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Abstract

Convolution is a fundamental operation in the 3D backbone. However, under
certain conditions, the feature extraction ability of traditional convolution methods
may be weakened. In this paper, we introduce a new convolution method based on
ℓp-norm. For theoretical support, we prove the universal approximation theorem
for ℓp-norm based convolution, and analyze the robustness and feasibility of ℓp-
norms in 3D point cloud tasks. Concretely, ℓ∞-norm based convolution is prone to
feature loss. ℓ2-norm based convolution is essentially a linear transformation of the
traditional convolution. ℓ1-norm based convolution is an economical and effective
feature extractor. We propose customized optimization strategies to accelerate the
training process of ℓ1-norm based Nets and enhance the performance. Besides, a
theoretical guarantee is given for the convergence by regret argument. We apply
our methods to classic networks and conduct related experiments. Experimental
results indicate that our approach exhibits competitive performance with traditional
CNNs, with lower energy consumption and instruction latency.

1 Introduction

The convolution-based 3D backbone networks have demonstrated substantial success in foundational
tasks such as classification [1], object tracking [2], scene segmentation [3], etc. Some downstream
tasks also heavily rely on these networks, such as interactive perception [4], object manipulation [5],
imitation learning [6], and human-machine collaboration [7]. In the traditional 3D convolution,
suppose K ∈ Rm×n is the filter, and Pt ∈ Rm×n is the sampled matrix from the t-th sliding window
on input data, 1 ≤ t ≤ T . T is the total sliding counts. For any t ≥ 1, the t-th convolution is
calculated as:

Pt ⊙K =
∑

1≤i≤m

∑
1≤j≤n

Pt(i, j) ·K(i, j) (1)

which is the same as inner product between vectors. To distinguish it from our new convolution
framework, we refer to it as inner product based convolution in the following discussion. A geometric
consideration arises when Pt follows a certain symmetric distribution, such as a Gaussian or uniform
distribution. By symmetry, there exist some of {Pt}Tt=1 situated close to the subspace perpendicular
to K, which means K ⊙ Pt ≈ 0. This inevitably leads to explicit feature loss, diminishing the
model’s ability on information extraction.
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In previous works, ℓp-norms (p = 1, 2, 3, · · · ,∞) demonstrated strong performance across various
domains [8, 9, 10]. These norms exhibit remarkable capabilities in expressing spatial structures and
local relationships within sets of points. To address the limitations of inner product-based convolution
in certain extreme cases and to explore the potential of ℓp-norms in feature extraction, we propose
ℓp-norm-based convolution, i.e., for any kernel K and sampled matrix Pt, it can be formulated as
Eq. 2:

∥Pt −K∥p ≜
( ∑
1≤i≤m

∑
1≤j≤n

(Pt(i, j)−K(i, j))p
)1/p

. (2)

More precisely, the goal of this paper is to leverage the power of ℓp-norm measurement (Fig. 1 (a))
and devise efficient and robust optimization methods for it. Our solutions are as follows:

Figure 1: (a) Visualizing the circles of ℓp-norms.
(b) Manhattan distance based ℓ1-norm measure.

From the theoretical standpoint, we prove the uni-
versal approximation theorem of ℓp-norm Nets
(for p = 1, 2, 3, · · · ,∞). Besides, we show that
ℓp-norm based convolutions are more robust than
the traditional ones via variance analysis under
random noise.

From the practical standpoint, we first discuss the
performance of different ℓp-norms in actual exe-
cution. 3D convolution in ℓ∞-norm space tends
to lose multiple useful pieces of information since
only the maximum absolute value is reserved. The
ℓ2-norm measure is inherently a linear transfor-
mation of the traditional convolution (details can
be found in Sec. A). In contrast, the ℓ1-norm has
unique potential for 3D point cloud tasks. However, directly replacing traditional convolution with an
ℓ1-norm-based one is not feasible in practice due to the difficult convergence and local optima. To
enhance network performance, we propose customized optimization strategies. The first strategy is a
mixed gradient strategy (MGS), and the second is a dynamic learning rate controller (DLC). These
strategies are applied in the training process (Algorithm 1) to accelerate network convergence and
avoid local optima. We also provide a convergence guarantee for our optimization strategies from the
perspective of regret.

We evaluate our method on several benchmarks, ranging from global, semi-dense, and dense predic-
tion tasks. The experimental results show that ℓ1-norm Net has the same competitive performance
as traditional convolution. Moreover, the proposed ℓ1-norm Net has three advantages: 1) ℓ1-norm
(inherently addition operation) has lower computational complexity compared to multiplication; 2)
addition significantly reduces energy consumption [11]; 3) ℓ1-norm operations (addition) has lower
instruction latencies [12] than inner product process (multiplication). These properties facilitate the
3D point cloud tasks especially online tasks such as 3D real-time object detection, pose tracking, etc.

Contributions. 1) We prove the universal approximation for ℓp-norm Nets. And we show that
ℓp-norm Nets are robust under random noise. 2) We compare different ℓp-norm based convolutions,
and further propose a reliable and efficient ℓ1-norm Net for 3D point cloud tasks with customized
optimization strategies. We also give a theoretical guarantee for convergence by regret argument. 3)
Experimental results demonstrate the effectiveness of our methods in 3D point cloud tasks, showing
lower energy consumption and faster instruction execution.

2 Related Work

Different Convolution Methods. Convolutions have seen significant success, leading to various
convolution methods aimed at improving performance and efficiency. Traditional convolutions,
introduced by [13], use fixed-size kernels to extract features but are computationally intensive and
may not capture diverse patterns effectively. To overcome these limitations, several alternatives
have been proposed: 1) depthwise separable convolutions [14, 15]. Popularized by MobileNets,
these decompose standard convolutions into depthwise and pointwise operations. 2) dilated convolu-
tions [16, 17, 18]. These introduce spaces between kernel elements, expanding the receptive field
without increasing parameters. 3) deformable convolutions [19, 20]. These adapt the sampling loca-
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tions of the convolutional kernel, enhancing the network’s ability to model geometric transformations.
However, due to their unique strengths, they only excel at some specific tasks.

ℓp-norm Measure in Different Tasks. Using the ℓp-norm as a feature measurement function for
convolutional kernels offers several advantages: 1) Flexibility: The ℓp-norm allows adjusting the
parameter p according to specific needs [21, 22, 23]. 2) Sparsity: It encourages most elements in the
convolutional kernel to approach zero, reducing computational complexity and storage requirements
[21, 24]. Overall, in diverse settings, employ distinctive approaches. The ℓp-norm is widely used
across various fields. For example, in image processing, the ℓ1-norm is used for sparse representation
in image compression [25], enabling efficient storage and transmission. In machine learning and
optimization, optimization problems also use ℓp-norm constraints to impose sparsity or specific
patterns in solutions [26, 27]. Despite progress, directly migrating these methods into 3D point cloud
tasks causes a domain gap. In this work, we aim to explore ℓp-norm measure for 3D point cloud tasks
in depth.

3 Methodology

Notations. For the sake of simplicity, in what follows, we take the classic PointNet++ [28] as the basis
model to estimate the efficiency of ℓp-norm based Nets with the proposed optimization strategies.
Note that, we directly replace the inner product based convolution by ℓp-norms (p = 1, 2, 3, . . . ,∞)
based one, and denote the corresponding network by ℓp-PointNet++ or ℓp-norm Net. Moreover, the
proposed ℓp-norm based convolution can also be called ℓp-norm neuron.

3.1 Universal Approximation

The universal approximation ability of a neural network is crucial. Firstly, it establishes a solid
theoretical foundation for the network’s capabilities [29], which asserts that certain architectures and
activation functions enable neural networks to approximate any continuous function. There is a series
of works on the approximation capacity, such as theories for feedforward networks [30], RNNs [31],
Transformer [32]. However, the universal approximation property of ℓp-PointNet++ has not been
studied thoroughly up to now.
Theorem 1. Assume S = {x1, · · · , xN} ⊂ Rk is an arbitrary point cloud. J ⊂ Rk is any compact
set and S ⊂ J . For any continuous function f defined on 2J with respect to Hausdroff distance
dH(·, ·), there exists an ℓp-PointNet++ P satisfying for any ϵ > 0,

|f(S)− P(S)| ≤ ϵ. (3)

Moreover, for any ℓ1-integrable function g defined on J , there exists an ℓp-PointNet++ P ′, for any
ϵ′ > 0, ∫

x∈J

|g(x)− P ′(x)|dx < ϵ′. (4)

Briefly speaking, f could be approximated by an MLP consisting of ℓp-norm convolution layers and a
max pooling layer. And g could be approximated by a network composed of an ℓp-norm convolution
layer and a fully connected layer. The detailed proof can be found in Sec. A from the appendix.

3.2 Robustness Analysis

In the following, we show that under Gaussian random noise on input data, ℓp-norm based convolu-
tions are more robust than that based on inner product. Suppose G ∈ Rm×n is a Gaussian matrix.
Each G(i, j) ∼ N(0, σ2) where σ > 0 is a constant. Let Pt ∈ Rm×n be the data at time t and
K ∈ Rm×n be the kernel function.

For inner product,

V ar
[
(G+ Pt)⊙K

]
= EG

[(
G⊙K − EG[G⊙K]

)2]
= V ar

[
G⊙K

]
, (5)

and

G⊙K =

m∑
i=1

n∑
j=1

G(i, j)K(i, j) ∼ N

(
0, σ2 ·

m∑
i=1

n∑
j=1

K(i, j)2
)
. (6)
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Table 1: Variance of the ℓp-norm of Gaussian ran-
dom vector when mn = 9.

p 1 2 3 4 5
Var 3.24655 0.48327 0.31248 0.27494 0.26078
p 6 7 8 9 ∞

Var 0.26093 0.26040 0.26078 0.26145 0.26875

Suppose ∀i ∈ [m] and ∀j ∈ [n], K(i, j) is
a constant, we have V ar

[
(G + Pt) ⊙K

]
=

Θ(mn).

For ℓp-norm, first we could prove that when
p = 2, V ar

[
∥G+X −K∥2

]
= O(1), which

is significantly smaller than V ar
[
(G+ Pt)⊙

K
]
. The details of calculation could be found

in Sec. A from the appendix. For the more
general cases (p = 1, 2, 3, · · · ,∞), we show that ℓp-norm has a small variance through numerical
computation in the Tab. 1, where we take σ = 1.

3.3 Implementation of ℓp-norm Nets

Note that although Theorem 1 guarantees a universal approximation capability, it does not mean
that all the ℓp-norm Nets are efficient and feasible in practice. Therefore, we further discuss the
characteristics of each specific ℓp-norm Nets (p = 1, 2, 3, · · · ,∞) in detail.

Figure 2: (Left) The distribution of ∥G∥p,where G is the standard Gaus-
sian vector, p = 1, 2, 3,∞ and dim(G) = 9. (Right) The distribution of
∥G∥p, p = 3, 4, 5, 6, 7, 8, 9,∞ and dim(G) = 9.

Assume the input data
follows Gaussian distri-
bution, saying G is the
standard Gaussian ma-
trix. For ℓp-norm based
convolution, when p is
greater than or equal to
3, the distribution of the
output data is very close.
We present the simula-
tion results in Fig. 2. It’s
clear that when p is get-
ting larger, the distribu-
tion of ∥G∥p gradually
overlaps with the distri-
bution of ∥G∥∞. There-
fore, we take p =∞ as the representative case for p ≥ 3.

Actually, l∞-norm exhibits weaknesses due to its overly simplistic emphasis on the largest element.
Namely this approach tends to oversimplify the feature space by disproportionately emphasizing only
one dimension, potentially discarding valuable information present in other dimensions. Also, this
concept is supported by experimental results in Sec. 5. Besides, ℓ2-norm inherently is calculated by
taking the square root of the sum of the squares of its elements. And ℓ2-norm based convolution Cℓ2
can be regarded as an equivalence transformation of the traditional convolution C. Briefly speaking,
we could show that C2ℓ2 = α+ β × C, where α and β are constants.

ℓ1-norm can synthesize each element of the feature vector. And the ℓ1-norm Net is not equivalent
to a translation transform, which we believe holds potential as a 3D convolutional similarity metric
function according to the Theorem. 1. To this end, our method focuses on rationalizing the ℓ1-norm
measure to maximize its potential in feature extraction. Mathematically, if the similarity measurement
function between the input data and kernel function is replaced with the ℓ1-norm, the convolution can
be re-formulated as:

Y (Pt,K) = −
∑
t≥1

∑
i,j

|Pt(i, j)−K(i, j)| (7)

The underlying operation of ℓ1-norm kernel function is addition, which has more development
potential and application value in real scenarios. Specifically, 1) It contains almost no multiplication
but addition, resulting in lower computational complexity of the model. 2) ℓ1-norm operation
(addition) is proved to have lower energy consumption compared to the inner product (multiplication)
calculation [33]. Take the operation of floating-point addition and multiplication as an example,
which has energy costs of 0.9 pJ and 3.7 pJ , respectively. 3) Low latency is also a consideration in
practical application scenarios. [12] tells us that multiplication (inner product process) has longer
theoretical instruction wait times than addition operations. Table 1 of this study lists the instruction
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latency, throughput, and micromanipulation faults for Intel, AMD, and VIA CPUs. For instance, the
latency of float multiplication and addition is 4 and 2 in the VIA Nano 2000 series.

3.4 Regret

It’s a good way [34, 35, 36] to demonstrate the convergence of an optimization process by analyz-
ing the regret. Performance measurement [37], optimization guidance [38], and feedback mecha-
nisms [39] can be summarized as its advantages. We employ it the construct the convergence theorem
for our optimization strategies in Sec. 4.

Consider a general online optimization model between a player and an adversary. A subset F ∈ Rm

is non-empty, bounded and closed. For each iteration k ∈ [T ∗], the player choose a point xk ∈ F
(T ∗ is not known for player). After committing to this choice, a convex function hk will be revealed
by the adversary. And we note the cost of this game by regret:

RT∗ =

T∗∑
k=1

hk(xk)−min
x∈F

T∗∑
k=1

hk(x). (8)

The player aims to carefully select xk to minimize regret as much as possible, while conversely the
adversary aims to specifically choose hk to hinder the player. Intuitively, if an algorithm(the player)
could bound regret by a sub-linear function of T ∗, i.e., RT∗ = o(T ∗), we could conclude that “on
the average” the algorithm performs as well as the best fixed strategy in hindsight [40].

4 Optimization

By the argument above, we are motivated to devise a new convolution based on ℓ1-norm. However,
direct training of ℓ1-norm Nets can easily lead to unsatisfactory results. Thus, two customized
optimization strategies are proposed for training. Before introducing these optimization strategies,
we clarify the notations in the following.

Notations Recall that K ∈ Rm×n is the kernel and Pt ∈ Rm×n is the sliding window on the input
data, 1 ≤ t ≤ T . Y (Pt,K) is the convolution of K and Pt. L denotes the loss function in training
process. We use the m×n matrix ∂L

∂K to denote the gradient on of L on K, where ( ∂L
∂K )i,j =

∂L
∂K(i,j) .

Besides, define the vectors

∂L

∂Y
≜

( ∂L

∂Y (P1,K)
,

∂L

∂Y (P2,K)
, . . . ,

∂L

∂Y (PT ,K)

)
and

∂Y

∂K(i, j)
≜

(∂Y (P1,K)

∂K(i, j)
,
∂Y (P2,K)

∂K(i, j)
, . . . ,

∂Y (PT ,K)

∂K(i, j)

)
4.1 MGS: Mixed Gradient Strategy

Now we focus on the gradient descent in training process, especially the partial derivative
of loss function L on the kernel K. It should be pointed out that L is a function on
(Y (P1,K), Y (P2,K), . . . , Y (PT ,K)). By chain rule of derivation we have for any given (i, j),

∂L

∂K(i, j)
=

T∑
t=1

∂L

∂Y (Pt,K)
· ∂Y (Pt,K)

∂K(i, j)
=

〈 ∂L
∂Y

,
∂Y

∂K(i, j)

〉
(9)

Notice that when loss function L is fixed, ∂L
∂Y is regardless of the choice of Y (Pt,K) (inner product

or ℓp-norm). And we should only focus on the vector ∂Y
∂K(i,j) . In the context of ℓ1-PointNet++:

∂Y (Pt,K)

∂K(i, j)
= sgn

(
Pt(i, j)−K(i, j)

)
. (10)

Here, sgn(·) represents the sign function.
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There are two unavoidable problems: 1) the use of Eq. 10 results in a signSGD update. As discussed
in [41], the direction of signSGD is not aligned with the steepest descent, and this misalignment
exacerbates with increasing dimensionality. 2) The gradient of ℓ1-norm Net is significantly smaller
than that of inner product convolution in the experiment. Namely, ∥ ∂L

∂K ∥2 is extremely small when
we choose the convolution Y as ℓ1-norm. Taking PointNet++ on S3DIS as an example, we report the
ℓ2 norm of gradient of ℓ1-PointNet++ in Fig. 3. The gradient from ℓ1-PointNet++ is much smaller
than that in PointNet++ (e.g., ℓ1-PointNet++: 0.0002, PointNet++: 0.3162 in layer I). Hence, this
small gradient ∂L

∂K in ℓ1-norm Net would significantly slow down the training process.

Figure 3: The gradient of weight in each layer using
two different networks at 1st iteration. Layer I to III
represent 3 SetAbstractions modules in ℓ1-PointNet++
and layer IV to V represent fully connected layers.
Note that the y-axis is on a logarithmic scale to reflect
the magnitude of the values.

Based on the above observations, we in-
troduce a novel Mixed Gradient Strategy
(MGS) tailored for ℓ1-PointNet++ training.
This approach strategically combines the gra-
dients of the ℓ1-PointNet++ and that of ℓ2-
PointNet++:

∂Y (Pt,K)

∂K(i, j)
=

Pt(i, j)−K(i, j)

||K − Pt||2
, (11)

Actually, as we discussed above, ℓ2-norm
based convolution is a linear transform of
inner product convolution. So gradient of ℓ2-
norm Net has a proper scale. The mixed strat-
egy involves dynamically adjusting ∂Y (Pt,K)

∂K(i,j)

during training, guided by a parameter 0 <
λ < 1 and the training step k. The mixed
gradient strategy is expressed as:

∂Y (Pt,K)

∂K(i, j)
= (1− λk)sgn(Pt(i, j)−K(i, j)) + λk(Pt(i, j)−K(i, j)). (12)

This dynamic adjustment introduces a controlled transition in the gradient computation as train-
ing progresses. Taking λ = 0.99 for example, when k is small, the term λk dominates and
∂Y (Pt,K)
∂K(i,j) approximates to Pt(i, j) − K(i, j). This initial configuration aligns with the more ef-

ficient ℓ2-like update, providing stability and aiding in faster convergence. As training progresses
(k gets larger), the term λk becomes more prominent, shifting the gradient computation towards
sgn(Pt(i, j) − K(i, j)). This transition allows the model to leverage the advantages of the ℓ1-
PointNet++ structure, facilitating sparsity in the learned features. By dynamically adapting the
gradient computation based on the training step, the mixed strategy offers a flexible and adaptive ap-
proach to overcome the challenges associated with fixed gradient schemes. This dynamic adjustment
provides a thoughtful compromise, combining the efficiency of ℓ2-like updates in the initial stages
with the sparsity-inducing benefits of ℓ1-PointNet++ in later stages.

In fact, there is quite a bit of literature supporting the effectiveness of the signSGD update scheme,
and in particular, it has been shown that it has some advantages in avoiding saddle points [42].
However, when certain random rotations of the objective appear, signSGD may become trapped in a
periodic behavior that hinders convergence in such cases. To address this unexpected behavior, we
additionally explored the introduction of momentum into the update rule. Our experimental results
prove that this modification effectively breaks the symmetry induced by random rotations, preventing
the model from getting stuck and fostering smoother convergence.

4.2 DLC: Dynamic Learning rate Controller

Considering the uniqueness of the mixed gradient strategy, we focus on achieving larger update
magnitudes and faster convergence rates during the initial stages of training. However, in the later
stages, we aim to revert to signSGD, implementing a more cautious update strategy to enhance
the model’s precision. Therefore, we propose a learning rate update strategy that adapts to this
characteristic: Dynamic Learning rate Controller (DLC), maintaining a higher rate in the early
training phase, and returning to a lower rate in the later phase.
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To this end, we design two bound functions to control the learning rate: the lower bound

α1(k) = p1 · (1 +
p2
ek

) (13)

and the upper bound
α2(k) = p1 · (1 +

p3
k
) (14)

where p1, p2 and p3 are hyper-parameters to be determined and k denotes the training step. And we
use simple comparison operations to make learning rate α(k) locate in [α1(k), α2(k)]:

α̂(k)← min
{

max{α1(k),A[α(k)]}, α2(k)
}
. (15)

To enhance the universality of this dynamic control framework, A could be another learning rate
optimization algorithm like the adaptive learning rate strategy of [43], which can be specifically
switched according to the task at hand. However, regardless of A, we will later demonstrate that
dynamic control alone is sufficient to provide theoretical convergence guarantees by the regret
argument of Theorem 2, and it also performs well in experiments.

4.3 Training Framework

Algorithm 1 OMD
Input: Initial learning rate α, hyper-parameters p1, p2, p3, re-
ferred by Eq. 13 and Eq. 14. q0 and q in (0, 1).

1: m0 = 0, α(0) = α, x1 = 0⃗.
2: Set the functions α1(k) and α2(k) by hyper-parameters

p1, p2, p3.
3: for k = 1 to T ∗ do
4: gk ← ∂L

∂K (xk) # Consider the gradient ∂L
∂K as an

vector here. ∂L
∂K(i,j) = ⟨

∂L
∂Y , ∂Y

∂K(i,j) ⟩.
∂L
∂Y only depends on

the choice of loss function. See Eq. 12 for ∂Y
∂K(i,j) .

5: qk = q0 · qk.
6: mk = qk ·mk−1 + (1− qk) · gk

7: α̂(k)← min
{

max{α1(k),A[α(k)]}, α2(k)
}

8: α(k)← α̂(k)/
√
k

9: xk+1 = ΠF,α(k)−1/2 (xk − α(k) ·mk)
10: end for

It has been noted from previous
discussions that the momentum
method can help signSGD avoid
getting trapped in cycles, thereby
improving training stability. Com-
bining the methods above, we
present the global optimization al-
gorithm (Optimizer with Mixed
gradient strategy and Dynamic
learning rate controller, OMD) for
ℓ1-PointNet++ training. Details
are shown in Algorithm. 1

Here we give a convergence guar-
antee for OMD under an online
optimization framework, which is
harder than offline optimization.
We could show that regret RT∗

of OMD is bounded by O(
√
T ∗).

Low regret means the algorithm
progressively gets closer to the optimal solution over time. This shows that OMD has reliable
convergence properties, making it a dependable optimization method.
Theorem 2. Continue with the settings and notations of Algorithm 1. Suppose F ⊂ Rn is bounded,
saying maxx,y∈F∥x− y∥∞ ≤ B∞ Besides, suppose ∀k ∈ [T ∗], ∥gk∥2 ≤ B2. we could show that
for any convex functions {hk}T

∗

t=1,

RT∗ =

T∗∑
k=1

hk(xk)−
T∗∑
t=1

hk(x
⋆) ≤ C1 ·

√
T ∗ + C2

where C1 and C2 are constants that rely on p1, p2, p3, B∞, B2, q0 and q. And x⋆ ≜
argminx∈F

∑T∗

k=1 hk(x).

The proof could be found in the appendix, Sec. A.

5 Experiments

To validate the generalizability and robustness of the method and thus ensure its effectiveness and
broad applicability, we verify the performance of our method in several tasks, ranging from Global
Tasks (i.e., Parts Segmentation), Semi-dense Prediction (i.e., scenario semantic segmentation), and
Dense Prediction (i.e., pose estimation) tasks. Shapenet, S3DIS, and GarmentNets Simulation are
used as the datasets.
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5.1 Dataset and Experimental Settings

Dataset. 1) ShapeNet. In ShapeNet, there are 16,881 shapes from 16 categories, which are
annotated with 50 parts in total. Note that most object categories are labeled with two to five parts
and Ground Truth annotations are labeled on sampled points on the shapes. This task can be regarded
as a point-wise classification task. 2) S3DIS. The Stanford Large-Scale 3D Indoor Spaces Dataset,
which encompasses 3D scans obtained from Matterport scanners across 6 distinct areas, comprising a
total of 271 rooms. Within the S3DIS dataset, every point within the scans is labeled with a semantic
category from a set of 13 distinct classes. These classes encompass various elements such as chairs,
tables, floors, walls, among others, in addition to a category for clutter. 3) GarmentNets Simulation.
GarmentNets Simulation is a large-scale dataset proposed by [44]. This dataset has six garment
categories with a total data volume of 1.72TB. Dress, Jump, Skirt, Top, Pants and Shirt are included.

Experimental Settings. We train our frameworks using CrossEntropy loss and the AdamW opti-
mizer [45], with an initial learning rate of 0.001, a weight decay of 10−4, Cosine Decay, and a batch
size of 32. The total training consists of 200 epochs. All tasks use the same settings unless otherwise
specified. All experiments are conducted on a computer workstation with three GeForce GTX 3090
GPUs using the PyTorch deep learning framework. The best model on the validation set is selected
for testing.

5.2 Experiments on Global Task

Parts Segmentation. As a classic global task, 3D object parts segmentation is an important prede-
cessor for articulated objects from the embodied intelligence community, such as pose estimation
[46, 47], manipulation [48, 49], etc. In this section, we conduct experiments on ShapeNet part
dataset [50].

Table 2: Quantitative segmentation results on ShapeNet part dataset. Note that a 3D fully
convolutional network is proposed as the 3DCNN, mIoU(%) is reported as the metric on points.

Model Mean Shape Names
aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table

phone board
# shape number 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

3DCNN 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1
ℓ1-3DCNN 79.4 79.3 70.9 71.3 72.9 86.3 58.6 90.0 76.5 74.9 92.6 63.8 89.9 75.8 55.8 63.6 79.2

PointNet 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
ℓ1-PointNet 83.3 85.9 76.5 78.3 78.3 86.1 75.6 89.8 85.3 81.0 97.7 62.3 91.2 83.9 60.1 73.0 80.7

PointNet++ 86.2 87.1 80.3 86.3 74.3 90.1 75.3 92.9 86.3 79.3 94.9 71.2 93.3 81.9 59.2 73.8 81.2
ℓ1-PointNet++ 86.5 89.1 78.3 85.2 76.3 86.9 74.6 93.1 84.9 79.6 94.6 72.6 91.3 81.3 66.3 74.8 81.8

From Tab. 2, see them all: we find that our method has almost equivalent performance to the
conventional method when being equipped with PointNet, and achieves superior performance on
3DCNN and PointNet++. Treat them equally: we see that our method can often perform better in
some categories (e.g., car, motor, rocket, etc.), these categories usually have a larger volume (i.e., a
more sparsified point cloud) compared to other objects. We propose that the inner product within
convolutional networks has a tendency to highlight local context among points, yet it is greatly
affected by the overall translation and scaling of the dataset. Our method focuses on the points drawn
from ℓ1-norm space and addresses this problem by integrating the inherent distance measure into our
architecture. Specifically speaking, The Manhattan distance based ℓ1-norm Nets tend to avoid this
problem, which notices point cloud features at a longer distance.

5.3 Experiments on Semi-dense Prediction Task

Scenario Semantic Segmentation. As a semi-dense prediction task, this task aims to segment distinct
regions within a 3D scene based on their semantic meaning using point cloud data. Semantic scene
segmentation is crucial for understanding and interpreting the spatial arrangement and relationships
between objects in 3D scenes. For our study, we utilize the S3DIS dataset. The metrics and
experimental settings follow those outlined in [28].

Following the training and test strategies used in [51], we first divide the point cloud using the room
as the basic unit and then sample the room at a size of 1m * 1m (randomly sampling up to 4096

8



Table 3: (Left) Results on Semantic Segmentation in Scenes. Metric is average IoU (%) over 13
classes (structural and furniture elements plus clutter) and classification accuracy is calculated on
points. Our methods achieved competitive performance with significant energy reductions (61%).

Model Mean
IoU (%)

Overall
Accuracy (%)

Energy
(µj)

PointNet 47.7 78.6 7.981
ℓ1-PointNet 47.6 77.9 3.471
PointNet++ 53.5 83.0 3.395

ℓ1-PointNet++ 53.9 82.9 1.328

Figure 4: (Right) Qualitative Results for Semantic Segmentation. We put the colored point cloud
on the top part (Input data) and put semantic segmentation results from the same camera viewpoint
on points (Output) in the bottom part.

points during training, and all points are involved in the computation during testing), which in turn
predicts the class of each point in each block. Note that we use a 9-dimensional vector to represent
each point, representing XYZ, RGB, and normalized room location (ranging from 0 to 1). K-fold
strategy is also used for training and testing.

The quantitative results are reported in Tab. 3. Experimental results show that although our approach
achieves almost equivalent performance to inner product based networks, we maximize the potential
of ℓ1-norm measure by relying on our proposed optimization strategy, which allows us to achieve
similar performance but with less computational complexity and lower energy consumption (Almost
61% energy reductions). Also, we provide qualitative segmentation results for visualization in Fig. 4.
Overall, our model generates consistent object predictions and is resilient to the presence of absent
points and obstructions.

5.4 Experiments of Dense Prediction Task

Table 4: Quantitative Results on Garment Pose Esti-
mation. The metric is measured using Chamfer distance
(cm) under the canonical pose. The lower is the better
result.

Model Dress Jumpsuit Skirt Top Pants Shirt
GarmentNets [44] 1.94 1.45 2.00 1.30 1.03 1.70
ℓ1-GarmentNets 1.83 1.56 1.91 1.26 0.99 1.62

Garment Pose Estimation Garments,
vital in daily life, present unique chal-
lenges for machine perception and inter-
action due to properties like infinite de-
grees of freedom and thin structure. Gar-
ment pose estimation and tracking sys-
tems hold potential for applications in
mixed reality [52, 53], augmented real-
ity [54, 52], and robotic manipulation [55, 49]. Addressing these challenges, mainstream methods
typically employ Normalized Object Coordinate Space (NOCS) [56] for dense prediction tasks. In
this section, we introduce GarmentNets [44], a baseline focusing on garment pose estimation using
partial point clouds as input and generating complete point clouds as output. Our approach utilizes
the GarmentNets Simulation Dataset to evaluate this task. The total epoch number is 200, and the
batch size is 16.

Quantitative results are in Tab. 4. Note that we use Symmetric Chamfer Distance as the metric,
This metric measures accuracy and completeness for surface reconstruction. The accuracy metric is
defined as the mean L2 distance of points on the output mesh to their nearest neighbors on the GT
mesh. From the table, it can be seen that our method performs comparably to the original method.

5.5 Ablation Experiments

Replacing Means. The most critical structure of PointNet++ is the 3 separate SetAbstractions
modules (SA). Hence, to explore the effect of using the ℓ1-PointNet++ at different places and in
different ratios, we remove the modules at different ratios and places on S3DIS. The experimental
result is shown in Tab. 5. In many aspects, we can infer that the average mean IOU and accuracy
are higher under the 66.7% ratio than those reported under the 33.3% ratio. This result tells the
conclusion that our ℓ1-norm measure can exact more useful features from sparse point clouds. we
hope these results can prompt further study on replacing means, such as different replacing ratios in
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each inner module, creditable ways to combine hybrid convolutional blocks. etc. We leave this for
more passionate researchers in the future.

Table 5: Comparisons of Results on S3DIS with Dif-
ferent Replacing Ratio and Places. We estimate the
energy costs according to [11], i.e., one operation of
floating-point addition and multiplication have energy
costs of 0.9 pJ and 3.7 pJ , respectively. SA: SetAb-
stractions module. ⋆ means that 33.3% replacing
ratio of PointNet++ has #Add-0.492 M, #Mul-0.984
M, Energy-4.0836 µJ , while ♣ means that 66.7% re-
placing ratio of PointNet++ has #Add-0.984 M, #Mul-
0.492 M, Energy-2.7060 µJ .

Replacing
Ratio

ℓ1-norm neuron? Mean
IOU Accuracy InfoSA1 SA2 SA3

✓ 51.9% 79.8%
33.3% ✓ 52.3% 81.8% ⋆

✓ 52.5% 81.1%

✓ ✓ 53.2% 82.4%
66.7% ✓ ✓ 53.0% 81.0% ♣

✓ ✓ 52.2% 81.5%

Table 6: Ablation Results on S3DIS Dataset
Using Different Variants of ℓ1-Nets. Mean
IOU and overall Accuracy (%) are reported.
Note that the results of ℓ1-PointNet are re-
ported from I to IV, and ℓ1-PointNet++ are
reported from V to VIII. Besides, vanilla Net
represents the model without our customized
optimization strategy while training.

Index Optimization? Mean
IOU (%)

Overall
Accuracy (%)MGS DLC

I (Vanilla) 33.2% 56.3%
II ✓ 39.6% 68.6%
III ✓ 42.8% 70.1%

IV (Ours) ✓ ✓ 47.6% 77.9%

V (Vanilla) 38.9% 55.6%
VI ✓ 43.6% 69.3%
VII ✓ 48.4% 75.6%

VIII (Ours) ✓ ✓ 53.9% 82.9%

Optimization Strategy. As demonstrated in Sec. 4, we propose mixed gradient strategy (MGS) to
accelerate network convergence, while dynamic learning rate controller (DLC) helps our network
move away from local optima. To evaluate the effectiveness of MGS and DLC, we remove them
separately from ℓ1-PointNet++ and evaluate the scenario semantic segmentation performance on
S3DIS. Tab. 6 presents the quantitative results. The baselines (I and V) indicate that we only use
ℓ1-norm as the similarity measurement but without any optimization. It can be observed that they
both resulted in huge performance degradation. Besides, we can see that both our MGS and DLC
contribute to network convergence and optimization results.

6 Limitations and Broader Impact

Firstly, some of the other convolutions (e.g., sparse convolution, group convolution, dilated convolu-
tion) and additional computer vision tasks remain unexplored. Secondly, the inference speed of the
ℓ1-norm Net is marginally slower than that of traditional one. This is attributed to the lack of CUDA
and cuDNN optimized operations for Manhattan distance metrics. It’s noteworthy that, beyond
introducing a novel convolution based on the ℓp-norm and proving the universal approximation
theorem for theoretical support, this paper also presents customized optimization strategies.

7 Conclusion

In this paper, we are motivated to explore ℓp-norm measure to replace the classic inner product
convolution. we first prove the universal approximation of ℓp-norm Nets. And then we compare
different ℓp-norm measures and propose the ℓ1-norm Net for 3D point cloud tasks. Furthermore,
we design the customized optimization strategies (i.e., mixed gradient strategy and dynamic control
on learning rate) for ℓ1-norm Net. When introducing our method to classical 3D networks, they
achieve competitive performances at a lower energy cost. In summary, our ℓ1-norm Net can achieve
similar performance to traditional convolution network, but with less computational cost and lower
instruction latency.
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– Appendix –
In the Appendix, we present additional information on our methods. Concretely, we provides a
detailed theoretical analysis of the theorems from the main paper, including the variance analysis, the
proposed universal approximation, the regret argument, and the equivalence of ℓ2-norm Measure.

A Additional Theoretical Analysis

A.1 Omitted proof of variance analysis

Since adding a constant does not significantly affect variance, for ease of demonstration, we could
assume V ar

[
∥G+ Pt −K∥2

]
≈ V ar

[
∥G∥2

]
. Notice that

V ar
[
∥G∥2

]
= EG∼N(0,Im)

[
∥G∥22

]
−
(
EG∼N(0,Im)

[
∥G∥2

])2

. (16)

It’s easy to verify that for any u ≥ 0,
√
u ≥ (1 + u− (u− 1)2)/2.

Let u =
∥G∥2

2

m and calculate the expectation of G on both sides of the inequality, we have

E[∥G∥2]√
m

≥ 1

2
·
(
2− E

[
(
∥G∥22
m
− 1)2

])
. (17)

Because E
[
(
∥G∥2

2

m − 1)2
]
= 1

m2 · E
[∑m

i=1(G(i)2 − 1)2 +
∑

i ̸=j(G(i)2 − 1)(G(j)2 − 1)
]

and ∀i,
E[G(i)2 − 1] = 0, we can conclude that

E
[
(
∥G∥22
m
− 1)2

]
=

1

m
· E[G(1)4 + 1− 2 ·G(1)2] (18a)

=
2

m
. (18b)

where the first equation holds for all the G(i)s are i.i.d. The second equation holds for E[G(1)4] = 3,
E[G(1)2] = 1. Combining inequality (17) and Equation (18b), EG∼N (0,Im) [∥G∥2] ≥

√
m
2 ·

(
2− 2

m

)
.

Therefore, by Equation (16) we have

V ar[∥G∥2] < 2− 1

m
= O(1).

Thus we have shown that V ar
[
∥(G+ Pt)−K∥2

]
= O(1).

A.2 Proof of Theorem 1

Scaling S and J by 1
diam(J) where diam(J) = maxx,y∈J{∥x − y∥∞}, we could assume S =

{x1, · · · , xN} and ∀i ∈ [N ] xi ∈ J ⊂ [0, 1]k. For convenience, first we show the case k = 1. Here
we refer the construction of soft occupancy function in [51]. Because f is continuous function, for
any ϵ > 0, ∃ σ > 0 so that |f(S1) − f(S2)| < ϵ for any S1 and S2 with dH(S1, S2) < δ. Let
M = ⌈ 1δ ⌉ and hm(x) = exp(−dH(x, [m−1

M , m
M ])) be the soft occupancy function, for all m ∈ [M ].

Next, for all m ∈ [M ] define

v̂m(S) = max
x∈S
{hm(x)} (19)

and,

vm(S) =

{
1, v̂m(S) ≥ 1
0, v̂m(S) < 1.

(20)
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vm(S) indicates the occupancy of the m-th interval by points in S. Define v : 2J → {0, 1}M
and for any S ∈ 2J , v(S) = (v1(S), v2(S), · · · , vM (S)). And then define η : {0, 1}M → 2J ,
η(v(S)) = {m−1

M | vm(S) ≥ 1}. Notice that by this construction, dH (η(v(S)), S) < 1
M ≤ δ. So

let ω : {0, 1}M → R and ω(v) = f(η(v)), we have

|ω(v(S))− f(S)| = |f(η(v(S)))− f(S)| < ϵ (21)

The last inequality holds for the definition of Hausdorff distance and continuity of f . Here ω
and {hm}Mm=1 could be made up of a multi-layer perceptron network [51]. {v̂m}Mm=1 consist of a
max pooling layer on {hm}Mm=1 and {vm}Mm=1 can be composed of a simple perceptron layer on
{v̂m}Mm=1, which compares v̂m(S) and 1. For the general cases k ≥ 1, it suffices to get the same
conclusion by simply extending the 1 dimensional functions hm, v̂m, vm to k dimension. So there is
a ℓp-PointNet++ P that can approximate any continuous function f on 2J .

We employ the RBF theory of [57] to give the second conclusion. For completeness, we restate it
here.

Theorem 3 ([57]). The radio basis networks consist of a family of functions(RBF) noted by SK:

H∑
i=1

ai ·K(
x− zi
σ

)

where x ∈ Rd, zi ∈ Rd,σ ∈ R, H ∈ N . SK is dense in ℓ1(Rd), if K satisfies: 1.integrable bounded,
2.K is continuous almost everywhere, 3.

∫
K(x)dx ̸= 0.

It’s clear that the ℓp-norm ∥ · ∥p : Rd → R satisfies all the three conditions on K. Besides, a large
enough ℓp based convolution layer with a full connected layer could represent all the functions∑H

i=1 ai · ∥(
x−zi
σ )∥p. So for any ℓ1-integrable function g, there exists an ℓp-PointNet++ P ′ such that

for any ϵ > 0,
∫
|g(x)− P ′(x)|dx < ϵ.

A.3 Proof of Theorem 2

Before proving, we restate an important result in online learning and we will use it in the following.

Lemma 1 ([58]). For any Q ∈ Sd+ and convex feasible set F ⊂ Rd, suppose u1 =

minx∈F ∥Q1/2(x − z1)∥ and u2 = minx∈F ∥Q1/2(x − z2)∥ then we have ∥Q1/2(u1 − u2)∥ ≤
∥Q1/2(z1 − z2)∥.

Our proof framework is similar to that of [58]. Here is a standard argument in momnet method.

Lemma 2. Suppose mt = γmt−1 + (1− γ)gt with m0 = 0 and 0 < γ < 1. We have

T∗∑
t=1

∥mt∥2 ≤
T∗∑
t=1

∥gt∥2.

Proof. By Cauchy-Schwarz and Young’s inequality, we have

∥mt∥2 ≤ γ∥mt−1∥2 + (1− γ)∥gt∥2.
Note that m0 = 0,

∥mt∥2

γt
≤ (1− γ)

t∑
i=1

∥gi∥2γ−i.

So we have

∥mt∥2 ≤ (1− γ)

t∑
i=1

∥gi∥2γt−i.

Take the summation on t for both sides of the inequality, we have the conclusion.
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So we could begin to prove Theorem 2. Suppose {xt} ⊂ Rn. As the notation before, x⋆ =

argminx∈F
∑T∗

t=1 ht(x) and xt+1 = ΠF,α
−1/2
t

(xt − α(t) ·mt) = minx∈F ∥α(t)−1/2 · (x− (xt −
α(t) ·mt))∥. By Lemma 1, ∥α(t)−1/2 · (xt+1 − x⋆)∥2 ≤ ∥α(t)−1/2 · (xt − α(t) ·mt − x⋆)∥2 =
∥α(t)−1/2 ·(xt−x⋆)∥2+∥α(t)1/2 ·mt∥2−2⟨qtmt−1+(1−qt)gt, xt−x⋆⟩. Rearrange the inequality,
we have

⟨gt, xt − x⋆⟩ ≤ 1

2(1− qt)

[
∥α(t)−1/2 · (xt − x⋆)∥2 − ∥α(t)−1/2 · (xt+1 − x⋆)∥2 + ∥α(t)1/2 ·mt∥2

]
+

qt
2(1− qt)

·
(
∥α(t)1/2 ·mt−1∥2 + ∥α(t)−1/2 · (xt − x⋆)∥2

)
.

(22)

The second inequality holds for Cauchy-Schwarz inequality and for any a, b ∈ R, ab ≤ a2+b2

2 .

Because {ht}T
∗

t=1 are convex functions:

RT∗ =

T∗∑
t=1

ht (xt)− ht (x
⋆) ≤

T∗∑
t=1

⟨gt, xt − x⋆⟩

So we have

RT∗ ≤
T∗∑
t=1

[
1

2(1− qt)

[
∥α(t)−1/2 · (xt − x⋆)∥2 − ∥α(t)−1/2 · (xt+1 − x⋆)∥2

]
+

qt
2(1− qt)

∥α(t)−1/2 · (xt − x⋆)∥2
]

︸ ︷︷ ︸
A

+

T∗∑
t=1

[
1

2(1− qt)
∥α(t)1/2 ·mt∥2 +

qt
2(1− qt)

∥α(t)1/2 ·mt−1∥2
]

︸ ︷︷ ︸
B

.

(23)

First we bound the part A:
T∗∑
t=1

[
1

2(1− qt)

[
∥α(t)−1/2 · (xt − x⋆)∥2 − ∥α(t)−1/2 · (xt+1 − x⋆)∥2

]
+

qt
2(1− qt)

∥α(t)−1/2 · (xt − x⋆)∥2
]

≤ 1

2(1− q1)

[
n∑

i=1

α−1
1 (x1(i)− x⋆(i))2 +

T∗∑
t=2

n∑
i=1

(α−1
t − α(t− 1)−1)(xt(i)− x⋆(i))2 +

T∗∑
t=1

n∑
i=1

qt(xt(i)− x⋆(i))2α(t)−1

]
.

(24)

Next we bound the part B. By definition of α(t), α1(1)/
√
t ≤ α(t) ≤ α2(1)/

√
t. So we have

T∗∑
t=1

[
1

2(1− qt)
∥α(t)1/2 ·mt∥2 +

qt
2(1− qt)

∥α(t)1/2 ·mt−1∥2
]

≤ α2(1)

2(1− q1)

[
T∗∑
t=1

∥mt∥2√
t

+

T∗∑
t=1

∥mt−1∥2√
t

]

≤ α2(1)

2(1− q1)

[
1

T ∗

[ T∗∑
t=1

∥mt∥t−1/4

]2
+

1

T ∗

[ T∗∑
t=1

∥mt−1∥t−1/4

]2]

≤ α2(1)

2(1− q1)

[
1

T ∗

T∗∑
t=1

∥mt∥2 ·
T∗∑
t=1

t−1/2 +
1

T ∗

T∗∑
t=1

∥mt−1∥2 ·
T∗∑
t=1

t−1/2

]

≤ α2(1)B
2
2

(1− q1)

T∗∑
t=1

t−1/2

≤ (2
√
T ∗ − 1)

α2(1)B
2
2

(1− q1)
.
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The second inequality holds for Jensen inequality and the third inequality follows from Cauchy-
Schwarz inequality. The forth inequalityholds for Lemma 2.

Combine the argument above and notice that α(t)−1 ≤ p−1
1 ·
√
T ∗, we have

RT∗ ≤ B2
∞

2(1− q1)

[
n · α−1

1 +

T∗∑
t=2

n · (α−1
t − α−1

t−1) +

T∗∑
t=1

n · qt · α−1
t

]
+ (2
√
T ∗ − 1)

α2(1)B
2
2

1− q1

≤
√
T ∗ ·

(
B2

∞
2(1− q1)

· n · α̂−1
T∗ +

2 · α2(1)B
2
2

1− q1

)
− α2(1)B

2
2

1− q1
+

B2
∞

2(1− q1)

T∗∑
t=1

n · qt · α−1
t

≤
√
T ∗ ·

(
B2

∞ · n · p−1
1

2(1− q1)
· (1 + 2q0q) +

2 · α2(1)B
2
2

1− q1

)
− α2(1)B

2
2

1− q1
.

A.4 Equivalence of ℓ2-norm Measure and Classic Convolution in Convergence

We find that ℓ2-norm Net is the linear transformation to the inner product convolution network, here
we give the detailed calculation.

The output of the ℓ2-norm Net in Eq. 25.

Yℓ2(Pt,K) =

√∑
t≥1

∑
i,j

|Pt(i, j)−K(i, j)|2 (25)

Therefore, we can express it as the following:

Y 2
ℓ2(Pt,K) =

∑
t≥1

∑
i,j

(Pt(i, j)
2 +K(i, j)2 − 2Pt(i, j)K(i, j))

=
∑
t≥1

∑
i,j

(Pt(i, j)
2 +K(i, j)2)−

∑
t≥1

∑
i,j

Pt(i, j)K(i, j)

=
∑
t≥1

∑
i,j

(Pt(i, j)
2 +K(i, j)2)− 2YCNN (Pt,K).

(26)

Notably, the term
∑

i,j K(i, j)2 remains constant for each channel, and
∑

t≥1

∑
i,j Pt(i, j)

2 repre-
sents the square of ℓ2-norm of each input patch. If this term is invariant across patches, the ℓ2-norm
Net’s output can be regarded as a linear transformation of the CNNs’ output.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: see the abstract and introduction part.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see Sec. 6.
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• The answer NA means that the paper has no limitation while the answer No means that
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
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only tested on a few datasets or with a few runs. In general, empirical results often
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Instructions about experimental settings are in Sec. 5, and the URL of the
project will be released after the paper is accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: see the zip files of codes in the supplemental material.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: see the main manuscript.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: the effect of random seed could almost be negligible since we set the same
initiation seed during experiments. Reproducibility can be guaranteed.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: see the main manuscript.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: we have conformed with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: see Sec. 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: see the main manuscript.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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