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ABSTRACT

In recent years, research on zero-shot domain adaptation, namely Domain Gen-
eralization (DG), which aims to adapt a well-trained source domain model to un-
seen target domains without accessing any target sample, has been fast-growing
in the 2D image tasks such as classification and object detection. However, its
exploration on 3D point cloud data is still insufficient and challenged by more
complex and uncertain cross-domain variances with irregular point data structures
and uneven inter-class modality distribution. In this paper, different from previ-
ous 2D DG works, we focus on the 3D DG problem, and propose a Single-dataset
Unified Generalization (SUG) framework that only leverages the source domain
data to alleviate the unforeseen domain differences faced by the well-pretrained
source model. Specifically, we first design a Multi-grained Sub-domain Align-
ment (MSA) method that can constrain the learned representations to be domain-
agnostic and discriminative, by performing a multi-grained feature alignment pro-
cess between the splitted sub-domains from the single source dataset. Then, a
Sample-level Domain-aware Attention (SDA) strategy is presented, which can
selectively enhance easy-to-adapt samples from different sub-domains according
to the sample-level inter-domain distance, to avoid the negative transfer. Exten-
sive experiments are conducted on three common 3D point cloud benchmarks.
The experimental results demonstrate that SUG framework is effective to boost
the model generalization ability for unseen target domains, even outperforming
the existing unsupervised domain adaptation methods that have to access exten-
sive target domain data, where we significantly improve classification accuracy by
7.7% on ModelNet-to-ScanNet setting and 2.3% on ShapeNet-to-ScanNet setting.
Our code will be available.

1 INTRODUCTION

As a commonly-used data format describing the real world, point clouds-based representations pre-
serve more geometric information residing in 3D scenes, and have become one of the most important
data types for 3D scene perception and real applications such as robotics (Rusu et al., 2008; Rusu &
Cousins, 2011), autonomous driving (Sun et al., 2020; Shi et al., 2020), and augmented and virtual
reality (Tredinnick et al., 2016), giving a better understanding of the surrounding environment for
machines. In recent years, point clouds-based vision tasks (Shi et al., 2020) have achieved great
progress on the public benchmarks (Vishwanath et al., 2009; Chang et al., 2015; Dai et al., 2017),
which largely owes to the fact that the collected point clouds are carefully annotated, sufficiently
large, and low level noised. But in the real world, acquiring such data from a new target domain and
manually labeling these extensive 3D data are highly dependent on professionals in this filed, which
makes the data acquisition and annotation more difficult, labor-intensive, and time-consuming.

One effective solution to transfer the model from fully-labeled source domain to a new domain with-
out extra human labor is Unsupervised Domain Adaptation (UDA) (Shen et al., 2022; Zou et al.,
2021; Fan et al., 2022; Yang et al., 2021), whose purpose is to learn a more generalizable represen-
tation between the labeled source domain and unlabeled target domain, such that the model can be
adapted to the data distribution of the target domain. For example, when point cloud data distribu-
tion from the target domain undergoes serious geometric variances (Shen et al., 2022), performing
a correct source-to-target correspondence can boost the model’s adaptability. Besides, GAST (Zou
et al., 2021) learns a domain-shared representation for different semantic categories, while a vot-
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ing reweighting method is designed (Fan et al., 2022) that can assign reliable target domain pseudo
labels. However, these techniques are highly dependent on the accessibility of the target domain
data, which is a strong assumption and prerequisite for the models running in an unprecedented cir-
cumstance, such as autonomous driving system and medical scenarios. Thus, it is meaningful and
important to investigate the model’s cross-domain generalization ability under the zero-shot target
domain constraint, which derivates the task of Domain Generalization (DG) for 3D scenario.

However, achieving such zero-shot domain adaptation, i.e., DG, is more challenging in 3D scenario
mainly due to the following reasons. (1) Unknown Domain-variance Challenge: 3D point cloud
data collected from different sensors or geospatial regions with different data distributions often
present serious domain discrepancies. Due to the inaccessibility of the target domain data (or sen-
sor), modeling of source-to-target domain variance is intangible. (2) Uneven Domain Adaptation
Challenge: Considering that our goal is to learn a transferable representation that can be generalized
to multiple target domains, a robust model needs to perform an even domain adaptation, rather than
lean to fit the data distribution on one of the multiple target domains. But for 3D point cloud data
with more complex sample-level modality variances, how to ensure an even model adaptation under
the zero-shot target domains setting still remains challenging.

To tackle the above challenges, we study the typical DG problem in 3D scenario, and introduce a
Singe-dataset Unified Generalization (SUG) framework for addressing the 3D point cloud general-
ization problem. We study a one-to-many domain generalization problem, where the model can be
trained on only a single 3D dataset, and is required to be simultaneously generalized to multiple
target datasets. Different from previous DG works in 2D scenarios (Shankar et al., 2018; Piratla
et al., 2020; Chen et al., 2021), 3D point cloud data have a more irregular data structure and di-
verse data distribution within a single dataset, which provides the possibility to exploit the modality
and sub-domain changes without accessing any target-domain datasets. To be specific, our SUG
framework consists of a Multi-grained Sub-domain Alignment (MSA) method and a Sample-level
Domain-aware Attention (SDA) strategy. To address the unknown domain-variance challenge, the
MSA method first splits the selected single dataset into different sub-domains. And then, based
on the splitted different sub-domains from a single dataset, the baseline model is constrained to
simulate as many domain variances as possible from multi-grained features, so that the baseline
model can learn multi-grained and multi-domains agnostic representations. To solve the uneven do-
main adaptation challenge, the SDA is developed, which assumes that the instances from different
sub-domains often present different adaptation difficulties. Thus, we add sample-level constraints
to the whole sub-domain alignment process according to the dynamically changing sample-level
inter-domain distance, leading to an even inter-domain adaptation process.

We conduct extensive experiments on several common benchmarks (Qin et al., 2019) under the
single-dataset DG scenario, which includes three sub-datasets and our experiments cover the follow-
ing three scenarios: 1) ModelNet-10—ShapeNet-10/ScanNet-10, meaning that the model is only
trained on ModelNet-10 and directly evaluated on both ShapeNet-10 and ScanNet-10; 2) ShapeNet-
10—ModelNet-10/ScanNet-10; 3) ScanNet-10—ModelNet-10/ShapeNet-10. Experimental re-
sults demonstrate the effectiveness of SUG framework in learning generalizable features of 3D point
clouds, and it can also significantly boost the DG ability for many selected baseline models.

The main contributions of this paper can be summarized as follows:

1) From a new perspective of one-to-many 3D DG, we explore the possibilities of adapting a model
from its original source domain to many unseen domains, and study how to leverage the feature’s
multi-modal information residing in a single dataset.

2) We propose a SUG to tackle the one-to-many 3D DG problem. The SUG consists of a designed
MSA method to learn the domain-agnostic and discriminative features during the source-domain
training phase, and a SDA strategy to calculate the sample-level inter-domain distance and bal-
ance the adaptation degree of different sub-domains with different inter-domain distances.

2 RELATED WORKS

2.1 2D IMAGE-BASED DOMAIN ADAPTATION AND GENERALIZATION

Recent Domain Adaptation (DA) works can be roughly categorized into two types: 1) Adversarial
learning-based methods (Ganin & Lempitsky, 2014; Tzeng et al., 2017; Long et al., 2018b; Kang
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et al., 2020) that focus on leveraging a domain label discriminator to reduce the inter-domain dis-
crepancy; 2) Moment matching-based methods (Long et al., 2018a; 2015; Sun & Saenko, 2016)
that refer to aligning the first-order or second-order moments of feature distribution. But under the
Domain Generalization (DG) setting where the data distribution of the target domain is unavailable,
the above DA methods cannot be directly applied to address the DG problem.

For this reason, some researchers (Shankar et al., 2018; Piratla et al., 2020; Chen et al., 2021) start
to explore how to adapt the pre-trained model from its source domain to out-of-distribution domain
only using source data. For example, some works (Zhu et al., 2022; Zhang et al., 2017) try to boost
the model generalization ability using mix-up domains, which generates novel data distribution
from the mixtures of multi-domains. Besides, self-supervised learning (SSL) (Wang et al., 2020;
Carlucci et al., 2019) also is applied to DG problem to enhance transferable features by leveraging
the designed pretext tasks. Although these DG methods have been extensively studied in 2D image
tasks, the research on DG problem in 3D point cloud scenarios still remains under-explored, which
motivates us to investigate the zero-shot generalization ability of 3D point cloud models.

2.2 3D POINT CLOUD CLASSIFICATION

The existing 3D point cloud classification methods can be divided into: 1) Projection-based and
2) Point-based methods. The projection-based methods first covert irregular points into structured
representations, such as multi-view images (Su et al., 2015; Yu et al., 2018), voxels (Riegler et al.,
2017), and spherical (Rao et al., 2019). And then, a 2D or 3D neural network is utilized to extract
dense features of the structured representations. In contrast, point-based methods (Qi et al., 2017a;b;
Wang et al., 2019) directly learn features from the irregular point clouds. This kind of methods can
effectively explore the point-wise relations using the designed network such as PointNet (Qi et al.,
2017a), which is the first work that directly takes original point clouds as the input and achieves
permutation invariance with a symmetric module. Further, considering that point clouds have a
variable density at different areas, PointNet++ (Qi et al., 2017b) learns 3D features from multiple
semantic levels according to the set abstraction. However, these data-driven point cloud models still
face substantial recognition accuracy drop when they are deployed to an unknown domain or dataset.

2.3 DOMAIN ADAPTATION FOR 3D POINT CLOUD CLASSIFICATION.

To investigate how to equip a 3D point cloud model with good domain generalization capability,
we have reviewed existing domain adaptation-based (Qin et al., 2019; Luo et al., 2021; Shen et al.,
2022; Achituve et al., 2021; Yang et al., 2021) or transfer learning-based 3D point cloud works (Ye
et al., 2022), and find that they mainly focus on DA study and fail to generalize to unseen target
domains. These DA-based works can be mainly categorized into two classes: 1) Self-supervised
adaptation and 2) Domain-level feature alignment.

For self-supervised adaptation methods (Luo et al., 2021; Shen et al., 2022; Achituve et al., 2021;
Yang et al., 2021), they try to design a pretext task to address the common geometric deforma-
tions caused by the variances in scanning point clouds. For example, by deforming a region shape
of points and reconstructing the original regions of the shape, DefRec (Achituve et al., 2021)
can achieve a good domain adaptation result under different domain shift scenarios. Recently, a
geometry-aware DA method (Shen et al., 2022) is proposed, which employs the underlying ge-
ometric information from points. The domain-level feature alignment method (Qin et al., 2019)
focuses on designing an adversarial network to model the discriminative local structures for align-
ment cross-domain features. Specifically, PointDAN (Qin et al., 2019) proposes a Self-Adaptive
(SA) node learning with a node-level attention to present geometric shape information for points.
Overall, when performing the cross-domain adaptation, the above works need to collect extensive
target samples in advance for supporting the adaptation process, which is infeasible for many real
applications where the target domain is inaccessible or even unknown before deploying the pre-
trained model. Thus, it is indispensable that data-driven models trained on a single dataset can
handle domain shifts to a certain extent.

3 THE PROPOSED METHOD

The overall SUG framework is illustrated in Fig. 1. For easy understanding, we first give the problem
definition of Domain Generalization (DG) for 3D point cloud classification, and then introduce
SUG framework including Multi-grained Sub-domain Alignment (MSA) and Sample-level Domain-
aware Attention (SDA) modules. Finally, the overall loss function and DG strategy are described.
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Figure 1: SUG framework, consisting of MSA and SDA to tackle the one-to-many DG.

3.1 PRELIMINARIES

Problem Definition. Suppose that a domain is defined by a joint distribution Pxy on X x ),
where A and ) stand for the input image and label space, respectively. In the scope of DG, K

source domains & = {Sk = {(x(k), y(k)) }}szl are available for the training process, where each

distinct domain is associated with one distribution P%,.. And the goal of DG is to obtain a model
f: X — Y, trained on the source domain(s), which would have minimized prediction errors on the
unseen target domain(s).

Point cloud data is a set of unordered 3D points x = {p; | i = 1,...,n}, where each point p; is
normally represented by its 3D coordinate (z,y, z) and n is the number of sampling points of one
3D object. We use (x, y) to denote one training sample pair, and y is its label.

Single-dataset DG. In the 3D point-based single-dataset DG setting, the training model can only
access one labeled dataset S, and is required to be evaluated on M unseen target datasets
T (usually M > 1). The corresponding joint distribution could be described with 7 =
(T = {(x™),ym) WY Also, PRy # PELVE € {1,...,K},Ym € {1,...,M}. In
our problem set, Vs and V7 share the same label space. The goal of 3D DG is to improve the per-
formance of source-trained model f on the unseen target domain(s) with the following objectives:

min B et €(f(x),9), (D
where € is the cross-entropy error in our classification task, which can be further defined as:
Er[—logp(y = ¢ [ x)], 2)
with the prediction that can be obtained with:
p(§ = ¢ | x) = softmax (Cp (Fy(x))),

where x is the input point cloud instance, g is the predicted label. The F is the embedding network
parameterized by ¢, and C is the classifier parameterized by 6.

3.2 SUG: A SINGLE-DATASET UNIFIED GENERALIZATION FRAMEWORK

To overcome the two challenges discussed in Sec. 1, we introduce a SUG framework consisting
of two novel plug-and-play modules, e.g. Multi-grained Sub-domain Alignment (MSA) and
Sample-level Domain-aware Attention (SDA), which can be inserted into existing 3D backbones
to learn more domain-agnostic representations, to be elaborated in Sec. 3.2.1 and 3.2.2, respectively.

First, the single source dataset is fed into a designed split module to get multiple sub-domains of the
original source-dataset based on pre-defined heuristics. Then, the embedding network F takes all
the splitted sub-domains as the network input, and converts the point cloud instance x into multi-
level feature vectors f; = Fp(x) and fr, = Fy n(fi), where f € R % and f; and f;, denote the
learned low-level and high-level representations. To handle feature discrepancies from different sub-
domains, the MSA module is applied to align the multi-grained features, both at low- and high-level,
which can constrain the network to focus on the domain-agnostic representations. Meanwhile, the
SDA module is used to selectively enhance the alignment constraints rising from the easy-to-transfer
samples to ensure an even adaptation across different sub-domains.
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3.2.1 MULTI-GRAINED SUB-DOMAIN ALIGNMENT (MSA)

Class distribution alignment. The 3D
e S point clouds have been deployed in plenty
B o el montor of application scenarios where the ob-
8 Crar 8 %o jects” distribution shifts significantly, re-

sulting in different distribution patterns re-
siding in different objects, as shown in
Fig. 2. To handle such a cross-dataset
class-imbalance issue, we incorporate the
class-wise sample weighting w with the
original classification loss (refer to Eq. 2),
ModeiNet Shapetit Scaniet and the complete weighted classification

loss can be written as follow:

ve0

Class Ratio

Figure 2: Class distribution shifting across datasets in
PointDAN.
Las(B) == aly)L(t;x), ()

xeB

where B denotes a data batch. The weighting vector o could be set following different heuristics,
like FocalLoss (Lin et al., 2017) and DLSA (Xu et al., 2022), etc. Here, we follow the definition in
DLSA (Xu et al., 2022), where samples are weighted by:
-4
7
_ 4)
Zj J !
where 17, is the number of training samples of the class 7, and ¢ is a positive number controlling the
weights distribution. The optimization objective of previous methods such as Focall.oss (Lin et al.,
2017) and DLSA (Xu et al., 2022), is to tackle the class imbalance problem within a single dataset,
while the optimization function of our method is to tackle the cross-dataset class-wise imbalance
issue, which is illustrated in Fig. 2. Note that different 3D datasets present an inconsistent class-
distribution, which motivates us to use Eq. 4 to learn a uniform and even class-distribution by re-
weighting class-distribution for each dataset. Such a way is beneficial to learn more generalizable
representations that can avoid to overfit to the class-distribution of the soucre dataset.

Geometric shifting alignment. Due to the objects’ geometric variances in different scenarios and
inconsistent data acquisition procedures, the objects from the same class across different datasets
present diverse geometric appearances, as illustrated in Fig. 3(a) across different rows. Meanwhile,
the objects’ geometric appearance varies greatly with a certain class or a single dataset, which offers
the potential that we could use the geometric variances within a single dataset to effectively simulate
the ones between different datasets.

To be more specific, we take the low-level feature vector f; from the shallow layer of the embedding
module F, and minimize the Maximum Mean Discrepancy (MMD)(Borgwardt et al., 2006) (Long
et al., 2013) loss to align the geometric features from different sub-domains as follows:

1 Ns 1 MNs,Nt Nng
Lympeg., = — iglfi (fii, i5) + — igz:l k& (fi5, 1) + . igz:l & (fi 15),  ©)

where & is the kernel function, and its superscript ¢ and s denote two different sub-domains sam-
pled from a single dataset.
Qin et al. (2019

Semantic variance alignment. After the high-level features f; from JF are obtained, the semantic
variance alignment is applied to minimize the semantic-level discrepancy between features across
different sub-domains before feeding into the classifier. The intuition of the semantic alignment
rises from the observation that there exist samples from different classes that could have the similar
geometric appearances. As illustrated in Fig. 3(b), the class Table and Cabinet resemble some
samples in Chair class as they are all four-legged items. And by conducting semantic variance
alignment, the model will learn less single-domain geometric bias yet discriminative representations.
The semantic alignment constraints L/ pg,,, can be easily calculated by employing the fh§ and
fn} as the input in Eq. 5.
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Figure 3: Illustration of distinct characteristics of data in 3D datasets. (a) Geometric and semantic-
level domain variances within and between datasets. (b) Geometric similarity comparisons within
and between classes.

3.2.2 SAMPLE-LEVEL DOMAIN-AWARE ATTENTION (SDA)

The aforementioned MSA module guides the model to learn more domain-agnostic representations.
However, the features inside one mini-batch from different sub-domains do not contribute equally to
the sub-domain alignment process, since they could contain distinct feature distributions. Ignoring
such diversity and imposing equal importance for different samples would result in the hard-to-
transfer samples deteriorating the generalization procedure. Meanwhile, the designed domain split
module in SUG framework inevitably introduces randomness to different sub-domains with differ-
ent domain variances, which could also hurt the model generalization performance. Towards safer
transfer, we propose the SDA module to enhance the alignment constraints from easy-to-transfer
samples. To be more specific, we add sample-level weights w to the alignment constraints, inverse
proportional to the domain distance d, expressed as:

1
LyvMDyeigniea =W * Lynp = a* Lyvp, 6)
7 8. As for the geometric shifting alignment,

we use the 3D reconstruction metric as the distance function. In our implementation, Chamfer
Distance (CD) is used, which can be formulated as follows:

dep(X,Y) Zm1n||x—y\|2+ZmlnHﬂU—sz, (7
mGX yeyY

where X and Y are two point cloud instances. The geometric weights d-p focus on the geometric
consistency explicit, as shown in the first column of Fig. 3(a), where the samples with geometric
similarity have relative small CD distance even they could come from different classes. While for
the samples with distinct geometric appearances, the CD distance is higher and the corresponding
MMD constraints would be relaxed.

For the semantic variance alignment, we adopt the Jensen—Shannon (JS) divergence as our metric.
And for symmetric usage, the JS-distance d 5(X,Y) is defined as:

1 1
dys(X,Y) = 3 Dk (X]Y) + 3 DkL(Y||X), 3
where Dk, (X||Y) is the discrete format of KL divergence, represented as:

DxL(X|[Y) =) X(c) (EC))) )

ceC
where X (c) and Y (¢) are the probability of predicting a sample belonging to the class c. In contrast
to the geometric weighting, dx; emphasizes more semantic consistency and tends on conducting
the alignments among samples belonging to the same class.

3.3 OVERALL OBJECTIVES AND DOMAIN GENERALIZATION STRATEGY

Overall Objectives. With the MMD constraints introduced in Sec. 3.2.1 and the corresponding
weights stated in Sec. 3.2.2, the complete MMD loss could be defined as

Lyyvip = Waeo * Lyrmpg., +Wsem * LvimDgen, - (10)

The overall training loss consists of the classification loss as described in Eq. 3 and the MMD loss
in Eq. 10, which can be written as follows:
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L=Lys+ NLywmp, (11)

Domain Generalization Strategy. We train our model in an end-to-end manner, and the training
procedure consists of two steps as follows.

Step 1: Firstly, the model is trained using classification loss as defined in Eq. 3, which can ensure
that the model learns discriminative features for the subsequent domain transfer. Step 2: Secondly,
to learn a robust representation that can be generalized to different target datasets, we train the
baseline model with the complete loss L as defined in Eq. 11, aiming to constraint the learned
representations to be domain-agnostic and discriminative.

4 EXPERIMENTS
4.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets. In order to conduct the experimental evaluation for domain adaptation setting, Point-
DAN (Qin et al., 2019) extracts point cloud samples of 10 shared classes from ModelNet40 (Vish-
wanath et al., 2009), ShapeNet (Chang et al., 2015), and ScanNet (Dai et al., 2017). We follow
the work (Qin et al., 2019) and select the same datasets to verify the effectiveness of the proposed
method. ModelNet-10 (1) contains a total of 4183 training samples and 856 test of 10
classes, which are collected using a 3D CAD model. ShapeNet-10 (S) has 17378 frames for train-
ing and 2492 frames for testing, and these frames are produced using a 3D CAD model. ScanNet-10
(5*) includes a total of 7879 samples that are re-scanned from real-world indoor scene.

Implementation Details. For our SUG framework, we employ the PointNet (Qi et al., 2017a) and
DGCNN (Wang et al., 2019) as the feature embedding network while the classifier Cy is constructed
with a Multi-Layer Perceptron (MLP) using a three-layer fully-connected network. The sample
weighting control ¢ in Eq. 4 and the hyper-parameters of \ are set to be 0.2 and 0.5, respectively,
and the comparison results are shown in Appendix. During the training phase, we use the common
naive data augmentations as described in the work (Qin et al., 2019). The Adam optimizer (Kingma
& Ba, 2014) is utilized using an initial learning rate of 0.001 and 0.0001, weight decay of 0.00005
and 0.0001 for DGCNN and PointNet backbones, respectively. When testing the generalization
performance, to make a fair comparison with the works Zou et al. (2021); Shen et al. (2022), we
align each object along x and y axes for the DGCNN backbone and no alignment procedure is
applied for experiments on PointNet backbone. During the DG adaptation process, we mainly judge
whether the model adaptation state reaches optimal by the designed cross-domain MMD loss. When
the change of the MMD loss tends to be stable and has less fluctuation, the adaptation process ends.
For all our experiments, we report mean value over the three runs.

4.2 How TO SPLIT: DOMAIN SPLIT MODULE DESCRIPTIONS

In this section, we describe the prior-knowledge based domain split modules and employ the corre-
sponding modules to conduct experiments, as shown in Table 1. Note that our splitting procedure is
conducted via a class-wise manner within a source dataset to ensure that each sub-domain contains
all categories of the dataset. Please refer to Appendix for more discussions about the hand-designed
domain split modules.

Random Splitting. We conduct the random sampling and split a single source dataset into different
sub-domains with the same sample size, where domain characteristic of each sub-domain is identical
with that of the original one.

Geometric Splitting. In our practice, we randomly select one sample as the anchor sample of a cer-
tain class, then compute the Iterative Closest Point (ICP) registration score between other samples of
the current class and the selected anchor sample. After getting all registration scores of all samples,
the current class is clustered into /© sub-domains according to the calculated score.

Entropy Splitting. We quantify the uncertainty of classifier’s predictions with the entropy criterion
H(g) = - 25:1 X.log X, as defined in Eq. 9. Note that the classifier used here is pre-trained
model on the source domain. For the domain split module, the single dataset is clustered into
sub-domains based on the entropy scores of all samples.

Feature Clustering Splitting. We infer the whole dataset with the pre-trained model on source
dataset, and save the feature maps before feeding them to the classifier. After that, we use Principal
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Table 1: Results on different domain split methods under the one-to-many Domain Generalization
(DG) setting. Avg denotes the mean adaptation accuracy across all target domains. The results of
Random Splitting are averaged over three runs, and we report mean value over the three runs.

. . . M as Source Domain S as Source Domain S* as Source Domain
Domain Split Method ‘ Setting ‘ Backbone | /" " s Ave | S M S—S' Ave | S* =M S =S Avg
w/o Adapt | Source-Only | PointNet | 42.5 223 324 | 399 23.5 317 | 342 46.9 40.6
PointDAN (NeurIPS’19) | UDA | PointNet | 642 33.0 486 | 47.6 339 408 | 491 64.1 56.6
Random Splitting (Sec. 4.2) 54.5 36.3 454 37.8 31.7 34.8 45.0 53.0 49.0
Geometric Splitting (Sec. 4.2) DG PointNet 574 41.7 49.6 30.3 31.6 31.0 383 442 41.3
Entropy Splitting (Sec. 4.2) 554 425 49.0 36.5 27.7 32.1 41.7 499 458
Feature Clustering Splitting (Sec. 4.2) 60.4 36.1 483 45.4 31.7 38.6 37.6 45.6 41.6
Random Splitting (Sec. 4.2) 80.8 532 67.0 69.4 495 59.5 61.4 57.6 59.5
Geometric Splitting (Sec. 4.2) DG DGCNN 79.3 49.9 64.6 56.7 532 55.0 40.5 64.4 525
Entropy Splitting (Sec. 4.2) 73.6 49.3 61.5 72.8 50.3 61.6 429 60.9 51.9
Feature Clustering Splitting (Sec. 4.2) 77.8 529 65.4 71.0 47.6 59.3 63.0 59.3 61.2

Table 2: Results on PointDA-10 under the one-to-many Domain Generalization (DG) setting. Note
that our SUG can be simultaneously generalized to multiple target domains without accessing any
target samples. In contrast, UDA methods can only be adapted to a single target domain. For
example, GAST model performs an adaptation from the domain M to another domain .S, but the
adapted model cannot perform well in a new domain S*.

Method Settin: Backbone M as Source Domain S as Source Domain S* as Source Domain
2 M-S M-S Avg |S—M S—5S* Avg. | S*—>M S*—S Avg
wio Adant Source-Onl PointNet 42.5 223 324 39.9 235 31.7 342 46.9 40.6
P Y| DGCNN 833 43.8 63.6 75.5 425 59.0 63.8 64.2 64.0
PointDAN (NeurIPS’19) UDA PointNet 64.2 33.0 48.6 47.6 339 40.8 49.1 64.1 56.6
GAST (ICCV’21) UDA DGCNN 84.8 59.8 72.3 80.8 56.7 68.8 81.1 74.9 78.0
SLT (CVPR’22) UDA DGCNN 86.2 58.6 72.4 814 56.9 69.2 81.5 744 77.9
our SUG DG PointNet 64.3 40.7 52.5 44.0 36.2 40.1 445 54.7 49.6
DGCNN 82.8 57.2 70.0 74.8 522 63.5 74.1 64.6 69.4

Component Analysis (PCA) with t-SNE (Van der Maaten & Hinton, 2008) to get the dimensional
reduced representations and apply K -means to get /< sub-domain clusters.

4.3 HOW TO ALIGN: DOMAIN-AGNOSTIC FEATURE LEARNING

DG Baseline Implementation. In this part, we study how to use the off-the-shelf UDA technique to
achieve unseen domain generalization. First, we use the domain split module to generate different
sub-domain data. Then, when a source dataset is clustered into /< sub-domains, 3D UDA methods
such as PointDAN (Qin et al., 2019) can be used to perform a sub-domain adaptation within a single
dataset. In our baseline practice, we directly use the implementation from PointDAN (Qin et al.,
2019) without any further modification, in order to align the feature gaps between different splitted
sub-domains. It can be seen from Table | that, by leveraging the above domain split modules to
split a single dataset into different sub-domains, the off-the-shelf UDA method (Qin et al., 2019)
can simultaneously boost the model generalization ability for multiple unseen datasets. It also
can be concluded that, multi-modal distribution exists within a single-source dataset. As a result, a
hand-designed domain split method coupled with the off-the-shelf UDA baseline can significantly
boost unseen domain generalization. Besides, we also observe that the classification accuracy of
the model in the target domain is related to the selected network structure. This is intuitive since
different network structures have different model capacities that can learn features with the different
sensitivities to the source-to-target feature variations.

SUG Implementation. Although a naive UDA baseline coupled with our designed domain split
modules can enhance the model’s zero-shot recognition ability, it is still important for one-to-many
adaptation to exploit multi-modal feature variations across different sub-domains, and further learn
as many domain variances as possible. We conduct the experiments using the designed MSA and
SDA, and the results are shown in Table 2

ModelNet-10 to ScanNet-10 ModelNet-10 to ShapeNet-10
1

00 02 04 08 08 10 oo 02 04 06 08 10| oo 02 04 06 08 10 00 02

o 08 10
Source-only SUG (ours) Source-only SUG (ours)

Figure 4: tSNE results (PointNet). Different colors denote different classes.
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Table 3: Results on down-sampling the whole source dataset using different methods.

Down-sampling Methods Data Diversity | M/ - S M — S* | Avg. | Source Accuracy | Train Sample Size
Split & Select (Feature Clustering Splitting) Low 48.9 33.6 413 81.2 1015
Split & Select (Geometric Splitting) Low 53.7 45.0 494 80.1 975
Random Sampling High 554 45.2 50.3 88.8 1044

Table 4: Ablation studies of class-wise classification accuracy, where the model is trained on

ModelNet-10 and directly evaluated on ScanNet-10 (M—S*). PointNet is used as backbone.

Methods CD Align. GS Align. SV Align. | SDA | Bathtub Bed Bookshelf Cabinet Chair Lamp Monitor Plant Sofa Table Avg.
Supervised 88.9 88.6 478 88.0 96.6 909 93.7 571 927 O9I.1 835
w/o Adapt 59.4 1.0 184 74 557 435 84.8 60.0 34 397 373
PointDAN 84.7 1.6 19.0 1.3 819 633 90.5 823 22 829 510
v v v 68.1 2.6 20 0.0 49.0 539 95.3 864 03 795 455

v v v 64.5 5.6 17.0 0.7 752 614 90.5 786 0.2 884 482

our SUG v v v v 64.1 0.0 17.8 1.43 759 557 92.0 90.0 0.0 850 482
v v v 65.9 5.0 34.0 4.0 74.1 58.4 91.7 773 0.0 867 497

v 80.9 0.0 19.1 0.0 733 638 93.7 725 0.0 809 484

v v v v 76.9 2.0 25.0 2.0 81.5 57.6 89.7 882 04 850 508

First, our results show that the state-of-the-art 3D-based UDA methods (Zou et al., 2021; Shen et al.,
2022) cannot work well under the one-to-many generalization scenario. For example, GAST (Zou
et al., 2021) can obtain a relatively high result (84.8%) under M — S setting, but the adapted
model has a serious accuracy drop (only 40.1%) under another target domain M — S* for our
experiments. This is mainly because these methods often try to perform the explicit cross-domain
alignment between the source domain and a specific target domain, which is hard to ensure that the
adapted model has an even generalization toward different domains. In contrast, our SUG achieves
higher one-to-many zero-shot generalization results for different target domains (e.g. 82.8% for S*
and 57.2% for ).

To validate that SUG can be generalized to different point cloud backbones, we also conduct the
DG experiments on many backbones (DGCNN, Point Transformer Zhao et al. (2021), and KP-
Conv Thomas et al. (2019)). It can be seen from Table 2 that SUG yields consistent accuracy gains.

SUG Limitation. Our SUG framework assumes that the source domain dataset presents multi-
modal feature distributions which can be implicitly exploited to model the feature distribution dif-
ferences residing in the multi-modal distributions. In 3D scenario, our assumption holds since the
3D point cloud samples for each class often have diverse appearances, geometric shapes, and efc,
as shown in Fig. 3. Here, we further discuss the limitation cases of our SUG from: the diversity of
source domain distribution gradually decreases.

To this end, we first split the given single dataset into M sub-domains, and then select one of the sub-
domains from the splitting results (1 out of 4 splits) as the training set, which is described in Sec. 4.2
and denoted as Split & Select. For comparison, we also randomly sample from the complete set of
the given single dataset, which is denoted as Random Sampling. The biggest difference between
the above down-sampling methods is that a single split (sub-domain) has much less data diversity
and domain variances inside than the randomly sampled one that has a similar distribution status as
the original dataset. It can be seen from Table 3 that, when the data distribution within the sampled
sub-domain becomes more undiversified, the zero-shot generalization ability of model from a source
domain to multi-target domains will drop.

4.4 FURTHER ANALYSES

Ablation Studies. In Table 4, we conduct the ablation studies from the following two aspects: 1)
MSA method that consists of Class Distribution (CD Align.), Geometric Shifting (GS Align.), and
Semantic Variance (SV Align.) alignments; 2) SDA strategy. First, MSA learns the domain-agnostic
features from various granularities including class-level, geometry-level, and semantic-level. We
observe that each newly-added alignment constraint can bring accuracy gains. Besides, we also
conduct experiments of removing the SDA to investigate the effectiveness of the designed SDA.
The results shown in Table 4 demonstrate that, by enhancing some easy-to-adapt instances to keep
an even adaptation, SDA significantly boosts the generalization accuracy from 48.4% to 50.8%.

tSNE Results. We visualize features from source-only model and our SUG under in Fig. 4. The
visualizations show that features learned by SUG can improve the model discriminability of different
classes’ features from unseen domains. For more visualization results, please see Fig. 7-8 in Sec. A.

5 CONCLUSION

We have proposed a SUG framework to tackle the one-to-many Domain Generalization (DG) prob-
lem in 3D scenario. SUG consists of a MSA method to exploit the data diversity residing in a given
source dataset and further learn domain-agnostic and discriminative representations, a SDA strategy
to selectively increase the domain adaptation degree for easy-to-adapt instances. Experiments are
conducted on public benchmarks to show the effectiveness of SUG in tackling the 3D DG problem.
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A APPENDIX

A.1 DISCUSSION OF THE HAND-DESIGNED DOMAIN SPLIT MODULES

In Table 1 of the main text, we conduct the extensive experiments to show the Domain General-
ization (DG) results for different domain split modules. However, through extensive experiments,
we observe that these DG results achieved by the domain split modules are unstable for different
cross-domain settings. Here, we give two main reasons for such instability as follows.

1) The distribution shift patterns across datasets are quite different. ModelNet and ShapeNet are
both CAD-generated datasets. As a result, they contain similar geometric characteristics, and at
least both of them are without occlusions and follow a similar appearance. In this way, using “Fea-
ture Clustering” to emphasize the semantic discrepancy and alignment would bring more gains (As
reported in Table 1 for M — S and S — M experiments). In contrast, ScanNet is obtained from the
real world and originally designed for segmentation tasks. In other words, it is quite different both in
semantic and geometric views, as shown in Fig. 3. In such a situation, emphasizing solely geometric
or semantic discrepancy is not optimal while random splitting is a strong baseline to conduct the
alignment operation, and this phenomenon is consistent with our experiment results in S* — M, S*
— S, and S — S* cross-domain settings.

2) The split results achieved by the domain splitting strategy are quite imbalance along the sample
size. Take “Entropy Clustering” as an example, since the pre-trained model (on source-dataset)
with source domain-related distribution characteristics is used, the model will be quite confident on
predicting the source-domain samples, resulting in a quite imbalance clustering result. For example,
the PointNet backbone on ScanNet dataset will get 3504 samples vs. 2606 samples splitting results
for each sub-domain. But it will get worse on the easier dataset like ModelNet, where 2542 samples
vs. 1641 samples splitting results for each sub-domain. Such imbalance is harmful for model training
since that will bring the bias from the source dataset characteristic to the training procedure.

Table 5: The number of parameters of the backbone networks employed by SUG.

Network Parameters
PointNetQi et al. (2017a) 3.5M
DGCNN Wang et al. (2019) 1.8M
PointTransformerZhao et al. (2021) | 9.6M
KPConvThomas et al. (2019) 5.3M

Table 6: Results on PointDA-10 under the one-to-many Domain Generalization (DG) setting with
additional backbones e.g. KPConv and Point Transformer.

Method Setting | Backbone M as Source Domain

M-S M-—S" Avg

KPCony 8176 4606 6391

w/o Adapt | Source-Only ‘ Point Transformer | 84.11 5483  69.47
KPConv 81.08 4767  64.38

our SUG DG ‘ Point Transformer | 83.36 5835  70.86

A.2 COMBINATION WITH POINT TRANSFORMER AND KPCONV

To further verify the superiority of our SUG in boosting more baseline models, we select two state-
of-the-art 3D point-cloud backbone networks, e.g., Point Transformers Zhao et al. (2021) and KP-
Conv Thomas et al. (2019) to conduct the one-to-many DG study. The corresponding experimental
results are shown in Table 6.

According to the above experimental results shown in Table 6, we summarize the following two
main empirical findings.

1) By coupling with our method, the Point Transformer Zhao et al. (2021) can achieve a better one-
to-many DG classification performance gain, such 1.39 for M — S, M — S* settings. But it should
be pointed out that the accuracy gain of Point Transformer is relatively slight compared with that
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of the DGCNN backbone. This is mainly due to the fact that the transformer-based methods could
learn much discriminative features during the model training phase, which is consistent with the
observations in Allen et al. (2019). But Point Transformer Zhao et al. (2021) also takes much more
time in model training and hyper-parameter tuning (As reported in Table 5).

2) The DG classification performance gain on KPConv Thomas et al. (2019) is quite minor, which is
mainly due to that, the dataset-related parameter settings like query radius, are sensitive to different
target domains. Besides, we observe that, during the inference process where the points selected
by the kernel of KPConv in ModelNet are generally more than 100 points (the first layer), but less
than 80 points selection could happen if we did not change that parameters when used for ScanNet.
The cross-domain feature alignment process brings more negative effects towards source-similar
ModelNet than positive gains towards source-dissimilar ScanNet, which results in a lower average
classification accuracy across different datasets.

A.3 QUALITATIVE ANALYSES

More tSNE results between source-only model and our SUG. In the main text, we have shown
the tSNE visualization results of high-level features learned by the source-only model and our SUG,
respectively. In this part, we give more tSNE visualization results for more cross-domain settings
such as the adaptation from ShapeNet-10 to ModelNet-10, ShapeNet-10 to ScanNet-10, efc. As
illustrated in Fig. 8 to 7, these visualization results demonstrate that the features from an unseen
target domain (e.g., ModelNet-10) have a distinct feature discrimination for different classes, further
verifying that the learned features are domain-agnostic and discriminative for unseen domains.

ShapeNet-10 to ModelNet-10 ShapeNet-10 to ScanNet-10

Source-only SUG (ours) Source-only SUG (ours)

Figure 5: tSNE results of ModelNet-10 and ScanNet-10 datasets, where the model is trained on
ShapeNet-10 dataset and different colors denote different classes.
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Figure 6: tSNE results of ModelNet-10 and ShapeNet-10 datasets, where the model is trained on
ScanNet-10 dataset and different colors denote different classes.

More tSNE results of domain split modules. In this part, we split the training dataset (source
domain) into two sub-domains. And then we use the baseline model and the proposed SUG to train
on those two sub-domains, respectively. After the training process ends, we visualize and compare
the extracted features of the baseline model and the proposed SUG by t-SNE, respectively. The
visualization results are shown in Fig. 8.

More tSNE results of sub-domains characteristics using random splitting module. Moreover,
in order to validate the consistency of the distribution from sub-domains characteristics with the
Random Splitting module, we split a single source dataset into different sub-domains using the
random sampling strategy. Then we use the pre-trained model to extract features from each sub-
domain and tSNE is applied to compare the features. The visualization results are shown in Fig. 9.
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ModelNet-10 to ScanNet-10 ModelNet-10 to ShapeNet-10
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Figure 7: tSNE results of ScanNet-10 and ShapeNet-10 datasets, where the model is trained on
ModelNet-10 dataset and different colors denote different classes.
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Figure 8: tSNE results of sub-domains without and with alignment module. The first and second
rows show the learned features without or with the feature alignment process, respectively. Different
colors denote features from different sub-domains.

A.4 DISCUSSION ON THE ALIGNMENT CONSTRAINTS.

Discussion on the scope of MMD constraints. Generally speaking, the alignment should be con-
ducted between different modalities. And as shown in Fig. 3(b), similar modalities exist across
classes while different modalities exist within a single class. As a result, we are expected to fully
exploit multiple modality information from both intra- and inter-classes, and thus do not perform a
hard class-wise MMD-based alignment. Specifically, to avoid losing the label information, we first
turn the class label into a scaled one-hot vector and then concatenate it with the feature maps before
conducting the MMD alignment, which is termed as the “Soft-MMD”.

Besides, we have implemented different MMD-based alignment methods by changing the class-label
information constraint, such as “Hard-MMD” which means that only samples from the same class
are aligned, and “Max-Hard MMD” which means that we first re-order the samples from different
domains to let them have most class overlapping, and then conduct the Hard-MMD. Through our
experiments, we found that Soft-MMD outperforms other MMD-based alignment designs, as shown
in Table 7.

Comparison between Contrastive Loss and MMD loss. Contrastive Loss (CL) is also known for
its capability of constraining learned features. We conducted experiments to compare the perfor-
mance between CL and MMD loss used in SUG framework. Actually, for the implementation of
Contrastive Loss, we directly use the Pytorch Implementation Pytorch (2022), which is a variation
of the Hadsell et al. (2006) with cosine distance.
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Figure 9: tSNE results of different sub-domains divided by Random Splitting module without using
domain alignment. Different colors denote features from different sub-domains.

Table 7: Average results of unseen domains S and S* among different MMD-based alignment
methods, and we employ the M as the source domain.

Alignment Avg. Results
Soft-MMD 52.5
Hard-MMD 51.8
Max-Hard-MMD | 52.3

Specifically, for the CL, we have to explicitly define the positive and negative pairs, which is quite
complex in our setting. Positive pairs are the samples with similar geometric appearances for geo-
metric alignments, regardless of whether they are from the same class. In contrast, the positives are
always from the same class for semantic alignments. For simplicity, we directly take the geometric
features as negative pairs when they come from different classes under the CL constraint.

Experimentally, we use ModelNet as the source domain and evaluate on ShapeNet and ModelNet.
We report the average results on these two datasets. Note that we have yet to tune the parameter for
CL loss much.

Based on the above experimental results, we summarize the following empirical findings.

1) As we can see from Table 8, when we replace the MMD loss with CL loss for semantic-level
alignment, the final results are still competitive since both CL. and MMD can make learned features
to be domain-invariant. However, the results for CL loss for geometric-level alignment are much
worse. The main reason behind those accuracy differences is that CL focuses on capturing the high-
level feature variances while it tends to ignore some low-level information for describing domain
shift.

2) Based on the experiments in Table 8, we are delighted that the SUG has the potential to be a

unified framework where the sub-domain alignment module could be replaced using other recently-
proposed alignment loss function such Contrastive Loss.

Table 8: Average results of unseen domains S and S* using the Contrastive Loss (CL) and MMD
alignment designs, and we employ the M as the source domain. Geo and Sem stand for geometric
and semantic alignment.

Alignment Geo-MMD | Geo-CL | Sem-MMD | Sem-CL | Avg. Results
1-MMD Original X X 0.5245
2-CL X X 0.4598
3-MIX X X 0.5234
4-Mix X X 0.4725

A.5 DISCUSSION ON HYPER-PARAMETERS IN SUG.
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The experiments in this part are conducted employing PointNet as the backbone and ModelNet as
the source domain. We report the average prediction results on ShapeNet and ScanNet.

Weight A\. The )\ in Eq. 11 achieves a trade-off between the classification task and the alignment
process. We conduct the ablation studies to study the sensitivity of the A value setting on our SUG
performance. The corresponding results are shown in Table. 9.

Batch Size B. We also conduct the experiments of changing the batch-size value, where we keep
other settings as default. The results are shown in Table. 10.

Table 9: Average results of unseen domains S and S* using different A\ values in Eq. 11, and we
employ the M as the source domain.

A | Avg. Results
0.25 44.7
0.50 52.5
0.75 51.2

1.0 47.8
2.0 49.1
3.0 48.5
4.0 459
5.0 44.7

Table 10: Average results of unseen domains S and S* trained with different batch sizes, and we
employ the M as the source domain.

Batch Size | Avg. Results
16 51.35
32 52.86
64-Default 52.45
128 50.45
256 50.52
512 47.51

Table 11: Average results of unseen domains .S and S* trained with different layer selection settings,
and we employ the M as the source domain.

Embedding Module Layer | Avg. Result | Classification Module Layer | Avg. Result
Layer-1 48.8 Layer-1 49.9
Layer-2 49.7 Layer-2(Default) 52.5
Layer-3(Default) 52.5 Layer-3 48.2
Layer-4 49.4 - -
Layer-5 48.2 - -

According to the above experimental results shown in Table 10, we find that our method can achieve
good generalization ability across different batch-size settings. For the batch-size setting with small
value, the mini-batch data could not contain enough information related to the domain distribution.
As a result, the SUG could not learn the domain-invariant features well. In contrast, it can be ob-
served that the degradation of generalization’s ability when we continuously enlarge the batch size,
which is mainly due to that the large-batch training procedure tends to converge to sharp minimiz-
ers Keskar et al. (2016).

Layer selection for low-level and high-level features. In the default SUG setting, we use /s
third layer and Cy’s second layer as the low and high-level features, respectively. To further explore
how the layer selection for features would affect the SUG performance, we change the selection
choices of the layers. Specifically, in order to validate the choice for geometric features, we use the
features from {1, 2, 3,4, 5}-layer of the embedding module as the geometric features while keeping
the second layer of the classification module as default. For semantic features experiments, we used
the features from {1, 2, 3}-layer of the classification module while keeping the third layer of the
embedding module as default.
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Based on the above experimental results, we summarize the following empirical findings.

1) For Embedding Module Layer Selection: The features from too shallow layers (e.g., Layer-
1) contain much less information and would be sensitive to noise. In contrast, if we choose the
features from too deeper layers, the geometric and fine-grained information would be overtaken
by the deep semantic information. At the same time, when we choose that deeper features, the
geometric alignment would be much similar to semantic alignment and thus lose its discriminability.

2) For Classification Module Layer Selection: The features from the shallow layer (e.g., Layer-1)
are similar to the geometric ones and would lose semantic alignment ability. At the same time, the
last layer’s features are too high-level and lose a lot of semantic information.
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