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Abstract

Bayesian Optimization (BO) has proven to be very successful at optimizing a static,
noisy, costly-to-evaluate black-box function f : S → R. However, optimizing a
black-box which is also a function of time (i.e., a dynamic function) f : S×T → R
remains a challenge, since a dynamic Bayesian Optimization (DBO) algorithm has
to keep track of the optimum over time. This changes the nature of the optimization
problem in at least three aspects: (i) querying an arbitrary point in S × T is
impossible, (ii) past observations become less and less relevant for keeping track
of the optimum as time goes by and (iii) the DBO algorithm must have a high
sampling frequency so it can collect enough relevant observations to keep track of
the optimum through time. In this paper, we design a Wasserstein distance-based
criterion able to quantify the relevancy of an observation with respect to future
predictions. Then, we leverage this criterion to build W-DBO, a DBO algorithm
able to remove irrelevant observations from its dataset on the fly, thus maintaining
simultaneously a good predictive performance and a high sampling frequency,
even in continuous-time optimization tasks with unknown horizon. Numerical
experiments establish the superiority of W-DBO, which outperforms state-of-the-art
methods by a comfortable margin.

1 Introduction

Many real-world problems require the optimization of a costly-to-evaluate objective function f : S ⊆
Rd → R with an unknown closed form (i.e., either the closed form expression of f exists but remains
unknown to the user, or it does not exist). Such a setting occurs frequently, and examples can be found
in hyperparameters tuning [1], networking [2, 3], robotics [4] or computational biology [5]. In such
applications, f can be seen as a black-box and cannot be optimized by usual first-order approaches.
Bayesian Optimization (BO) is an effective framework for black-box optimization. Its core idea is to
leverage a surrogate model, usually a Gaussian Process (GP), to query f at specific inputs. By doing
so, a BO algorithm is able to simultaneously discover and optimize the objective function.

Since its inception, BO has proven to be very effective at optimizing black-boxes in a variety
of contexts, such as high-dimensional input spaces [6, 7, 8], batch mode [9] or multi-objective
optimization [10]. However, few works study BO in dynamic contexts (i.e., with a time-varying
objective function), despite its critical importance. Indeed, dynamic black-box optimization problems
arise whenever an optimization task is conducted within an environment that comprises exogenous
factors that may vary with time and significantly impact the objective function. Dynamic black-boxes
are found in network management [11], unmanned aerial vehicles tasks [12], hyperparameter tuning
in online deep learning [13], online clustering [14] or crossing waypoints location in air routes [15].

In a dynamic context, f : S × T → R is a time-varying, black-box, costly-to-evaluate objective
function with spatial domain S ⊆ Rd and temporal domain T ⊆ R. Unlike common black-box
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objective functions that take as input a point x ∈ S in a spatial domain only, the function f takes as
input a point (x, t) ∈ S × T in space and time. Since the problem of optimizing f is still addressed
under the BO framework, the framework is called dynamic Bayesian optimization (DBO).

Taking time into account does not boil down to merely adding an extra dimension to S . It changes the
nature of the optimization problem on at least three aspects: (i) at present time t0, a DBO algorithm
can query any arbitrary point x ∈ S but cannot query past (i.e., t < t0) nor future1 (i.e., t > t0)
points in time, (ii) as time (only) moves forward, a previously collected observation ((x, t), f(x, t))
becomes less and less informative about the future values of f as time goes by and (iii) the response
time (i.e., the time required for hyperparameters inference and acquisition function maximization)
becomes a key feature of the DBO algorithm since it has a direct impact on the sampling frequency
of the algorithm and, consequently, on its ability to track the position of the optimum as f changes.

Interestingly, (ii) and (iii) imply that each observation eventually becomes stale and, as such, a
computational burden if kept in the dataset. Since a DBO task might require the optimization of an
objective function over arbitrarily long periods of time, the ability to remove observations from the
dataset on the fly, as soon as they become irrelevant for future predictions, is essential to prevent
a prohibitive growth of the response time of DBO algorithms. Overall, (i), (ii) and (iii) require to
address dynamic (i.e., space-time) problems differently from usual (i.e., space-only) problems.

The main contributions of this article are twofold. First, we propose a fast and efficient method able to
quantify the relevancy of an observation. Second, we leverage this method to build a DBO algorithm
able to identify and delete irrelevant observations in an online fashion2.

2 Background

Let us start by describing the BO framework with a GP prior, as introduced by [16]. Given an
objective function f : S ⊆ Rd → R, BO assumes that f is a GP (0, k(x,x′)). For any x ∈ S, and
given a dataset of observations D = {(xi, yi)}i∈J1,nK, where xi ∈ S is a previously queried input
with (noisy) function value yi = f(xi) + ϵ, ϵ ∼ N

(
0, σ2

)
, the posterior distribution of f(x) is

N (µ(x), σ2(x)), where

µ(x) = k⊤(x,X)∆−1y, (1)

σ2(x) = k(x,x)− k⊤(x,X)∆−1k(x,X) (2)

with X = (x1, · · · ,xn), y = (y1, · · · , yn), ∆ = k(X,X) + σ2I and k(X ,Y) =
(k (xi,xj))xi∈X ,xj∈Y .

To find xn+1, the input to query at the (n + 1)th iteration, a BO algorithm exploits an acquisition
function φ : S → R. The acquisition function φ quantifies the benefits of querying the input x in
terms of (i) exploration (i.e., how much it improves the GP regression of f ) and (ii) exploitation
(i.e., how close it is to the optimum of f according to the GP). A large variety of BO acquisition
functions have been proposed, such as GP-UCB [17], Expected Improvement [18] or Probability
of Improvement [19]. Formally, the BO algorithm determines its next queried input by finding
xn+1 = argmaxx∈S φ(x).

BO extends naturally to dynamic problems, by adapting the covariance function k to properly
capture temporal correlations (discussed later in this section). The resulting inference formulas
are very similar to (1) and (2). Given a dataset of observations D = {((xi, ti) , yi)}i∈J1,nK, where
(xi, ti) ∈ S × T is a previously queried input with the (noisy) function value yi = f(xi, ti) + ϵ, the
posterior distribution of f(x, t) is N

(
µ(x, t), σ2(x, t)

)
for any (x, t) ∈ S × T , with

µ(x, t) = k⊤((x, t) ,X)∆−1y, (3)

σ2(x, t) = k((x, t) , (x, t))− k⊤((x, t) ,X)∆−1k((x, t) ,X) (4)

with X = ((x1, t1) , · · · , (xn, tn)), y = (y1, · · · , yn), ∆ = k(X,X) + σ2I and k(X ,Y) =
(k ((xi, ti) , (xj , tj)))(xi,ti)∈X ,(xj ,tj)∈Y .

1At least, not immediately.
2Its Python documented implementation can be found at https://github.com/WDBO-ALGORITHM/wdbo_

algo. A PyPI package can be quickly installed with the command pip install wdbo-algo.
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Exploiting the usual acquisition functions in a dynamic context is also straightforward. Since a
DBO algorithm can only query an input at the current running time t0, the next queried input is
simply (xn+1, t0), with xn+1 = argmaxx∈S φ(x, t0). Some DBO algorithms (e.g., [20]) extend
the querying horizon to the near future, that is, from t0 to a time interval [t0, t0 + δt]. In that case,
the next queried input is (xn+1, tn+1) = argmax(x,t)∈S×[t0,t0+δt] φ(x, t).

BO is an active field of research, but relatively few works address DBO, despite the natural extension
of BO to dynamic problems described above. We conclude this section by reviewing them. In [21],
the objective function is allowed to evolve in time according to a simple Markov model, controlled
by a hyperparameter ϵ ∈ [0, 1]. On the one hand, the authors propose R-GP-UCB, which handles
data staleness by resetting the dataset every N(ϵ) iterations. On the other hand, the authors also
propose TV-GP-UCB that incorporates data staleness by weighing the covariance of two queries
qi = (xi, ti) and qj = (xj , tj) by (1− ϵ)|i−j|/2. In [22], the authors use the same model with an
event-triggered reset of the dataset. Although less relevant to this work, let us mention [23] and [24]
for the sake of completeness. Under frequentist assumptions, they also propose DBO algorithms
that forget irrelevant observations by either resetting their datasets or by using decreasing covariance
weights. However, they assume that the variational budget of the objective function is fixed, which
has the drawback of requiring the objective function to become asymptotically static. This is a very
different setting than the one of interest in this paper, which does not make this requirement.

The aforementioned algorithms all work with discrete, evenly-spaced time steps. This setting
simplifies the regret analysis of DBO algorithms through the use of proof techniques similar to the
ones used for static BO. However, it also overlooks a critical effect of the response times of their
algorithms. In fact, the response time of a BO algorithm heavily depends on its dataset size n, since
BO inference is in O(n3). Although it is reasonable to ignore this for classical BO because the
objective function f is static, DBO algorithms cannot make this simplification as it directly impacts
their ability to track the optimal argument of the objective function through time. Many algorithms
(e.g., see [21, 23, 24]) recommend to keep all the collected observations in their datasets, whereas
in practice, their response times would asymptotically become prohibitive. Other algorithms (e.g.,
see [21, 22, 23]) propose to reset their datasets, either periodically or once an event is triggered.
This probably deletes some relevant observations in the process. More importantly, these algorithms
necessarily estimate their covariance function hyperparameters beforehand and keep them fixed
during the optimization. This lack of adaptivity of the estimation might lead to severely under-optimal
characterization of the function by the hyperparameters, especially when optimizing an ever-changing
objective function on an infinite time horizon.

To the best of our knowledge, only one work acknowledges these problems. It proposes ABO [20],
an algorithm that uses a decomposable spatio-temporal covariance function k((x, t), (x′, t′)) =
kS(||x− x′||2)kT (|t− t′|) to accurately model complex spatio-temporal correlations and samples
the objective function only when deemed necessary. Although this reduces the size of ABO’s dataset,
ABO does not propose a way to remove stale observations, it only adds new observations less
frequently. Therefore, using ABO will still become prohibitive in the long run.

The most relevant methods to quantify the relevancy of an observation can be found in the sparse
GPs literature (e.g., see [25, 26]). However, they require non-trivial adjustments to account for the
particular nature of the time dimension. As far as we know, there is no method in the DBO literature
able to quantify the relevancy of an observation in an online setting. As mentioned before, such a
method is much needed as it would allow a DBO algorithm to remove stale data on the fly while
preserving the predictive performance of the algorithm. We bridge this gap by providing a sound
criterion to measure the relevancy of an observation and an algorithm exploiting this criterion to
remove stale data from its dataset.

3 A Wasserstein Distance-Based Criterion

3.1 Core Assumptions

To address the DBO problem under suitable smoothness conditions, let us make the usual assumption
of BO, using a Gaussian Process (GP) as a surrogate model for f (see [16]).

Assumption 3.1. f is a GP (0, k((x, t) , (x′, t′)), whose mean is 0 (without loss of generality) and
whose covariance function is denoted by k : S × T × S × T → R+.
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In order to accurately model complex spatio-temporal dynamics, we make the same assumption on
the decomposition and isotropy in time and space of the covariance function k as in [20].
Assumption 3.2.

k((x, t), (x′, t′)) = λkS(||x− x′||2, lS)kT (|t− t′|, lT ), (5)

with λ > 0, kS : R+ → [0, 1] and kT : R+ → [0, 1] two positive correlation functions, parameterized
by lengthscales lS > 0 and lT > 0, respectively. The factor λ > 0 scales the product of the two
correlation functions and hence, controls the magnitude of the covariance function k. The lengthscales
lS and lT control the correlation lengths of the GP (see [27] for more details) in space and in time,
respectively.

Although the covariance function k is able to model temporal correlations with kT , it does not
accurately measure the relevancy of an observation. The next section addresses this question.

3.2 Measuring the Relevancy of an Observation

By definition, when an irrelevant observation gets removed from the dataset, the GP posterior
experiences hardly any change. Therefore, we propose to measure the relevancy of an observation
oi = ((xi, ti), yi) by measuring the impact that the removal of oi has on the GP posterior.

Let GPD be the GP conditioned on the dataset D = {((xi, ti), yi)}i∈J1,nK, with (xi, ti) ∈ S × T
and yi = f(xi, ti) + ϵ, ϵ ∼ N

(
0, σ2

)
. Without loss of generality, let us measure the impact of

removing ((x1, t1), y1) from the dataset on the GP posterior. Clearly, the measure should be defined
on the domain of future predictions at time t0, denoted by Ft0 , which must include the whole space
S and only the future time interval [t0,+∞):

Ft0 = S × [t0,+∞). (6)

We compare a GP conditioned on the whole dataset, denoted by GPD, with a GP conditioned
on D̃, the dataset without (x1, t1, y1), denoted by GPD̃. For an arbitrary point (x, t) ∈ Ft0 ,
GPD provides a posterior distribution ND(x, t) = N

(
µD(x, t), σ

2
D(x, t)

)
, and so does GPD̃

with ND̃(x, t) = N
(
µD̃(x, t), σ

2
D̃(x, t)

)
. We compare these two distributions by using the 2-

Wasserstein distance [28], given by

W2 (ND(x, t),ND̃(x, t)) =
(
(µD(x, t)− µD̃(x, t))

2
+ (σD(x, t)− σD̃(x, t))

2
) 1

2

. (7)

A natural extension of the 2-Wasserstein distance from a point (x, t) ∈ Ft0 to the domain Ft0 is

W2 (GPD,GPD̃) =

(∮
S

∫ ∞

t0

W 2
2 (ND(x, t),ND̃(x, t)) dxdt

) 1
2

. (8)

Observe that (8) is a criterion that effectively captures the impact of removing the observation
o1 = ((x1, t1), y1) from the dataset on the GP posterior. However, as discussed in Appendix F, the
covariance function hyperparameters θ = (λ, lS , lT ) control the magnitude of (8). This is illustrated
by Figure 1, which depicts two couples of GP posteriors that achieve the same value (8). Depending
on the lengthscale magnitude, the posteriors may be quite different or, conversely, very similar. As a
result, (8) cannot be directly used as a gauge of observation relevancy.

To remove this ambiguity, we normalize (8) by W2(GPD,GP∅) (i.e., the 2-Wasserstein distance
between the GP conditioned on D and the prior GP), and we obtain the ratio

R(GPD,GPD̃) =
W2(GPD,GPD̃)

W2(GPD,GP∅)
. (9)

Intuitively, W2(GPD,GP∅) measures the impact of resetting the whole dataset D on the GP posterior
and serves as a baseline that puts into perspective the distance measured by (8). Technically, taking
the ratio (9) successfully cancels out the influence of the covariance function hyperparameters on the
magnitude of the Wasserstein distances, as further discussed in Appendix F. As a direct consequence,
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Figure 1: Similar values of Wasserstein distance, different effect on posteriors. For visualization
purposes, only the posterior means of two posterior GPs (blue for µD and orange for µD̃) are
depicted, along a single dimension (e.g., time). The Wasserstein distance between the two posteriors
is shown by the green shaded area. The GPs have a small lengthscale (left) or, conversely, a large
lengthscale (right) for the chosen dimension.

Figure 2: Normalized Wasserstein distances. Similarly to Figure 1, a few couples of GP posterior
means (µD, µD̃) are depicted. The top (resp., bottom) row depicts couples of posteriors that yield a
small (resp., large) ratio (9). The left (resp., right) column depicts couples of posteriors controlled by
a small (resp., large) lengthscale. The prior GP mean µ∅ = 0 is shown as a black dashed line, and the
Wasserstein distance between the posterior and the prior as a gray shaded area.
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(9) is an unambiguous indication of how relevant an observation is. This is illustrated by Figure 2,
which depicts couples of GP posteriors under different contexts. When (9) is small (resp., large), the
posteriors are similar (resp., dissimilar) regardless of the magnitude of the lengthscale.

Exploiting this criterion is straightforward. When (9) is small, one can infer that the observation
o1 can be safely removed from the dataset since it will have virtually no impact on the posterior.
Conversely, when (9) is large, one can infer that removing o1 would alter the posterior too much, and
conclude that it is a relevant observation that must remain in the dataset. The exploitation of (9) is
discussed in more details in Section 4.2.

The criterion (9) is useful for a DBO algorithm if and only if it can be computed on the fly, in an
online setting. In the next section, we show that (9) can be approximated efficiently, and we describe
a DBO algorithm able to exploit the criterion.

4 Using the Criterion in Practice

4.1 Computational Tractability

In [29], the authors provide an algorithm to approximate the 2-Wasserstein distance between two
GPs up to an arbitrary precision level. However, the computational cost of this algorithm is too
expensive in an online setting, where it is crucial to keep the per-iteration cost as small as possible to
ensure a high sampling frequency. In this section, we put this issue to rest by deriving an explicit
approximation of (9). These formulas are computationally cheap enough to be exploited on the fly.

In Appendix A, we show that (7) can be computed efficiently. Next, in Appendix B, we apply these
results to obtain an upper bound of (8). The key observation for deriving this result is to approximate
the integrals in (8) by a convolution of the covariance functions with themselves in space and time.
The same trick can be used for approximating W2(GPD,GP∅).
Theorem 4.1. Let t0 be the present time and D = {((xi, ti), yi)}i∈J1,nK be a dataset of observations

made before t0. Let D̃ = {((xi, ti), yi)}i∈J2,nK be the dataset without the first observation and
Ft0 = S × [t0,+∞) be the domain of future predictions. Then, an upper bound for W 2

2 (GPD,GPD̃)
on Ft0 is

Ŵ 2
2 (GPD,GPD̃) = λ2(a2 +E)C((x1, t1),(x1, t1)) + λ2(2ab+ c)C((x1, t1), D̃)

+ λ2 tr
((

bb⊤ +M
)
C(D̃, D̃)

) (10)

where C(X ,Y) =
(
(kS ∗ kS)(xj − xi) · (kT ∗ kT )+∞

t0−ti(tj − ti)
)
(xi,ti)∈X
(xj ,tj)∈Y

, where (f ∗ g) denotes

the convolution between f and g, and (f ∗ g)ba denotes the convolution between f and g restricted to
the interval [a, b]. The terms a, b, c, E and M are explicited in Appendices A and B.

Moreover, an upper bound for W 2
2 (GPD,GP∅) on Ft0 is

Ŵ 2
2 (GPD,GP∅) = λ2

(
y⊤∆−⊤C (D,D)∆−1y + tr

(
∆−1C (D,D)

))
. (11)

This theorem provides the analytic form of an upper bound for the Wasserstein distance between GPD
and GPD̃ and the Wasserstein distance between GPD and GP∅ on the domain of future predictions
Ft0 . Using it, we can compute an approximation R̂ of the relative criterion (9), that is

R̂(GPD,GPD̃) =
Ŵ2(GPD,GPD̃)

Ŵ2(GPD,GP∅)
. (12)

In Appendix C, we study the error between the criterion (9) and the approximation (12). In essence,
we bound the approximation error caused by estimating the integrals in (8) by a self-convolution of
the covariance functions kS and kT (i.e., kS ∗ kS and kT ∗ kT ). Furthermore, we provide numerical
evidence that the approximation errors in the numerator and the denominator of (12) compensate
each other at least in part, making (12) a decent approximation for (9).

In practice, the upper bounds (10) and (11) can only be computed efficiently if the convolutions of the
covariance functions can themselves be computed efficiently. The analytic forms for the convolution
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Table 1: Usual covariance functions. Γ is the Gamma function and Kν is a modified Bessel function
of the second kind of order ν.

Covariance Function k(x)

Squared-Exponential (l) e−
||x||22
2l2

Matérn (ν, l) 21−ν

Γ(ν)

(√
2ν||x||2
lS

)ν
Kν

(√
2ν||x||2
lS

)

of two usual covariance functions listed in Table 1, namely Squared-Exponential (SE) and Matérn [30],
are provided in Appendix D together with Tables 3 and 4 that list the self-convolutions for the spatial
(resp., temporal) covariance function. Their detailed computations are also provided in this appendix.
In a nutshell, the formulas are obtained first in the Fourier domain by computing the square of the
spectral densities of the covariance functions, and next by computing their inverse Fourier transform.

Together, Tables 3, 4 in Appendix D and Theorem 4.1 show that the approximation of (9) given
by (12) can be computed efficiently in an online setting. In an effort to generalize our results to a class
of covariance functions that extends beyond Assumption 3.2, we also discuss how to compute the self-
convolution of an anisotropic spatial SE covariance function in Appendix E. We now leverage (12) to
propose a DBO algorithm able to pinpoint and remove irrelevant observations in its dataset.

4.2 W-DBO

The metric (9) and its approximation (12) can be seen as a relative error (or drift), expressed as
a percentage, that separates GPD and GPD̃. Indeed, the Wasserstein distance W (GPD,GPD̃) is
scaled by the Wasserstein distance W (GPD,GP∅), that is, the distance between GPD and the prior.
In other words, (9) and its approximation (12) measure the relative drift from GPD to GPD̃ caused
by the removal of one observation. When removing multiple observations, the relative drifts naturally
accumulate in a multiplicative way (similarly to the way relative errors accumulate). As a consequence,
removing multiple observations could, in the worst case, make GPD̃ drift exponentially fast from
GPD. To keep this exponential drift under control, one can use a removal budget b(t) = (1 + α)t

that allows a maximal relative drift from GPD of α per unit of time (e.g., if α = 0.1, the allowed
maximal drift is 10 % per unit of time). The cost of removing an observation is given by (12).

Algorithm 1 describes W-DBO, a DBO algorithm exploiting (12) to remove irrelevant observations
on the fly. As described above, the removal budget is controlled by a single hyperparameter α and
grows exponentially as time goes by (see line 24). At each iteration, (12) is used to compute the
relevancy of each observation in the dataset (see lines 10-13). The relevancy of the least relevant
observation is then compared to the removal budget, and the observation is removed if the budget
allows it (see lines 14-17). This process is repeated until all the budget is consumed. Such a
greedy observation removal policy causes W-DBO to overestimate the impact of removing multiple
observations3. We discuss and motivate the expression of the removal budget in Appendix G. The
sensitivity analysis conducted in Section 5.1 supports this removal budget, by showing that the same
value of the hyperparameter α is valid for a large set of different objective functions.

Finally, note that using (12) to remove irrelevant observations on the fly can be performed in
conjunction with any BO algorithm, because it can be appended at the end of each optimization step
as a simple post-processing stage. This agnostic property of W-DBO is supported by the ability of
Algorithm 1 to take as inputs any GP model GP and any acquisition function φ. Similarly, observe
that lines 5-8 in Algorithm 1 describe the usual BO optimization loop, without any modification.

5 Numerical Results

In this section, we study the empirical performance of W-DBO. To measure the quality of the queries
made by the DBO solutions, we compute the average regret (lower is better). For the sake of realistic
evaluation, two iterations of a solution are seperated by its response time (i.e., the time taken to
infer its hyperparameters and optimize its acquisition function). Furthermore, all covariance function

3To prevent this, the criterion (12) could be computed on every element of 2|D| at each iteration. Unfortu-
nately, this policy does not scale well with the dataset size |D|.
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Algorithm 1 W-DBO
1: Input: GP , acquisition function φ, hyperparameter α, clock C, initial observations D.
2: Get current time t from clock C
3: b = 1
4: while true do
5: Find xt = argmaxx φ(x, t)
6: Observe yt = f(xt, t) + ϵ, ϵ ∼ N (0, σ2)
7: D = D ∪ {(xt, t, yt)}
8: Condition GP on D and get the MLE parameters (λ, lS , lT , σ̂2)
9: while b > 1 do

10: for all (xi, ti, yi) ∈ D [in parallel] do
11: D̃ = D \ {(xi, ti, yi)}
12: Compute R̂i using (12)
13: end for
14: i∗ = argmini∈J1,|D|K R̂i

15: if b > 1 + R̂i∗ then
16: D = D \ {(xi∗ , ti∗ , yi∗)}
17: b = b/(1 + R̂i∗)
18: else
19: break
20: end if
21: end while
22: t′ = t
23: Get current time t from clock C
24: b = b(1 + α)(t−t′)/lT

25: end while

Figure 3: (Left) Sensitivity analysis on the Eggholder function. (Right) Aggregation of sensitivity
analyses of W-DBO made on 10 synthetic functions and a real-world experiment. For aggregation
purposes, the average regrets in each experiment have been normalized between 0 (lowest average
regret) and 1 (largest average regret). The average performance of W-DBO over all the experiments
is shown in black. Standard errors are depicted with colored bars (left) and shaded areas (right).

parameters and the noise level are estimated on the fly. Please refer to Appendix H.1 for further
experimental details, and to Appendix H.2 for a detailed description of the dynamic benchmarks.

5.1 Sensitivity Analysis

We start by studying the impact of the W-DBO hyperparameter α on the average regret. Recall
that we take into account the response time of the algorithm. This evaluation protocol reveals that
a trade-off must be achieved between having an accurate model of the objective function (which
requires a large dataset) and being able to track the optimal argument of the function as it evolves
(which requires a high sampling frequency, thus a moderately-sized dataset).
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Table 2: Comparison of W-DBO with competing methods. The average regret over 10 independent
replications is reported (lower is better). The performance of the best algorithm is written in bold text.
The performance of algorithms whose confidence intervals overlap the best performing algorithm’s
confidence interval is underlined.

Experiment (d+ 1) GP-UCB R-GP-UCB TV-GP-UCB ET-GP-UCB ABO W-DBO

Rastrigin (5) 17.81 53.67 26.50 19.54 36.16 18.54
Schwefel (4) 469.10 954.03 520.40 428.97 662.32 290.34

StyblinskiTang (4) 18.83 45.82 15.74 22.16 58.40 13.04
Eggholder (2) 542.53 273.60 287.01 559.61 256.92 225.68

Ackley (4) 4.10 4.45 3.27 3.96 3.63 2.24
Rosenbrock (3) 31.37 25.99 17.55 28.79 171.04 3.81

Shekel (4) 2.56 2.21 2.03 2.70 2.06 1.72
Hartmann3 (3) 1.17 0.26 0.82 1.06 0.55 0.35
Hartmann6 (6) 1.33 1.25 0.44 1.46 0.61 0.32

Powell (4) 1992.1 1167.6 1223.4 534.2 9888.6 428.1

Temperature (3) 1.02 0.69 1.36 1.25 1.21 0.68
WLAN (5) 1.46 4.84 1.33 4.98 12.94 1.19

Avg. Perf. 0.48 0.47 0.29 0.54 0.62 0.01

Figure 4: (Left) Average regrets of the DBO solutions during the optimization of the Ackley synthetic
function. (Right) Dataset sizes of the DBO solutions during the optimization of the Ackley function.

To study this trade-off, we compare the performance of W-DBO with several values of its hyper-
parameter α, as illustrated by the left side of Figure 3. We apply this protocol on 11 different
benchmarks (described in Appendix H.2). The aggregated results (see the right side of Figure 3)
show that achieving a trade-off between the size of the dataset and the sampling frequency can
significantly improve the performance of W-DBO. Clearly, the sweet spot is reached for α = 1

4 . This
hyperparameter value is used to evaluate W-DBO in the next section.

5.2 Comparison with Baselines

The competing baselines are the relevant algorithms reported in Section 2, namely R-GP-UCB
and TV-GP-UCB [21], ET-GP-UCB [22] and ABO [20]. We also consider vanilla BO with the
GP-UCB acquisition function, which only considers spatial correlations. For comparison purposes,
all the results are gathered in Table 2. The benchmarks comprise ten synthetic functions and two
real-world experiments. All figures (including standard errors) are provided in Appendix H.2, and
the performance of each DBO solution is discussed at length in Appendix H.3. Furthermore, the
provided supplementary animated visualizations are discussed in Appendix H.4.

In this section. we only depict the performance of the DBO solutions on the Ackley synthetic function
in Figure 4, because it illustrates best the singularity of W-DBO. The Ackley function is known for
its almost flat outer region (with lots of local minima) and its deep hole at the center of its domain.
Observe that most DBO solutions miss that hole, as their average regrets skyrocket between 200 and
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Figure 5: Visual summary of the results reported in Table 2. For aggregation purposes, the average
regrets in each experiment have been normalized between 0 (lowest average regret) and 1 (largest
average regret). The average performance of the DBO solutions is shown in black.

400 seconds. In contrast, W-DBO manages to rapidly exploit the hole at the center of the function
domain, thereby maintaining a low average regret.

This performance gap can be explained by studying the dataset size of W-DBO (see the right side of
Figure 4). At first, the dataset size increases since most collected observations are relevant to predict
the outer region of the Ackley function. After 200 seconds, the dataset size plateaus as W-DBO
begins to realize that some previously collected observations are irrelevant to predict the shape of the
hole that lies ahead. Between 300 and 400 seconds, the dataset size is halved because most previously
collected observations are deemed irrelevant. Eventually, after 400 seconds, W-DBO explores the
flatter outer region of the Ackley function again. Consequently, its dataset size increases again.

For a summary of the performance of the DBO solutions across all our benchmarks, please refer to
the last row of Table 2, and to the visual summary in Figure 5. In our experimental setting, ABO
and ET-GP-UCB obtain roughly the same performance as vanilla BO. R-GP-UCB shows slightly
better average performance than GP-UCB, while TV-GP-UCB appears significantly better than
the aforementioned algorithms. Remarkably, W-DBO shows significantly better performance than
TV-GP-UCB and outperforms the other DBO solutions by a comfortable margin. In fact, it obtains
the lowest average regret on almost every benchmark.

6 Conclusion

The ability to remove irrelevant observations from the dataset of a DBO algorithm is essential to
ensure a high sampling frequency while preserving its predictive performance. To address this
difficult problem, we have proposed (i) a criterion based on the Wasserstein distance to measure the
relevancy of an observation, (ii) a computationally tractable approximation of this criterion to allow
its use in an online setting and (iii) a DBO algorithm, W-DBO, that exploits this approximation. We
have evaluated W-DBO against the state-of-the-art of DBO on a variety of benchmarks comprising
synthetic functions and real-world experiments. The evaluation was conducted in the most challenging
settings, where time is continuous, the time horizon is unknown, as well as the covariance functions
hyperparameters. We observe that W-DBO outperforms the state-of-the-art of DBO by a comfortable
margin. We explain this significant performance gap by the ability of W-DBO to quantify the
relevancy of each of its observations, which is not shared with any other DBO algorithm, to the best
of our knowledge. As a result, W-DBO can remove irrelevant observations in a smoother and more
appropriate way than by simply triggering the erasure of the whole dataset. By doing so, W-DBO
simultaneously ensures a high sampling frequency and a very good predictive performance.

In addition to its impact on DBO itself, we believe that W-DBO can have a significant impact on the
fields that make heavy use of DBO (e.g., computer networks, robotics). As a future work, we plan on
exploring these applications of W-DBO. Furthermore, we plan on better understanding the excellent
performance of W-DBO by addressing the difficult problem of deriving a regret bound that holds in a
continuous time setting and incorporates the effect of the sampling frequency of the DBO algorithm
as well as the deletion of irrelevant observations.
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A Wasserstein Distance at a Point in Ft0

At the core of (8) lies (7). In this appendix, we provide explicit expressions for (7). Let us start by
proving the following lemma.

Lemma A.1.

∆−1
D =

(
E G
H F

)
(13)

with ∆D = k(D,D) + σ2I and E,F ,G,H defined as

E =
(
λ+ σ2 − k⊤

(
(x1, t1), D̃

)
∆−1

D̃ k
(
(x1, t1), D̃

))−1

, (14)

F =

(
∆D̃ − 1

λ+ σ2
k
(
(x1, t1), D̃

)
k⊤
(
(x1, t1), D̃

))−1

, (15)

G = −Ek⊤
(
(x1, t1), D̃

)
∆−1

D̃ , (16)

H = − 1

λ+ σ2
Fk

(
(x1, t1), D̃

)
, (17)

where k (X ,Y) = (k ((xi, ti) , (xj , tj)))(xi,ti)∈X
(xj ,tj)∈Y

and ∆D̃ = k(D̃, D̃) + σ2I .

Proof. The proof is trivial using the inverse of a block matrix:(
A B
C D

)−1

=

((
A−BD−1C

)−1
0

0
(
D −CA−1B

)−1

)(
I −BD−1

−CA−1 I

)

=

( (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−
(
D −CA−1B

)−1
CA−1

(
D −CA−1B

)−1

)
. (18)

Note that A and D must be invertible.

We can use (18) to write ∆−1
D as a function of ∆−1

D̃ , since

∆−1
D =

(
k((x1, t1), (x1, t1)) + σ2 k⊤((x1, t1), D̃)

k((x1, t1), D̃) ∆D̃

)−1

=

(
λ+ σ2 k⊤((x1, t1), D̃)

k((x1, t1), D̃) ∆D̃

)−1

. (19)

Note that, in (19), λ + σ2 and ∆D̃ are invertible. Therefore, (18) can be applied to (19), and this
yields the desired result.

To compute (7), we provide the following results.

Proposition A.2.

µD(x, t)− µD̃(x, t) = ak((x, t), (x1, t1)) + bk
(
(x, t), D̃

)
, (20)

with a = Ey1 +Gỹ, b⊤ = H⊤y1 + ỹ⊤
(
F −∆−1

D̃

)
and ỹ = (y2, · · · , yn).

Proposition A.3.

(σD(x, t)− σD̃(x, t))
2 ≤ Ek((x, t), (x1, t1))

2 + k((x, t), (x1, t1))ck((x, t), D̃)

+ k⊤((x, t), D̃)Mk((x, t), D̃),
(21)

with c = G+H⊤ and M = F −∆−1

D̃ .

We now prove Proposition A.2.
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Proof. According to (3)
µD̃(x, t) = k⊤((x, t), D̃)∆−1

D̃ ỹ. (22)

Applying the same definition for µD(x, t) we have

µD(x, t) =
(
k((x, t), (x1, t1)), k

⊤((x, t), D̃)
)
∆−1

D y

=
(
k((x, t), (x1, t1)), k

⊤((x, t), D̃)
)(

E G
H F

)
y (23)

=
(
k((x, t), (x1, t1)), k

⊤((x, t), D̃)
)(

Ey1 +Gỹ
Hy1 + F ỹ

)
= k((x, t), (x1, t1)) (Ey1 +Gỹ) + k⊤((x, t), D̃) (Hy1 + F ỹ) , (24)

where (23) follows from Lemma A.1.

Finally, we have

µD(x, t)− µD̃(x, t) = k((x, t), (x1, t1)) (Ey1 +Gỹ) + k⊤((x, t), D̃) (Hy1 + F ỹ)

− k⊤((x, t), D̃)∆−1

D̃ ỹ

which can be reduced to

µD(x, t)− µD̃(x, t) = ak((x, t), (x1, t1)) + bk((x, t), D̃) (25)

with a = Ey1 +Gỹ and b⊤ = H⊤y1 + ỹ⊤
(
F −∆−1

D̃

)
. This concludes the proof.

Finally, we prove Proposition A.3.

Proof. As (σD(x, t)− σD̃(x, t))
2 is hard to integrate, to get (8), we upper bound it by

(σD(x, t)− σD̃(x, t))
2 = σ2

D(x, t) + σ2
D̃(x, t)− 2σD(x, t)σD̃(x, t)

≤ σ2
D(x, t) + σ2

D̃(x, t)− 2σ2
D(x, t) (26)

= σ2
D̃(x, t)− σ2

D(x, t) (27)

where (26) follows from σD(x, t) ≤ σD̃(x, t).

Now, (4) yields that for X = D̃,

σ2
D̃(x, t) = λ− k⊤((x, t), D̃)∆−1

D̃ k((x, t), D̃). (28)

and for X = D = D̃ ∪ {(x1, t1)}

σ2
D(x, t) = λ−

(
k((x, t), (x1, t1)),k

⊤((x, t), D̃)
)
∆−1

D

(
k((x, t), (x1, t1))

k((x, t), D̃)

)
= λ−

(
k((x, t), (x1, t1)),k

⊤((x, t), D̃)
)(

E G
H F

)(
k((x, t), (x1, t1))

k((x, t), D̃)

)
(29)

= λ−
(
k((x, t), (x1, t1)),k

⊤((x, t), D̃)
)(

Ek((x, t), (x1, t1)) +Gk((x, t), D̃)
Hk((x, t), (x1, t1)) + Fk((x, t), D̃)

)
(30)

where (29) follows from Lemma A.1. Developing the dot product in (30), we have

σ2
D(x, t) = λ−Ek2((x, t), (x1, t1))− k((x, t), (x1, t1))Gk((x, t), D̃)

− k((x, t), (x1, t1))H
⊤k((x, t), D̃)− k⊤((x, t), D̃)Fk((x, t), D̃).

(31)

Combining (28) and (31), we get

σ2
D̃(x, t)− σ2

D(x, t) = Ek((x, t), (x1, t1))
2 + k((x, t), (x1, t1))ck((x, t), D̃)

+ k⊤((x, t), D̃)Mk((x, t), D̃)
(32)

where c = G+H⊤ and M = F −∆−1

D̃ .

Combining (27) and (32) concludes the proof.
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B Wasserstein Distance on Ft0

In this appendix, we extend the computation of the Wasserstein distance between two posterior
Gaussian distributions at an arbitrary point in Ft0 (see Propositions A.2 and A.3) to the Wasserstein
distance between GPD and GPD̃ on Ft0 . We also provide an upper bound for the Wasserstein
distance between a posterior GP conditioned on D (i.e., GPD) and the prior GP (i.e., GP∅).

Let us start by proving the following lemma.
Lemma B.1. Let t0 be the present time and D = {((xi, ti), yi)}i∈J1,nK be a dataset of observations

before t0. Let D̃ = {((xi, ti), yi)}i∈J2,nK and Ft0 = S×[t0,+∞) be the domain of future predictions.
Then, for any pair of observations (xi, ti, ·), (xj , tj , ·) from D we have∮
S

∫ ∞

t0

k ((x, t), (xi, ti)) k ((x, t), (xj , tj)) dxdt ≤ λ2(kS ∗ kS)(xj − xi)(kT ∗ kT )+∞
t0−ti(tj − ti)

(33)
with (f ∗ g) the convolution between f and g and (f ∗ g)ba the convolution between f and g restricted
to the interval [a, b].

Proof. For the sake of brevity, let us denote by I the LHS of (33). According to Assumption 3.2,
Fubini’s theorem and since Ft0 = S × [t0,+∞), we have

I = λ2

∮
S
kS(||x− xi||2)kS(||x− xj ||2)dx

∫ +∞

t0

kT (|t− ti|)kT (|t− tj |)dt. (34)

Let us focus on the integral on the spatial domain S . Depending on the expression of the covariance
function, this integral can be quite difficult to compute. Let us turn this expression into a more
pleasant upper bound∮

S
kS(||x− xi||2)kS(||x− xj ||2)dx ≤

∮
Rd

kS(||x− xi||2)kS(||x− xj ||2)dx (35)

=

∮
Rd

kS(||u||2)kS(||xj − xi − u||2)du (36)

where (35) holds since kS is positive and (36) comes from the change of variable u = x − xi.
Obviously, this upper bound remains interesting because kS is usually an exponentially decreasing
function (see Table 1). We discuss this point in more details in Appendix C.

Observe that (36) is actually the convolution (kS ∗ kS)(xj − xi). A similar change of variable can
be made regarding the time integral, with v = t− ti:∫ +∞

t0

kT (|t− ti|)kT (|t− tj |)dt =
∫ +∞

t0−ti

kT (|v|)kT (|tj − ti − v|)dv. (37)

Note that (37) is also a convolution, but restricted to the interval [t0 − ti,+∞). We denote this
convolution on a restricted interval (kT ∗ kT )+∞

t0−ti(tj − ti).

Combining (34), (36) and (37) yields Lemma B.1.

We now prove the following lemma.
Lemma B.2. Let t0 be the present time and D = {((xi, ti), yi)}i∈J1,nK be a dataset of observations

before t0. Let D̃ = {((xi, ti), yi)}i∈J2,nK and Ft0 = S × [t0,+∞) the domain of future predictions.
Then, we have∮

S

∫ ∞

t0

(µD(x, t)− µD̃(x, t))
2dxdt ≤ λ2a2C((x1, t1), (x1,t1)) + 2λ2abC((x1, t1), D̃)

+ λ2 tr
(
bb⊤C(D̃, D̃)

)
,

(38)

with a = Ey1 + Gỹ and b⊤ = H⊤y1 + ỹ⊤
(
F −∆−1

D̃

)
, C(X ,Y) =(

(kS ∗ kS)(xj − xi)(kT ∗ kT )+∞
t0−ti(tj − ti)

)
(xi,ti)∈X
(xj ,tj)∈Y

, 1 the conformable vector of ones,
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(f ∗ g) the convolution between f and g and (f ∗ g)ba the convolution between f and g restricted to
the interval [a, b].

Proof. By Proposition A.2,∮
S

∫ ∞

t0

(µD(x, t)− µD̃(x, t))
2dxdt =

∮
S

∫ ∞

t0

(
ak((x, t), (x1, t1)) + bk

(
(x, t), D̃

))2
dxdt

(39)
with a = Ey1 +Gỹ and b⊤ = H⊤y1 + ỹ⊤

(
F −∆−1

D̃

)
.

Expanding the square, we get three different integrals, denoted A,B and C with

A =

∮
S

∫ ∞

t0

a2k2((x, t), (x1, t1))dxdt,

B =

∮
S

∫ ∞

t0

2abk((x, t), (x1, t1))k((x, t), D̃)dxdt,

C =

∮
S

∫ ∞

t0

bk
(
(x, t), D̃

)
k⊤
(
(x, t), D̃

)
b⊤dxdt.

Using Lemma B.1, computing an upper bound for A, B and C is immediate. In fact,

A ≤ λ2a2C((x1, t1), (x1, t1)) (40)

B ≤ 2λ2abC((x1, t1), D̃) (41)

C ≤ λ21⊤
(
bb⊤ ⊙ C(D̃, D̃)

)
1

= λ2 tr
(
bb⊤C(D̃, D̃)

)
, (42)

where ⊙ is the Hadamard product and 1 the conformable vector of ones.

Adding (40), (41) and (42) together concludes our proof.

To get the first part of Theorem 4.1, we prove the following lemma.

Lemma B.3. Let t0 be the present time and D = {((xi, ti), yi)}i∈J1,nK be a dataset of observations

before t0. Let D̃ = {((xi, ti), yi)}i∈J2,nK and Ft0 = S × [t0,+∞) the domain of future predictions.
Then, we have∮

S

∫ ∞

t0

(σD(x, t)− σD̃(x, t))
2dxdt ≤ λ2EC((x1, t1), (x1,t1)) + λ2cC((x1, t1), D̃)

+ λ2 tr
(
MC(D̃, D̃)

)
,

(43)

with c = G + H⊤, M = F − ∆−1

D̃ , C(X ,Y) =(
(kS ∗ kS)(xj − xi)(kT ∗ kT )+∞

t0−ti(tj − ti)
)
(xi,ti)∈X
(xj ,tj)∈Y

, (f ∗ g) the convolution between f

and g and (f ∗ g)ba the convolution between f and g restricted to the interval [a, b].

Proof. This proof is conceptually identical to the previous one. By Proposition A.3,∮
S

∫ ∞

t0

(σD(x, t)− σD̃(x, t))
2dxdt ≤

∮
S

∫ ∞

t0

(Ek((x, t),(x1, t1))
2 + k((x, t), (x1, t1))ck((x, t), D̃)

+ k⊤((x, t), D̃)Mk((x, t), D̃))dxdt
(44)

where c = G+H⊤ and M = F −∆−1

D̃ .
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By linearity of the integral, the RHS of (44) can be split into three different integrals A, B and C
where

A =

∮
S

∫ ∞

t0

Ek((x, t), (x1, t1))
2dxdt

B =

∮
S

∫ ∞

t0

k((x, t), (x1, t1))ck((x, t), D̃)dxdt

C =

∮
S

∫ ∞

t0

k⊤((x, t), D̃)Mk((x, t), D̃)dxdt

Once again, Lemma B.1 can be used to compute an upper bound for A, B and C. In fact,

A ≤ λ2EC((x1, t1), (x1, t1)) (45)

B ≤ λ2cC((x1, t1), D̃) (46)

C ≤ λ21⊤
(
M ⊙ C(D̃, D̃)

)
1

= tr
(
MC(D̃, D̃)

)
, (47)

where ⊙ is the Hadamard product and 1 is the conformable vector of ones.

Adding (45), (46) and (47) together concludes the proof.

Together, Lemmas B.1, B.2 and B.3 yield the first part of Theorem 4.1. For the second part of
Theorem 4.1, we prove the following lemma.
Lemma B.4. Let t0 be the present time and D = {((xi, ti), yi)}i∈J1,nK be a dataset of observations
before t0. Let Ft0 = S × [t0,+∞) the domain of future predictions. Then, we have

W 2
2 (GPD,GP∅) ≤ λ2

(
a⊤C (D,D)a+ tr

(
∆−1C (D,D)

))
(48)

with a = ∆−1y and C(X ,Y) =
(
(kS ∗ kS)(xj − xi)(kT ∗ kT )+∞

t0−ti(tj − ti)
)
(xi,ti)∈X
(xj ,tj)∈Y

, (f ∗ g)

the convolution between f and g and (f ∗ g)ba the convolution between f and g restricted to the
interval [a, b].

Proof. Recall that, according to GP∅, f(x, t) ∼ N (0, λ) for any point (x, t) ∈ Ft0 . Consequently,

W2(GPD,GP∅) =

(∮
S

∫ ∞

t0

µ2
D(x, t)dxdt+

∮
S

∫ ∞

t0

(√
λ− σD(x, t)

)2
dxdt

) 1
2

. (49)

These two integrals in (49) can be computed with the same techniques as above. For the mean integral,
we have∮

S

∫ ∞

t0

µ2
D(x, t)dxdt =

∮
S

∫ ∞

t0

y⊤∆−⊤k⊤((x, t),D)k((x, t),D)∆−1ydxdt

= y⊤∆−⊤
(∮

S

∫ ∞

t0

k⊤((x, t),D)k((x, t),D)dxdt

)
∆−1y

≤ λ2y⊤∆−⊤C(D,D)∆−1y. (50)

Regarding the variance integral in (49), we have∮
S

∫ ∞

t0

(√
λ− σD(x, t)

)2
dxdt =

∮
S

∫ ∞

t0

(
λ− 2

√
λσD(x, t) + σ2

D(x, t)
)
dxdt

≤
∮
S

∫ ∞

t0

(
λ− σ2

D(x, t)
)
dxdt (51)

=

∮
S

∫ ∞

t0

k⊤((x, t),D)∆−1k((x, t),D)dxdt (52)

≤ λ2 tr
(
∆−1C (D,D)

)
(53)
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where (51) holds because
√
λσD(x, t) ≥ σ2

D(x, t) and (52) holds because of (4).

Together, (50) and (53) conclude the proof.

By combining Lemmas B.2 and B.3, the proof of Theorem 4.1 is immediate.

C Approximation Error

In Appendix B, we provided a computationally tractable upper bound of W2(GPD,GPD̃) and
W2(GPD,GP∅). In this appendix, we provide the expression of the corresponding approximation
error and we study its magnitude with the Squared-Exponential (SE) covariance function.

First, and without loss of generality, assume S = [0, 1]d. In Appendix B, we have to approximate the
Wasserstein distance because the integration over S in (34) is difficult to compute. The upper bound
proposed in (35) is∮

[0,1]d
kS(||x− xi||2)kS(||x− xj ||2)dx ≤

∮
Rd

kS(||x− xi||2)kS(||x− xj ||2)dx. (54)

Recall that the upper bounded quantity is a product of functions which are decreasing exponentially
(see Table 1). As a consequence, their product decreases exponentially as well, so that extending
the integration from S = [0, 1]d to Rd has a bounded impact on the result. Clearly, a first absolute
approximation error for (54) is∮

(R\[0,1])d
kS(||x− xi||2)kS(||x− xj ||2)dx.

Because the upper bounded quantity is a product of two correlation functions kS on a hypercube
of volume 1, the upper bound can be capped to 1 as well. This leads to the more refined absolute
approximation error:

A(xi,xj ; lS) = min

{∮
(R\[0,1])d

kS(||x− xi||2)kS(||x− xj ||2)dx,

1−
∮
[0,1]d

kS(||x− xi||2)kS(||x− xj ||2)dx

}
.

(55)

Obtaining a closed-form for the approximation error (55) is difficult. However, because the spatial
lengthscale controls the correlation lengths in the spatial domain, it is clear that the left term in (55) is
an increasing function with respect to lS . Conversely, the right term in (55) is a decreasing function
with respect to lS . This observation allows us to derive the spatial lengthscale for which (55) is
maximal.
Proposition C.1. Let (xi,xj) ∈ S2, with S = [0, 1]d. Let kS be a SE kernel with lengthscale lS .
Then,

argmax
lS∈R+

A(xi,xj ; lS) =
1√
π
e

1
2W0

(
π||xi−xj ||

2
2

2d

)
, (56)

with W0 the principal branch of the Lambert function.

Proof. Because the two terms in (55) are respectively increasing and decreasing with respect to the
spatial lengthscale lS , (55) is maximal when both terms are equal. Therefore, from (55), we have the
following relation∮

(R\[0,1])d
kS(||x− xi||2)kS(||x− xj ||2)dx = 1−

∮
[0,1]d

kS(||x− xi||2)kS(||x− xj ||2)dx,∮
Rd

kS(||x− xi||2)kS(||x− xj ||2)dx = 1,

π
d
2 ldSe

−||xi−xj ||
2
2

4l2
S = 1, (57)
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Figure 6: (Top row) Absolute approximation error (55) with respect to the spatial lengthscale lS for
a 1, 3 and 5-dimensional spatial domain. Both error terms in (55) are shown in orange and green
dashed lines, respectively. Finally, the critical lengthscale (56) is shown as a red vertical line. In this
example, kS is a SE correlation function. (Bottom row) Relative approximation error with respect to
the spatial lengthscale lS . The color codes are the same.

Figure 7: Relative error between the criterion (9) and its approximation (12), with respect to the
spatial lengthscale lS for a 1, 3 and 5-dimensional spatial domain. The relative error computed with
both terms in (55) are shown as orange and green dashed lines, respectively. In this example, kS is a
SE correlation function.

where (57) uses a result derived in Appendix D and reported in Table 3. Solving for lS concludes the
proof.

Let us illustrate (55) and Proposition C.1 by plotting the relative approximation error (55) with
respect to the spatial lengthscale lS . The integral over S is computed with a Monte-Carlo numerical
integration technique. The results are shown in Figure 6. Looking at the top row, we see that the
absolute approximation error peaks at a spatial lengthscale l∗S given by (56), as anticipated above.
For lS < l∗S , the error is given by the first error term in (55), and conversely, the error is given by the
second error term in (55) for lS > l∗S . The bottom row of Figure 6 shows that the same observations
apply to the relative errors.

Figure 6 shows that even though it is bounded, the approximation error of the upper bound (54) is
non-negligible. This is particularly noticeable when looking at the relative errors in the bottom row
of Figure 6, which clearly increases in magnitude with the dimensionality of the spatial domain.

Nevertheless, recall that we seek to approximate the ratio (9) with a ratio of upper bounded Wasserstein
distances (12) that involve (54) both in the numerator and in the denominator. Because the spatial
lengthscale lS does not vary when computing the numerator and the denominator, the errors are of
similar magnitude and point in the same direction (both the numerator and the denominator are upper
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Table 3: Analytic forms for the convolution of usual spatial covariance functions. Γ is the Gamma
function, Jα is a Bessel function of the first kind of order α, Kα is a modified Bessel function of the
second kind of order α.

Covariance Function kS (kS ∗ kS)(x)

Squared-Exponential (lS) π
d
2 ldSe

−||x||22
4l2

S

Matérn (ν, lS) 2
d
2
−2ν+1π

d
2 Γ(ν+ d

2 )
2

Γ(ν)2Γ(2ν+d)

(√
2ν
lS

)2ν− d
2 ||x||2ν+

d
2

2 K2ν+ d
2

(
||x||2

√
2ν

lS

)
Table 4: Analytic forms for the convolution of usual temporal covariance functions on the interval
[t0− ti,+∞). Note that erf is the error function. Also, for the sake of brevity, the terms Ck1k2

, Pk1k2

and Qk1k2
are defined in Appendix D.2.2.

Covariance Function kT (kT ∗ kT )+∞
t0−ti(tj − ti)

Squared-Exponential (lT )
√
πlT
2 e

−(ti−tj)
2

2l2
T

(
1− erf

(
2t0−ti−tj

2lT

))
Matérn (ν = p+ 1

2 , lT )
∑p

k1=0

∑p
k2=0 Ck1k2

e
−

√
2p+1(2t0−ti−tj)

lT Pk1k2
(t0, ti, tj)

bounds). As a consequence, the approximation errors compensate each other (at least in part) when
computing (12). To verify this observation numerically, we compute the relative approximation error
between the criterion (9) and its approximation (12). The results are shown in Figure 7. Although
the approximation errors in the numerator and the denominator do not entirely compensate each
other, the approximation (12) appears to have lost most of its dependency to the dimensionality of the
spatial domain and to the spatial lengthscale, making (12) a decent approximation of (9) regardless of
d or lS . In the main paper, Section 5 corroborates this observation by demonstrating the usefulness of
the approximation (12) in practice.

D Convolutions of Usual Covariance Functions

In this appendix, we derive the analytic forms of the convolution of usual covariance functions listed
in Tables 3 and 4, which are used to compute the criterion (12).

D.1 Spatial Covariance Functions

In this subsection, we compute specifically the analytic forms for the convolution of usual spatial
covariance functions. We rely on a direct consequence of the convolution theorem, that is (k∗k)(x) =
F−1

(
F2 (k)

)
(x), with F(f) denoting the Fourier transform of f and F−1(f) the inverse Fourier

transform of f .

The Fourier transform F(k) of a stationary covariance function k is called the spectral density of k,
and is usually denoted S. Both functions are Fourier duals of each other (see [27] for more details).
Furthermore, it is known that if k is isotropic (i.e. it can be written as a function of r = ||x||2), then
its spectral density S(s) can be written as a function of s = ||s||2. In that case, the two functions are
linked by the pair of transforms (see [27])

k(r) =
2π

r
d
2−1

∫ ∞

0

S(s)J d
2−1(2πrs)s

d
2 ds (58)

S(s) =
2π

s
d
2−1

∫ ∞

0

k(r)J d
2−1(2πrs)r

d
2 dr (59)

where J d
2−1 is a Bessel function of the first kind and of order d/2− 1.

As an immediate consequence of (58), (59) and the convolution theorem, we have the following
corollary.
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Corollary D.1. Let k be a stationary, isotropic covariance function with spectral density S. Let
r = ||x||2 and s = ||s||2. Then,

(k ∗ k)(r) = 2π

r
d
2−1

∫ ∞

0

S2(s)J d
2−1(2πrs)s

d
2 ds (60)

where J d
2−1 is a Bessel function of the first kind and of order d/2− 1.

We now derive the analytic forms for the convolutions of usual spatial covariance functions kS .

D.1.1 Squared-Exponential Covariance Function

Lemma D.2. Let kS be a Squared-Exponential covariance function (see Table 1), with lengthscale
lS > 0. Then,

(kS ∗ kS)(x) = π
d
2 ldSe

−||x||22
4l2

S . (61)

Proof. The spectral density of a Squared-Exponential covariance function kS is (see [27])

S(s) = (2πl2S)
d
2 e−2π2l2Ss2 . (62)

According to Corollary D.1, we have

(kS ∗ kS)(x) =
2π

r
d
2−1

∫ ∞

0

S2(s)J d
2−1(2πrs)s

d
2 ds

=
2π

r
d
2−1

∫ ∞

0

(2πl2S)
de−4π2l2Ss2J d

2−1(2πrs)s
d
2 ds

=
(2π)

d+1
l2dS

r
d
2−1

∫ ∞

0

e−4π2l2Ss2J d
2−1(2πrs)s

d
2 ds (63)

where r = ||x||2 and J d
2−1 is a Bessel function of the first kind of order d

2 − 1.

It is known (see [31]) that ∫ ∞

0

e−αx2

xν+1Jν(βx)dx =
βν

(2α)ν+1
e

−β2

4α .

Therefore,

(kS ∗ kS)(x) =
(2π)

d+1
l2dS

r
d
2−1

(2πr)
d
2−1

(8π2l2S)
d
2

e
−4π2r2

16π2l2
S

= π
d
2 ldSe

−r2

4l2
S . (64)

Replacing r by ||x||2 in (64) concludes the proof.

D.1.2 Matérn Covariance Function

Lemma D.3. Let kS be a Matérn covariance function (see Table 1), with smoothness parameter
ν > 0 and lengthscale lS > 0. Then,

(kS ∗ kS)(x) =
2

d
2−2ν+1π

d
2Γ(ν + d

2 )
2

Γ(ν)2Γ(2ν + d)

(√
2ν

lS

)2ν− d
2

||x||2ν+
d
2

2 K2ν+ d
2

(
||x||2

√
2ν

lS

)
, (65)

where Γ is the Gamma function and Kα is a modified Bessel function of the second kind of order α.

Proof. The spectral density of a Matérn covariance function kS is (see [27])

S(s) =
2dπ

d
2Γ(ν + d

2 )(2ν)
ν

Γ(ν)l2νS

(
2ν

l2S
+ 4π2s2

)−ν− d
2

(66)
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where Γ is the Gamma function.

According to Corollary D.1, we have

(kS ∗ kS)(x) =
2π

r
d
2−1

∫ ∞

0

S2(s)J d
2−1(2πrs)s

d
2 ds

=
2π

r
d
2−1

∫ ∞

0

22dπdΓ2(ν + d
2 )(2ν)

2ν

Γ2(ν)l4νS

(
2ν

l2S
+ 4π2s2

)−2ν−d

J d
2−1(2πrs)s

d
2 ds

=
22d+1πd+1Γ2(ν + d

2 )(2ν)
2ν

Γ2(ν)l4νS r
d
2−1

∫ ∞

0

(
2ν

l2S
+ 4π2s2

)−2ν−d

J d
2−1(2πrs)s

d
2 ds

=
2

3d
2 π

d
2Γ2(ν + d

2 )(2ν)
2ν

Γ2(ν)l4νS r
d
2−1

∫ ∞

0

(
2ν

l2S
+ u2

)−2ν−d

J d
2−1(ru)u

d
2 du (67)

where J d
2−1 is a Bessel function of the first kind of order d

2 − 1, and (67) comes from the change of
variable u = 2πs.

It is known (see [31]) that∫ ∞

0

(a2 + x2)−(µ+1)Jα(bx)x
α+1dx =

aα−µbµ

2µΓ(µ+ 1)
Kµ−α(ab)

where Kµ−α is a modified Bessel function of the second kind of order µ− α.

Therefore,

(kS ∗ kS)(x) =
2

3d
2 π

d
2Γ2(ν + d

2 )(2ν)
2ν

Γ2(ν)l4νS r
d
2−1

(√
2ν

lS

)−2ν− d
2

r2ν+d−1

22ν+d−1Γ(2ν + d)
K2ν+ d

2

(
r
√
2ν

lS

)

=
2

d
2−2ν+1π

d
2Γ(ν + d

2 )
2

Γ(ν)2Γ(2ν + d)

(√
2ν

lS

)2ν− d
2

r2ν+
d
2K2ν+ d

2

(
r
√
2ν

lS

)
. (68)

Replacing r by ||x||2 in (68) concludes the proof.

D.2 Temporal Covariance Functions

In this section, we derive the analytic expression of the convolutions of the most popular temporal
covariance functions kT restricted to the interval [t0 − ti,+∞). Therefore, we compute many
integrals of the form ∫ +∞

t0−ti

kT (|t|)kT (|tj − ti − t|)dt,

which can be rewritten as ∫ +∞

t0−ti

kT (t)kT (t+ ti − tj)dt. (69)

since t ≥ 0 and tj − ti − t ≤ 0 for all t ∈ [t0 − ti,+∞). The form (69) will be used in every proof
of this section.

D.2.1 Squared-Exponential Covariance Function

Lemma D.4. Let kT be a Squared-Exponential covariance function (see Table 1), with lengthscale
lS > 0. Then,

(kT ∗ kT )+∞
t0−ti(ti − tj) =

√
πlT
2

e
−(ti−tj)

2

2l2
T

(
1− erf

(
2t0 − ti − tj

2lT

))
(70)

where erf is the error function.
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Proof. Since kT is a Squared-Exponential function, (69) becomes∫ +∞

t0−ti

e
−t2

2l2
T e

−(t−tj+ti)
2

2l2
T dt

=

∫ +∞

t0−ti

e

−(2t2−2(tj−ti)t+t2j+t2i−2titj)

2l2
T dt. (71)

It is known (see [31]) that∫
e−(ax2+2bx+c)dx =

1

2

√
π

a
e

b2−ac
a erf

(√
ax+

b√
a

)
where erf is the error function.

Therefore, (71) becomes
√
πlT
2

e
−(ti−tj)

2

2l2
T

(
1− erf

(
2t0 − ti − tj

2lT

))
.

D.2.2 Matérn Covariance Function

Lemma D.5. Let kT be a Matérn covariance function (see Table 1), with smoothness parameter
ν = p+ 1

2 , p ∈ N and lengthscale lT > 0. Then,

(kT ∗ kT )lT+t0−ti
t0−ti (ti − tj) =

p∑
k1=0

p∑
k2=0

Ck1k2
e

−
√

2p+1(2t0−ti−tj)

lT Pk1k2
(t0, ti, tj) (72)

where

Ck1k2 =

(
p!

(2p)!

)2
(p+ k1)!(p+ k2)!

k1!k2!(p− k1)!(p− k2)!

(
2
√
2p+ 1

lT

)2p−k1−k2−1

, (73)

Pk1k2
(t0, ti, tj) =

2p−k1−k2∑
k3=0

(
lT

2
√
2p+ 1

)k3

P (k3)(t0 − ti), (74)

P (t) = tp−k1(t− tj + ti)
p−k2 (75)

and P (k) the kth derivative of P (t) with respect to t.

Proof. The Matérn covariance function has a simpler form when its smoothness parameter ν is a
half-integer, that is ν = p+ 1

2 , p ∈ N (see [30]). In that case,

kT (t) = e
−

√
2p+1t
lT

p!

(2p)!

p∑
k1=0

(p+ k1)!

k1!(p− k1)!

(
2
√
2p+ 1t

lT

)p−k1

.

Therefore,

kT (t)kT (t+ ti − tj) =
2
√
2p+ 1

lT

p∑
k1=0

p∑
k2=0

Ck1k2
e

−
√

2p+1(2t−tj+ti)

lT P (t) (76)

with Ck1k2
defined in (73) and P (t) defined in (75).

Integrating (76), we get

2
√
2p+ 1

lT

p∑
k1=0

p∑
k2=0

Ck1k2
e

−
√

2p+1(ti−tj)

lT

∫ +∞

t0−ti

e
−2

√
2p+1t
lT P (t)dt (77)

thanks to the linearity of the integral.
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It is known (see [31]) that ∫
P (x)eaxdx =

eax

a

m∑
k=0

(−1)k
P

(k)
m (x)

ak

where Pm is a polynomial of degree m and P
(k)
m is the kth derivative of Pm.

Therefore, ∫
e

−2
√

2p+1t
lT P (t)dt = − lT

2
√
2p+ 1

e
− 2

√
2p+1t
lT

2p−k1−k2∑
k3=0

P (k3)(t)lk3

T(
2
√
2p+ 1

)k3
(78)

Combining (77) and (78) we get

(kT ∗ kT )+∞
t0−ti(ti − tj) =

p∑
k1=0

p∑
k2=0

Ck1k2e
−

√
2p+1(2t0−ti−tj)

lT Pk1k2(t0, ti, tj)

with Ck1k2
defined in (73) and Pk1k2

defined in (74).

This concludes the proof.

E Extension to Anisotropic Spatial Kernels

In this appendix, we illustrate how Theorem 4.1 could be extended to anisotropic spatial kernels
by considering an Automatic Relevance Detection (ARD) Squared-Exponential (SE). It has the
following form:

kS(x,y) = e−
1
2 (x−y)⊤M−2(x−y) (79)

where M = diag (l1, · · · , ld) is a diagonal matrix that gathers a different lengthscale for each
dimension. Observe that the isotropic SE with lengthscale lS is retrieved by setting M = lSI .

Because the ARD SE kernel (79) is anisotropic, the convolution with itself

(kS ∗ kS)(x− y) =

∮
Rd

kS(x, z)kS(y, z)dz (80)

cannot be simplified to a one-dimensional integral through a change to polar coordinates, as done
in Corollary D.1. The integral becomes more complex, but can still be computed exactly for some
kernel such as the ARD SE.
Lemma E.1. Let kS be an ARD SE covariance function with parameter M . Then,

(kS ∗ kS)(x− y) = π
d
2 det (M) e−

1
4 (x−y)⊤M−2(x−y). (81)

Proof. For the ARD SE kernel with parameter M = diag (l1, · · · , ld), the convolution (80) is

(kS ∗ kS)(x− y) =

∮
Rd

e−
1
2 (x−z)⊤M−2(x−z)e−

1
2 (y−z)⊤M−2(y−z)dz

= e−
1
2 (xM

−2x+yM−2y)
∮
Rd

e−z⊤M−2z+z⊤M−2(x+y)dz

= e−
1
2 (xM

−2x+yM−2y)
∮
Rd

e
∑d

k=1 zk(xk+yk−zk)/l
2
kdz1 · · · dzd

= e−
1
2 (xM

−2x+yM−2y)
d∏

k=1

∫ +∞

−∞
ezk(xk+yk−zk)/l

2
kdzk. (82)

Integrating the k-th term in (82), we get∫ +∞

−∞
ezk(xk+yk−zk)/l

2
kdzk =

1

2

√
πlke

(xk+yk)2

4l2
k

[
erf
(

t

lk
+

xk + yk
2lk

)]+∞

−∞

=
√
πlke

(xk+yk)2

4l2
k . (83)
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Injecting (83) into (82), we have

(kS ∗ kS)(x− y) = e−
1
2 (xM

−2x+yM−2y)
d∏

k=1

√
πlke

(xk+yk)2

4l2
k

= π
d
2 det (M) e

1
4 (x+y)M−2(x+y)− 1

2 (xM
−2x+yM−2y) (84)

= π
d
2 det (M) e−

1
4 (x−y)⊤M−2(x−y) (85)

where (84) holds because the determinant of a diagonal matrix is the product of its diagonal elements.

As a safety check, observe that Lemma D.2 is a special case of Lemma E.1 where M = lSI , that is,
when kS is an isotropic SE kernel.

F Relative Quantification of Relevancy

In this appendix, we discuss how (9) and its approximation (12) address the dependency on the
covariance function hyperparameters introduced by (8). For the sake of this discussion, we take kS
and kT as two Squared-Exponential (SE) covariance functions (see Table 1). A similar reasoning can
be conducted with Matérn covariance functions.

Let us start by rewriting the product of spatial and temporal convolutions C((x, t), (x′, t′)) with the
formulas provided in Tables 3 and 4 for the SE covariance functions. We get

C((x, t), (x′, t′)) = π
d
2 ldSe

−||x−x′||22
4l2

S

√
π

2
lT e

−(t−t′)2

2l2
T

(
1− erf

(
2t0 − t− t′

2lT

))
=

1

2
π

d+1
2 ldSlT e

−||x−x′||22
4l2

S

−−(t−t′)2

2l2
T

(
1− erf

(
2t0 − t− t′

2lT

))
=

1

2
π

d+1
2 ldSlTC

∗((x, t), (x′, t′)). (86)

The dependency on the covariance function hyperparameters λ, lS , lT appears clearly in (86). Both lS
and lT are used, not only to scale the spatial distance ||x− x′||2 and the temporal distance |t− t′| in
C∗, but also as a scaling constant of the magnitude of the output of the product of convolutions itself.
Because C((x, t), (x′, t′)) is involved in every term of (10) and (11) in Theorem 4.1, 1

2π
d+1
2 ldSlT can

be factored out of (10) and (11). Overall, both equations have in common the factor 1
2π

d+1
2 λ2ldSlT .

Clearly, this shows how the covariance function hyperparameters θ = (λ, lS , lT ) may control the
magnitude of the Wasserstein distances.

To capture the intrinsic relevancy of an observation regardless of the hyperparameters values, one
can compute (12), that is the ratio between (10) and (11). Doing so, the factors which are common
to the two equations cancel out. Considering the application of Theorem 4.1 with kS and kT being
SE covariance functions, the undesirable factor 1

2π
d+1
2 λ2ldSlT is removed. Clearly, (12) remains

a function of lS and lT , but the hyperparameters are only used to scale the spatial and temporal
distances, that is to control correlation lengths. However, the undesirable scaling exposed in (86) no
longer exists.

G Removal Budget

In this appendix, we discuss why the removal budget of W-DBO (see Algorithm 1), denoted bt at a
given time t, has the form {

b0 = 1,

bt+∆t = bt(1 + α)∆t/lT
(87)

with lT the temporal lengthscale (see Assumption 3.2) and α the hyperparameter of W-DBO. Crucially,
lT and t must be expressed in the same unit of time.
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Table 5: Comparison of removal budgets (87) and (88) when doing experiments of different durations
on the Hartmann3d synthetic function. All experiments use the same time domain [0, 1].

Duration D 1 Second Lengthscale lT Lengthscale lT Budget (87) Budget (88)
(seconds) (axis unit) (axis unit) (seconds) (1 + α)D/lT (1 + α)D

300 1/300 3/5 180 (1 + α)5/3 (1 + α)300

600 1/600 3/5 480 (1 + α)5/3 (1 + α)600

1800 1/1800 3/5 1080 (1 + α)5/3 (1 + α)1800

First, note that the expression of the budget is intuitive because (9) measures a ratio, expressed as a
percentage. Therefore, the budget must accumulate in a multiplicative way, leading to the exponential
form (87).

More interestingly, let us discuss the exponent ∆t/lT . Arguably, an alternative, more intuitive form
of the removal budget would be {

b0 = 1,

bt+∆t = bt(1 + α)∆t . (88)

Although easier to understand, the budget (88) presents a major problem since it depends on arbi-
trary choices made by the user. This is illustrated by Table 5, where the same synthetic function
(Hartmann3d) is optimized under three different durations. When the duration varies, the removal
budget (88), which depends on the number of elapsed seconds only, also varies. Conversely, the
budget (87) remains the same. This is because the number of temporal lengthscales elapsed during
the experiment remains constant, regardless of the experiment duration.

Using the removal budget (88) becomes really troublesome when it comes to making a recom-
mendation for the hyperparameter α. If the analysis in Section 5.1 had used the budget (88), its
recommendation α∗ would have been a function of the temporal lengthscale, and it would have been
valid only for experiments with the same duration (e.g., ten minutes). Any other experiment duration
would have required another sensitivity analysis.

Conversely, the recommendation made in Section 5.1, using the budget (87), is a single number that
is valid regardless of experiment duration. This is a much more general insight.

H Empirical Results

H.1 Experimental Settings

In each experiment, the d-dimensional spatial domain is scaled in S ′ = [0, 1]d and the temporal
domain (viewed as the (d+ 1)th dimension) is normalized in [0, 1]. Additionally, each optimization
task lasts 600 seconds (10 minutes).

Unless stated otherwise, each DBO algorithm exploits a Matern-5/2 kernel as its spatial covariance
function. GP-UCB, R-GP-UCB and ET-GP-UCB do not explicitly take into account temporal
correlations, while TV-GP-UCB uses its own temporal covariance function. Eventually, ABO and
W-DBO exploits a Matern-3/2 kernel as their temporal covariance function.

Each DBO algorithm begins its optimization task with 15 initial observations, uniformly sampled
in S ′ ×

[
0, 1

40

]
. At each iteration (at time t), (i) the noise level as well as the kernel parameters are

estimated, and (ii) the GP-UCB acquisition function is optimized to get the next query. The sum of
the times taken to perform tasks (i) and (ii) is the response time of the DBO algorithm, denoted by ∆t.
Clearly, ∆t is a function of the dataset size of the DBO algorithm. Consequently, it varies throughout
the optimization, getting larger when the DBO algorithm adds a new observation to its dataset, and
getting smaller when the DBO algorithm removes at least one point. Once (i) and (ii) are performed,
the objective function is immediately sampled (except for ABO which can decide to sample f at a
specific time in the future) and a Gaussian noise with variance equal to 5 % of the signal variance is
added. Then, the next iteration begins at time t+∆t (except for ABO if it decides to sample f later).
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Figure 8: (Left) Average response time and average regrets of the DBO solutions during the opti-
mization of the Rastrigin synthetic function. (Right) Dataset sizes of the DBO solutions during the
optimization of the Rastrigin synthetic function.

For the sake of benchmarking fairness, all the solutions have been implemented using the same
popular BO Python library, namely BOTorch [32] (MIT License). To comply with the technical
choices (i.e., Python front-end, C++ back-end), the computationally-heavy part of W-DBO (i.e., the
evaluation of the formulas in Section 4) have been implemented in C++ and bound to the Python
code with PyBind11 [33] (BSD License). All experiments have been independently replicated 10
times on a laptop equipped with an Intel Core i9-9980HK @ 2.40 GHz with 8 cores (16 threads).

H.2 Benchmarks and Figures

We provide here a detailed description of each implemented benchmark and the associated figures.
There are two figures associated with each benchmark, showing their average regrets and the size of
their datasets throughout the experiment.

In the following, the synthetic benchmarks will be described as functions of a point z in the d+ 1-
dimensional spatio-temporal domain S × T . More precisely, the point z is explicitly given by
z = (x1, · · · , xd, t). Also, we will write d′ = d+ 1 for the sake of brevity.

Rastrigin. The Rastrigin function is d′-dimensional, and has the form

f(z) = ad′ +

d′∑
i=1

z2i − a cos (2πzi) .

For the numerical evaluation, we set a = 10, d′ = 5 and we optimized the function on the domain
[−4, 4]d

′
. The results are provided in Figure 8.

Schwefel. The Schwefel function is d′-dimensional, and has the form

f(z) = 418.9829d′ −
d′∑
i=1

zi sin
(√

|zi|
)
.

For the numerical evaluation, we set d′ = 4 and we optimized the function on the domain
[−500, 500]d

′
. The results are provided in Figure 9. This benchmark has also been used to replicate

our results using the ARD covariance function studied in Appendix E. The results are provided in
Figure 10.

Styblinski-Tang. The Syblinski-Tang function is d′-dimensional, and has the form

f(z) =
1

2

d′∑
i=1

z4i − 16z2i + 5zi.
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Figure 9: (Left) Average response time and average regrets of the DBO solutions during the opti-
mization of the Schwefel synthetic function. (Right) Dataset sizes of the DBO solutions during the
optimization of the Schwefel synthetic function.

Figure 10: (Left) Average response time and average regrets of the DBO solutions using an ARD SE
kernel during the optimization of the Schwefel synthetic function. (Right) Dataset sizes of the DBO
solutions using an ARD SE kernel during the optimization of the Schwefel synthetic function.

For the numerical evaluation, we set d′ = 4 and we optimized the function on the domain [−5, 5]d
′
.

The results are provided in Figure 11.

Eggholder. The Eggholder function is 2-dimensional, and has the form

f(z) = −(z2 + 47) sin

(√
|z2 +

z1
2

+ 47|
)
− z1 sin

(√
|z1 − z2 − 47|

)
.

For the numerical evaluation, we optimized the function on the domain [−512, 512]2. The results are
provided in Figure 12.

Ackley. The Ackley function is d′-dimensional, and has the form

f(z) = −a exp

−b

√√√√ 1

d′

d′∑
i=1

z2i

− exp

 1

d′

d′∑
i=1

cos(czi)

+ a+ exp(1).

For the numerical evaluation, we set a = 20, b = 0.2, c = 2π, d′ = 4 and we optimized the function
on the domain [−32, 32]d

′
. The results are provided in Figure 13. This benchmark has also been used

to replicate our results using the ARD covariance function studied in Appendix E. The results are
provided in Figure 14.
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Figure 11: (Left) Average response time and average regrets of the DBO solutions during the
optimization of the Styblinski-Tang synthetic function. (Right) Dataset sizes of the DBO solutions
during the optimization of the Styblinski-Tang synthetic function.

Figure 12: (Left) Average response time and average regrets of the DBO solutions during the
optimization of the Eggholder synthetic function. (Right) Dataset sizes of the DBO solutions during
the optimization of the Eggholder synthetic function.

Rosenbrock. The Rosenbrock function is d′-dimensional, and has the form

f(z) =

d′−1∑
i=1

100(zi+1 − z2i )
2 + (zi − 1)2.

For the numerical evaluation, we set d′ = 3 and we optimized the function on the domain [−1, 1.5]d
′
.

The results are provided in Figure 15.

Shekel. The Shekel function is 4-dimensional, and has the form

f(z) = −
m∑
i=1

 4∑
j=1

(zj − Cji)
2 + βi

−1

.

For the numerical evaluation, we set m = 10, β = 1
10 (1, 2, 2, 4, 4, 6, 3, 7, 5, 5),

C =

4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3.6
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3.6

 ,

and we optimized the function on the domain [0, 10]4. The results are provided in Figure 16.
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Figure 13: (Left) Average response time and average regrets of the DBO solutions during the
optimization of the Ackley synthetic function. (Right) Dataset sizes of the DBO solutions during the
optimization of the Ackley synthetic function.

Figure 14: (Left) Average response time and average regrets of the DBO solutions using an ARD SE
kernel during the optimization of the Ackley synthetic function. (Right) Dataset sizes of the DBO
solutions using an ARD SE kernel during the optimization of the Ackley synthetic function.

Hartmann-3. The Hartmann-3 function is 3-dimensional, and has the form

f(z) = −
4∑

i=1

αi exp

−
3∑

j=1

Aij(zj − Pij)
2

 .

For the numerical evaluation, we set α = (1.0, 1.2, 3.0, 3.2),

A =

 3 10 30
0.1 10 35
3 10 30
0.1 10 35

 ,P = 10−4

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 ,

and we optimized the function on the domain [0, 1]3. The results are provided in Figure 17.

Hartmann-6. The Hartmann-6 function is 6-dimensional, and has the form

f(z) = −
4∑

i=1

αi exp

−
6∑

j=1

Aij(zj − Pij)
2

 .
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Figure 15: (Left) Average response time and average regrets of the DBO solutions during the
optimization of the Rosenbrock synthetic function. (Right) Dataset sizes of the DBO solutions during
the optimization of the Rosenbrock synthetic function.

Figure 16: (Left) Average response time and average regrets of the DBO solutions during the
optimization of the Shekel synthetic function. (Right) Dataset sizes of the DBO solutions during the
optimization of the Shekel synthetic function.

For the numerical evaluation, we set α = (1.0, 1.2, 3.0, 3.2),

A =

 10 3 17 3.50 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 ,P = 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 ,

and we optimized the function on the domain [0, 1]6. The results are provided in Figure 18.

Powell. The Powell function is d′-dimensional, and has the form

f(z) =

d′/4∑
i=1

(z4i−3 + 10z4i−2)
2 + 5(z4i−1 − z4i)

2 + (z4i−2 − 2z4i−1)
4 + 10(z4i−3 − z4i)

4.

For the numerical evaluation, we set d′ = 4 and we optimized the function on the domain [−4, 5]d
′
.

The results are provided in Figure 19.

Temperature. This benchmark comes from the temperature dataset collected from 46 sensors
deployed at Intel Research Berkeley. It is a famous benchmark, used in other works such as [21, 22].
The goal of the DBO task is to activate the sensor with the highest temperature, which will vary
with time. To make the benchmark more interesting, we interpolate the data in space-time. With
this interpolation, the algorithms can activate any point in space-time, making it a 3-dimensional
benchmark (2 spatial dimensions for a location in Intel Research Berkeley, 1 temporal dimension).
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Figure 17: (Left) Average response time and average regrets of the DBO solutions during the
optimization of the Hartmann-3 synthetic function. (Right) Dataset sizes of the DBO solutions during
the optimization of the Hartmann-3 synthetic function.

Figure 18: (Left) Average response time and average regrets of the DBO solutions during the
optimization of the Hartmann-6 synthetic function. (Right) Dataset sizes of the DBO solutions during
the optimization of the Hartmann-6 synthetic function.

For the numerical evaluation, we used the first day of data. The results are provided in Figure 20.

WLAN. This benchmark aims at maximizing the throughput of a Wireless Local Area Network
(WLAN). 18 moving end-users are associated with one of 4 fixed nodes and continuously stream
a large amount of data. As they move in space, they change the radio environment of the network,
which should adapt accordingly to improve its performance. To do so, each node has a power level
that can be tuned for the purpose of reaching the best trade-off between serving all its users and not
causing interference for the neighboring nodes.

The performance of the network is computed as the sum of the Shannon capacities for each pair of
node and associated end-users. The Shannon capacity [34] sets a theoretical upper bound on the
throughput of a wireless communication. We denote it C(i, j), we express it in bits per second (bps).
It depends on Sij the Signal-to-Interference plus Noise Ratio (SINR) of the communication between
node i and end-user j, as well as on W , the bandwidth of the radio channel (in Hz):

Cij(x, t) = W log2(1 + Sij(x, t)).

Then, the objective function is

f(x, t) =

4∑
i=1

∑
j∈Ni

Cij(x, t),

with Ni the end-users associated with node i.
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Figure 19: (Left) Average response time and average regrets of the DBO solutions during the
optimization of the Powell synthetic function. (Right) Dataset sizes of the DBO solutions during the
optimization of the Powell synthetic function.

Figure 20: (Left) Average response time and average regrets of the DBO solutions during the Tem-
perature real-world experiment. (Right) Dataset sizes of the DBO solutions during the Temperature
real-world experiment.

For the numerical evaluation, we optimized the power levels x in the domain [100.1, 102.5]4. For this
experiment, the DBO solutions were evaluated with a Matérn-5/2 for the spatial covariance function
and a Matérn-1/2 for the temporal covariance function. The results are provided in Figure 21.

H.3 Discussion on Empirical Performance

In this section, we discuss the performance achieved by all the DBO solutions on the benchmarks
introduced in the previous section.

GP-UCB. This baseline, which does not take into account temporal correlations, obtains surpris-
ingly good performance in this experimental setting (continuous time, hyperparameters estimated on
the fly). Its simple behavior (i.e., keep all observations in the dataset until the end of the experiment)
hampers its response time, but this drawback is balanced by the fact that it has only three parameters
to estimate with MLE (i.e., λ, lS , σ2). Overall, it is dominated by R-GP-UCB, TV-GP-UCB and
W-DBO, but behaves surprisingly well against ABO and ET-GP-UCB (see Figure 5).

ABO. ABO performs poorly in this experimental setting. We explain this poor performance by the
fact that the hyperparameters (including the spatial and temporal lengthscales) have to be estimated
on the fly. Since ABO can decide to postpone its next query to the near future (a fraction of the
temporal lengthscale lT away), overestimating lT may cause ABO to wait for a long time before
querying f again. This interpretation is supported by the fact that the functions ABO performs the
poorest on are the ones with the largest temporal lengthscales lT , e.g., Rosenbrock (see Figure 15)
and Powell (see Figure 19). Conversely, ABO obtains competitive performance on functions with
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Figure 21: (Left) Average response time and average regrets of the DBO solutions during the WLAN
real-world experiment. (Right) Dataset sizes of the DBO solutions during the WLAN real-world
experiment.

smaller temporal lengthscales, e.g. Eggholder (see Figure 12) or Shekel (see Figure 16). These results
highlight the lack of robustness of ABO.

ET-GP-UCB. Like GP-UCB, ET-GP-UCB does not take into account temporal correlations, and
deals with stale observations by resetting its dataset each time a condition is met. Our experimental
setting exposes the lack of robustness of ET-GP-UCB, since its performance is quite poor on
most benchmarks. This is mainly due to the fact that, because the hyperparameters (including the
observational noise level σ2) are inferred on the fly, the MLE explains the variance in the observations
with an increasingly large observational noise level σ2 as time goes by. However, by construction of
ET-GP-UCB, the greater σ2, the less the dataset will be reset. As a consequence, on some benchmarks,
the event is never triggered (or not triggered enough) and the performance of ET-GP-UCB is close
to (sometimes worse than) the performance of GP-UCB. For examples, refer to Hartmann6d (see
Figure 18), Shekel (see Figure 16) or Ackley (see Figure 13). Some other times, the variance in the
observations cannot be explained by an increasingly large observational noise. In these cases, the
triggering occurs properly and ET-GP-UCB obtains competitive performance, e.g., with Powell (see
Figure 19).

R-GP-UCB. R-GP-UCB deals with stale data by resetting its dataset (like ET-GP-UCB). It indi-
rectly accounts for temporal correlations by estimating an hyperparameter ϵ, and the reset is triggered
each time the dataset size exceeds N(ϵ) (given in [21]). More often than not, its performance is
better than GP-UCB, because stale data is frequently removed from the dataset. As a consequence,
R-GP-UCB has the lowest average response time of all the DBO solutions. Overall, because of its
low response time, R-GP-UCB obtains very good performance on some benchmarks, e.g., Eggholder
(see Figure 12), Hartmann3d (see Figure 17) or Temperature (see Figure 20).

TV-GP-UCB. TV-GP-UCB directly accounts for temporal correlations by computing a specific
covariance function controlled by an hyperparameter ϵ. Although the temporal covariance function is
based on a distance between indices instead of a distance between points in time, the DBO solution
turns out to be quite robust in our experimental setting. However, its response time is hampered by
the irrelevant observations that are kept in the dataset. Because of them, TV-GP-UCB has one of the
largest response time on many benchmarks, e.g., Rastrigin (see Figure 8), Schwefel (see Figure 9) or
Shekel (see Figure 16). Nevertheless, its average performance is significantly better than the other
state-of-the-art DBO solutions.

W-DBO. Because of its ability to measure the relevancy of its observations and to remove irrelevant
observations, W-DBO achieves simultaneously good predictive performance and a low response time.
Depending on the benchmark, its dataset size follows different patterns. When the objective function
evolves smoothly, e.g., Powell (see Figure 19) or Rosenbrock (see Figure 15), W-DBO behaves
roughly like GP-UCB and TV-GP-UCB and keeps most of its observations in its dataset (although
it manages to identify and delete some irrelevant observations). When the objective function’s
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Figure 22: Snapshot from one of the videos showing the optimization conducted by W-DBO. The
normalized temporal dimension is shown on the x-axis and the normalized spatial dimension is shown
on the y-axis. The observations that are in the dataset are depicted as red dots, while the deleted
observations are depicted as black crosses. The maximal arguments {argmaxx∈S f(x, t), t ∈ T }
are depicted with a cyan curve. The predictions of W-DBO are shown with a contour plot. Finally,
the present time is depicted as a black vertical line labelled t0.

variations are more pronounced, the dataset size of W-DBO experiences sudden drops, as can be
seen with Ackley (see Figure 13), Shekel (see Figure 16) or Temperature (see Figure 20). This
suggests that W-DBO is also able to "reset" its dataset, although in a more refined way as it is able
to keep the few observations still relevant for future predictions. Thanks to its ability to adapt in
very different contexts, W-DBO outperforms state-of-the-art DBO solutions by a comfortable margin.
This performance gap can be seen in its average performance across all benchmarks (see Figure 5),
but also on most of the benchmarks themselves, e.g., Schwefel (see Figure 9), Ackley (see Figure 13),
Shekel (see Figure 16), Hartmann-6 (see Figure 18) or Powell (see Figure 19).

H.4 Animated Visualizations

In this section, we describe and discuss the two animated visualizations provided as supplementary
material for the paper. These videos show W-DBO optimizing two 2-dimensional synthetic functions.
They depict W-DBO’s predictions, collected observations and deleted observations into the spatio-
temporal domains of the functions.

One of the videos depict the optimization of the Six-Hump Camel function4 on the domain [−2, 2]2.
The SHC function is

SHC(x, t) =
(
4− 2.1x2 +

x4

3

)
x2 + xt+

(
−4 + 4t2

)
t2.

To study how W-DBO reacts to sudden changes in the objective function, the other video depict the
optimization of the piecewise function

f(x, t) =

{
SHC(x, t) if t < − 1

2 ,

SHC(t, x) otherwise.

A snapshot from the latter can be found in Figure 22. It illustrates that the benefits brought by
W-DBO are substantial, since the algorithm is able to track maxx∈S f(x, t) over the time t while

4The video is accessible at https://abardou.github.io/assets/vid/PermSix-Hump_Camel_25.0_
240.mp4
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simultaneously deleting a significant portion of collected observations. Indeed, many observations
are deemed irrelevant, either because (i) they have become stale (there are only a few observations
collected at the start of the experiment that have been kept in the dataset) or because (ii) they are
redundant with observations that are already in the dataset (many observations are located near the
maximal argument, and many of them are deleted soon after being collected).

I Limitations

For the sake of completeness, we explicitly discuss the limitations of W-DBO in this appendix. Four
limitations were identified:

• As for any BO algorithm, W-DBO exploits a GP as a surrogate model (see Assumption 3.1).
If the objective function f cannot be properly approximated by a GP, we expect the perfor-
mance of W-DBO to decline.

• As for any BO algorithm, W-DBO conducts GP inference, which causes it to manipulate
inverses of Gram matrices that scale with the dataset size. Although the main motivation of
introducing W-DBO is to reduce the dataset size, the cubic complexity of matrix inversion
algorithms can still constitute a limitation if too many observations are kept in the dataset.

• We also introduce a structure for spatio-temporal correlations with Assumption 3.2. Although
less restrictive than the one enforced by [21, 22], equivalent to the one in [20] and partially
relaxed in Appendix E, this is still a limitation since we expect the performance of W-DBO
to worsen if the objective function does not meet this assumption.

• Finally, W-DBO is not exempt from the effects of the sampling frequency. In fact, as
for any DBO algorithm, the performance of W-DBO will drop if the function varies too
much between observations. As an example, if f evolves so rapidly that two successive
observations become basically independent, W-DBO will not be able to infer anything
meaningful about the objective function.
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