Probing the Equivariance of Image Embeddings
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Abstract

Probes are small networks that predict properties of underlying data from embed-
dings, and they provide a targeted way to illuminate the information in embeddings.
While analysis with probes has become standard in NLP, there has been less ex-
ploration in vision. Our goal is to understand the invariance vs. equivariance of
popular image embeddings (e.g., MAE, SimCLR, or CLIP) under certain distribu-
tion shifts. By doing so, we investigate what visual aspects from the raw images
are encoded into the embeddings by these foundation models. Our probing is based
on a systematic transformation prediction task that measures the visual content of
embeddings along many axes, including neural style transfer, recoloring, icon/text
overlays, noising, and blurring. Surprisingly, six embeddings (including SimCLR)
encode enough non-semantic information to identify dozens of transformations.
We also consider a generalization task, where we group similar transformations
and hold out several for testing. Image-text models (CLIP, ALIGN) are better at
recognizing new examples of style transfer than masking-based models (CAN,
MAE). Our results show that embeddings from foundation models are equivariant
and encode more non-semantic features than a supervised baseline. Hence, their
OOD generalization abilities are not due to invariance to such distribution shifts.

1 Introduction

Large pre-trained networks, sometimes known as foundation models, provide a ‘general-purpose’
embedding for multiple data modalities (Bommasani et al.,|2021}; Zhou et al., 2023). The models
perform very well on several downstream tasks and exhibit robustness to dataset shift. In large ML
systems, raw data is often pre-processed using embeddings, and training a small network on top of
a frozen embedding is a scalable and desirable solution. A central research direction is to develop
foundation models that are easily adapted for current and future applications. Hence, it is important
to be able to evaluate what information these embeddings capture and what aspects they ignore.

Probes provide a way to determine what information can be extracted about data after computing an
embedding. The idea is to train a small network (a.k.a., probe) to predict certain properties about the
underlying data using only an embedding of the data (Alain & Bengiol [2017). In addition to helping
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explain embedding models, probes also inform whether embeddings can be used for downstream
tasks that rely on certain information about the data. In NLP, researchers have probed text embeddings
for information about syntax trees, sentence length, word order, and so on (Belinkov, [2021}; |Conneau
let all, 2018 [Hewitt & Manning}, 2019} [Li et al., 2022)). For image-text models, it is also possible to
probe the visual information through text prompts or questions that describe visual attributes, such as
color, shape, and material (Liu et al.}, 2022} [Paik et al., 2021} [Zhang et al.,[2022).

CLIP & ALIGN are better at encodlng style and can identify unseen styles

Styles seen during training Styles only seen at test tlme

CAN & MAE are more sensitive to... Common generalization errors

Icon Overlay  Rotation  Motion Blur  Pixelation Mistaking unseen transforms as Identity

SimCLR is /ess sensitive to... Common fine-grained errors

EH

Hue Shift ~ Desaturate Saturate Br|ghten Labeling High Blur as Low Blur

Figure 1: Main takeaways from analyzing the performance of frozen image embeddings on our
transformation prediction tasks. We draw conclusions about (in)sensitivity by looking the accuracy
when detecting whether a particular transformation has been applied to an image. We evaluate both
a fine-grained version (31 classes, same train and test transforms) and a generalization version (10
classes, with 28 training and 15 additional test transforms grouped into categories). Both versions
contain the ‘Identity’ class as the original image.

Unfortunately, probes using text prompts are limited to concepts describable in short text snippets.
This overlooks visual attributes that are important for certain tasks. For example, a core part of trust
and safety involves filtering content for policy violations, which is challenging when adversaries
manipulate images to evade filters (Cao et al, 2022} [Stimberg et al, 2023} [Yuan et al., 2019). These
manipulations include noise, recoloring, overlays, and neural style transfer based on a reference
image. One solution is to develop filtering models that are highly invariant. However, it is also critical
to produce manipulation detectors, to identify malicious users who upload such images. Unlike
semantic classification, the new task of manipulation detection must instead use embeddings that
encode information about the transformations that we wish to detect.

Can a single embedding be robust against dataset shift, and yet, sensitive to many transformations?
And even if it is possible, are today’s popular pre-trained embeddings successful at doing so? These
are the questions we study in this paper. Through image probing experiments, we evaluate the
equivariance of several popular embeddings to dozens of transformations (see Figure [T| for examples)
and offer insights into the information encoded by image-only and image-text foundation models.

1.1 Visual probing using image transformations

Our new approach to visual probing centers around predicting how an image has been transformed.
The core idea of the experiment is to modify an image and then see if this change is detectable after
computing the image’s embedding. For example, consider two images: one that is a sample from
ImageNet, and another where the same image has been slightly blurred. Then, compute embeddings
for both images and throw out the original pixels. Assume that in both cases a linear probe will



predict the correct ImageNet class for the image. The next question is: does the embedding contain
enough information to determine which image was blurred and which was unaltered?

If the embedding contains sufficient information to detect blurring, then it should be possible to
train a network to perform well on a ‘blurry or not’ classification task. Specifically, we can apply
Gaussian blur to all images in ImageNet, and we can train a probing network to predict whether the
transformation has been applied given access only to the image embeddings. Foundation models that
capture more of the transformation information will perform better on this task, whereas models that
perform poorly must be insensitive to the transformation. Note that freezing the embedding model is
crucial for this analysis. If we fine-tuned on the transformation prediction task, then we would not
know whether the original model extracted the transformation information or not.

One of our goals is to interpret the information that is kept or lost when using popular vision em-
beddings. Another goal is to evaluate the effectiveness of embeddings for the task of predicting
transformations. Our motivation comes from using embeddings for tasks such as detecting manipu-
lation, predicting style, or data cleaning. We carefully design the set of transformations, ensuring
enough variety to elicit whether embeddings capture different types of visual content. For example,
we include image filtering (e.g, hue shift, saturate), occlusion (e.g., icon or text overlay), corruption
(e.g., noise, pixelate), natural domain shift (e.g., motion blur, brighten, crop), and neural style transfer.
Probing visual embeddings complements the prior work on training models to be more invariant or
equivariant (Dangovski et al.|[2021; Dubois et al.,|2022; [Von Kiigelgen et al., 2021} Xiao et al., [2020).

Using our set of transformations, we propose two transformation prediction tasks. The first is a
fine-grained variation. Here, the probe sees all 30 transformations during training and the goal is
to classify them. We design the fine-grained transformations so that we expect trained humans to
achieve 100% accuracy. Any errors from the probe indicate a lack of information in the embedding.

Our second task focuses on generalization. We group the transformations into 9 categories, and we
only train the probe using some in each category. During test time, the probe should recognize the
category of the transformation. This task measures two things: (1) whether an embedding organizes
transformation information in a generalizable way, and (2) whether we can use the embedding for
more realistic prediction with held-out transformations. Specifically, for (2), we may want to detect
domain shifts, such as image manipulations or natural perturbations. However, we cannot train with
all relevant transformations. Instead, we desire a model that can correctly classify unseen, but similar,
transformations. For example, we have a category based on neural style transfer, but the probe only
sees some styles during training. Nonetheless, transferring styles from other references produces
visually analogous images (e.g., Figure[] first row). Our generalization task evaluates whether the
features in the embedding suffice to also detect new examples in the same transformation category.

We evaluate a representative sample of vision foundation models based on their pre-training algo-
rithms: (1) a masked autoencoder (MAE) (He et al.| 2022)), a canonical masking-based method that
fills image portions during pre-training, (2) SimCLR (Chen et al.,|2020), an image-only contrastive
loss that encourages invariance to a few transformations, (3) CAN (Mishra et al., [2022), which
combines masking, contrastive, and noise prediction, (4) CLIP (Radford et al.| |2021), a standard
image-text self-supervised method, (5) ALIGN (Jia et al., [2021)), another contrastive image-text
model, and (6) a supervised method that trains with the ImageNet-1k semantic class labels.

2 Probing Embeddings by Predicting Transformations

Evaluating only the typical semantic accuracy on class labels leaves open questions regarding what
information from the raw data is retained or lost in the embedding. Instead, we probe the embeddings,
measuring the ability of a network to determine how an image has been transformed. Assume we
have 7" image transformations, such as style transfer, recoloring, overlays, noising, or blurring. Here,
for transformation, we take a broad definition. One option is a well-defined function, such as adding
Gaussian noise independently to each pixel. Another possibility is to have random parameters, such as
uniformly choosing a value and increasing the image’s saturation by this much. Finally, we can have
transformation families, containing several sub-transformations. For example, the “color quantizing”
transformation contains sub-transformations that modify hue, invert colors, or solarize the image.
We apply the T" transformations to images in the train/test sets. This generates 1" + 1 copies of the
dataset, including the original images. This process defines a (T + 1)-way classification problem,
labeling each image either with ‘Identity’ or one of the 7" transformations.



Table 1: Transformation prediction accuracies for six embeddings on our transformed version of
ImageNet-1k. Fine-grained has 31 classes (30 transforms), and generalization has 10 classes (28
training and 15 held-out test transforms). MLP, one hidden layer, width 2048. Averaged over 5 runs,
all std. dev. below 0.19. Right columns present transformation accuracies on the subset of test data
with unseen sub-transformations for two categories of the generalization task, noise and style transfer.

EMBEDDING ‘ FINE-GRAINED  GENERALIZATION ‘ HELD-OUT NOISE HELD-OUT STYLE

CAN 98.27 88.12 86.33 49.29
MAE 97.67 86.79 94.67 28.92
SIMCLR 93.05 87.32 59.55 54.27
CLIP 96.45 90.99 76.58 86.24
ALIGN 96.66 89.22 85.69 69.61
SUPERVISED 94.12 79.11 61.06 41.90

2.1 Experimental set-up

Datasets. We evaluate with transformed versions of ImageNet-1k (Russakovsky et al.,[2015)). In
addition to the original image (Identity), we apply 30 transformations to each train/test image. This
leads to 31 classes for the fine-grained transformation prediction task. We also construct a generaliza-
tion dataset with 10 categories, where each category contains one or more transformations along with
a range of parameters (e.g., noise level or type of style transfer). The test set transformations form a
superset of those applied to the training images.

Metrics. The transformation prediction accuracy is the fraction of images receiving the correct
transformation label. In the fine-grained case, the model predicts one of 31 transformation classes;
in the generalization case, it predicts one of 10. For both cases, we average over a test set with size
being (# classes) times (# original images), i.e., (# classes) x 50k for ImageNet-1k.

Embeddings. While it is hard to control for all aspects of the foundation models, we enable a fair
analysis for three image-only embeddings. We train the CAN, MAE, and SimCLR algorithms all
on JFT-300M (Sun et al.L [2017); they output a 1024-dim. embedding from a Vision Transformer
(ViT) L/16. Compared to CLIP/ALIGN, the number of training images is also similar (300M vs
400M). The SimCLR model also contains a projection to a 128-dim. embedding that we use for one
comparison. CLIP uses ViT L/14 for a 768-dim. image embedding. ALIGN uses EfficientNet-L2 for
the image encoder and outputs a 1376-dim. embedding. We were given access to the ALIGN weights.
Our baseline is a 1024-dim. embedding from a supervised ViT L/16 trained on ImageNet- 1k.

2.2 What have we learned about embeddings?

We compare transformation prediction for six embeddings in Table |1} All embeddings perform
well on this probing task: over 93% accuracy for the fine-grained task and over 79% accuracy
for the generalization task. These embeddings preserve fairly detailed information about the input
image that can be extracted with minimal post-processing (2-layer MLP). In the fine-grained task
(a test of which embedding has the most detailed information about the image), the CAN probe
performs the best with MAE being a close second. In the generalization task (a test of how well
an embedding’s information about transformations can generalize), the two text-image embeddings
(CLIP and ALIGN) perform better than all other methods.

Robustness to domain shifts is not due to invariance. By analyzing transformation prediction, we
have concluded that several embeddings are equivariant along many axes. Figure|l|has summarized
these insights, which help inform a choice between competing models. All of the models capture a
lot of transformation information, which is quite unexpected given their robustness to OOD data like
ImageNet variants. Thus, a lack of invariance does not imply poor generalization on OOD data.

Modern embeddings suffice to classify maliciously transformed data. Prior work shows that
classifiers are susceptible to transformation-based attacks, such as style transfer, Gaussian noise, or
recoloring (Cao et al.} 2022; |Goodman & Wei, |2019; [Hao et al., 2021} |Hosseini et al.,|2017; [Li et al.}
2019;|Yuan et al.| [2019). Classifying malicious transformations is an important direction for content
safety, beyond OOD and anomaly detection (Salehi et al., 2021)). Our work shows that we can solve
this task using MLPs on top of pre-computed embeddings instead of custom pixel-based classifiers.



2.3 Generalization analysis: held-out styles

Table 2] zooms in the on the style transfer accuracies, showing the fraction of correct prediction for
each of the thirteen styles that are displayed in Figure 2] All styles have the ‘Style Transfer’ label
for the generalization task. When the styles are seen in the train set, then the validation accuracy is
nearly perfect and often 100% for these six styles. For the held-out styles, we see that the models may
struggle to recognize the unseen types of style transfer. Overall, CLIP performs the best, sometimes
by a large margin. Interestingly, SImCLR also performs well, often better than CAN, MAE, and
Supervised. In several cases, the models perform worse than chance level (below 10%).
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Figure 2: Style sub-transformations from the ‘Style Transfer’ category of the generalization dataset.
We also include the ‘Identity’ as the original image for reference. The six styles in the top row are in
both the train and test sets, while the bottom seven styles only appear in the test set. All styles have
the ‘Style Transfer’ label. Table|z|has accuracies for the different embeddings for each of these styles.

Table 2: Accuracies for the style transfer sub-transformations in the generalization dataset. We
report the fraction of style-transferred images for which the model predicts the ‘Style Transfer’ label
correctly (out of 10 possible labels). The top six styles are in the train and test sets; bottom seven
only appear in the test set. Numbers in red are below chance level (< 10% correct).

STYLE CAN MAE SiMCLR CLIP ALIGN SUPERVISED
ARTISTIC MOSAIC 100 100 100 100 100 100
ARTISTIC UDNIE 100 100 100 100 99.99 99.99
GREAT WAVE OFF KANAGAWA 100 100 100 100 100 100
THE SCREAM 100 100 99.97 99.97 99.95 99.97
STARRY NIGHT 99.98 100 99.98 99.98 99.98 99.97
TALIGAS 1920 99.99 100 99.99 99.99 99.99 99.99
ARTISTIC STARRY NIGHT 53.66 47.13 5.91 91.33 70.91 90.75
ARTISTIC CANDY 55.09 37.09 79.00 95.09 77.48 6.47
BONFIRE 46.33 0.00 2.33 92.12 69.24 9.93
DEEP DREAM 3.13 0.12 26.34 52.10 11.84 3.40
LANDSCAPE BLACK FIGURE 99.92 98.94 99.75 99.99 99.97 79.43
PASTA 3.73 0.46 70.07 73.39 58.87 39.84
VIOLON 83.15 18.67 96.46 99.69 98.98 63.49

3 Conclusion

We investigated a new probing task to shed new light on image embeddings. We showed that popular
models capture enough information to distinguish dozens of transformations. Our experiments uncov-
ered ways in which SimCLR is more invariant than CAN and MAE, and the types of transformations
that are captured by self-supervised vision models vs. image-text models, such as CLIP and ALIGN.
We also found that the self-supervised models perform better than a supervised baseline, suggesting
that optimizing an embedding directly for semantic information (i.e., ImageNet-1k classes) does not
by default retain as much transformation information. For more experiments and further discussion,
see the full version of our paper at https://arxiv.org/abs/2307.05610.
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