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Abstract

The problem of finding near-stationary points in convex optimization has not been1

adequately studied yet, unlike other optimality measures such as the function2

value. Even in the deterministic case, the optimal method (OGM-G, due to Kim3

and Fessler [33]) has just been discovered recently. In this work, we conduct a4

systematic study of algorithmic techniques for finding near-stationary points of5

convex finite-sums. Our main contributions are several algorithmic discoveries:6

(1) we discover a memory-saving variant of OGM-G based on the performance7

estimation problem approach [19]; (2) we design a new accelerated SVRG variant8

that can simultaneously achieve fast rates for minimizing both the gradient norm9

and function value; (3) we propose an adaptively regularized accelerated SVRG10

variant, which does not require the knowledge of some unknown initial constants11

and achieves near-optimal complexities. We put an emphasis on the simplicity and12

practicality of the new schemes, which could facilitate future developments.13

1 Introduction14

Classic convex optimization usually focuses on providing guarantees for minimizing function value.15

For this task, the optimal (up to constant factors) Nesterov’s accelerated gradient method (NAG)16

[40, 41] has been known for decades, and there are even methods that can exactly match the lower17

complexity bounds [30, 17, 55, 18]. On the other hand, in general non-convex optimization, near-18

stationarity is the typical optimality measure, and there has been a flurry of recent research devoted to19

this topic [25, 26, 23, 28, 21, 60]. Recently, there has been growing interest on devising fast schemes20

for finding near-stationary points in convex optimization [42, 2, 22, 7, 31, 32, 33, 27, 15, 14]. This21

line of research is basically driven by the following facts.22

• Nesterov [42] studied the problem with a linear constraint: f(x?) = minx∈Q {f(x) : Ax = b},23

whereQ is a convex set and f is strongly convex. Assuming thatQ and f are simple, we can focus24

on the dual problem φ(y?) = maxy{φ(y) , minx∈Q {f(x) + 〈y, b−Ax〉}}. Clearly, the dual25

objective−φ(y) is smooth convex. Letting xy be the unique solution to the inner problem, we have26

∇φ(y) = b − Axy. Note that f(xy) − f(x?) = φ(y) − 〈y,∇φ(y)〉 − φ(y?) ≤ ‖y‖ ‖∇φ(y)‖ .27

Thus, in this problem, the quantity ‖∇φ(y)‖ serves as a measure of both primal optimality28

f(xy)−f(x?) and feasibility ‖b−Axy‖, which is better than just measuring the function value.29

• Matrix scaling [50] is a convex problem and its goal is to find near-stationary points [4, 9].30

• Gradient norm is readily available, unlike other optimality measures (f(x)−f(x?) and ‖x− x?‖),31

and is thus usable as a stopping criterion. This fact motivates the design of several parameter-free32

algorithms [43, 39, 27], and their guarantees are established on the gradient norm.33

• Designing schemes for minimizing the gradient norm can inspire new non-convex optimization34

methods. For example, SARAH [46] was designed for convex finite-sums with gradient-norm mea-35

sure, but was later discovered to be the near-optimal method for non-convex finite-sums [21, 47].36
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Table 1: Finding near-stationary points ‖∇f(x)‖ ≤ ε of convex finite-sums.

Algorithm Complexity Remark

I
F
C

GD [33] O( n
ε2

)

Regularized NAG* [7] O(n
ε

log 1
ε
)

OGM-G [33] O(n
ε
) O( 1

ε
+ d) memory, optimal in ε

M-OGM-G [Section 3.1] O(n
ε
) O(d) memory, optimal in ε

L2S [37] O(n+
√
n
ε2

) Loopless variant of SARAH [46]

Regularized Katyusha* [2] O((n+
√
n
ε

) log 1
ε
) Requires the knowledge of ∆0

R-Acc-SVRG-G* [Section 5] O((n log 1
ε

+
√
n
ε

) log 1
ε
) Without the knowledge of ∆0

I
D
C

GD [42, 54] O(n
ε
)

NAG / NAG + GD [32] / [42] O( n

ε2/3
)

Regularized NAG* [42, 27] O( n√
ε

log 1
ε
)

NAG + OGM-G [45] O( n√
ε
) O( 1√

ε
+ d) memory, optimal in ε

NAG + M-OGM-G [Section 3.1] O( n√
ε
) O(d) memory, optimal in ε

Katyusha + L2S [Appendix E] O(n log 1
ε

+
√
n

ε2/3
)

Acc-SVRG-G [Section 4] O(n log 1
ε

+ n2/3

ε2/3
)1 O(n log 1

ε
+

√
n
ε
) for function at

the same time, simple and elegant

Regularized Katyusha* [2] O((n+
√

n
ε
) log 1

ε
) Requires the knowledge of R0

R-Acc-SVRG-G* [Section 5] O((n log 1
ε

+
√

n
ε
) log 1

ε
) Without the knowledge of R0

∗ Indirect methods (using regularization).

Moreover, finding near-stationary points is a harder task than minimizing function value, because37

NAG has the optimal guarantee for f(x)− f(x?) but is only suboptimal for minimizing ‖∇f(x)‖.38

In this work, we consider the problem minx∈Rd f(x) = 1
n

∑n
i=1 fi(x), where each fi is L-smooth39

and convex. We focus on finding an ε-stationary point of this objective, i.e., a point with ‖∇f(x)‖ ≤ ε.40

We use X ? to denote the set of optimal solutions, which is assumed to be nonempty. There are two41

different assumptions on the initial point x0, namely, the Initial bounded-Function Condition (IFC):42

f(x0)− f(x?) ≤ ∆0, and the Initial bounded-Distance Condition (IDC): ‖x0 − x?‖ ≤ R0 for some43

x? ∈ X ?. This subtlety results in drastically different best achievable rates as studied in [7, 22].44

Below we categorize existing algorithmic techniques into three classes (relating to Table 1).45

(i) “IDC + IFC”. Nesterov [42] showed that we can combine the guarantees of a method46

minimizing function value under IDC and a method finding near-stationary points under IFC47

to produce a faster one for minimizing gradient norm under IDC. For example, NAG produces48

f(xK1
)− f(x?) = O(

LR2
0

K2
1

) [40] and GD produces ‖∇f(xK2
)‖2 = O

(L(f(x0)−f(x?))
K2

)
[33]49

under IFC. Letting x0 = xK1 and K = K1 +K2, by balancing the ratio of K1 and K2, we50

obtain the guarantee ‖∇f(xK)‖2 = O(
L2R2

0

K3 ) for “NAG + GD”. We point out that we can use51

this technique to combine the guarantees of Katyusha [1] and SARAH2 [46]; see Appendix E.52

(ii) Regularization. Nesterov [42] used NAG (strongly convex variant) to solve the regularized53

objective, and showed that it achieves near-optimal complexity (optimal up to logarithmic54

factors). Inspired by this technique, Allen-Zhu [2] proposed recursive regularization for55

stochastic approximation algorithms, which also achieves near-optimal complexities [22].56

1Table 1 shows that Katyusha+L2S has a slightly better dependence on n than Acc-SVRG-G. It is due to the
adoption of n-dependent step size in L2S. As studied in [37], despite having a better complexity, n-dependent
step size boosts numerical performance only when n is extremely large. If the practically fast n-independent
step size is used for L2S, Katyusha+L2S and Acc-SVRG-G have the same complexity. See also Appendix A.

2We adopt the loopless variant of SARAH in [37], which has a refined analysis for general convex objectives.
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(iii) Direct methods. Due to the lack of insight, existing direct methods are mostly derived or57

analyzed with the help of computer-aided tools [31, 32, 54, 33]. The computer-aided approach58

was pioneered by Drori and Teboulle [19], who introduced the performance estimation59

problem (PEP). The only known optimal method OGM-G [33] was designed based on the60

PEP approach.61

Observe that since f(x)− f(x?) ≤ ‖∇f(x)‖ ‖x− x?‖, the lower bound for finding near-stationary62

points must be of the same order as for minimizing function value [44]. Thus, under IDC, the lower63

bound is Ω(n+
√

n
ε ) due to [58]. Under IFC, we can establish an Ω(n+

√
n
ε ) lower bound using64

the techniques in [7, 58]. The main contributions of this work are three new algorithmic schemes that65

improve the practicalities of existing methods as summarized below (highlighted in Table 1).66

• (Section 3) We propose a memory-saving variant of OGM-G for the deterministic case (n = 1),67

which does not require a pre-computed and stored parameter sequence. The derivation of the new68

variant is inspired by the numerical solution to a PEP problem.69

• (Section 4) We propose a new accelerated SVRG [29, 59] variant that can simultaneously70

achieve fast convergence rates for minimizing both the gradient norm and function value, that is,71

O(n log 1
ε + n2/3

ε2/3
) complexity for gradient norm and O(n log 1

ε +
√

n
ε ) complexity for function72

value. Note that other stochastic approaches in Table 1 do not have this property.73

• (Section 5) We propose an adaptively regularized accelerated SVRG variant, which does not74

require the knowledge of R0 or ∆0 and achieves a near-optimal complexity under IDC or IFC.75

We put in extra efforts to make the proposed schemes as simple and elegant as possible. We believe76

that the simplicity makes the extensions of the new schemes easier.77

2 Preliminaries78

Throughout this paper, we use 〈·, ·〉 and ‖·‖ to denote the inner product and the Euclidean norm,79

respectively. We let [n] denote the set {1, 2, . . . , n}, E denote the total expectation and Eik denote80

the expectation with respect to a random sample ik. We say that a function f : Rd → R is L-smooth81

if it has L-Lipschitz continuous gradients, i.e.,82

∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ .

A continuously differentiable f is called µ-strongly convex if83

∀x, y ∈ Rd, f(x)− f(y)− 〈∇f(y), x− y〉 ≥ µ

2
‖x− y‖2 .

Other equivalent definitions of these two assumptions can be found in the textbook [44]. The84

following is an important consequence of a function f being L-smooth and convex:85

∀x, y ∈ Rd, f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 1

2L
‖∇f(x)−∇f(y)‖2 . (1)

We call (1) the interpolation condition at (x, y) following [56]. If f is both L-smooth and µ-strongly86

convex, we can define a “shifted” function h(x) = f(x)− f(x?)− µ
2 ‖x− x

?‖2 following [63]. It87

can be easily verified that h is (L− µ)-smooth and convex, and thus from (1),88

∀x, y ∈ Rd, h(x)− h(y)− 〈∇h(y), x− y〉 ≥ 1

2(L− µ)
‖∇h(x)−∇h(y)‖2 , (2)

which is equivalent to the strongly convex interpolation condition discovered in [56].89

Oracle complexity (or simply complexity) refers to the required number of stochastic gradient∇fi90

computations to find an ε-accurate solution.91

3 OGM-G: “Momentum” Reformulation and a Memory-Saving Variant92

In this section, we focus on the IFC case, i.e., f(x0)− f(x?) ≤ ∆0. We use N to denote the total93

iteration number to prevent confusion (in other sections, we use K). Proofs in this section are given in94
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Algorithm 1 OGM-G: “Momentum” reformulation

Input: initial guess x0 ∈ Rd, total iteration number N .
Initialize: vector v0 = 0, scalars θN = 1 and θ2

k − θk = θ2
k+1, for k = 0 . . . N − 1.

1: for k = 0, . . . , N − 1 do
2: vk+1 = vk + 1

Lθkθ2k+1
∇f(xk).

3: xk+1 = xk − 1
L∇f(xk)− (2θ3

k+1 − θ2
k+1)vk+1.

4: end for
Output: xN .

Appendix B. Recall that OGM-G has the following updates [33]. Let y0 = x0. For k = 0, . . . , N−1,95

96

yk+1 = xk −
1

L
∇f(xk),

xk+1 = yk+1 +
(θk − 1)(2θk+1 − 1)

θk(2θk − 1)
(yk+1 − yk) +

2θk+1 − 1

2θk − 1
(yk+1 − xk),

(3)

where {θk} is recursively defined: θN = 1 and
{
θ2
k − θk = θ2

k+1 k = 1 . . . N − 1,

θ2
0 − θ0 = 2θ2

1 otherwise.
97

OGM-G was discovered from the numerical solution to an SDP problem and its analysis is to show98

that the step coefficients in (3) specify a feasible solution to the SDP problem. While this analysis is99

natural for the PEP approach, it is hard to understand how each coefficient affects the rate, especially100

if one wants to generalize the scheme. Here we provide a simple algebraic analysis for OGM-G.101

We start with a reformulation3 of OGM-G in Algorithm 1, which aims to simplify the proof. We102

adopt a consistent {θk}: θN = 1 and θ2
k − θk = θ2

k+1, k = 0 . . . N − 1, which only costs a constant103

factor.4 Interestingly, the reformulated scheme resembles the heavy-ball momentum method [49].104

However, it can be shown that Algorithm 1 is not covered by the heavy-ball momentum scheme.105

Defining θ2
N+1 = θ2

N − θN = 0, we provide the one-iteration analysis in the following proposition:106

Proposition 3.1. In Algorithm 1, the following holds at any iteration k ∈ {0, . . . , N − 1} :107

Ak +Bk+1 + Ck+1 + Ek+1 ≤ Ak+1 +Bk + Ck + Ek − θk+1 〈∇f(xk+1), vk+1〉

+

N∑
i=k+1

θi
Lθkθ2

k+1

〈∇f(xk),∇f(xi)〉,
(4)

withAk , 1
θ2k

(f(xN )−f(x?)− 1
2L ‖∇f(xN )‖2),Bk , 1

θ2k
(f(xk)−f(x?)),Ck , 1

2Lθ2k
‖∇f(xk)‖2,108

Ek ,
θ2k+1

θk
〈∇f(xk), vk〉.109

Remark 3.1.1. A recent work [15] also conducted an algebraic analysis of OGM-G under a potential110

function framework. Their potential function decrease can be directly obtained from Proposition 3.1111

by summing up (4). By contrast, our “momentum” vector {vk} naturally merges into the analysis,112

which significantly simplifies the analysis. Moreover, it provides a better interpretation on how113

OGM-G utilizes the past gradients to achieve acceleration.114

From (4), we see that only the last two terms do not telescope. Note that the “momentum” vector is a115

weighted sum of the past gradients, i.e., vk+1 =
∑k
i=0

1
Lθiθ2i+1

∇f(xi). If we sum the terms up from116

k = 0, . . . , N − 1, it can be verified that they exactly sum up to 0. The presence of these special117

terms prevents OGM-G to have a usual potential function (e.g., those in [6]). Then, by telescoping118

the remaining terms, we obtain the final convergence guarantee.119

Theorem 3.1. The output of Algorithm 1 satisfies ‖∇f(xN )‖2 ≤ 8L∆0

(N+2)2 .120

We observe two drawbacks of OGM-G (same as the algorithm description in [15]): (1) it requires121

storing a pre-computed parameter sequence, which costs O( 1
ε ) floats; (2) except for the last iterate,122

3It can be verified that this scheme is equivalent to the original one (3) through vk = 1
(2θk−1)θ2

k
(yk − xk).

4The original guarantee of OGM-G can be recovered if we set θ20 − θ0 = 2θ21 .
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Algorithm 2 M-OGM-G: Memory-saving OGM-G

Input: initial guess x0 ∈ Rd, total iteration number N .
Initialize: vector v0 = 0.

1: for k = 0, . . . , N − 1 do
2: vk+1 = vk + 12

L(N−k+1)(N−k+2)(N−k+3)∇f(xk).

3: xk+1 = xk − 1
L∇f(xk)− (N−k)(N−k+1)(N−k+2)

6 vk+1.
4: end for

Output: xN or arg minx∈{x0,...,xN} ‖∇f(x)‖.

all other iterates are not known to have guarantees. We resolve these issues by proposing another123

parameterization of Algorithm 1 in the next subsection.124

3.1 Memory-Saving OGM-G125

A straightforward idea to resolve the aforementioned issues is to generalize Algorithm 1. However,126

we find it rather difficult since the parameters in the analysis are rather strict (despite that the proof is127

already simple). We choose to rely on computer-aided techniques [19]. The derivation of this variant128

(Algorithm 2) is based on the following numerical experiment.129

Numerical experiment. OGM-G was discovered when considering the relaxed PEP problem [33]:130

max
∇f(x0),...,∇f(xN )∈Rd

f(x0),...,f(xN ),f(x?)∈R

‖∇f(xN )‖2

subject to


interpolation condition (1) at (xk, xk+1), k = 0, . . . , N − 1,

interpolation condition (1) at (xN , xk), k = 0, . . . , N − 1,

interpolation condition (1) at (xN , x
?), f(x0)− f(x?) ≤ ∆0,

(P)

where the sequence {xk} is defined as xk+1 = xk − 1
L

∑k
i=0 hk+1,i∇f(xi), k = 0, . . . , N − 1 for131

some step coefficients h ∈ RN(N+1)/2. Given N , the step coefficients of OGM-G correspond to132

a numerical solution to the problem: arg minh{Lagrangian dual of (P)}, which is denoted as (HD).133

Conceptually, solving problem (HD) would give us the fastest possible step coefficients under the134

constraints.5 We expect there to be some constant-time slower schemes, which are neglected when135

solving (HD). To identify such schemes, we relax a set of interpolation conditions in problem (P):136

f(xN )− f(xk)− 〈∇f(xk), xN − xk〉 ≥
1

2L
‖∇f(xN )−∇f(xk)‖2 − ρ ‖∇f(xk)‖2 ,

for k = 0, . . . , N − 1 and some ρ > 0. After this relaxation, solving (HD) will no longer give us the137

step coefficients of OGM-G. By trying different ρ and checking the dependence on N , we discover138

Algorithm 2 when ρ = 1
2L . Similar to our analysis of OGM-G, we provide a simple algebraic analysis139

for the new variant in the following theorem.140

Theorem 3.2. Define δk+1, 12
(N−k+1)(N−k+2)(N−k+3) , k = 0, . . . , N . In Algorithm 2, it holds that141

142
N∑
k=0

δk+1

2
‖∇f(xk)‖2 ≤ 12L∆0

(N + 2)(N + 3)
. (5)

Remark 3.2.1. Algorithm 2 converges optimally on the last iterate (note that δN+1 = 2) and the143

minimum gradient since144

min
k∈{0,...,N}

‖∇f(xk)‖2 ≤ 1∑N
k=0

δk+1

2

N∑
k=0

δk+1

2
‖∇f(xk)‖2 ≤ 8L∆0

(N + 2)(N + 3)− 2
.

Clearly, the parameters of this variant can be computed on the fly and from (5), each iterate has a145

guarantee (although the guarantee degenerates quickly as k → 0 since 1/δk+1 = Ω((N − k)3)).146

Moreover, we can extend the benefits into the IDC case using the ideas in [42] as summarized below.147

5However, since problem (HD) is non-convex, we can only obtain approximate solutions.
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Algorithm 3 Acc-SVRG-G: Accelerated SVRG for Gradient minimization

Input: parameters {τk}, {pk}, initial guess x0 ∈ Rd, total iteration number K.
Initialize: vectors z0 = x̃0 = x0 and scalars αk = Lτk

1−τk ,∀k and τ̃ =
∑K−1
k=0 τ−2

k .
1: for k = 0, . . . ,K − 1 do
2: yk = τkzk + (1− τk)

(
x̃k − 1

L∇f(x̃k)
)
.

3: zk+1 = arg minx

{
〈Gk, x〉+ (αk/2) ‖x− zk‖2

}
.

4: //Gk , ∇fik(yk)−∇fik(x̃k) +∇f(x̃k), where ik is sampled uniformly in [n].

5: x̃k+1 =

{
yk with probability pk,
x̃k with probability 1− pk.

6: end for
Output (for gradient): xout is sampled from

{
Prob{xout = x̃k} =

τ−2
k

τ̃

∣∣∣ k ∈ {0, . . . ,K − 1}
}

.
Output (for function value): x̃K .

Corollary 3.2.1 (IDC case). If we first run N/2 iterations of NAG and then continue with N/2148

iterations of Algorithm 2, we obtain an output satisfying ‖∇f(xN )‖ = O(LR0

N2 ).149

4 Accelerated SVRG: Fast Rates for Both Gradient Norm and Objective150

In this section, we focus on the IDC case, i.e., ‖x0 − x?‖ ≤ R0 for some x? ∈ X ?. From the151

development in the previous section, it is natural to ask whether we can use the PEP approach to152

motivate new stochastic schemes. However, due to the exponential growth of the number of possible153

states (i0, i1, . . .), we cannot directly adopt this approach. A feasible alternative is to first fix an154

algorithmic framework and a family of potential functions, and then use the potential-based PEP155

approach in [54]. However, this approach is much more restrictive. For example, it cannot identify156

special constructions like (4) in OGM-G. Fortunately, as we will see, we can get some inspiration157

from the recent development of deterministic methods. Proofs in this section are given in Appendix C.158

Our proposed scheme is given in Algorithm 3. We adopt the elegant loopless design of SVRG in159

[34]. Note that the full gradient ∇f(x̃k) is computed and stored only when x̃k+1 = yk at Step 5. We160

summarize our main technical novelty as follows.161

Main algorithmic novelty. The design of stochastic accelerated methods is largely inspired by162

NAG. To make it clear, by setting n = 1, we see that Katyusha [1], MiG [61], SSNM [62], Varag [36],163

VRADA [52], ANITA [38], the acceleration framework in [16] and AC-SA [35, 24] all reduce to one164

of the following variants of NAG. We say that these methods are under the NAG framework.165 
xk = τkzk + (1− τk)yk,

zk+1 = zk − αk∇f(xk),

yk+1 = τkzk+1 + (1− τk)yk.


xk = τkzk + (1− τk)yk,

zk+1 = zk − αk∇f(xk),

yk+1 = xk − ηk∇f(xk).

Auslender and Teboulle [5] Linear Coupling [64]

See [57, 12] for other variants of NAG. When n = 1, Algorithm 3 reduces to the following scheme:166 {
yk = τkzk + (1− τk)

(
yk−1 − 1

L∇f(yk−1)
)
,

zk+1 = zk − 1
αk
∇f(yk).

Optimized Gradient Method (OGM) [19, 30]

Algorithm 3 reduces to the scheme of OGM when n = 1 (this point is clearer in the formulation of167

ITEM in [55]). OGM has a constant-time faster worst-case rate than NAG, which exactly matches168

the lower complexity bound established in [17]. In the following proposition, we show that the OGM169

framework helps us conduct a tight one-iteration analysis, which gives room for achieving our goal.170
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Proposition 4.1. In Algorithm 3, the following holds at any iteration k ≥ 0 and ∀x? ∈ X ? :171 (
1− τk
τ2
kpk

E [f(x̃k+1)− f(x?)] +
L

2
E
[
‖zk+1 − x?‖2

])
+

(1− τk)2

2Lτ2
k

E
[
‖∇f(x̃k)‖2

]
≤
(

(1− τkpk)(1− τk)

τ2
kpk

E [f(x̃k)− f(x?)] +
L

2
E
[
‖zk − x?‖2

])
.

(6)

The terms inside the parentheses form the commonly used potential function of SVRG variants. The172

additional E[‖∇f(x̃k)‖2] term is created by adopting the OGM framework. In other words, we use173

the following potential function for Algorithm 3 (ak, bk, ck ≥ 0):174

Tk = akE [f(x̃k)− f(x?)] + bkE
[
‖zk − x?‖2

]
+

k−1∑
i=0

ciE
[
‖∇f(x̃i)‖2

]
.

We first provide a simple parameter choice, which leads to a simple and clean analysis.175

Theorem 4.1 (Single-stage parameter choice). In Algorithm 3, if we choose pk ≡ 1
n , τk = 3

k/n+6 ,176

then the following holds at the outputs:177

E
[
‖∇f(xout)‖2

]
= O

(
n3L

(
f(x0)− f(x?)

)
+ n2L2R2

0

K3

)
,

E [f(x̃K)]− f(x?) = O

(
n2
(
f(x0)− f(x?)

)
+ nLR2

0

K2

)
.

(7)

In other words, to guarantee that E [‖∇f(xout)‖] ≤ εg and E [f(x̃K)]− f(x?) ≤ εf , the oracle com-178

plexities are O
(
n(L(f(x0)−f(x?)))1/3

ε
2/3
g

+ (nLR0)2/3

ε
2/3
g

)
and O

(
n
√

f(x0)−f(x?)
εf

+
√
nLR0√
εf

)
, respectively.179

From (7), we see that Algorithm 3 achieves fast O( 1
K1.5 ) and O( 1

K2 ) rates for minimizing the180

gradient norm and function value at the same time. However, despite being a simple choice, the oracle181

complexities are not better than the deterministic methods in Table 1. Below we provide a two-stage182

parameter choice, which is inspired by the idea of including a “warm-up phase” in [3, 36, 52, 38].183

This theorem corresponds to the reported result in Table 1.184

Theorem 4.2 (Two-stage parameter choice). In Algorithm 3, let pk = max{ 6
k+8 ,

1
n}, τk = 3

pk(k+8) .185

The oracle complexities needed to guarantee E [‖∇f(xout)‖] ≤ εg and E [f(x̃K)]− f(x?) ≤ εf are186

O

(
nmin

{
log

LR0

εg
, log n

}
+

(nLR0)2/3

ε
2/3
g

)
and O

(
nmin

{
log

LR2
0

εf
, log n

}
+

√
nLR0√
εf

)
,

respectively.187

If ε is large or n is very large, the recently proposed ANITA [38] achieves an O(n) complexity, which188

matches the lower complexity bound Ω(n) in this case [58]. Since ANITA uses the NAG framework,189

we show that similar results can be derived under the OGM framework in the following theorem:190

Theorem 4.3 (Low accuracy parameter choice). In Algorithm 3, let iteration N be the first time191

Step 5 updates x̃k+1 = yk. If we choose pk ≡ 1
n , τk ≡ 1 − 1√

n+1
and terminate Algorithm 3 at192

iteration N , then the following holds at x̃N+1 :193

E
[
‖∇f(x̃N+1)‖2

]
≤ 8L2R2

0

5(
√
n+ 1 + 1)

and E [f(x̃N+1)]− f(x?) ≤ LR2
0√

n+ 1 + 1
.

In particular, if the required accuracies are low (or n is very large), i.e., ε2g ≥
8L2R2

0

5(
√
n+1+1)

and194

εf ≥ LR2
0√

n+1+1
, then Algorithm 3 only has an O(n) oracle complexity.195

In the low accuracy region (specified above), the choice in Theorem 4.3 removes the O(log 1
ε ) factor196

in the complexity of Theorem 4.2. We include some numerical justifications of Algorithm 3 in197

Appendix A. We believe that the potential-based PEP approach in [54] can help us identify better198

parameter choices of Algorithm 3, which we leave for future work.199
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Algorithm 4 R-Acc-SVRG-G

Input: accuracy ε > 0, parameters δ0 = L, β > 1, initial guess x0 ∈ Rd.
1: for t = 0, 1, 2, . . . do
2: Define fδt(x) = (1/n)

∑n
i=1 f

δt
i (x), where fδti (x) = fi(x) + (δt/2) ‖x− x0‖2.

3: Initialize vectors z0 = x̃0 = x0 and set τx, τz, α, p, CIDC, CIFC according to Proposition 5.1.
4: for k = 0, 1, 2, . . . do
5: yk = τxzk + (1− τx) x̃k + τz

(
δt(x̃k − zk)−∇fδt(x̃k)

)
.

6: zk+1 = arg minx

{〈
Gδtk , x

〉
+ (α/2) ‖x− zk‖2 + (δt/2) ‖x− yk‖2

}
.

7: //Gδtk , ∇fδtik (yk)−∇fδtik (x̃k) +∇fδt(x̃k), where ik is sampled uniformly in [n].

8: x̃k+1 =

{
yk with probability p,
x̃k with probability 1− p.

9: if 6‖∇f(x̃k)‖ ≤ ε then output x̃k and terminate the algorithm.
10: if under IDC and (1 + δt

α )k ≥
√
CIDC/δt then break the inner loop.

11: if under IFC and (1 + δt
α )k ≥

√
CIFC/2δt then break the inner loop.

12: end for
13: δt+1 = δt/β.
14: end for

5 Near-Optimal Accelerated SVRG with Adaptive Regularization200

Currently, there is no known stochastic method that directly achieves the optimal rate in ε. To get near-201

optimal rates, the existing strategy is to use a carefully designed regularization technique [42, 2] with202

a method that solves strongly convex problems; see, e.g., [42, 2, 22, 11]. However, the regularization203

parameter requires the knowledge of R0 or ∆0, which significantly limits its practicality.204

Inspired by the recently proposed adaptive regularization technique [27], we develop a near-optimal205

accelerated SVRG variant (Algorithm 4) that does not require the knowledge of R0 or ∆0. Note206

that this technique was originally proposed for NAG under the IDC assumption. Our development207

extends this technique to the stochastic setting, which brings an O(
√
n) rate improvement. Moreover,208

we consider both IFC and IDC cases. Proofs in this section are provided in Appendix D.209

Detailed design. Algorithm 4 has a “guess-and-check” framework. In the outer loop, we first210

define the regularized objective fδt using the current estimate of regularization parameter δt, and211

then we initialize an accelerated SVRG method (the inner loop) to solve the δt-strongly convex fδt .212

If the inner loop breaks at Step 10 or 11, indicating the poor quality of the current estimate δt, δt will213

be divided by a fixed β. Thus, conceptually, we can adopt any method that solves strongly convex214

finite-sums at the optimal rate as the inner loop. However, since the constructions of Step 10 or 11215

require some algorithm-dependent constants, we have to fix one method as the inner loop.216

The inner loop we adopted is a loopless variant of BS-SVRG [63]. This is because (i) BS-SVRG is217

the fastest known accelerated SVRG variant (for ill-conditioned problems) and (ii) it has a simple218

scheme, especially after using the loopless construction [34]. However, its original guarantee is built219

upon {zk}. Clearly, we cannot implement the stopping criterion (Step 9) on ‖∇f(zk)‖. Interestingly,220

we discover that its sequence {x̃k} works perfectly in our regularization framework, even if we can221

neither establish convergence on f(x̃k) − f(x?) nor on ‖x̃k − x?‖2.7 Moreover, we find that the222

loopless construction significantly simplifies the parameter constraints of BS-SVRG, which originally223

involves Θ(n)th-order inequality. We provide the detailed parameter choice as follows:224

Proposition 5.1 (Parameter choice). In Algorithm 4, we set τx = α+δt
α+L+δt

, τz = τx
δt
− α(1−τx)

δtL
and225

p = 1
n . We set α as the (unique) positive root of the cubic equation

(
1− p(α+δt)

α+L+δt

) (
1 + δt

α

)2
= 1226

and specify CIDC = L2 + Lα2p
L+(1−p)(α+δt)

, CIFC = 2L+ 2Lα2p
(L+(1−p)(α+δt))δt

. Under these choices, we227

have α
δt

= O
(
n+

√
n(L/δt + 1)

)
, CIDC = O

(
(L+ δt)

2
)
, and CIFC = O(L).228

6Note that we maintain the full gradient∇fδt(x̃k) and∇f(x̃k) = ∇fδt(x̃k)− δt(x̃k − x0).
7It is due to the special potential function of BS-SVRG (see (27)), which does not contain these two terms.
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Under the choices of τx and τz , the α above is the optimal choice in our analysis. Then, we can229

characterize the progress of the inner loop in the following proposition:230

Proposition 5.2 (The inner loop of Algorithm 4). Using the parameters specified in Proposition 5.1,231

after running the inner loop (Step 4-12) of Algorithm 4 for k iterations, we can conclude that232

(i) under IDC, i.e., ‖x0 − x?‖ ≤ R0 for some x? ∈ X ?,233

E [‖∇f(x̃k)‖] ≤

(
δt +

(
1 +

δt
α

)−k√
CIDC

)
R0,

(ii) under IFC, i.e., f(x0)− f(x?) ≤ ∆0,234

E [‖∇f(x̃k)‖] ≤

(√
2δt +

(
1 +

δt
α

)−k√
CIFC

)√
∆0.

The above results motivate the design of Step 10 and 11. For example, in the IDC case, when the235

inner loop breaks at Step 10, using (i) above, we obtain E [‖∇f(x̃k)‖] ≤ 2δtR0. Then, by discussing236

the relative size of δt and a certain constant, we can estimate the complexity of Algorithm 4. The237

same methodology is used for the IFC case.238

Theorem 5.1 (IDC case). Denote δ?IDC = εq
2R0

for some q ∈ (0, 1) and let the outer iteration t = `239

be the first time8 δ` ≤ δ?IDC. The following assertions hold:240

(i) At outer iteration `, Algorithm 4 terminates with probability at least 1− q.9241

(ii) The total expected oracle complexity of the `+ 1 outer loops is242

O

((
n log

LR0

εq
+

√
nLR0

εq

)
log

LR0

εq

)
.

Theorem 5.2 (IFC case). Denote δ?IFC = ε2q2

8∆0
for some q ∈ (0, 1) and let the outer iteration t = ` be243

the first time δ` ≤ δ?IFC. The following assertions hold:244

(i) At outer iteration `, Algorithm 4 terminates with probability at least 1− q.245

(ii) The total expected oracle complexity of the `+ 1 outer loops is246

O

((
n log

√
L∆0

εq
+

√
nL∆0

εq

)
log

√
L∆0

εq

)
.

Compared with regularized Katyusha in Table 1, the adaptive regularization approach drops the need247

to estimate R0 or ∆0 at the cost of a mere log 1
ε factor in the non-dominant term (if ε is small).248

6 Discussion249

In this work, we proposed several simple and practical schemes that complement existing works250

(Table 1). Admittedly, the new schemes are currently only limited to the unconstrained Euclidean251

setting, because our techniques heavily rely on the interpolation conditions (1) and (2). On the other252

hand, methods such as OGM [30], TM [51] and ITEM [55, 10], which also rely on these conditions,253

are still not known to have their proximal variants. We list a few future directions as follows.254

(1) It is not clear how to naturally connect the parameters of M-OGM-G (Algorithm 2) to OGM-G255

(Algorithm 1). The parameters of both algorithms seem to be quite restrictive and hardly generalizable256

due to the special construction in (4). Does there exist an optimal method for minimizing the gradient257

norm that has a proper potential function (at each iteration)?258

(2) Is this new “momentum” in OGM-G beneficial for training neural nets? Other classic momentum259

schemes such as NAG [40] or heavy-ball momentum method [49] are extremely effective for this260

task [53], and they were also originally proposed for convex objectives.261

(3) Can we directly accelerate SARAH (L2S)? By extending OGM-G? It seems that existing stochastic262

acceleration techniques fail to accelerate SARAH (or result in poor dependence on n as in [16]).263

8We assume that ε is small such that max {δ?IDC, δ
?
IFC} ≤ δ0 = L for simplicity. In this case, ` > 0.

9If Algorithm 4 does not terminate at outer iteration `, it terminates at the next outer iteration with probability
at least 1− q/β. That is, it terminates with higher and higher probability. The same goes for the IFC case.
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(d) Did you discuss whether and how consent was obtained from people whose data you’re450

using/curating? [Yes] Details can be found in the online dataset repositories [8, 20].451

(e) Did you discuss whether the data you are using/curating contains personally identifiable452

information or offensive content? [Yes] Details can be found in the online dataset453

repositories [8, 20].454

5. If you used crowdsourcing or conducted research with human subjects...455

(a) Did you include the full text of instructions given to participants and screenshots, if456

applicable? [N/A]457

(b) Did you describe any potential participant risks, with links to Institutional Review458

Board (IRB) approvals, if applicable? [N/A]459

(c) Did you include the estimated hourly wage paid to participants and the total amount460

spent on participant compensation? [N/A]461
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