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ABSTRACT

We present a novel approach for generating realistic speaking and talking faces
by synthesizing a person’s voice and facial movements from a static image, a
voice profile, and a target text. The model encodes the prompt/driving text, the
driving image, and the voice profile of an individual and then combines them
to pass them to the multi-entangled latent space to foster key-value pairs and
queries for the audio and video modality generation pipeline. The multi-entangled
latent space is responsible for establishing the spatiotemporal person-specific
features between the modalities. Further, entangled features are passed to the
respective decoder of each modality for output audio and video generation. Our
experiments and analysis through standard metrics demonstrate the effectiveness
of our model. All model checkpoints, code, and the proposed dataset can be found
at: https://github.com/Playing-for-you.

1 INTRODUCTION
AI-generated real-time audio-video multimedia communication by rendering realistic human talking
faces has recently drawn massive attention1,2. Such technology is promising in various applications
such as digital communication, aiding communication with individuals with impairments, designing
artificial instructors, and developing interactive healthcare (Xu et al., 2024b; Gan et al., 2023). In
such applications, generating realistic and real-time speech and visual content simultaneously is a
key requirement. Therefore, in an ideal scenario, given a prompt text along with a face image and
the audio profile of an individual, a talking human face would be rendered as output with audio
(generated speech) and visual narration according to the prompt text.

Generative AI has emerged as a key area of interest in the computer vision and learning representation
community. Although existing approaches have made significant strides, they are constrained by their
reliance on generating a single modality (Egger et al., 2020; Kim et al., 2021). For example, current
text-to-speech models (TTSM) (Ao et al., 2022; Betker, 2022; Casanova et al., 2024) focus primarily
on voice synthesis. Similarly, visual generation techniques i.e. talking face models (TFM) (Ren et al.,
2021; Rombach et al., 2022; Siarohin et al., 2020; Zhang et al., 2023a; Xu et al., 2024b;c; Zhang
et al., 2023b) aim at face video generation given a text or/and audio or/and image as a prompt. Hence
both TTSM and TFM techniques are unsuitable for real-life audio-video multimedia communication
scenarios such as audio-visual chatbots, as in such situations both realistic video and speech must be
generated synchronously and simultaneously. Few efforts have been made in the literature to merge
TTSM and TFM by cascading the pipeline (Wang et al., 2023; Zhang et al., 2022). Additionally,
(Jang et al., 2024) made an effort to generate talking face and speaking audio jointly for a specific
individual from a prompt text.

Further, these TFM (Chen et al., 2024; Zhang et al., 2019) depend on guidance from defined facial
properties from the weakly supervised latent information from the reference modality. As a result,

1https://www.business-standard.com/technology/tech-news/odisha-
television-introduces-lisa-india-s-first-ai-news-presenter-123071000767_
1.html

2https://www.indiatoday.in/india/story/india-today-groups-ai-anchor-
sana-wins-global-media-award-for-ai-led-newsroom-transformation-2532514-
2024-04-27
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poor lip-synchronization and limited ability to tune an existing audio profile for personalizing the
video content lead to generation that is far from being realistic. Moreover, expressiveness in facial
dynamics along with subtle nuances for realistic facial behavior needs to simultaneously match
with audio content temporally to produce realistic talking faces. Further, such synchronization also
depends on individual traits, such as their speech intonation and other covariates. Although they
are supposed to be important considerations for realistic speaking and taking faces models (STFM),
However, this was not in the scope of existing work on STFM (Jang et al., 2024). Therefore, this
gap in the literature motivates us to design a prompt text-guided audio-visual multimodal generative
STFM that can jointly generate audio and video, given a reference image and reference audio along
with the prompt text as input.

Figure 1: SOTA approaches of talking face generation
use a face image as driving frame, with an audio prompt
passed as input to the existing model such as Hallo (Xu
et al., 2024b), VASA (Xu et al., 2024c) and the pro-
posed model which generates a realistic audio-video syn-
chronous multimodal talking face with face image and
audio profile of an individual along with the prompt text.

Consequently, in contrast to existing lit-
erature (See Figure 1), in this work we in-
troduce a novel multi-modal framework
designed to address these limitations by
generating highly realistic speech and an-
imations from a combination of prompt
text, a driving image, and an audio pro-
file as inputs. Specifically, our frame-
work aims to synthesize videos of a talk-
ing human face where the person in the
image appears to speak along with the
generated voice from the provided text
for the given identity. Our method en-
hances the capabilities of existing pre-
trained models (Xu et al., 2024b) with
an advanced parallel mechanism that
leverages both visual and auditory data
streams. This parallelism ensures that
the synthesized videos not only align the
subject’s facial movements with the spo-
ken text but also synchronize with the
generated personalized voice outputs that
correspond to the subject’s appearance.

A person-agnostic generalized STFM
model must encompass a large appear-
ance and acoustic features variation. Fur-
thermore, extracting such structure infor-
mation along with the temporal synergy between the audio and video while preserving individual
variance requires additional modules to model these complexities. Therefore, we introduce a parallel
multiple entanglement in the latent space between the encoding and decoding of different modalities.

Our proposed architecture for STFM contains three main phases (See Figure 2). Modality encoding
phase, at this stage a heterogeneous personal signature of the audio and video modality, and the
driving feature from the text are extracted. The second stage is the multi-entangled latent space which
glens the spatiotemporal relation and synchronization in the embeddings of the modalities, which
further acts as the input to the decoders phase i.e the third stage of the proposed architecture. In the
second stage, the exchange of information between the key and values (identity information from
audio and video extracted from the individual encoders) and queries (driving features from encoded
prompt text) are streamlined. To instrument this, an entanglement of the audio and text latent is
performed which further entangles with video latent in transformers block and then to a diffusion
block. The output of the diffusion block is passed to the video decoder. Similarly, an entanglement
of the video and text latent is performed which further entangles with audio latent in a transformer
space and passes to a text decoder block and then to the audio decoder. Such entanglements ensure
to streamlining of the audio profile and the driving image by linear navigation in the latent space
along with the encoded feature from the prompt text. Specifically, the temporal information for both
the audio and video generation is constructed by linear displacement of codes in the latent space as
per the encoded text prompt. In turn, the model also learns a set of orthogonal motion directions to
simultaneously learn the audio and video temporal synergy, by exchanging their linear combination
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to represent any displacement in the latent space. To summarize, our key contributions are as follows:
• To the best of our knowledge, the proposed architecture is the first person-agnostic STFM

which fosters a text-driven multimodal realistic audio-video synthesis that can be generalized
to any identity.

• We design a three-phase architecture which consists of the encoder, multi-entangled latent
and decoder phase for audio and video pipeline. The muti-entangled latent space glens
the spatiotemporal and synchronisation in the encoder embedding to exchange information
between the modality and guided text and help to generate crucial visual and acoustic
characteristics based on input profiles.

• With the comprehensive experiments, we demonstrate that the proposed method surpasses
the state-of-the-art techniques available for STFM.

2 RELATED WORK
Text-to-speech (TTS) technology has seen remarkable progress in recent years, with the devel-
opment of models that generate highly natural and expressive speech. Modern Text-To-Speech
approaches(Casanova et al., 2024; Betker, 2022) leverage sequence-to-sequence architectures to
map text directly to speech. Notable models among these are the Tacitron(Wang et al., 2017) and
the newer Tacitron2(Shen et al., 2018). These models employ attention mechanisms to convert text
sequences into mel-spectrograms. These spectrograms are then passed through neural vocoders
like WaveNet(van den Oord et al., 2016) or HiFi-GAN(Kong et al., 2020) to generate high-quality
audio waveforms. Other models, such as FastSpeech(Ren et al., 2019) and VITS(Kim et al., 2021),
introduce optimizations to improve the speed of speech generation while maintaining or enhancing
the naturalness and clarity of the output. Although models have advanced into more complex ar-
chitectures, the underlying idea behind speech generation remains the same. TortoiseTTS(Betker,
2022) is a modern, expressive TTS system with impressive voice cloning capabilities. This model
incorporates a combination of the Auto-Regressive Model, followed by a Diffusion Model(Ho et al.,
2020), to convert the input text into mel-spectrogram frames, via discrete acoustic tokens. This model
also follows the standard of a vocoder(Univnet)(Jang et al., 2021) for generating the audio from the
spectrogram frames. Only a few works have been made in the literature to attend STFM by cascading
the pipeline (Wang et al., 2023; Zhang et al., 2022). In (Jang et al., 2024) advancements are made by
generating a talking face and speaking audio jointly for a specific individual from a prompt text.

2.1 FACE REENACTMENT AND LIP-SYNC MODELS

Recent advancements in face reenactment have enabled realistic video generation by synthesizing
facial movements driven by audio inputs. Early models, such as SyncNet(Raina & Arora, 2022),
focused on lip synchronization through facial key points and phoneme mapping but struggled
with capturing detailed expressions and diverse facial structures. More recent models, such as
LipGAN(K R et al., 2019) and Wav2Lip(Prajwal et al., 2020a), leverage GANs to improve lip-sync
accuracy and generate more natural facial animations.

The multimodal synthesis of human videos, combining text, audio, and visual inputs, has advanced
considerably in recent years. Early approaches focused on audio-driven models that primarily
addressed lip-syncing, mapping speech inputs to corresponding facial movements. Models like
SyncNet(Raina & Arora, 2022) played a crucial role in establishing baseline synchronization between
audio and lip movements. However, these models often lacked expressive, natural face dynamics.

2.2 DIFFUSION-BASED LIP-SYNC MODELS

Recent models have extended beyond simple lip-syncing to incorporate emotional expression and
natural head motion. Audio2Head(Wang et al., 2021), for example, shifts from keypoint-based
methods to a dense mapping of audio features onto facial expressions and head motion, resulting
in a more fluid and expressive representation of speech-driven animations. Expressive Audio-
driven Talking-heads (EAT)(Gan et al., 2023) enhances this by integrating text and audio as inputs,
introducing more dynamic and natural facial expressions synchronized with speech.

The Hallo(Xu et al., 2024b) model builds on these advancements by using attention mechanisms
to improve facial reenactment, ensuring smoother transitions and better coherence across diverse
speakers. Furthermore, SadTalker(Zhang et al., 2023b) incorporates 3D facial representations,
combining both speech and facial dynamics for more realistic head motions and expressive gestures.

3
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FaceChain-ImagineID(Xu et al., 2024a) uses latent diffusion to generate talking faces directly from
the only audio input, generating synthetic faces after disentangling the audio to extract aspects
like expression, identity and emotion. Other notable works, such as Diffused Heads(Stypułkowski
et al., 2023) and DreamTalk(Zhang et al., 2023a), have explored diffusion-based models for video
generation, leveraging the success of image-to-video transformations in generating high-quality
talking-head videos. These models focus on temporally consistent video generation, addressing
fidelity and synchronization across frames.

3 METHODOLOGY

We propose a joint learning methodology for the audio, video, and natural language-based text prompts
consisting of three main components – namely, (1) Encoding phase, (2) Entanglement of combined
latent space, and (3) Decoding phase i.e., Latent conditional generation of synthesized audio-video.
Figure 2 illustrates detailed network architecture and roles of different model components to learn
and dynamically synthesize audio video on a given source image.

3.1 MULTI-MODAL ENCODING PHASE.
We use HiFi-GAN (Kong et al., 2020) and Wav2Vec Encoder (Baevski et al., 2020) to extract
high-dimensional embedding vectors from the reference audio. The HiFi-GAN generates a feature
embedding fa that represents the audio waveform. At the same time, the Wav2Vec encoder produces
a secondary set of embedding fs capturing semantic audio information. We treat the semantic audio
embedding as a direct mapping of the speaker’s voice profile. Consequently, the combined features
fa⊕ fs provide a detailed audio profile necessary for driving the lip-sync and facial animations in the
synthesized video. The input reference audio is represented as a 2-second MEL-spectrogram, encoder
into a sequence of acoustic features per frame of 0.2 seconds duration with the shape of R5609×512.

Our neural model’s newly inducted input text prompt undergoes Byte-Pair Encoding (BPE) and
Tokenization (Zouhar et al., 2024) to convert textual information into a feature vector f t ∈ R512.T .
This feature vector enables context-specific animations, allowing the synthesized video to align with
the intended spoken words and expressions implied in the text. The purpose of concatenating f t
with the combined feature of reference audio fa ⊕ fs is to obtain the speaker’s signature in the final
flattened feature tokens of f t ⊕ fa ⊕ fs ∈ R5609+T×512.

Next, we process the input source image through a Variational Auto-Encoder (VAE) (Kingma &
Welling, 2022) and a Landmarks Detection model (Zhang et al., 2020). The VAE generates an
image embedding f i, representing the visual style and identity of the person in the source image.
Concurrently, the landmarks detection network extracts structural features – face mask feature
ffm and lip mask feature f lm, which are combined with the image embedding vectors to create a
fused visual feature representation f i ⊕ f lm ⊕ ffm ∈ R3136×512. The straightforward tendency of
traditional methods is either to introduce prior 3D morphable models faces (Zhang et al., 2023b),
motion priors of the facial parts (Jang et al., 2024), or guiding video frames (Wang et al., 2022) to
learn nuances of facial articulation in relation to the audio in combined latent space. In contrast, we
show that the entanglement of multiple latent spaces of text-audio-video using Transformer encoders
(Vaswani et al., 2023) can eliminate the dependency on strong motion priors. As a result, we are able
to use text prompt features as a set of anchoring tokens to both the Transformer encoders.

3.2 ENTANGLEMENT OF COMBINED TEXT-AUDIO-VIDEO LATENT SPACE.
As illustrated in Figure. 2, a smooth synergy between the text-audio latent embedding and the
text-image latent embedding is established by two Transformer encoders followed by latent diffusion-
guided (Xu et al., 2024b) synthesizer of visual nuances and decoder-only GPT-2 (Casanova et al.,
2024) model for synthesizing text-conditioned audio latent.

The first Transformer encoder spatially contextualizes the audio MEL-spectrogram tokens using
a dual-stream cross-modal attention mechanism with the flattened version, denoted by L(.), of
categorically fixed speaker embedding tokens merged with varying text embedding tokens, i.e.,
Qa = L(fa ⊕ fs), as

Cross-Attention(Qa,Kti,Vti) = SoftMax

(
QaK

⊤
ti√

dk

)
Vti, (1)

where the query vector Qa is of dimension R5609×512 and the key-value paring (Kti,Vti) between
the tokens of L(f t ⊕ f i ⊕ f lm ⊕ ffm) has a variable spatial length (padded up-to a max length)
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Figure 2: Our Network Architecture: Text Prompt-guided joint audio-visual learning repre-
sentations using dual stream Transformer Encoders and Denoising Diffusion model. The model
architecture can be divided into three phases – namely Encoding Phase, Multi-Latent Entanglement,
and Decoding Phase. As an output, an audio-visual animation is generated from a single source
image, reference audio, and a short text prompt.

with a fixed channel length of 512. Merging the varying text tokens serves two purposes – (1) first,
querying audio tokens as well as the speaker tokens has been implicitly prompt-engineered by the
text tokens, (2) second when the resulting prompt-engineered latent embedding vectors fas are split
into its respective constituents, they become proxy weights of text-image embedding vectors.

Similar to the previous encoder block, the second Transformer encoder spatially contextualizes the
input masked-image embedding vectors L(fi ⊕ ffm ⊕ flm) using cross-modal attention with the
key-value pairs (Kta,Vta) of merged text-audio embedding tokens L(ft ⊕ fa ⊕ fs) similar to the
equation 1 as

Cross-Attention(Qi,Kta,Vta) = SoftMax

(
QiK

⊤
ta√

dk

)
Vta. (2)

As a result, the output latent embedding on audio-visual features fav can serve as a compact and
compressed representation of facial animation sequences in the high-dimensional space. Therefore,
our next step is to learn a synthesizer i.e., a hierarchical latent diffusion model Xu et al. (2024b) for
video generation and a corresponding MEL-spectrogram synthesizer based on the X-Text-to-Speech
(XTTS) model Casanova et al. (2024).

Latent Text Conditioned Spectrogram Synthesizer: The GPT-2 encoder is based on the TTS model
(Casanova et al., 2023) and (Shen et al., 2018). This part is composed of a decoder-only transformer
module that is conditioned by the audio and speaker embedding vectors fa,fs disentangled from the
prompt-engineered audio embedding vector fav , and the auto-regressive generation of spectrogram
tokens is fully driven by the input text tokens from fav .

Text-Anchored Audio-Video Latent Conditioned Denoising Diffusion: The Denoising Diffusion
model aims to reverse a diffusion process(Ho et al., 2020; Song et al., 2022) that progressively adds
random Gaussian noise to data. Inspired by the Hallo method (Xu et al., 2024b), we employ an
additional augmentation of the text-anchored latent embedding vector learned to combine the audio
and motion nuances on a single image inside the Denoising U-Net (Ronneberger et al., 2015) model
of Hallo. The model is initialized with pre-trained weights and fine-tuned during the training step.

Throughout each step of the diffusion process, we introduce embedding cross-attention, which
incorporates the combined latent space embedding, particularly our fav, into each diffusion step.
This cross-attention mechanism allows the diffusion models to leverage the shared information
across modalities, ensuring that the generated outputs (audio and video) are consistent with the input

5
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embedding. The inclusion of cross-attention helps to maintain coherence between the synthesized
motion across all the pixels of the source image.

Additionally, diffusion cross-attention facilitates mutual information exchange between the audio
and video diffusion blocks. This cross-attention mechanism enables the audio and video models to
synchronize their outputs, ensuring that the generated audio and video components are temporally
aligned. By integrating this cross-attention, our framework effectively coordinates the diffusion
processes, leading to synchronized and coherent multimedia output.

3.3 DECODING PHASE FOR AUDIO-VIDEO GENERATION

The outputs of the previous steps are processed by their respective final decoders. For audio generation,
similar to the XTTS method (Casanova et al., 2024), the synthesized spectrogram is passed through
a Vocoder component of HiFi Generator module to obtain the final audio signal. For video, the
Denoising UNet generates f number of frames of dimension R4×f×64×64, which are decoded by a
pre-trained decoder component of (Kingma & Welling, 2019) to produce the complete video.

3.4 LOSS FUNCTIONS

To train our model, we use –
(1) Video Loss as the Pixel-wise L1 Loss i.e., sum of the N number of pixel intensities between
the ground truth image frame If

gt and the generated frame If
gen for all the f number of frames as

Lvideo =
∑

f

∑N
i=1∥(I

f
gt)

i−(If
gen)i∥, (2) Audio Loss as the Spectrogram MSE loss at the spectrogram

S domain as mean squared error between the ground-truth magnitudes and generated magnitudes at
different of time step t as St

gt and the generated frame St
gen as Laudio = 1

T

∑
t∈T ∥(I

f
gt)

i − (If
gen)i∥2.

Total loss as LTotal = λLaudio + Lvideo with balancing factor λ = 0.1.

4 EXPERIMENTAL RESULTS

4.1 DATASETS, PREPROCESSING, IMPLEMENTATION DETAILS AND EVALUATION MATRICES

Datasets: We have primarily conducted our experiments on 4 datasets. Our model training was
done on a combination of VoxCeleb Dataset (Nagrani et al., 2019), FakeAVCeleb dataset (Khalid
et al., 2022), HDTF (Zhang et al., 2021) and the CelebV-HQ dataset (Zhu et al., 2022). VoxCeleb is
an audio-visual dataset consisting of short clips of human speech, extracted from interview videos
uploaded to YouTube. FakeAVCeleb is a novel audio-video multimodal deepfake dataset. We only
considered the non-deepfake part of the dataset. CelebV-HQ is a large-scale video facial attributes
dataset demonstrating a diverse quality of data, which is important to test the robustness of our model.
HDTF is a large in-the-wild high resolution audio-visual dataset built for talking face generation.

Preprocessing: Our preprocessing involved resizing the videos to 512x512 and then cropping each
video sample to the first 20 seconds (at 25FPS which equates to 500 frames). We then separated the
audio from the video using ffmpeg, and then ran the OpenAI’s Whisper model(Radford et al., 2022)
to transcribe the audio speeches.

Implementation details: The optimizer used for our model is AdamW with a learning rate of 1e-4
and weight decay of 1e-2, and the scheduler has a step-wise learning rate with a step size of 1000 and
gamma of 0.5. The weight decay regularizes the model, preventing any overfitting. We have used
Nvidia 1xA6000s GPU for training each model, and the model inference requires 12GB of VRAM.
The total parameter size of the model comes to 1,575,936 and performs 5.39 GFLOPs (Giga Floating
Point Operations) per generation. We have trained the models for 10 epochs, with a batch size of 8.
The Hifi-Gan, Wav2Vec Encoders, the Variational Autoencoder, Diffusion Models, and the GPT2
Decoder are pre-trained, which were further trained with the rest of the entire proposed network.

Evaluation Metrics: Following are the evaluation matrices employed.

Video Metrics: Fréchet Video Distance (FVD: A measure of the quality of generated videos,
comparing them to real videos based on spatio-temporal features. Lower values indicate better
performance (Unterthiner et al., 2019). FID (Fréchet Inception Distance): Evaluates the visual
quality of individual frames by comparing the distributions of generated and real images. Lower
scores represent better visual quality (Heusel et al., 2018). Fréchet Video Motion Distance(FVMD):
Measures the quality of motion in generated videos, capturing the difference between real and
generated motion trajectories. Lower values signify a more realistic motion.(Liu et al., 2024).

6
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Audio Metrics: Fréchet Audio Distance (FAD): Assesses the similarity between generated and real
audio samples, with lower scores indicating closer resemblance. Short-Time Objective Intelligibility
(STOI ): Measures the intelligibility of the generated speech. Higher values represent more intelligible
speech (Kilgour et al., 2019). Mel Cepstral Distortion(MCD): A metric used to evaluate the quality
of speech synthesis by comparing the spectral features of generated and reference audio. Lower
scores imply better audio quality (Zezario et al., 2020).

Audio-visual (AV) synchronisation: We used two metrics proposed in Wav2Lip Prajwal et al.
(2020b) to find the audio-visual synchronisation. The first is the average error measure calculated in
terms of the distance between the lip and audio representations, “LSE-D" (“Lip Sync Error Distance").
A lower LSE-D denotes a higher audio-visual match, i.e., the speech and lip movements are in
synchronization. The second metric is the average confidence score, “LSE-C" (Lip Sync Error
Confidence). The higher the confidence, the better the audio-video correlation.

Training and Testing: Our primary training dataset is the VoxCeleb dataset(Nagrani et al., 2019),
where our training set comprised of approximately 36000 videos. We chose this training set by
filtering out individuals whose speech was in English. We tested on more than 200 samples from
each of the four datasets (VoxCeleb, FakeAVCeleb, CelebV-Hq and HDTF.), resulting in a test set of
over 800 unseen samples.

We benchmarked the video outputs for the unseen samples against SoTA Portrait Animation mod-
els, like Hallo(Xu et al., 2024b), Sadtalker(Zhang et al., 2023b), EAT(Gan et al., 2023) and Au-
dio2Head(Wang et al., 2021). We also benchmarked the audio outputs for the unseen samples against
SoTA Speech generation models, like Tortoise(Betker, 2022), Your_TTS(Casanova et al., 2023),
XTTS_v2(Casanova et al., 2024) and GlowTTS(Kim et al., 2020).

4.2 RESULT ANALYSIS

Video Results: From Table 1, we can observe that our model shows superior performance across
all three metrics FID, FVD, and FVMD on VoxCeleb, CelebV-Hq and HDTF. This indicates high
fidelity and minimal discrepancies are attended by the proposed model. On the FakeAVCeleb, the
performance is slightly poorer but can be comparable, it still maintains strong visual consistency and
realism on visual inspection. For the CelebV-HQ our model excels again, demonstrating its capability
to produce high-quality video outputs. On HDTF our model shows incredible performance in the FID
and FVD metrics, beating all the other models, while our model is admirably performing considering
FVMD when compared to Hallo.

Table 1: Video pipeline evaluation scores across datasets.
Dataset Model FID Score (↓) FVD Score (↓) FVMD Value (↓)

VoxCeleb Audio2Head 81.00 90.12 5100.92
Hallo 67.28 70.69 5703.44
EAT 85.16 80.38 4878.36

SadTalker 119.36 112.77 6352.19
Our Model 42.88 49.78 4192.07

FakeAVCeleb Audio2Head 93.59 97.85 1329.23
Hallo 26.88 39.42 2351.20
EAT 94.34 98.49 1324.91

SadTalker 81.77 77.10 4158.18
Our Model 47.24 49.15 2263.54

CelebV-HQ Audio2Head 90.22 102.76 2939.49
Hallo 42.76 56.10 2816.68
EAT 47.88 56.21 2894.31

SadTalker 52.60 52.55 2789.19
Our Model 34.01 43.67 2743.29

HDTF Audio2Head 37.78 32.69 2633.04
Hallo 20.54 25.81 1290.57
EAT 29.57 29.34 2573.05

SadTalker 22.34 23.57 2410.89
Our Model 11.72 15.58 1784.16
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Table 2: Audio pipeline evaluation scores across datasets.
Dataset Model FAD Score (↓) MCD Score (↓) STOI Score (↑)

VoxCeleb Tortoise 258.54 82.37 0.10
Your_TTS 199.52 111.79 0.19
XTTS_v2 249.17 100.80 0.13
GlowTTS 329.21 103.94 0.15
Our Model 241.75 75.39 0.17

FakeAVCeleb Tortoise 871.14 82.12 0.10
Your_TTS 445.38 65.60 0.21
XTTS_v2 184.39 77.88 0.11
GlowTTS 482.04 87.11 0.18
Our Model 171.52 55.12 0.19

CelebV-HQ Tortoise 529.06 113.18 0.09
Your_TTS 520.01 137.58 0.16
XTTS_v2 509.90 124.61 0.07
GlowTTS 549.18 139.81 0.22
Our Model 244.83 85.76 0.18

HDTF Tortoise 425.30 67.15 0.11
Your_TTS 467.42 49.38 0.15
XTTS_v2 135.11 49.65 0.14
GlowTTS 510.61 66.42 0.12
Our Model 106.43 44.05 0.15

Figure 3: The figures in each row show frames from the videos generated by each technique in the
order: Ground Truth, Our proposed Model, Audio2Head (Wang et al., 2021), EAT (Gan et al., 2023),
Hallo (Xu et al., 2024b), and SadTalker (Zhang et al., 2023b) on the VoxCeleb Dataset. A frame
in each column for both videos corresponds to the same time-stamp (frames were sampled at equal
intervals of 25 seconds across the videos).

Based on the results, we observed that for some datasets certain models work slightly better than the
proposed model, and the reason behind this is that those models try to memorize certain properties
from individual datasets. Whereas our model is a more generalized version that can performed
consistently on cross datasets having varying resolution, and video quality. The visualization from
Figure 3 also concludes that our model can generate video very close to the ground truth and better
than any model. From Figure 4 it can be concluded that our model can generate nearby results for
HDTF, FakeAVCeleb and CelbV-HQ when compared to ground truth.
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(a) (b) (c) (d)

Figure 5: Ground Truth vs. Generated Audio Spectrograms for (a) VoxCeleb, (b) CelebV-HQ, (c)
FakeAVCeleb and (d) HDTF datasets

Figure 4: Results of our model on FakeAVCeleb,
Celeb-HQ and HDTF datasets.

Audio Results: We can infer from Table 2 that
our model consistently performs the best in the
MCD Score metric, which suggests that it min-
imizes distortion between the spectral features
of synthetic and reference speech. While con-
sidering the FAD scores, our model also per-
formed on par state-of-the-art, except on Vox-
Celeb where Your_TTS is better, these show-
case that the proposed model can generate con-
sistently similar audio compared to the ground
truth. Considering the STOI metric, the per-
formance of our model is similar to or slightly
lower than Your_TTS. The analysis of all the
measures showcases that our model is more gen-
eralized and realistic as it can minimize distor-
tion and also generate accurate distributions, and
maintain intelligibility of the speech consistently
better than any other models. The visualization
from Figure 5 also concludes that our model can
generate audio very close to the ground truth.

AV synchronization results: From Table 3 we
can conclude that our proposed model has per-
formed better audio-video synchronization than
SOTA and is close to the ground truth. The pro-
posed model has the lowest LSE-D, i.e. better
audio-visual match, i.e. and LSE-C i.e. better
audio-video correlation. We have also analyzed
the model with varying accents, blurred audio
profiles, and audio profiles of a kid with a source
image of an adult and vice versa, and the results
were found to be effective, no bias was found in
any aspect. Models fail in a few scenarios where a very noisy audio profile is used, output audio is
feeble or for source images with closed eyes face dynamics get affected (details are in supplementary.

4.3 ABLATION STUDY

Table 3: Evaluation of audio-visual syn-
chronization

LSE-C(↑) LSE-D(↓)
Groundtruth 5.45 8.52
Hallo 3.03 8.71
Audio2Head 2.51 10.34
EAT 4.39 9.35
SadTalkert 5.44 10.09
STE 5.71 8.41
ETE/ Proposed 5.74 8.38

Table 4 shows the ablation study of our proposed model.
We have 3 main sub-networks that define the output
of our model. The Transformer Encoder Block(TE)
(Vaswani et al., 2023) with two variations shared-TE
(STE) where both audio and video pipeline shares a
transformer block and explicit-TE (ETE) where audio
and video pipeline has explicit or separate transformer
block. Diffusion(Song et al., 2022) Cross Atten-
tion(DC), and the Embedding Cross Attention(EC).
From our results, it is understandably explainable that
the transformer encoder block, which encodes our in-

9
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puts into a common latent space, is the most important modality of our network, with its removal
drastically reducing our metric values. Our experiments also show that the cross-attention blocks
between the diffusion models are more important than the embedding cross-attention since our
metric values drop more when we remove the diffusion cross-attention, probably since the diffusion
cross-attention already syncs the modalities during the parallel learning stage. Another important
aspect of ablation is the encoding latent in the individual transformer i.e. ETE is much better than
STE. This infers that it is important to encode the latent for each modality separately while sharing
information among the generated modalities. Table 5 shows our ablation study on the encoders.
"Only Visual Tokens Attended" involves eliminating the audio prompt-guided transformer. Similarly,
the "Only Audio Tokens Attended" involves using only the audio prompt-guided transformer. "No
Hifi-GAN" and "No Wav2Vec" are results obtained by eliminating the encoding process of the
Hifi-GAN and Wav2Vec Models respectively. "No Visual token in prompt guided-Transformer"
involves not attending the visual tokens in the prompt guided-Transformer. These ablations quantify
the importance of each of the components.

Table 4: Ablation study of the transformers.

ETE STE DC EC FID (↓) FVD (↓) FVMD (↓) FAD Score (↓) MCD (↓) STOI (↑)

✓ ✓ 86.70 80.88 5275.89 328.27 95.44 0.07
✓ 68.83 74.19 4412.74 260.91 87.51 0.11
✓ ✓ 63.68 71.38 4298.30 250.12 83.96 0.14

✓ ✓ ✓ 61.44 69.15 2720.41 241.77 81.60 0.17
✓ ✓ ✓ 42.88 49.78 4192.07 241.75 75.39 0.17

Table 5: Ablation study of the encoders.
Ablation FID (↓) FVD (↓) FVMD (↓) FAD Score (↓) MCD (↓) STOI (↑)

Only Visual Tokens Attended 68.31 78.42 5747.04 304.98 81.17 0.13
Only Audio Tokens Attended 69.02 79.35 6576.85 301.49 80.65 0.13
No Hifi-GAN 85.25 94.28 7483.40 498.33 87.51 0.09
No Wav2Vec 70.10 80.96 5926.64 309.95 89.58 0.11
No Visual token in Prompt Guided transformer 54.38 62.02 5481.36 221.07 63.25 0.12
Proposed Model 42.88 49.78 4192.07 241.75 75.39 0.17

4.4 SOCIAL RISKS AND MITIGATIONS

There are social risks with technology development for text-driven audio video talking face generation.
The foremost risk is the ethical implications of creating highly realistic talking faces, it can be used
for malicious purposes, such as deepfakes. To mitigate such risk, ethical guidance for the use of such
generation techniques is required. Also, concerns regarding privacy and consent are implicit in such
work. Transparent data usage policies by consent, and safeguarding the privacy of individuals can
mitigate such concerns. By addressing these we aim to promote responsible and produce ethical
generative technology.

5 CONCLUSION

This paper introduces a novel method for realistic speaking and talking faces by joint multimodal
video and audio generation. We provide a holistic architecture where the information is exchanged
between the modalities via the proposed multi-entangled latent space. A source image of an individual
as a driving frame, reference audio which can be referred to as the audio profile of the individual
and a driving or prompt text is passed as an input. The model encodes the input driving image,
prompt/driving text, and the voice profile which are further combined and passed to the proposed
multi-entangled latent space consisting of two separate transformers and diffusion block for video
and text decoder for audio pipeline to foster key-vale and query representation for each modality.
By this spatiotemporal person-specific featuring between the modalities is also established. The
entangled-based learning representation is further passed to the respective decoder of audio and
video modality for respective outputs. Conducted experiments and ablation studies prove that the
proposed multi-entangled latent-based learning representation has helped our model obtain superior
results on both video and audio outputs as compared to state-of-the-art models. While there is always
scope for improvement in the future, we believe that our model has shown promising new learning
representation for realistic speaking and talking face generation models.
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