — 72| p- (28)
This concludes the proof. O

C.2 PROOF OF THEOREM[Z]

Here, we list two lemmas used in the proof of Theorem 2]

Lemma 1 (Additivity of the Lipschitz). Let fi(x) and f2(x) be two Lipschitz continuous functions
with Lipschitz constants L1 > 0 and Ly > 0, respectively. Then |fi(x) + f2(x)| is also a Lipschitz
continuous function, with Lipschitz constant at most L1 + L.

Proof. Recall the Reverse Triangle Inequality states that Va, b, we have ||a| — |b]| < |a — b|. Then,
Vx,y, we have:

1f1(2) + fo(2)] = | f1(y) + fa )] < [fr(2) + fa(2) = fr(y) = F2(y)]

<|
<Ifi(z) = i)+ |f2(x) = f2(y)]
< (L1 + La)|z —yl. (29)

This concludes the proof. O

Lemma 2 (Kantorovich-Rubinstein Duality Theorem (Villani, 2021)). Let (X, d) be a metric space,
and let p and q be two probability distributions on X. Let f : X — R be an L-Lipschitz function,
and W1(p, q) denotes the 1-Wasserstein distance between p and q. Then we have:

[Egnpf(2) = Bangf(z)| < L- Wi(p, q). (30)

We next give the proof of Theorem 2]
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Theorem 2 (Evaluator Bias in Planning Performance Bound). Let the upper bound of the evaluator’s
bias on its training dataset D be §p > 0. The gap between the planner’s score L(0) and its true
performance J(0) can be bounded by:

17(0) = L(O)] < 6p + (L + k)T RinEypyy ) | Wapo(7ly™) 06 (71y)) + Wi (po(7ly). pp (1Y)

Lipschitz sensitivity to y imitation error on D

where W1 denotes the 1-Wasserstein distance.

Proof. The evaluator bias in the planner’s performance can be written as:

|J(0) = L(O)| = [Errepy(rly) [W(T) = o (M| < By (riy) [y(7) = G (7)] GD
—_——
2f(7)
Let f(7) £ |y(7) — 94(7)| be the evaluator bias in trajectory 7. From Theoremland Lemma we

|
know that f(7) is a (1 + k)v/T R,,,-Lipschitz continuous function. Then, we have:
|

|J(0) = L(O)] < Ereepy(riy=) f(T)

E.
=Eypp) |Ermpo(rly) S (T) = By (r1n) f (7) + Erippy (71 (7)]

=Eypp ) Brmpn (r19) [ (T) Y Eynpn ) |Ermpo(riy) f(T) = Ernpp i) f (7)}

<ép

<(1+k)VTRm Wi (po (]y*),pp(7]y)), (Lemma[2)

<0+ (1+ VT RnEy e ) [Wa (00 (1), 20 (7]9))]- (32)
To further enhance physical intuition and simplify constraint computation, we decompose the
Wasserstein distance term W1 (pg(7]y*), pp(7|y)) via the triangle inequality:

Wipe(Tly™), pp(7]y)) < Wilpe(Tly™). po(Tly)) + Wi(pe(T|y). pD(7]Y)). (33)
Therefore, we have:

|7(0) = LO)] < 6p + (L4 F)VT Ry ey () Wi 0o (71y*). 2o (719)) + Wa(po(y), p0(T])) |

(34
This concludes the proof. O
C.3 PROOF OF EQ. [6]

We give the proof of Eq. @ as follows. Denote Lipy (pg(7|y)) as the planner’s Lipschitz constant
with respect to y regarding the Wasserstein distance Wy, we have:

Eympn ) (Wi(pe(Tly*), po(7|y))] < Lipy, (06 (719))Eympp () (L + €ym — 1))

— Lipyy, (po([1)) /0 " pp@I + Sy — yildy

< Lipy, (po(7])) / " @I+ Jymldy

= (1+ €)ymLipw, (po(71y)), (35)
where we leverage the non-negativity property of the condition y > 0,Vy € D. This completes the
proof.

C.4 PROOF OF EQ.
Lemma 3 (Pinsker’s Inequality (Tsybakov, 2008))). Let P and Q be two probability measures de-
fined on the same measurable space, and assume that P is absolutely continuous with respect to

Q, i.e., P < Q. Then the total variation distance between P and () is bounded above by the KL
divergence from P to Q as follows:

1
1P~ Qllrv < /5 Drcn (PIQ). (36)
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Lemma 4 (Wasserstein—Total Variation Inequality on Bounded Metric Spaces (Villani et al.,2008)).
Let (Z,d) be a metric space with diameter diam(Z) £ sup,, ., c z d(z1, 22). Let P and Q be two
probability measures on Z. Then the 1-Wasserstein distance between P and Q) satisfies:

Wi (P, Q) < diam(Z)|| P — Q|[zv- (37)

We give the proof of Eq. [/|as follows. Equipped with the above two lemmas, we have:

Wi(po(ly), po(7ly)) < diam(T)|[pe(7ly) — po(7ly)llry

< diam(T) \/ L Dkt o(rly)lpo(). (38)

where 7 is the trajectory space. Note that due to the budget constraint ), c; < B ﬂ we have the
sum of the cost ratio satisfies ) |, ¢, < 1. The trajectory space can be expressed as:

T = { {[1,50,95], 2,¢, 4], , [T, ET_l,x}]

¢ >0,Vt,and» ¢ < 1} (39)
t

We next prove that the diameter of the trajectory space, diam(7), can be bounded by a constant.
Specifically, the diameter only depends on the largest possible distance between the cost ratio se-
quences in two trajectories since:

diam(7) = sup |7 —7n|F
T1,T2€
C1 0 X 1 52_’0 xT
C1,1 x 2 C2,1 x
= sup H —
T1,72E€T . F
c,r-1 T T ¢or-1 =
= sup Z(Eu — Ca4)? (40)
T1,72€T n
For convenience, we let c; = [Ci0,Ci2y -+ Cir—1],4 € {1,2}. Then, the key part in the above
result, >, (¢1¢ — ¢2.1)?, can be written as:
Y@ )’ =D (6, — 2014820 + 73 ,)
t t
= [leall3 + lleall3 — 2(c1, c2)
< a3 + llez3, (41)

where (cy,c2) > 0. As¢;; > 0and ), ¢ ¢ <1, wehave 0 < ¢, < 1. Therefore, it holds that:
HCZHS = Zéit < Zéiﬂf <1. (42)
t t

Combining Eq. #T]and Eq. 42] we have:

l Clt—CQt ||01H2+HCQ| S \/5 (43)

Therefore, we have diam(7 =4/2. 2. According to Eq. . we have:
Wi (po(7ly), po(7ly)) < V/Drr(po(rly)pa(T]y)). (44)
Recall that we impose the KL-constraint as:
Eympp ) [DxL (D (T[9)1Po(7]y))] < 0k, (45)

8As explained in Footnote 1, the budget constraint is guaranteed to be satisfied in real-world advertising
systems thanks to an automatic suspension mechanism that halts bidding once the budget is exhausted.
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Taking the expectation over y ~ pp(y) on both sides of Eq. 44} we have:

Eypn ) Wi (7]y), 20 (T[¥))] < Eyoppy () [\/ Dk r(pp(7ly)llpe(7|y))

<\/ s ([ Dic 1. (00 (7]9) [0 (7]y))]  (Jensen Inequality)

(KL constraint Eq[45).
(46)

I N

This completes the proof.

C.5 PROOF OF THEOREM[3]

Theorem 3 (Sub-optimality Gap Bound). Let 6y £ Ky, o) [Dicr(pp(7|y)|pe- (7]y))] be the
expected distance between the optimal trajectory distribution and the trajectory distribution of the

offline dataset D. The true performance gap between the optimal parameter 0* and the solution 6
to Eq. [8)is bounded by:

J(07) = J(0) < 20p + (1+ 2k)VT Ry |01 + V/6k + (1 + €)ym Ly | (47)

Proof. The sub-optimality gap can be expressed as follows:
J(O) = J(0) = (J(07) = L(#")) + (L(6") = L(D)) + (L(D) - T (0))
< [J(87) = L(8")| + [L(8") = L(O)| +|L(6) — J(B)].

evaluator bias in pg* score gap evaluator bias in p;

(48)

We examine the above three terms accordingly.

(1) Evaluator Bias in py-. Denote the evaluator bias on trajectory 7 as f(7) £ |y(7) — 9s(7)|-
Following the derivation process in Eq. [32] we have:

|J(0%) = L(6)] < Eypp () Ermpp (r19) F(T) + Eynpp () [ETNPB* (rly) f(T) = Eropp (1 f(7)

< 5D + (1 + k)ﬁRmEywpD(y) [Wl (pa* (T|y*)>pD (T|y))]v (49)

where W1 (po«(7|y*),pp(7|y)) denotes the probability distribution distance between the optimal
planner and the offline dataset. Based on the derivation in Appendix[C.4] we have:

Eypp () Wi (po- (7y"), p0(7]y))] < \/ Eypnw) [P (po(7]y)lpe- (7]y))] (50)

Let 6ar = Eypp () [DiL(pD(7]y)|Ipo- (T]y))] be the distance between the optimal trajectory dis-
tribution and the offline dataset trajectory distribution. We have:

7(6) — L(0")| < 6p + (1 + k)VT R /01 (51)

(2) Score Gap. Recall that the trained evaluator g4 (7) is a kvVTR,, -Lipschitz continuous function
with the Lipschitz constraint design. With Lemma 2] we have:

IL(O%) = LO = [Er ey (rly)56(T) = Ernupy(r1y+) ()]
< VTR Wi(pe- (t1y*), py(ly*))

< kVTRuEypp(y) {Wl (Po-(71y"), po(7ly)) + Wipp(Tly), ps(7ly"))

< kTR, [m+ (1+ gLy + Vx|, (52)

where we leverage the fact that 6 is a solution to Eq. [§] which satisfies the KL and Lipschitz con-
straint, and we leverage the results in Eq. [6] Eq. [7]and Eq. [50]
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(3) Evaluator Bias in p;. Since 6 satisfies the KL and Lipschitz constraint in Eq. 8} we can use the
results in Theorem 2] Eq. [6|and Eq. [7]to obtain:

17(0) — L(0)] < 0p + (1 + k)VT R [(1 + €)ym Ly + \/Ok], (53)
Overall, combining the results in Eq. [51] Eq. [52] and Eq. [53] we have:
J(O) = J(0) < 26p + (1 + 2k)VTR,, | Vour + Vox + (1 + e)ymLP} (54)
This concludes the proof.
O
C.6 PROOF OF SCORE GRADIENT
The probability of the trajectory generated by the Causal Transformer can be decomposed into:
po(s1.7|y) = Lipa(stls1:t-1,Y)- (55)
Then, we have:
VoL(6) = Vo [ pa(rly)ia(rdr
= Ve/ po(s1:r, T|y")gg(T)dsy - - dsp
81, ,8T
o Vepo(str|y*)
= po(s1.7|y") ——————=9s(7)ds1 - - -dsp
[ ety S
=Eq, r~po(sirlys) | Vo 1ng9(81:T|y*)Z)¢(7')]
= EslzTNpg(slzT\y*) VG IOg Htp@ (St|51:t717 y*)y¢(7-):|
= Eaprmpo(sirlys) | 2 Vo l0gpo(selsii1, y*)%(T)} : (56)
Lt

D AIGB-PEARL ALGORITHM SUMMARY

Algorithm [T] summarizes the training process of AIGB-Pearl. The development of AIGB-Pearl is
supported by ROLL (Wang et al., [2025]).

D.1 ADDITIONAL DESIGNS FOR EVALUATOR ACCURACY ENHANCEMENT

To further enhance the reliability of the trajectory evaluator, we design two specific techniques.
Specifically, as described in the following, we (i) integrate an LLM into its model architecture for
better representational capacity; and (ii) mix pair-wise and point-wise losses for better score estima-
tion accuracy.

E ADDITIONAL EXPERIMENTS

E.1 SIMULATED EXPERIMENT SETTINGS

We include the detailed simulated experiment settings in Table [6] Specifically, we consider the
bidding process in a day, where the bidding episode is divided into 96 time steps. Thus, the duration
between two adjacent time steps ¢ and ¢ + 1 is 15 minutes. The number of impression opportunities
between time steps ¢ and ¢ 4 1 fluctuates from 100 to 500. The minimum and maximum budgets
of advertisers are 1000 Yuan and 4000 Yuan, respectively. The upper bound of the bid price is 10
Yuan, and the values of impressions are positive.

Hardware Resource. The simulated experiments are conducted based on an NVIDIA T4 Tensor
Core GPU. We use 10 CPUs and 200G memory.
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Algorithm 1: AIGB-Pearl (Planning with EvaluAtor via RL)

Input : Offline dataset D, desired condition y*, hyper-parameters (31, 32, 33.
Output : Optimized 6 and ¢
Initialization: randomly initialized planner parameter 6, trajectory evaluator parameters ¢
// Determining the Lipschitz Value
Calculate the Lipschitz value of y(7) and pp(7]y) using the offline dataset D.
Set the Lipschitz constraint value L. for the evaluator and L,, for the planner to be bigger than
the Lipschitz value of y(7) and pp (7|y), respectively.
// Training the trajectory evaluator
while not converged do
| Update ¢ by minimizing Eq.
end
// Training the generative planner
Warm start with pretrained planner py;
while not converged do
Generate bidding trajectories 7 ~ pg(7|y*);
Score generated trajectories with frozen ¢: g4 (7);
Update 6 by maximizing Eq.
end

Table 6: Settings of the simulated experiments.

Parameters | Values
Number of advertisers 30
Time steps in an episode, T’ 96
Minimum number of impressions within a time step 50
Maximum number of impressions within a time step 300
Minimum budget 1000 Yuan
Maximum budget 4000 Yuan
Value of impressions >0
Minimum bid price, min{av; } 0 Yuan
Maximum bid price, max{av; } 10 Yuan
Maximum market price, pys 10 Yuan

E.2 REAL-WORLD EXPERIMENT SETTINGS

We include the detailed real-world experiment settings in Table [/l Specifically, we consider the
bidding process in a day, where the bidding episode is divided into 96 time steps. Thus, the duration
between two adjacent time steps ¢ and ¢ + 1 is 15 minutes. The number of impression opportunities
between time steps ¢ and ¢ + 1 fluctuates from 100 to 2,500. The minimum and maximum budgets
of advertisers are 50 Yuan and 10,000 Yuan, respectively. The upper bound of the bid price is 25
Yuan, and the values of impressions are positive.

Hardware Resource. The training process in the real-world experiments is conducted using 10
NVIDIA T4 Tensor Core GPUs in a distributed manner. For each distributional worker, we use 10
CPUs and 200 GB of memory.

E.3 REAL-WORLD EXPERIMENTS ON TARGETROAS BIDDING PROBLEM

In addition to the budget-constrained auto-bidding problem, we also apply the proposed AIGB-Pearl
algorithm to a more challenging type of auto-bidding problem, named TargetROAS, with an extra
ROI (Return on Investment) constraint. We evaluate our method in a real-world experiment on
TaoBao involving 300k advertisers over 22 days. The offline dataset comprises 16 million trajecto-
ries of 800k advertisers. The results are given in Table [§] AIGB-Pearl achieves a +5.1% improve-
ment in GMV compared to the SOTA auto-bidding method, DiffBid, demonstrating its effectiveness
in managing more complex and realistic constraints.
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Table 7: Settings of the real-world experiments.

Parameters \ Values
Number of advertisers 6,000
Time steps in an episode, T’ 96
Minimum number of impressions within a time step 100
Maximum number of impressions within a time step 2,500
Minimum budget 50 Yuan
Maximum budget 10,000 Yuan
Value of impressions >0
Minimum bid price, min{av; } 0 Yuan
Maximum bid price, max{av; } 25 Yuan
Maximum market price, pas 25 Yuan

Table 8: Overall performance of TargetROAS in real-world A/B test, involving 300k advertisers
over 22 days.

Methods | GMV BuyCnt  ROI Cost
DiffBid 779,642,891 11,519,082 4.68 166,544,918
AIGB-Pearl (ours) | 819,550,812 11,886,501 4.70 174,234,673
A | +5.1% +32% +0.5% +4.6%

E.4 PATHOLOGICAL TRAJECTORY BEHAVIOR EXPLANATION

In industrial practice, stable and effective metrics have been developed to evaluate pathological be-
haviors. For the case of the budget-constrained auto-bidding problem with bidding cycles structured
as 24-hour episodes (T = 96 time steps), the following three key metrics are commonly used to
identify pathological behaviors:

* Excessive budget consumption: there exists a time step ¢ such that the cost between time
step ¢ and ¢t + 1 exceeds 10% of the budget B;

* Forward- (or Backward-) trending pacing: the cost between time step 1 and 24 (or
between time step T' — 24 and T') exceeds 40% (or 40%) of the budget B;

* Underutilization of available budgets: the total cost over the bidding episode is lower
than 90% of the budget B.

E.5 TRAINING STABILITY

We present additional comparisons between the training curves of the offline RL with bootstrapping
and those of AIGB-Pearl in Fig. [6] Fig. [7] Fig. 8] and Fig. [9]concerning:

* Cumulative Rewards: the main performance index of the considered auto-bidding prob-
lem;

* Online Rate: the ratio between the bidding period before the budget runs out and the total
bidding period. A larger Online Rate indicates a better performance.

» Bad Case Rate: the ratio between the number of “bad” trajectories and the total number
of generated trajectories. A lower Bad Case Rate indicates a better performance.

* Cost Rate: the ratio between the cost and the budget. A larger cost rate indicates a better
performance.

We can see that the offline RL method tends to suffer from significant instability throughout training,

showing high variance across different seeds. In contrast, AIGB-Pearl achieves much smoother and
more consistent learning progress, demonstrating the improved training stability.
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Figure 6: Learning curves of cumulative rewards between offline RL with bootstrapping method and
AIGB-Peral under 10 seeds.
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Figure 7: Learning curves of online rate between offline RL with bootstrapping method and AIGB-
Peral under 10 seeds.

E.6 EMPIRICAL PERFORMANCE WITH GENERAL OFFLINE DATA DISTRIBUTIONS

Note that in many real-world auto-bidding systems, including the one considered in the paper, due to
operational safety constraints, the online-deployed bidding policy is typically a single fixed model,
and the offline dataset is collected exclusively from this single policy over multiple days, where
an advertiser contributes a single trajectory per day. For example, in the considered auto-bidding
system, the online-deployed baseline policy is a conditional generative model that generates identi-
cal trajectory plans for a given advertiser under identical conditions each day. The variation across
different trajectories of the same advertiser in the offline dataset is solely due to stochastic environ-
mental factors (e.g., traffic fluctuations). Since these exogenous perturbations are typically the sum
of many independent impression-level sources of noise, the resulting trajectory deviations can be
reasonably approximated as a Gaussian distribution.

To demonstrate the broad applicability of the proposed algorithm, we evaluate its performance in
settings where multiple policies are used for data collection. Specifically, we collect trajectories
in the simulated environment using nine distinct bidding policies, thereby constructing an offline
dataset with a multi-modal distribution that violates the Gaussian distribution. The empirical results
are presented in Table 9]

Table 9: Empirical performance with multiple data-collection policies.

Methods GMV ROI Cost
DiffBid 548.5 5.00 109.4
AIGB-Pearl (ours) | 575.7 5.04 114.6
A \ +49% +0.7% +4.2%

We observe that AIGB-Pearl still outperforms AIGB by +4.9%, indicating that its performance is
robust to the specific distribution of the offline dataset.
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Figure 8: Learning curves of bad case rate between offline RL with bootstrapping method and
AIGB-Peral under 10 seeds.
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Figure 9: Learning curves of cost rate between offline RL with bootstrapping method and AIGB-
Pearl under 10 seeds.

F EXTENDING AIGB-PEARL TO FIRST-PRICE AUCTIONS

We note that the proposed method remains effective in first-price auctions with a proper adaptation.
Specifically, unlike second-price auctions where the optimal bid for impression ¢ takes the form
bid; = aw;, in first-price auctions, the optimal bid for impression 4 is given by bid; = min(av;, p;),
which typically involves an extra bid shading method to predict the winning price
2020; [Wu et al, 2015). Equipped with an off-the-shelf bid shading method (whose design is beyond
the scope of this work), the auto-bidding problem in a first-price auction remains an offline sequential
decision problem, i.e., making decisions over an a-sequence, to which the proposed method applies
directly.

To validate the effectiveness of the proposed method under first-price auctions, we additionally
conduct a simulated first-price auction experiment against the state-of-the-art AIGB method, where
all methods are equipped with the same bid shading method. The results are presented in Table
demonstrating the effectiveness of our proposed method.

G EXTENDING AIGB-PEARL TO ONLINE SETTING DISCUSSION

We note that AIGB-Pearl can be extended to online settings when equipped with a safe online
exploration policy. Specifically, due to safety constraints, the auto-bidding policy during training
cannot interact directly with the live advertising system; only safe exploration policies are permitted
to collect data online 2022). Consequently, an online auto-bidding framework typically
involves two parts:

* a safe online exploration policy, which is a well-established component in existing work

2022)) and beyond the scope of this paper;

* an offline policy training method that leverages the data collected online.
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Table 10: Empirical performance in the simulated experiments with a first-price auction.

Methods | GMV ROI Cost

DiffBid 1,546 5.13 301

AIGB-Pearl (ours) 1,611 5.18 311
A ‘ +42% +1.0% +3.3%

AIGB-Pearl can be directly applied as the offline policy training method within the online framework
without modification. In practice, due to the safety and stability concerns, many industrial auto-
bidding systems adopt an offline optimization paradigm. For this practical reason, we focus on the
offline setting in this work.

H LLM USAGE

The authors have used Large Language Models (LLMs) exclusively for grammar checking and lex-
ical refinement during the writing process. No LLM-generated content, data analysis, or substantive
contributions to the research methodology, results, or conclusions are involved in this work.
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