

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING GUI GROUNDING WITH SPATIAL REASON- ING FROM VISUAL FEEDBACK

Anonymous authors

Paper under double-blind review

ABSTRACT

Graphical User Interface (GUI) grounding is commonly framed as a coordinate prediction task – given a natural language instruction, generate on-screen coordinates for actions such as clicks and keystrokes. However, recent Vision Language Models (VLMs) often fail to predict accurate numeric coordinates when processing GUI images with high resolutions and complex layouts. To address this issue, we reframe GUI grounding as an *interactive search task*, where the VLM generates actions to move a cursor in the GUI to locate UI elements. At each step, the model determines the target object, evaluates the spatial relations between the cursor and the target, and moves the cursor closer to the target conditioned on the movement history. In this interactive process, the rendered cursor provides visual feedback to help the model align its predictions with the corresponding on-screen locations. We train our GUI grounding model, GUI-CURSOR, using multi-step on-line reinforcement learning with a dense trajectory-based reward function. Our experimental results show that GUI-CURSOR, based on Qwen2.5-VL-7B, improves the GUI grounding accuracy and achieves state-of-the-art results on ScreenSpot-v2 (88.8% → 93.9%) and ScreenSpot-Pro (26.8% → 56.5%). Moreover, we observe that GUI-CURSOR learns to solve the problem within two steps for 95% of instances and can adaptively conduct more steps on more difficult examples.

1 INTRODUCTION

Graphical User Interface (GUI) agents solve tasks by translating user instructions into multiple GUI interaction steps (Deng et al., 2023; Li et al., 2024; Zhang et al., 2025a). A core component of these agents is GUI *grounding*, i.e., identifying a specific pixel coordinate to execute an action, like a click or keystroke. While early approaches rely on extracting coordinates from textual representations of GUIs (e.g., HTML and DOM trees), such data is often redundant and is not consistently available across platforms (Zhang et al., 2025c;b; Wu et al., 2025b). Thus, recent research emphasises pure vision-driven GUI grounding that perceives the interface directly from rendered screenshots (Xu et al., 2024; Gou et al., 2025; Yuan et al., 2025).

However, accurately predicting the precise numerical coordinates of an element on a high-resolution GUI image is a significant challenge for current vision-language models (VLMs). This difficulty largely arises from the problem of *spatial semantic alignment* (Wu et al., 2025b), which requires a language model to generate discrete coordinate tokens by implicitly mapping its understanding of a visual element to a specific set of coordinates on the GUI image. Current methods, whether based on supervised fine-tuning (Gou et al., 2025; Wu et al., 2024; Xu et al., 2024), reinforcement learning (Lu et al., 2025; Yuan et al., 2025; Liu et al., 2025c; Yang et al., 2025a), or architectural modifications (Wu et al., 2025b), commonly frame GUI grounding as a *one-step coordinate prediction problem during training*: given a screenshot, the VLM is tasked with generating the coordinates of the target. One potential limitation of this one-step learning paradigm is the *absence of a visual feedback loop*: the model is only supervised on the generated numerical coordinates, but does not receive any information on where its prediction actually lands on the GUIs. As a consequence, the model may fail to develop a robust alignment between its numerical predictions and their corresponding GUI elements.

To address this limitation, we propose GUI-CURSOR, which reframes GUI grounding as a search task in an interactive environment (Section 2.2), as shown in Fig. 1. During training, GUI-CURSOR

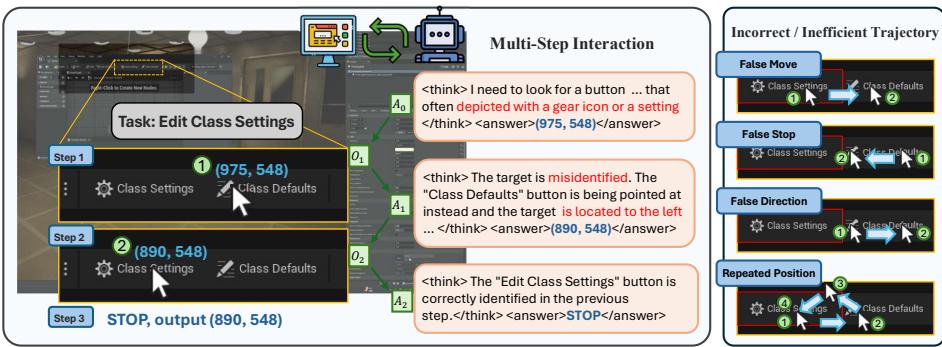


Figure 1: The workflow of our method GUI-CURSOR. The left part presents an example where GUI-CURSOR locates the target successfully: at the first step, the model correctly describes the shape of the target and predicts a coordinate; at the second step, the model evaluates the spatial relationship between the cursor and the target, and it finds the cursor is not correctly positioned, then provides a new position; at the third step, the model terminates the interaction. The right part presents the examples of incorrect or inefficient moving trajectories penalised in our reward function.

operates by controlling a virtual cursor on a GUI image; at each step, the model performs spatial reasoning to determine if the cursor is positioned over the target GUI element. If the model determines that the cursor is not positioned over the target, it predicts a new position, and the environment provides an updated image of the GUI with the cursor located in the new position. This iterative process terminates when the model determines the cursor is correctly positioned on the target UI element, or when a maximum number of cursor moving steps is reached. This interactive process improves GUI grounding training and inference in two key ways: 1) the rendered cursor provides *explicit visual feedback* that shows the predicted position on the GUI image, helping the model better align numerical coordinates with their corresponding GUI elements during training; and 2) this interactive environment allows the model to conduct spatial reasoning based on its visual feedback, allowing it to incrementally refine its predictions at inference time.

We train the model using reinforcement learning (RL) in this interactive environment, as it provides a natural framework for this sequential decision-making task. We design a reward function that combines a position-based reward with several trajectory penalties that discourage wrong or inefficient search processes (Section 2.3). Our ablation studies (Section 3.2) show that these penalties are helpful to prevent degenerate behaviour and significantly improve the downstream accuracy of the model. Furthermore, to improve the efficiency of this interactive grounding process, we introduce a strategy that balances training cost and inference accuracy (Section 2.4).

Experimental results show that GUI-CURSOR, based on Qwen2.5-VL-7B (Bai et al., 2025), achieves a new state-of-the-art performance on ScreenSpot-Pro (Li et al., 2025b) (56.5%), surpassing the prior leading model GTA1 (Yang et al., 2025a) by 6.4%; in agent evaluation, it surpasses GTA1 by 4.0% on OSWorld (Xie et al., 2024). When using a stronger base model UI-TARS-1.5-7B (Qin et al., 2025), GUI-CURSOR achieves better performance (58.1% on ScreenSpot-Pro). In terms of computational efficiency, the fine-tuned model learns to solve the problem within two steps for 95% of the instances and adaptively conducts more steps on difficult tasks, such as locating UI elements with small sizes. Besides, to test the spatial reasoning capability of the model, we design a cursor-in-box test (Section 3.3) – asking the model to classify the spatial relationship between a cursor and a box in a clean background. We observe that even the strong base model struggles with this simple task, which suggests its grounding ability may not be founded on a robust spatial understanding of images, while GUI-CURSOR obtains higher accuracy without being explicitly trained on it. **Further evaluation on spatial reasoning benchmarks indicates that learning GUI grounding by moving a cursor improves the spatial reasoning capability that can generalise to out-of-distribution domains.**

Our work makes the following contributions: 1) we reformulate GUI grounding from the static, one-step task to a dynamic, interactive process, which enables the model to learn coordinate-spatial alignment from visual feedback during training; 2) we introduce GUI-CURSOR, the GUI grounding model trained with reinforcement learning in the interactive environment, using a dense, trajectory-

108 based reward function; 3) our experiments show that GUI-CURSOR achieves a new SOTA on
 109 ScreenSpot-Pro (56.5%) with Qwen2.5-VL-7B, learns an adaptive strategy to conduct more move-
 110 ment steps for difficult tasks, and improves a general spatial reasoning capability.
 111

112 2 INTERACTIVE GUI GROUNDING WITH VISUAL FEEDBACK

113
 114 We introduce GUI-CURSOR, a method that learns GUI grounding by moving a virtual cursor in
 115 an interactive environment. This interactive environment provides explicit visual feedback through
 116 the cursor to help the model better align the coordinate and its actual spatial position on the image.
 117 During inference, it also allows the model to refine the prediction according to the spatial relation of
 118 the target and the cursor. We train this iterative behaviour using reinforcement learning, as it provides
 119 a natural framework for optimising this sequential decision-making process. In the following, we
 120 introduce the process of GUI grounding by moving a cursor (Section 2.2), reward function modelling
 121 (Section 2.3), and a strategy to balance training efficiency and inference accuracy (Section 2.4).
 122

123 2.1 PROBLEM FORMULATION

124
 125 The task of GUI grounding is to map a natural language instruction to a target coordinate on a GUI.
 126 Formally, given a GUI screenshot O with $W \times H$ pixels and a natural language instruction I describ-
 127 ing a target element, the goal is to predict an integer coordinate pair (x, y) , with $x, y \in \mathbb{N}_0$, where
 128 an action should be performed at this pixel. The ground truth is the rectangular area defined by the
 129 bounding box B . Given the top-left corner (x_{\min}, y_{\min}) and the bottom-right corner (x_{\max}, y_{\max}) ,
 130 this area is the set of all points (x, y) such that: $B = \{(x, y) | x_{\min} \leq x \leq x_{\max}, y_{\min} \leq y \leq y_{\max}\}$.
 131 The prediction (x, y) is correct when $(x, y) \in B$.
 132

133 2.2 GUI GROUNDING BY MOVING A CURSOR

134 We design an interactive environment that allows the model to locate the GUI element by moving a
 135 cursor. The interaction process consists of a sequence of steps. At the initial step $t = 0$, the screen-
 136 shot O_0 displays with a cursor at its centre (x_0, y_0) ; conditioned on a natural language instruction
 137 I and the observation O_0 , the model generates the response A_0 that contains an action to move the
 138 cursor to a position (x_1, y_1) . At each subsequent step t , the new observation O_t displays the cursor
 139 at the latest position (x_t, y_t) , and the model generates the response A_t conditioned on the interaction
 140 history and the new observation: $(I, O_0, A_0, O_1, A_1 \dots, A_{t-1}, O_t)$. Each response A_t consists of a
 141 thinking process $\{w_i\}_{i=1}^n$ before an action $\{v_i\}_{i=1}^m$:
 142

$$A_t = \langle \text{think} \rangle w_1, w_2, \dots, w_n \langle / \text{think} \rangle \langle \text{answer} \rangle v_1, v_2, \dots, v_m \langle / \text{answer} \rangle \quad (1)$$

143
 144 **Thinking** The thinking tokens $\{w_i\}_{i=1}^n$ contain the analysis about the target UI element, the current
 145 cursor's location, and the spatial relationship between the cursor and the target.
 146

147 **Action** The answer tokens $\{v_i\}_{i=1}^m$ can be either a new coordinate prediction $\{v_i\}_{i=1}^m = (x_t, y_t)$, or
 148 $\{v_i\}_{i=1}^m = \text{STOP}$ when the model judges the cursor is correctly on the target. If the new coordinate
 149 (x_t, y_t) is provided, the cursor will be rendered at the position (x_t, y_t) for the next turn observation
 150 O_{t+1} ; otherwise, the position of the cursor will not be updated.
 151

152 The episode terminates when the model outputs STOP (i.e., $\{v_i\}_{i=1}^m = \text{STOP}$) or a pre-defined
 153 maximum number of steps is reached. Then, the final position (x_T, y_T) of the cursor is returned as
 154 the grounding prediction, where T is the number of steps. Fig. 1 illustrates how the model locates
 155 the target by moving a cursor in this interactive environment.
 156

157 2.3 TRAJECTORY REWARD MODELLING

158 Our reward function aims to guide the model to obtain both an accurate final prediction and a ratio-
 159 nal search behaviour. To achieve these goals, we introduce 1) a position-based reward to minimise
 160 the distance between the final position and the target, and 2) several trajectory penalties to discour-
 161 age unreasonable search processes. Existing GUI grounding methods that use RL frameworks (Luo
 162 et al., 2025; Yang et al., 2025a; Yuan et al., 2025) mainly apply a position-based reward. Differently,
 163 regulating the search process is important in our multi-step interaction approach, because it helps to

162 prevent degenerate strategies, e.g., immediately stopping without using visual feedback or repeat-
 163 edly moving to a visited position. In the following, we introduce the position reward and trajectory
 164 penalties used in GUI-CURSOR.

166 **Position Reward** This reward measures the quality of the final cursor position, (x_T, y_T) , relative
 167 to the target bounding box B . We adopt the dense distance reward used by SE-GUI (Yuan et al.,
 168 2025), which considers both the distance to the box and centrality within it:

$$169 \quad r_p = \begin{cases} 1 + \left(1 - \frac{d_{\text{centre}}((x_T, y_T), B)}{d_{\max}(B)}\right)^2 & \text{if } (x_T, y_T) \in B \\ 170 \quad 1 - d_{\text{edge}}((x_T, y_T), B) & \text{otherwise,} \end{cases} \quad (2)$$

172 where $d_{\text{edge}}((x, y), B)$ is the Euclidean distance of (x, y) to the nearest edge of B , $d_{\max}(B)$ is the
 173 distance of the vertex of B to the centre of B , and $d_{\text{centre}}((x, y), B)$ is the distance to the centre of
 174 B . We normalise all distances by the width and height of the image. In Eq. (2), the position reward
 175 is $1 - d_{\text{edge}}$ if (x_T, y_T) is outside B , increasing with proximity to the centre when inside B .
 176

177 **Trajectory Penalties** While the position reward defines a final goal, it provides no guidance on
 178 the search process. To guide the model in learning a rational search strategy, we introduce four
 179 trajectory-based penalties that target specific undesirable behaviours. We present the examples of
 180 the penalised trajectories in the right part of Fig. 1.

181 *False Stop Penalty* (r_{FS}): Checks if the model outputs STOP but the final cursor position p_T is
 182 outside the target box B :

$$183 \quad r_{\text{FS}} = \mathbb{I}[A_T = \text{STOP} \wedge (x_T, y_T) \notin B]. \quad (3)$$

184 *False Move Penalty* (r_{FM}): Checks if there is a history position inside the target box, but the model
 185 does not output STOP and the final position p_T is outside of it:

$$187 \quad r_{\text{FM}} = \mathbb{I}[(\exists t < T \text{ s.t. } (x_t, y_t) \in B) \wedge ((x_T, y_T) \notin B)]. \quad (4)$$

188 *False Direction Penalty* (r_{FD}): Checks if the final position (x_T, y_T) is further from the target box
 189 than the initial prediction (x_1, y_1) was, in which case the movement does not shorten the distance
 190 between the prediction and the target:

$$191 \quad r_{\text{FD}} = \mathbb{I}[d_{\text{edge}}((x_T, y_T), B) > d_{\text{edge}}((x_1, y_1), B)]. \quad (5)$$

193 *Repeated Position Penalty* (r_{RP}): Checks if the model predicts the same coordinate more than once:

$$194 \quad r_{\text{RP}} = \mathbb{I}[\exists i, j \in 1, \dots, T \text{ s.t. } i \neq j \wedge (x_i, y_i) = (x_j, y_j)]. \quad (6)$$

196 Then, we define the trajectory reward R_T as a weighted combination of the position reward r_p and a
 197 sum of the trajectory penalties r_{FS} , r_{FM} , r_{FD} , and r_{RP} weighted by an hyper-parameter w_p :

$$198 \quad R_T = r_p - w_p (r_{\text{FD}} + r_{\text{FS}} + r_{\text{FM}} + r_{\text{RP}}). \quad (7)$$

200 **Training Objective** We use Group Relative Policy Optimisation (GRPO) to optimise the inter-
 201 action policy guided by the trajectory reward R_T and a format reward to ensure the valid output
 202 format DeepSeek-AI et al. (2025). GRPO has been successfully applied in prior RL-based GUI
 203 grounding methods (Luo et al., 2025; Yuan et al., 2025; Yang et al., 2025a), and we also use it for
 204 its advantages in training stability and efficiency. More details are presented Appendix B.1.
 205

206 2.4 CURSOR-CENTRIC FOCUSING

208 The iterative nature of GUI-CURSOR could be computationally demanding, as it processes a growing
 209 sequence of interaction history $(I, O_0, A_0, \dots, A_{t-1}, O_t)$ to generate an action. This becomes in-
 210 feasible when handling native high-resolution screenshots. To alleviate this issue, we use a two-part
 211 strategy that balances computational efficiency with predictive accuracy.

212 *During training*, we downscale the large image to a manageable resolution P (e.g., 1920×1080
 213 pixels in our experiments), preserving the original aspect ratio. This allows the model to learn the
 214 iterative grounding task without a heavy computational burden of processing large images. Although
 215 this may increase the grounding difficulty when searching for small UI elements, it effectively trains
 the model to approximate the target’s location.

Model	Mobile		Desktop		Web		Average
	Text	Icon/Widget	Text	Icon/Widget	Text	Icon/Widget	
<i>Supervised Fine-Tuning Methods</i>							
SeeClick (Cheng et al., 2024)	78.4	50.7	70.1	29.3	55.2	32.5	55.1
OmniParser-v2 (Lu et al., 2024)	95.5	74.6	92.3	60.9	88.0	59.6	80.7
OS-Altas-7B (Wu et al., 2024)	95.2	75.8	90.7	63.6	90.6	77.3	84.1
UGround Gou et al. (2025)	95.0	83.3	95.0	77.8	92.1	77.2	87.6
UI-TARS-7B (Qin et al., 2025)	96.9	89.1	95.4	85.0	93.6	85.2	91.6
UI-TARS-72B (Qin et al., 2025)	94.8	86.3	91.2	87.9	91.5	87.7	90.3
Jedi-7B (Xie et al., 2025)	96.9	87.2	95.9	87.9	94.4	84.2	91.7
GUI-Actor-7B (Wu et al., 2025b)	96.9	89.6	97.4	86.4	95.7	84.7	92.5
<i>Reinforcement Learning Methods</i>							
LPO-8B (Tang et al., 2025b)	97.9	82.9	95.9	86.4	95.6	84.2	90.5
SE-GUI-7B (Yuan et al., 2025)	-	-	-	-	-	-	90.3
GUI-G ² -7B (Tang et al., 2025a)	98.3	91.9	95.4	89.3	94.0	87.7	93.3
GTA1-7B (Yang et al., 2025a)	99.0	88.6	94.9	89.3	92.3	86.7	92.4
GUI-Cursor-7B (Qwen2.5-VL-7B)	99.2	90.6	94.4	91.3	96.1	89.0	93.9
GUI-Cursor-7B (UI-TARS-1.5-7B)	99.6	86.9	99.4	92.1	96.1	87.3	93.9

Table 1: ScreenSpot-v2 accuracy (%) for text and icon/widget grounding across mobile, desktop, and web interfaces. GUI-CURSOR achieves the highest average score and improves text and icon grounding over both supervised and RL-based baselines.

During inference, we employ a cursor-centric focusing strategy (CCF) for any image larger than the training resolution. CCF begins with a single step to get an initial coarse prediction on the full image. Then, it crops a P -size area centred on this initial prediction, thereby positioning the cursor at the centre of this focused view; in the following steps, the model conducts fine-grained movement within the cropped area. Here, P is the maximum resolution during training, and the following moving steps will not include the original large image in the interaction history.

This combined strategy enables GUI-CURSOR to learn a general interaction policy without a heavy computational burden, while performing accurate inference on higher-resolution displays.

3 EXPERIMENTS

3.1 EXPERIMENT SETTINGS

Implementation Details We implement GUI-CURSOR using two base models: Qwen2.5-VL-7B (Bai et al., 2025) and UI-TARS-1.5-7B (Qin et al., 2025), and we train both base models using the same settings. We train GUI-CURSOR with a maximum of 250 steps. The learning rate is 10^{-6} , the batch size is 32, and 12 sample moving trajectories for each instruction. We set the maximum moving steps to 4 during training. Following Yang et al. (2025a), we use GUI grounding datasets from Aria-UI (Yang et al., 2025b) and OS-Atlas (Wu et al., 2024), employing the same filtering and preprocessing scripts. We randomly sample data to train the model. We apply *online filtering* (Cui et al., 2025) to filter out training examples when all sampled trajectories either successfully or unsuccessfully locate the target — a common data selection strategy to remove overly easy or difficult examples for online policy models. More implementation details are available in Appendix B.

Evaluation Benchmarks and Baseline Models We evaluate our method on the four widely used GUI grounding benchmarks: ScreenSpot-V2 (Cheng et al., 2024; Wu et al., 2024), ScreenSpot-Pro (Li et al., 2025b), OSWorld-G (Xie et al., 2025), and UI-Vision (Nayak et al., 2025). We use the refined version of OSWorld-G for comparing grounding performance. We also evaluate our method on online agentic benchmarks OSWorld (Xie et al., 2024). We design a cursor-in-box test and use SpatialMQA (Liu et al., 2025a) and SPHERE (Zhang et al., 2025e) to evaluate the spatial reasoning capability. We compare GUI-CURSOR against GUI grounding models optimised by supervised fine-tuning: SeeClick (Cheng et al., 2024), UGround (Gou et al., 2025), OS-Atlas (Wu et al., 2024), UI-TARS (Qin et al., 2025) and GUI-Actor (Wu et al., 2025b), and reinforcement learning: UI-R1 (Lu et al., 2025), GUI-R1 (Luo et al., 2025), InfiGUI-R1 (Liu et al., 2025c), SE-GUI (Yuan et al., 2025), LPO (Tang et al., 2025b), GTA1 (Yang et al., 2025a), and GUI-G² (Tang et al., 2025a).

Model	CAD		Dev		Creative		Scientific		Office		OS		Avg.		
	Text	Icon	Avg.												
<i>Supervised Fine-Tuning Methods</i>															
SeeClick (Cheng et al., 2024)	0.6	0.0	1.0	0.0	2.5	0.0	3.5	0.0	1.1	0.0	2.8	0.0	1.8	0.0	1.1
OS-Atlas-7B (Wu et al., 2024)	33.1	1.4	28.8	2.8	12.2	4.7	37.5	7.3	33.9	5.7	27.1	4.5	28.1	4.0	18.9
UGround-7B (Gou et al., 2025)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	31.1
UI-TARS-7B (Qin et al., 2025)	58.4	12.4	50.0	9.1	20.8	9.4	63.9	31.8	63.3	20.8	30.8	16.9	47.8	16.2	35.7
UI-TARS-72B (Qin et al., 2025)	63.0	17.3	57.1	15.4	18.8	12.5	64.6	20.9	63.3	26.4	42.1	15.7	50.9	17.5	38.1
Jedi-7B (Xie et al., 2025)	42.9	11.0	50.0	11.9	38.0	14.1	72.9	25.5	75.1	47.2	33.6	16.9	52.6	18.2	39.5
GUI-Actor-7B (Wu et al., 2025b)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	47.7
<i>Reinforcement Learning Methods</i>															
UI-R1-3B (Lu et al., 2025)	11.2	6.3	22.7	4.1	27.3	3.5	42.4	11.8	32.2	11.3	13.1	4.5	24.9	6.4	17.8
UI-R1-E-3B (Lu et al., 2025)	37.1	12.5	46.1	6.9	41.9	4.2	56.9	21.8	65.0	26.4	32.7	10.1	-	-	33.5
GUI-R1-3B (Luo et al., 2025c)	26.4	7.8	33.8	4.8	40.9	5.6	61.8	17.3	53.6	17.0	28.1	5.6	-	-	-
InfiGUI-R1-3B (Liu et al., 2025c)	33.0	14.1	51.3	12.4	44.9	7.0	58.3	20.0	65.5	28.3	43.9	12.4	49.1	14.1	35.7
GUI-R1-7B (Luo et al., 2025)	23.9	6.3	49.4	4.8	38.9	8.4	55.6	11.8	58.7	26.4	42.1	16.9	-	-	-
SE-GUI-7B (Yuan et al., 2025)	51.3	42.2	68.2	19.3	57.6	9.1	75.0	28.2	78.5	43.4	49.5	25.8	63.5	21.0	47.3
GUI-G ² -7B (Tang et al., 2025a)	55.8	12.5	68.8	17.2	57.1	15.4	77.1	24.5	74.0	32.7	57.9	21.3	64.7	19.6	47.5
GTA1-7B (Yang et al., 2025a)	66.9	20.7	62.6	18.2	53.3	17.2	76.4	31.8	82.5	50.9	48.6	25.9	65.5	25.2	50.1
GUI-Cursor-7B (Qwen2.5-VL-7B)	80.5	33.1	65.7	18.2	62.4	25.0	83.3	32.7	84.2	43.4	65.4	31.5	73.3	29.3	56.5
GUI-Cursor-7B (UI-TARS-1.5-7B)	55.8	53.1	60.4	60.0	52.0	49.0	71.5	42.7	80.8	67.9	55.1	37.1	62.5	50.8	58.1

Table 2: ScreenSpot-Pro accuracy (%) broken down by six application domains (CAD, Dev, Creative, Scientific, Office, OS) and by text versus icon queries. GUI-CURSOR attains the best average and delivers the strongest icon grounding, notably on CAD, Creative, and OS screens, outperforming both supervised and reinforcement learning baselines.

Model	OSWorld-G						UI-Vision			
	Text Match	Element Rec.	Layout Und.	Fine-grained Manipulation	Refusal	Avg.	Basic	Func.	Spatial	Avg
OS-Atlas-7B (Wu et al., 2024)	44.1	29.4	35.2	16.8	7.4	27.7	12.2	11.2	3.7	9.0
UGround-v1-7B (Gou et al., 2025)	51.3	40.3	43.5	24.8	0	36.4	15.4	17.1	6.3	12.9
Jedi-7B (Xie et al., 2025)	65.9	55.5	57.7	46.9	7.4	54.1	-	-	-	-
Qwen2.5-VL-7B (Bai et al., 2025)	45.6	32.7	41.9	18.1	0	31.4	1.2	0.8	0.5	0.9
UI-TARS-1.5-7B (Qin et al., 2025)	67.3	64.5	65.2	42.9	0	61.9	22.9	26.1	6.6	18.1
<i>Initialised from Qwen2.5-VL-7B</i>										
GUI-Spotlight (Lei et al., 2025)	47.3	50.0	40.1	20.2	0	35.6	11.1	13.4	1.2	8.3
GUI-Cursor (Qwen2.5-VL-7B)	70.1	58.5	62.1	52.3	0	58.0	35.0	31.2	12.1	25.7
<i>Initialised from UI-TARS-1.5-7B</i>										
GTA1-7B (Yang et al., 2025a)	63.2	82.1	74.2	42.9	0	67.7	35.4	33.1	11.4	26.2
GUI-Spotlight (Lei et al., 2025)	68.2	60.6	63.2	45.6	0	62.7	32.1	30.2	9.1	23.4
GUI-Cursor (UI-TARS-1.5-7B)	77.0	66.7	70.4	67.4	0	65.6	35.4	33.5	14.2	27.3

Table 3: Evaluation results on OSWorld-G and UI-Vision. We find the GUI-Cursor obtain significantly better accuracy on tasks that require understanding and inferring spatial relationships ("Spatial" and "Fine-grained Manipulation" categories), regardless of base models.

3.2 MAIN EXPERIMENTAL RESULTS

Grounding Evaluation Table 1, Table 2, and Table 3 show the evaluation results on ScreenSpot-v2, ScreenSpot-Pro, OSWorld-G, and UI-Vision, respectively. **GUI-CURSOR**, based on UI-TARS-1.5-7B, obtains the best results in 3 out of 4 of the grounding benchmarks compared to related works, except for OSWorld-G, with a small gap of 2 compared to GTA1; while GUI-CURSOR outperforms GTA1 on OSWorld in our later analysis. As a whole, this demonstrates the effectiveness of GUI-Cursor. In the more challenging benchmark ScreenSpot-Pro, which evaluates on GUI images with high resolution and complex layouts, GUI-CURSOR outperforms the previous leading model GTA1 (Yang et al., 2025a) by 8.1%. These results demonstrate the effectiveness of GUI-CURSOR in improving GUI grounding accuracy. Moreover, we find GUI-CURSOR achieves significantly better accuracy on the tasks that require understanding and inferring spatial relationships: the "Spatial" category in UI-Vision and the "Manipulation" category in OSWorld-G. This further demonstrates that GUI-CURSOR obtains better spatial reasoning capability by learning with spatial reasoning from visual feedback. A qualitative case analysis is provided in Appendix H.

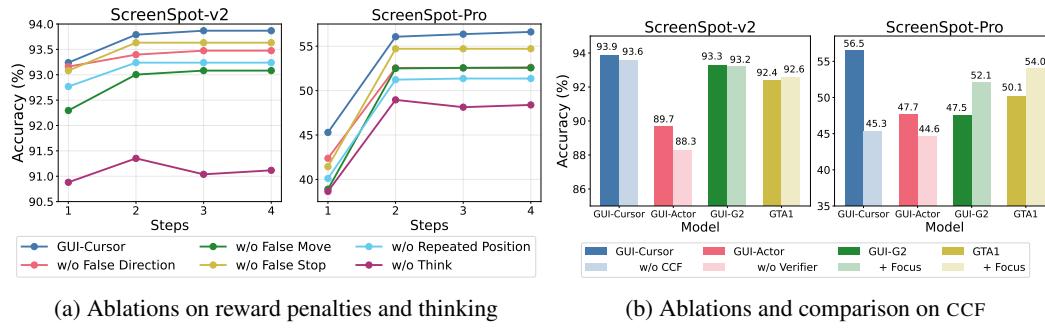
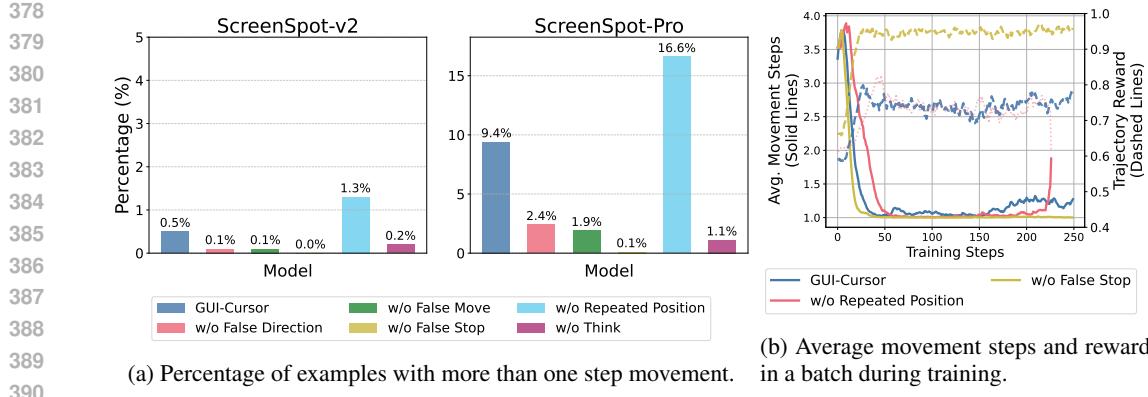


Figure 2: Ablation study on ScreenSpot-v2 and ScreenSpot-Pro, based on Qwen2.5-VL-7B. (a) Step-wise accuracy is evaluated by truncating the movement at each step, and each line presents removing each trajectory-level penalty or the thinking process; all ablations reduce accuracy relative to the full reward, confirming the need to penalise incorrect and inefficient cursor motions and the necessity of thinking before generating action. (b) Inference strategy comparison: on ScreenSpot-Pro, CCF yields the largest gains ($45.3 \rightarrow 56.5$), which is more effective than the verifier used in GUI-Actor. Overall, both CCF and the trajectory penalties contribute more in ScreenSpot-Pro for tasks with high-resolution, complex GUIs.

Online Agent Evaluation We conduct the online evaluation using OSWorld (Xie et al., 2024). In the online agentic setting, a planner model is applied to predict actions and call the grounding model to obtain the precise positions to take these actions. To compare the grounding models fairly, we use the same o3-based planning strategy (OpenAI, 2025) used by GTA1-7B (Yang et al., 2025a). The results shown in the Table 4 indicate that GUI-Cursor significantly improves agent performance. Using fewer action steps, GUI-Cursor-7B (57.1% at 50 steps) outperforms GTA1-7B (53.1% at 100 steps), and also outperforms the larger model GTA1-32B (55.4% at 100 steps). These results demonstrate that GUI-Cursor can handle more realistic and diverse grounding tasks in agentic scenarios.

Ablation Studies *Trajectory penalties and thinking process improve the grounding accuracy.* In Fig. 2a, we show the accuracy of our model without using each of the penalty terms, and without generating thinking tokens. The results show that the accuracy without each penalty is lower than the full reward, and it is less effective in improving accuracy with additional movement steps. Additionally, we find that without thinking (Eq. (1)), the accuracy of GUI-CURSOR decreases significantly, whereas Tang et al. (2025a) and Yang et al. (2025a) found that thinking is less effective in improving accuracy. One possible reason might be that GUI-CURSOR is trained in an interactive environment – the explicit analysis of the target and the spatial relationship between the target and the cursor, which is helpful for the model to check whether the cursor is correctly located at the target, can help to align the coordinates with their corresponding position on the GUI. The above results show that both reward penalties (Section 2.3) and the generation of explicit spatial reasoning tokens (Eq. (1)) are essential for the downstream accuracy of the model.

Cursor-centric focusing improves the grounding accuracy. Fig. 2b shows the accuracy without using cursor-centric focusing (w/o CCF). We find CCF in ScreenSpot-Pro is more effective ($45.3\% \rightarrow 56.5\%$) than ScreenSpot-v2 ($93.6\% \rightarrow 93.9\%$), demonstrating the effectiveness of CCF on large and complex GUI images. We also present the two-stage inference strategy used in GUI-Actor (Wu et al., 2025b), where the model first predicts a set of candidate positions and an external verifier model is applied to select the final answer. Though the verifier introduces new parameters and needs additional training, the accuracy improvement ($44.6\% \rightarrow 47.7\%$, red bars) is less effective than CCF. To further verify the effectiveness of CCF, we apply a similar approach to the SOTA methods GTA1 (Yang et al., 2025a) and GUI-G2² (Tang et al., 2025a), labelled with (+ Focus) in Fig. 2b. Here, the image is cropped around the initial prediction using the same image size as in GUI-CURSOR, and the model makes its second step prediction using this cropped image. Results



(a) Percentage of examples with more than one step movement.

(b) Average movement steps and reward in a batch during training.

Figure 4: Analysis of movement steps during inference and training, based on Qwen2.5-VL-7B. Figures (a) and (b) present the percentage of samples where the fine-tuned models take more than one step. Figure (c) shows the average number of movement steps and the overall reward per batch during training.

show that the accuracy of GTA1 is effectively improved ($50.1\% \rightarrow 54.0\%$, yellow bars), but it is still lower than that of GUI-CURSOR (56.5%). However, without CCF, the accuracy of GUI-CURSOR is lower than GTA1, which is because GTA1 is trained with a higher resolution setting (4096×2160 pixels) than GUI-CURSOR (1920×1080 pixels). The above results show that CCF is an effective method to balance the training efficiency and inference accuracy.

Analysis on the Cursor Movements GUI-CURSOR *adaptively conducts more cursor movement on more difficult tasks*. As shown in Fig. 4a, GUI-CURSOR conducts single-step interactions on most instances after CCF: it executes more than one step movement on 0.5% of examples in ScreenSpot-v2, but this rate increases to 9.4% on the more difficult dataset ScreenSpot-Pro. In Fig. 3, we present the average size of the target in the samples where the model conducts multi-step (red bar) and one-step movement (blue bar). On average, the target size for multi-step samples is 5024 pixels, compared to 31584 pixels for one-step samples. This result indicates that the model may conduct more steps when the target is small. More details and additional analyses are available in Appendix C.

Trajectory penalties influence the number of movement steps and training dynamics. Compared to the model without the repeated position penalty, the percentage of cursor moving steps increases: $0.5\% \rightarrow 1.3\%$ in ScreenSpot-v2 and $9.4\% \rightarrow 16.6\%$ in ScreenSpot-Pro, indicating that the repeated position penalty can improve efficiency. The model without the false stop penalty tends not to perform multiple cursor movements: $0.5\% \rightarrow 0.0\%$ in ScreenSpot-v2, and $9.4\% \rightarrow 0.1\%$ in ScreenSpot-Pro, which shows that the false stop penalty prevents a degenerate behaviour where the model takes only a single step. Fig. 4b presents the average number of movement steps and the overall reward in each batch during training. GUI-CURSOR initially converges to single-step predictions after approximately 50 training steps; at later steps, the average number of movement steps increases to an average of 1.25 steps. The model without the false stop penalty quickly converges to take one-step movements around 20 steps and does not learn to move at later steps, which further shows the false stop penalty is necessary for the model to learn multi-step movements. The model without the repeated position penalty converges to a single-step policy more slowly than GUI-CURSOR, and it becomes unstable when trained for more steps, with the number of steps increasing significantly around 220 steps. A more detailed analysis of training dynamics is available in Appendix D.

3.3 ANALYSIS AND DISCUSSIONS

Moving the Cursor for GUI Grounding without Fine-Tuning We investigate whether general-purpose VLMs can conduct GUI grounding by moving a cursor without fine-tuning. This zero-shot

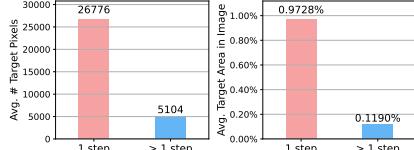


Figure 3: The average target size in one- and multi-step movement examples.

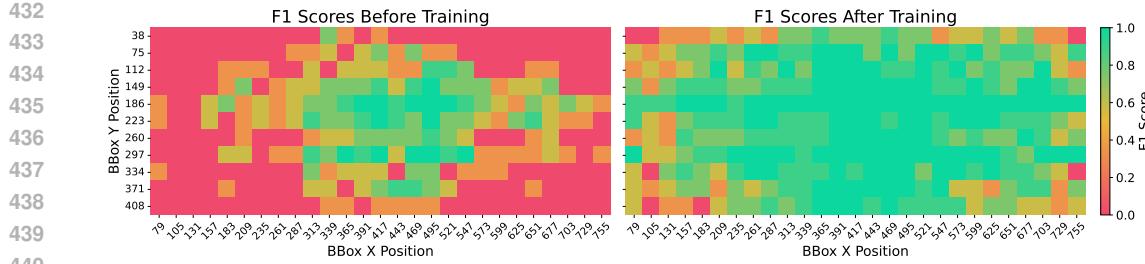


Figure 6: Cursor-in-box spatial reasoning test results. The heatmap presents F1 scores across different positions. Left: before training, Qwen-2.5-VL-7B exhibits a strong centre bias; Right: after RL training, GUI-CURSOR achieves higher F1, despite not being explicitly trained on this task.

task assesses the model’s spatial reasoning ability to identify the spatial relationship between a cursor and a target and refine its predictions accordingly. We test two distinct prompting strategies: 1) *relative Move*: the model is prompted to generate a relative offset $(\Delta x, \Delta y)$, and the cursor is then moved from its current position (x_t, y_t) to $(x_t + \Delta x, y_t + \Delta y)$; and 2) *direct Move*: the model is prompted to generate new absolute coordinates (x, y) , and the cursor is rendered at that position — this is the strategy used by GUI-CURSOR in the main experiments (Section 3.2). More implementation details and analysis are presented in Appendix B.3.

In Fig. 5, we present the accuracy for GPT-4o (Hurst et al., 2024) and Qwen2.5-VL-7B on ScreenSpot-v2. In the standard one-step GUI grounding setting (blue bars), the accuracy of GPT-4o is low (17.5%), and Qwen2.5-VL-7B performs well (88.8%) because it has been fine-tuned on GUI grounding tasks. With 10 steps of movement, GPT-4o’s performance improves with both direct move and (17.5% \rightarrow 21.7%) relative move (17.5% \rightarrow 25.5%), suggesting it possesses the underlying spatial reasoning capability to benefit from the iterative process. However, the same strategies cause a significant performance drop for the Qwen2.5-VL-7B (direct move: 36.3%, relative move: 1.3%). This result suggests that *the high single-step accuracy of Qwen2.5-VL-7B does not generalise to this iterative process*, and its success on GUI grounding may not be founded on robust spatial understanding of the GUI image. Based on this result, it is necessary to fine-tune Qwen2.5-VL-7B to gain the ability to use a cursor. We use the direct move strategy in GUI-CURSOR, as its higher zero-shot accuracy provides a better starting point for reinforcement learning.

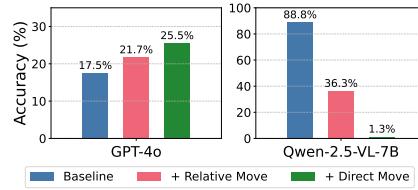


Figure 5: ScreenSpot-v2 accuracy when using different moving strategies.

Probing Spatial Reasoning We designed a *cursor-in-box* test to isolate and evaluate a VLM’s spatial reasoning accuracy over different positions of the image. The task is straightforward: given a white background containing a red bounding box and a black cursor, the model must answer “Yes or No” to the question: “Is the black cursor inside the red bounding box?”. We generated a comprehensive dataset by placing the box at different locations across the image and sampling cursor positions both inside and outside the box for each location. More implementation details and analysis are presented in Appendix E. This minimalist setup eliminates errors that stem from target misidentification in standard GUI grounding by moving a cursor, allowing us to focus on evaluating spatial reasoning around the cursor.

We evaluate Qwen-2.5-VL-7B and measure performance using the F1 score, visualised in Fig. 6. The results reveal a critical flaw in Qwen-2.5-VL-7B. The left heatmap shows that the model struggles with this simple task and also exhibits a severe positional bias. It performs well only when the box is near the centre of the image (green areas) and fails towards the edges (red areas). This failure suggests its grounding capabilities may be brittle and not founded on a robust spatial understanding of GUI images. The right heatmap shows that GUI-CURSOR achieves higher accuracy, though it is not explicitly trained on this classification task. Instead, we design trajectory penalties to discourage the wrong-moving behaviours, which may implicitly improve this spatial reasoning capability by rewarding the trajectory with a correct spatial thinking process.

Model	SPHERE				SpatialMQA
	Single Skill	Reasoning	Combine 2 Skills	Average	
Qwen2.5-VL-7B (Bai et al., 2025)	70.9	54.7	39.0	56.7	38.1
GUI-G ² -7B (Tang et al., 2025a)	71.2	55.8	39.9	57.3	38.0
GUI-Cursor (Qwen2.5-VL-7B)	71.2	56.6	42.9	58.5	43.4

Table 5: Evaluation results on spatial reasoning benchmarks SPHERE and SpatialMQA.

Generalisation of Spatial Reasoning We further evaluate the model’s spatial reasoning capability on SpatialMQA (Liu et al., 2025a) and SPHERE (Zhang et al., 2025e). SpatialMQA evaluates the accuracy of inferring the spatial relationship between two objects. Though it evaluates spatial reasoning on 3D natural images, we find that GUI-CURSOR shows improvement in such out-of-distribution settings (+5.3%). While GUI-G²-7B (Tang et al., 2025a), fine-tuned from the same model as ours using one-step RL, does not show this improvement. SPHERE evaluates the model’s spatial understanding across multiple aspects, and we find our method yields more improvements in the “reasoning” (+1.9%) and “combine 2 skills” (+3.9%) categories. The above results provide additional evidence that GUI-CURSOR obtains better spatial reasoning capability and the ability to utilise multiple spatial reasoning skills in out-of-distribution domains beyond the GUI images.

4 RELATED WORK

GUI Grounding A common implementation for these agents involves a planning model that determines the sequence of actions, and a grounding model that predicts the positions to execute them. Recently, the purely vision-driven approach has shown significant advantages in accuracy and general applicability, as it does not rely on backends of systems and external utilities (Gou et al., 2025; Wu et al., 2025b; Yang et al., 2025a). SFT is a common method for training vision-driven grounding models on large-scale GUI datasets (Hong et al., 2024; Cheng et al., 2024; Gou et al., 2025; Wu et al., 2024; Lin et al., 2025; Xu et al., 2024; Xie et al., 2025). Recently, RL with rule-based rewards has emerged as a popular technique for enhancing one-step GUI grounding (Luo et al., 2025; Zhou et al., 2025b; Lu et al., 2025; Yuan et al., 2025; Liu et al., 2025c; Yang et al., 2025a; Tang et al., 2025a). Different from existing works, our main contribution is reformulating the learning of GUI grounding to a multi-step interaction process, enabling better spatial-coordinate alignment by conducting spatial reasoning from explicit visual feedback during interaction.

Multimodal Reasoning Huang et al. (2025); Zhou et al. (2025a); Shen et al. (2025a); Chen et al. (2025a); Su et al. (2025a) show emergent multimodal reasoning capability in VLMs after RL training. Chen et al. (2025b); Liu et al. (2025b); Zhang et al. (2025d) reveal that VLMs struggle with spatial reasoning and often fail in inferring spatial relationships between objects. (Wu et al., 2025a) improves image-text interleaved reasoning through RL. Li et al. (2025a) and Chern et al. (2025) propose to generate visual thoughts to improve multimodal reasoning. Our multi-step interaction learning process is related to recent works on multi-turn interaction paradigms in VLMs (Shen et al., 2025b; Su et al., 2025b), which suggested scaling test-time interaction to improve reasoning, and tool-augmented reasoning frameworks (Yao et al., 2023; Qin et al., 2024; Qu et al., 2025), where agents iteratively refine their predictions through sequential actions.

5 CONCLUSION

We reframe GUI grounding as an interactive, cursor-driven search that leverages explicit visual feedback and stepwise spatial reasoning. During training, the rendered cursor provides explicit visual feedback that shows the predicted position on the GUI image, helping the model better align numerical coordinates with their corresponding on-screen positions. During inference, this interactive environment allows the model to incrementally refine its predictions. GUI-CURSOR couples GRPO with a trajectory-aware reward and employs cursor-centric focusing (CCF) for balancing training efficiency and inference accuracy. Our comprehensive experiments with two base models across grounding benchmarks and agentic tasks demonstrate the effectiveness of GUI-CURSOR. Moreover, the evaluation results on spatial reasoning tasks show that GUI-CURSOR obtains better spatial reasoning capability that also generalises to out-of-distribution natural images.

540 REFERENCES
541

542 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
543 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
544 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
545 Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
546 *CoRR*, abs/2502.13923, 2025. doi: 10.48550/ARXIV.2502.13923. URL <https://doi.org/10.48550/arXiv.2502.13923>.

548 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Ci-
549 hang Xie. Sft or rl? an early investigation into training r1-like reasoning large vision-language
550 models. *ArXiv*, abs/2504.11468, 2025a. URL <https://api.semanticscholar.org/CorpusID:277824294>.

552 Shiqi Chen, Tongyao Zhu, Ruochen Zhou, Jinghan Zhang, Siyang Gao, Juan Carlos Niebles, Mor
553 Geva, Junxian He, Jiajun Wu, and Manling Li. Why is spatial reasoning hard for vlms? an
554 attention mechanism perspective on focus areas. *ArXiv*, abs/2503.01773, 2025b. URL <https://api.semanticscholar.org/CorpusID:276775433>.

557 Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
558 Wu. Seeclick: Harnessing GUI grounding for advanced visual GUI agents. In Lun-Wei Ku, Andre
559 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association
560 for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August
561 11-16, 2024*, pp. 9313–9332. Association for Computational Linguistics, 2024. doi: 10.18653/
562 V1/2024.ACL-LONG.505. URL <https://doi.org/10.18653/v1/2024.acl-long.505>.

564 Ethan Chern, Zhulin Hu, Steffi Chern, Siqi Kou, Jiadi Su, Yan Ma, Zhijie Deng, and Pengfei
565 Liu. Thinking with generated images. *ArXiv*, abs/2505.22525, 2025. URL <https://api.semanticscholar.org/CorpusID:278959478>.

567 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
568 Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
569 Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
570 Ding. Process reinforcement through implicit rewards. *CoRR*, abs/2502.01456, 2025.

572 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
573 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
574 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
575 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
576 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
577 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
578 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiaoshi Li, Jiawei Wang, Jingchang
579 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
580 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
581 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
582 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
583 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
584 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
585 Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing
586 reasoning capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.
587 48550/ARXIV.2501.12948. URL <https://doi.org/10.48550/arXiv.2501.12948>.

588 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samual Stevens, Boshi Wang, Huan Sun,
589 and Yu Su. Mind2web: Towards a generalist agent for the web. In Alice Oh, Tristan Nau-
590 mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances
591 in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
592 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
593 16, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/5950bf290a1570ea401bf98882128160-Abstract-Datasets_and_Benchmarks.html.

594 Yong Du, Yuchen Yan, Fei Tang, Zhengxi Lu, Chang Zong, Weiming Lu, Shengpei Jiang, and
 595 Yongliang Shen. Test-time reinforcement learning for gui grounding via region consistency. *arXiv*
 596 *preprint arXiv:2508.05615*, 2025.

597

598 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
 599 Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI agents.
 600 In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,*
 601 *April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=kxnoqaisCT>.

602

603 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
 604 Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for GUI
 605 agents. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024,*
 606 *Seattle, WA, USA, June 16-22, 2024*, pp. 14281–14290. IEEE, 2024. doi: 10.1109/CVPR52733.
 607 2024.01354. URL <https://doi.org/10.1109/CVPR52733.2024.01354>.

608

609 Wenzuan Huang, Bohan Jia, Zijie Zhai, Shaoshen Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu,
 610 and Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language
 611 models. *ArXiv*, abs/2503.06749, 2025. URL <https://api.semanticscholar.org/CorpusID:276902576>.

612

613 OpenAI Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
 614 Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mkadry, Alex
 615 Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alexander Kirillov,
 616 Alex Nichol, Alex Paino, Alex Renzin, Alexandre Passos, Alexander Kirillov, Alexi Christakis,
 617 Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin
 618 Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew
 619 Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tul-
 620 loch, An drey Mishchenko, Angela Baek, Angela Jiang, An toine Pelisse, Antonia Woodford,
 621 Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, B. Ghor-
 622 bani, Ben Leimberger, Ben Rossen, Benjamin Sokolowsky, Ben Wang, Benjamin Zweig, Beth
 623 Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap,
 624 Brandon Walkin, Brendan Quinn, Brian Guerraci, Brian Hsu, Bright Kellogg, Brydon Eastman,
 625 Camillo Lugaressi, Carroll L. Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson,
 626 Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng
 627 Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
 628 Christine Choi, Christine McLeavey, Chris Hesse, Claudia Fischer, Clemens Winter, Coley Czar-
 629 necki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel
 630 Levin, Daniel Levy, David Carr, David Farhi, David Mély, David Robinson, David Sasaki, Denny
 631 Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Phong Duc Nguyen, Duncan Findlay, Edede
 632 Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric
 633 Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
 634 Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel
 635 Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Hai-Biao Bao,
 636 Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Hee woo Jun,
 637 Hendrik Kirchner, Henrique Pondé de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won
 638 Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai
 639 Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Ja-
 640 cob Menick, Jakub W. Pachocki, James Aung, James Betker, James Crooks, James Lennon,
 641 Jamie Ryan Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei,
 642 Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
 643 Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quiñonero Candela, Joe Beutler, Joe
 644 Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay,
 645 Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld,
 646 Joshua Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang,
 647 Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood,
 Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu,
 Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren
 Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka,
 Lilian Weng, Lindsay McCallum, Lindsey Held, Ouyang Long, Louis Feuvrier, Lu Zhang,

648 Lukasz Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Mad-
 649 die Simens, Made laine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray,
 650 Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Ma teusz Litwin, Matthew Zeng, Max John-
 651 son, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Ali Yatbaz, Mengxue Yang, Mengchao
 652 Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael
 653 Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Castro, Mikhail
 654 Pavlov, Miles Brundage, Miles Wang, Mina Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat
 655 Yesildal, Nacho Soto, Natalia Gimelshein, Na talie Cone, Natalie Staudacher, Natalie Summers,
 656 Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nikolas A. Tezak,
 657 Niko Felix, Nithanth Kudige, Nitish Shirish Keskar, Noah Deutsch, Noel Bundick, Nora Puck-
 658 ett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier
 659 Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter
 660 Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip
 661 Pronin, Phil Tillet, Prafulla Dhariwal, Qim ing Yuan, Rachel Dias, Rachel Lim, Rahul Arora,
 662 Rajan Troll, Randall Lin, Raphael Gontijo Lopes, Raul Puri, Reah Miyara, Reimar H. Leike,
 663 Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan
 664 Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby
 665 Chen, Ruslan Ramilevich Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
 666 Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray,
 667 Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino
 668 Jomoto, Shirong Wu, Shuaiqi Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Cof-
 669 fey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya
 670 Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunningham, Thomas Degry, Thomas
 671 Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov,
 672 Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
 673 Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko,
 674 Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba,
 675 Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yu-
 jia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card. *ArXiv*, abs/2410.21276, 2024. URL
<https://api.semanticscholar.org/CorpusID:273662196>.

676 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 677 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 678 serving with pagedattention. In Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine Kaufmann,
 679 and Jonathan Mace (eds.), *Proceedings of the 29th Symposium on Operating Systems Principles,*
 680 *SOSP 2023, Koblenz, Germany, October 23-26, 2023*, pp. 611–626. ACM, 2023. doi: 10.1145/
 681 3600006.3613165. URL <https://doi.org/10.1145/3600006.3613165>.

682 Bin Lei, Nuo Xu, Ali Payani, Mingyi Hong, Chunhua Liao, Yu Cao, and Caiwen Ding. \textsc{textsc-
 683 {GUI-Spotlight}}: Adaptive iterative focus refinement for enhanced gui visual grounding. *arXiv
 684 preprint arXiv:2510.04039*, 2025.

685 Chengzu Li, Wenshan Wu, Huanyu Zhang, Yan Xia, Shaoguang Mao, Li Dong, Ivan Vulić, and
 686 Furu Wei. Imagine while reasoning in space: Multimodal visualization-of-thought. *ArXiv*,
 687 abs/2501.07542, 2025a. URL <https://api.semanticscholar.org/CorpusID:275471612>.

688 Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang,
 689 and Tat-Seng Chua. Screenspot-pro: GUI grounding for professional high-resolution computer
 690 use. *CoRR*, abs/2504.07981, 2025b. doi: 10.48550/ARXIV.2504.07981. URL <https://doi.org/10.48550/arXiv.2504.07981>.

691 Wei Li, William E. Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyam-
 692 agundlu, and Oriana Riva. On the effects of data scale on UI control agents. In Amir Globersons,
 693 Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
 694 Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on
 695 Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, De-
 696 cember 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/a79f3ef3b445fd4659f44648f7ea8ffd-Abstract-Datasets_and_Benchmarks_Track.html.

702 Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Stan Weixian
 703 Lei, Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for GUI
 704 visual agent. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR*
 705 *2025, Nashville, TN, USA, June 11-15, 2025*, pp. 19498–19508. Computer Vision Foundation
 706 / IEEE, 2025. URL https://openaccess.thecvf.com/content/CVPR2025/html/Lin_ShowUI_One_Vision-Language-Action_Model_for_GUI_Visual-Agent_CVPR_2025_paper.html.

707 Jingping Liu, Ziyan Liu, Zhedong Cen, Yan Zhou, Yinan Zou, Weiyang Zhang, Haiyun Jiang, and
 708 Tong Ruan. Can multimodal large language models understand spatial relations? In Wanxiang
 709 Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of*
 710 *the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-*
 711 *pers), ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 620–632. Association for Compu-
 712 *tational Linguistics*, 2025a. URL <https://aclanthology.org/2025.acl-long.31/>.

713 Jingping Liu, Ziyan Liu, Zhedong Cen, Yan Zhou, Yinan Zou, Weiyang Zhang, Haiyun Jiang,
 714 and Tong Ruan. Can multimodal large language models understand spatial relations? *ArXiv*,
 715 abs/2505.19015, 2025b. URL <https://api.semanticscholar.org/CorpusID:278905162>.

716 Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
 717 and Fei Wu. Infigui-r1: Advancing multimodal GUI agents from reactive actors to deliberative
 718 reasoners. *CoRR*, abs/2504.14239, 2025c. doi: 10.48550/ARXIV.2504.14239. URL <https://doi.org/10.48550/arXiv.2504.14239>.

719 Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
 720 GUI agent. *CoRR*, abs/2408.00203, 2024. doi: 10.48550/ARXIV.2408.00203. URL <https://doi.org/10.48550/arXiv.2408.00203>.

721 Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Guanjing Xiong, and
 722 Hongsheng Li. UI-R1: enhancing action prediction of GUI agents by reinforcement learning.
 723 *CoRR*, abs/2503.21620, 2025. doi: 10.48550/ARXIV.2503.21620. URL <https://doi.org/10.48550/arXiv.2503.21620>.

724 Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. GUI-R1 : A generalist r1-style vision-language
 725 action model for GUI agents. *CoRR*, abs/2504.10458, 2025. doi: 10.48550/ARXIV.2504.10458.
 726 URL <https://doi.org/10.48550/arXiv.2504.10458>.

727 Shravan Nayak, Xiangru Jian, Kevin Qinghong Lin, Juan A. Rodriguez, Montek Kalsi, Nico-
 728 las Chapados, M. Tamer Özsu, Aishwarya Agrawal, David Vazquez, Christopher Pal, Per-
 729 ouz Taslakian, Spandana Gella, and Sai Rajeswar. UI-vision: A desktop-centric GUI bench-
 730 mark for visual perception and interaction. In Aarti Singh, Maryam Fazel, Daniel Hsu, Si-
 731 mon Lacoste-Julien, Felix Berkenkamp, Tegan Maharaj, Kiri Wagstaff, and Jerry Zhu (eds.),
 732 *Proceedings of the 42nd International Conference on Machine Learning*, volume 267 of *Pro-
 733 ceedings of Machine Learning Research*, pp. 45817–45851. PMLR, 13–19 Jul 2025. URL
 734 <https://proceedings.mlr.press/v267/nayak25a.html>.

735 Team OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025.

736 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xi-
 737 angru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark
 738 Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language
 739 models to master 16000+ real-world apis. In *The Twelfth International Conference on Learning
 740 Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
 741 <https://openreview.net/forum?id=dHng200Jjr>.

742 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jia-
 743 hao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
 744 Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei
 745 Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang,
 746 Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. UI-TARS: pioneering automated GUI

756 interaction with native agents. *CoRR*, abs/2501.12326, 2025. doi: 10.48550/ARXIV.2501.12326.
 757 URL <https://doi.org/10.48550/arXiv.2501.12326>.

758

759 Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and
 760 Ji-Rong Wen. Tool learning with large language models: a survey. *Frontiers Comput. Sci.*, 19
 761 (8):198343, 2025. doi: 10.1007/S11704-024-40678-2. URL <https://doi.org/10.1007/s11704-024-40678-2>.

762

763 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 764 Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. Vlm-r1: A stable
 765 and generalizable r1-style large vision-language model. *ArXiv*, abs/2504.07615, 2025a. URL
 766 <https://api.semanticscholar.org/CorpusID:277667819>.

767

768 Junhong Shen, Hao Bai, Lunjun Zhang, Yifei Zhou, Amirth Rajagopal Setlur, Shengbang Tong,
 769 Diego Caples, Nan Jiang, Tong Zhang, Ameet Talwalkar, and Aviral Kumar. Thinking vs. doing:
 770 Agents that reason by scaling test-time interaction. *ArXiv*, abs/2506.07976, 2025b. URL <https://api.semanticscholar.org/CorpusID:279251333>.

771

772 Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, and Wenhui Chen. Pixel reasoner: Incentivizing
 773 pixel-space reasoning with curiosity-driven reinforcement learning. *ArXiv*, abs/2505.15966,
 774 2025a. URL <https://api.semanticscholar.org/CorpusID:278789415>.

775

776 Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö. Arik. Learn-by-
 777 interact: A data-centric framework for self-adaptive agents in realistic environments. *ArXiv*,
 778 abs/2501.10893, 2025b. URL <https://api.semanticscholar.org/CorpusID:275757520>.

779

780 Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang,
 781 Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, and Yueling Zhuang. Gui-g²: Gaussian re-
 782 ward modeling for gui grounding, 2025a. URL <https://arxiv.org/abs/2507.15846>.

783

784 Jiaqi Tang, Yu Xia, Yi-Feng Wu, Yuwei Hu, Yuhui Chen, Qing-Guo Chen, Xiaogang Xu, Xiangyu
 785 Wu, Hao Lu, Yanqing Ma, Shiyin Lu, and Qifeng Chen. LPO: towards accurate GUI agent
 786 interaction via location preference optimization. *CoRR*, abs/2506.09373, 2025b. doi: 10.48550/
 787 ARXIV.2506.09373. URL <https://doi.org/10.48550/arXiv.2506.09373>.

788

789 Jun Wu, Jian Guan, Kaituo Feng, Qiang Liu, Shuning Wu, Liang Wang, Wei Wu, and Tieniu Tan.
 790 Reinforcing spatial reasoning in vision-language models with interwoven thinking and visual
 791 drawing. *ArXiv*, abs/2506.09965, 2025a. URL <https://api.semanticscholar.org/CorpusID:279306073>.

792

793 Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
 794 Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden, Qingwei Lin, Huan Zhang, Tong Zhang,
 795 Jianbing Zhang, Dongmei Zhang, and Jianfeng Gao. Gui-actor: Coordinate-free visual ground-
 796 ing for GUI agents. *CoRR*, abs/2506.03143, 2025b. doi: 10.48550/ARXIV.2506.03143. URL
 797 <https://doi.org/10.48550/arXiv.2506.03143>.

798

799 Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
 800 Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. OS-ATLAS: A foundation action model
 801 for generalist GUI agents. *CoRR*, abs/2410.23218, 2024. doi: 10.48550/ARXIV.2410.23218.
 802 URL <https://doi.org/10.48550/arXiv.2410.23218>.

803

804 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
 805 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
 806 Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
 807 agents for open-ended tasks in real computer environments. In Amir Globersons, Lester
 808 Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
 809 (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural
 810 Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10
 811 - 15, 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html.

810 Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
 811 Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and
 812 Caiming Xiong. Scaling computer-use grounding via user interface decomposition and synthesis.
 813 *CoRR*, abs/2505.13227, 2025. doi: 10.48550/ARXIV.2505.13227. URL <https://doi.org/10.48550/arXiv.2505.13227>.

815 Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao
 816 Yu, and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous GUI interaction.
 817 *CoRR*, abs/2412.04454, 2024. doi: 10.48550/ARXIV.2412.04454. URL <https://doi.org/10.48550/arXiv.2412.04454>.

820 Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
 821 Huang, Amrita Saha, Zeyuan Chen, et al. Gta1: Gui test-time scaling agent. *arXiv preprint*
 822 *arXiv:2507.05791*, 2025a.

823 Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
 824 Visual grounding for GUI instructions. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
 825 and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics,
 826 ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 22418–22433. Association for Compu-
 827 tational Linguistics, 2025b. URL [https://aclanthology.org/2025.findings-acl.
 828 1152/](https://aclanthology.org/2025.findings-acl.1152/).

829 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
 830 Cao. React: Synergizing reasoning and acting in language models. In *The Eleventh International
 831 Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenRe-
 832 view.net, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

833 Xianhang Ye, Yiqing Li, Wei Dai, Miancan Liu, Ziyuan Chen, Zhangye Han, Hongbo Min, Jinkui
 834 Ren, Xiantao Zhang, Wen Yang, et al. Gui-arp: Enhancing grounding with adaptive region per-
 835 ception for gui agents. *arXiv preprint arXiv:2509.15532*, 2025.

836 Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin
 837 Hou, Jinwei Chen, Peng-Tao Jiang, and Bo Li. Enhancing visual grounding for GUI agents via
 838 self-evolutionary reinforcement learning. *CoRR*, abs/2505.12370, 2025. doi: 10.48550/ARXIV.
 839 2505.12370. URL <https://doi.org/10.48550/arXiv.2505.12370>.

840 Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma,
 841 Guyue Liu, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Large lan-
 842 guage model-brained GUI agents: A survey. *Trans. Mach. Learn. Res.*, 2025, 2025a. URL
 843 <https://openreview.net/forum?id=xChvYjvXTp>.

844 Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang,
 845 Pu Zhao, Chao Du, Liqun Li, Yu Kang, Zhao Jiang, Suzhen Zheng, Rujia Wang, Jiaxu Qian,
 846 Minghua Ma, Jian-Guang Lou, Qingwei Lin, Saravan Rajmohan, and Dongmei Zhang. UFO2:
 847 the desktop agentos. *CoRR*, abs/2504.14603, 2025b. doi: 10.48550/ARXIV.2504.14603. URL
 848 <https://doi.org/10.48550/arXiv.2504.14603>.

849 Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qing-
 850 wei Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. UFO: A ui-focused agent for
 851 windows OS interaction. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings
 852 of the 2025 Conference of the Nations of the Americas Chapter of the Association for Com-
 853 putational Linguistics: Human Language Technologies, NAACL 2025 - Volume 1: Long Pa-
 854 pers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025*, pp. 597–622. Association for
 855 Computational Linguistics, 2025c. doi: 10.18653/V1/2025.NAACL-LONG.26. URL <https://doi.org/10.18653/v1/2025.nacl-long.26>.

856 Wanyue Zhang, Yibin Huang, Yangbin Xu, JingJing Huang, Helu Zhi, Shuo Ren, Wang Xu, and
 857 Jiajun Zhang. Why do mllms struggle with spatial understanding? a systematic analysis from
 858 data to architecture. *arXiv preprint arXiv:2509.02359*, 2025d.

859 Wenyu Zhang, Wei En Ng, Lixin Ma, Yuwen Wang, Junqi Zhao, Allison Koenecke, Boyang Li, and
 860 Lu Wang. SPHERE: unveiling spatial blind spots in vision-language models through hierarchical
 861

864 evaluation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
865 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*
866 (*Volume 1: Long Papers*), ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pp. 11591-
867 11609. Association for Computational Linguistics, 2025e. URL <https://aclanthology.org/2025.acl-long.568/>.

868

869 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
870 Easyrl: An efficient, scalable, multi-modality rl training framework. <https://github.com/hiyouga/EasyR1>, 2025.

871

872

873 Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
874 zero's "aha moment" in visual reasoning on a 2b non-sft model. *ArXiv*, abs/2503.05132, 2025a.
875 URL <https://api.semanticscholar.org/CorpusID:276884980>.

876

877 Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou, Qinglin Jia, and Jun Xu. GUI-G1: under-
878 standing r1-zero-like training for visual grounding in GUI agents. *CoRR*, abs/2505.15810, 2025b.
879 doi: 10.48550/ARXIV.2505.15810. URL <https://doi.org/10.48550/arXiv.2505.15810>.

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 A THE USE OF LARGE LANGUAGE MODELS
919920 The large language models are used as a general-purpose assist tool to check typos and grammar
921 errors in writing.
922923 B IMPLEMENTATION DETAILS
924926 B.1 GRPO TRAINING OBJECTIVE
927928 We optimise the policy π_θ , i.e., a vision-language model, to locate the target UI element with
929 multi-step interaction using GRPO. For each instruction I , we sample a batch of N trajectories
930 $\{\tau_1, \dots, \tau_N\}$ from the current policy, where each trajectory τ_i is a sequence of generated responses
931 at each step: $\tau_i = \{A_0^i, A_1^i, \dots, A_T^i\}$, and each response A_t^i consists of tokens with a thinking pro-
932 cess and an answer, as shown in Eq. (1). We elaborate the rollout process in Appendix B.2. We
933 calculate the reward R for each sampled trajectory: $\{R_{\tau_1}, R_{\tau_2}, \dots, R_{\tau_N}\}$, where R_{τ_i} refers to the
934 overall reward for the trajectory τ_i . The reward R_{τ_i} is calculated by the weighted sum of the trajec-
935 tory reward and a format reward $R_\tau = 0.9 \times R_T + 0.1 \times R_{\text{format}}$, where R_{format} is 1 when the output
936 format follows the format in Eq. (1), otherwise it is 0. Then, we calculate the relative advantage \hat{A}_{τ_i}
937 of each sampled trajectory:
938

938
$$\hat{A}_{\tau_i} = \frac{R_{\tau_i} - \text{Mean}(\{R_{\tau_1}, R_{\tau_2}, \dots, R_{\tau_N}\})}{\text{Std}(\{R_{\tau_1}, R_{\tau_2}, \dots, R_{\tau_N}\})}. \quad (8)$$

939

940 The objective function seeks to increase the likelihood of high-reward trajectories:
941

942
$$\mathcal{J}(\theta) = \mathbb{E}_{\tau \sim \pi_\theta} \left[\sum_i \min \left(r_i(\theta) \hat{A}_{\tau_i}, \text{clip}(r_i(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{\tau_i} \right) \right], \quad (9)$$

943

944 where, $r_i(\theta) = \frac{\prod_{t=1}^T \pi_\theta(A_t^i | I, O_0, A_0, \dots, O_{t-1})}{\prod_{t=1}^T \pi_{\theta_{\text{old}}}(A_t^i | I, O_0, A_0, \dots, O_{t-1})}$ is the probability ratio for responses in the trajectory
945 τ_i , ϵ controls the trust region. We omit the KL regularisation term as previous work shows that it
946 does not improve the grounding accuracy (Yang et al., 2025a).
947950 B.2 MOVING TRAJECTORY ROLLOUT
951952 Given an instruction I and a GUI screenshot O , we rollout N different trajectories $\{\tau_i\}_{i=1}^N$ for each
953 GRPO optimisation step by the following process: At the first step, we sample N different responses
954 $\{A_0^i\}_{i=1}^N$ conditioned on the same initial history (I, O_0) , where each response has a thinking process
955 before the action, and we do not constrain the action to be different. At the subsequence steps,
956 we sample 1 response A_t^i conditioned on the interaction history $(I, O_0, A_0^i, \dots, A_{t-1}^i, O_t^i)$. Each
957 trajectory τ_i stops growing until the action part in A_t^i is STOP, or the maximum number of steps T
958 is reached. We use vLLM (Kwon et al., 2023) for efficient inference during rollout.
959960 B.3 RELATIVE AND DIRECT MOVING STRATEGIES
961962 We try two action strategies for moving the cursor: *relative move* and *direct move*. In the relative
963 move strategy, the model outputs relative offset $(\Delta x, \Delta y)$, and the position of the cursor will be
964 moved from (x, y) to $(x + \Delta x, y + \Delta y)$, where Δx and Δy are integers, positive and negative
965 Δx moves the cursor right and left, and positive and negative Δy moves the cursor down and up,
966 respectively. We evaluate both strategies for GPT-4o and Qwen-2.5-VL-7B. We present the prompt
967 used by GPT-4o in Fig. 20.968 We tuned the prompts of Qwen-2.5-VL-7B for both strategies. However, we found that it fails to
969 conduct relative movement with an accuracy close to zero. It might be because the model has been
970 heavily fine-tuned on grounding data that requires directly outputting the coordinates. Therefore, in
971 GUI-CURSOR, we use the direct move strategy with better starting accuracy for RL training. The
972 system prompt used by GUI-CURSOR is presented in Fig. 19.

Model	Mobile		Desktop		Web		Average
	Text	Icon/Widget	Text	Icon/Widget	Text	Icon/Widget	
GPT-4o	20.5	22.7	21.1	24.3	10.0	6.3	17.5
+ Direct Move, 10 Steps	29.3	30.1	26.3	20.0	14.8	9.7	21.7
+ Relative Move, 10 Steps	46.3	27.7	36.6	15.0	17.5	9.9	25.5
Qwen-2.5-VL-7B	97.6	87.2	90.2	74.2	93.2	81.3	88.8
+ Direct Move, 4 Steps	50.0	28.3	57.2	19.0	42.9	20.3	36.3
+ Relative Move, 4 Steps	2.7	2.1	1.7	1.6	0.0	0.0	1.3

Table 6: ScreenSpot-v2 accuracy (%) of VLMs without fine-tuning using the direct and relative moving strategies.

B.4 HYPERPARAMETER SETTINGS

GUI-CURSOR moves a cursor to locate the target. We use a cursor image with a size of 20×31 , and we present it in Fig. 10. We set the weight of the trajectory penalty w_p to 0.2 (Eq. (7)) in our experiments. We empirically observe that the false stop penalty is crucial for preventing the model from only conducting a single prediction without using the visual feedback, which may be because it results in a higher reward for the trajectories with accurate movements. We find that the accuracy improves slightly when increasing the weight of the false stop penalty r_{FS} to 0.5 and keeping other penalties 0.2. We train the model using 8 NVIDIA A100 80GB GPUs. We implement RL training based on EasyR1 (Zheng et al., 2025) During training, we evaluate the model on the validation set every 20 steps and save a checkpoint every 50 steps. We measure the success rate on the validation set, where a sample is considered successful if the final predicted position is within the target area and the final action is STOP. In our main experiments, we use the model at the 200th step, as the success rate does not improve in later steps, as shown in the third figure of Fig. 8. Because sampling multi-step moving trajectories is time-consuming, we set the maximum number of movement steps to 4 during training. We find that setting the maximum steps to 3 decreases around 1.0 success rate in validation data. We set the maximum response length to 512. We set the temperature to 0.5 for sampling trajectories during training and use greedy decoding during inference.

B.5 CURSOR-CENTRIC FOCUSING

During training, we set the maximum resolution P to 1920×1080 , and any larger image will be downsampled to this resolution while keeping the original aspect ratio. Qwen2.5-VL-7B uses a patch size of 14×14 and aggregates each 4 adjacent patch features before forwarding to the transformer, so the maximum number of tokens for each image is around 26k. During inference, we apply CCF to obtain better accuracy in the task with a higher resolution than the maximum resolution during training. It crops the full image based on the initial prediction. The crop is sized to the maximum training resolution while maintaining the original image’s aspect ratio. It attempts to centre this crop on the initial prediction; however, if the prediction is near an edge, the crop area is shifted to ensure it remains entirely within the image boundaries. Though we have shown that CCF can improve the accuracy effectively, its accuracy could be impacted by the initial prediction, because the target could be out of the focused area when the initial prediction is far away from the target; we find that 10.3% of examples in ScreenSpot-Pro have this issue. Several potential strategies could be used to alleviate this issue, such as increasing the training resolution size to improve the initial prediction precision, keeping the initial image in the interaction history, and training the model to decide which area to focus. We will explore these strategies in future work.

C NUMBER OF MOVEMENT STEPS AND TARGET SIZES

We analyse the relationship between the target UI element size and the moving steps. In Fig. 7, we group the samples into two groups: only conducting one step movement after CCF, and conducting more than one step movement after CCF. Within each group, we then calculate the average target size and the average proportion of the target in the image, shown in the first and second row of Fig. 7, respectively. The first row shows that the samples with more than one step movement have a smaller target size. The second row further shows that the target with a smaller relative size in an image may

Figure 7: Analysis of the relationship between moving steps and the size of the target UI element. Above: the average number of pixels of the targets. Below: the average proportion of target size in the GUI image. All results in the last column refer to the average values in both datasets. The red and blue bars refer to the samples that move one step and more than one step, respectively. The comparisons show that the target size is often smaller in the samples that move more than one step.



Figure 8: The training dynamics of GUI-CURSOR. The first and the second figures show the average number of response tokens and the average trajectory reward in each batch during training, respectively; the values are calculated after the online filtering. The third figure shows the success rate every 20 training steps in the validation data; the success rate metric requires the final prediction within the target area, and the model explicitly outputs STOP at the last step.

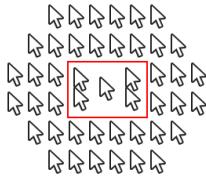
need more movement steps. These results show that the smaller targets may increase the difficulty of the tasks, and thus the model may conduct more movement steps in these samples. We also analyse the average number of image pixels in each group, and we found that the higher resolution may not always be related to more movement steps, e.g., in ScreenSpot-Pro, the average number of pixels in the moving one-step group is 56×10^5 , which is larger than the moving more steps group 50×10^5 .

D TRAINING DYNAMICS

We present the average number of response tokens, trajectory reward R_T (Eq. (7)), and the success rate in validation data during training in Fig. 8, where the token numbers and the trajectory reward are calculated after the online filtering. According to Fig. 8 and Fig. 4b, we observe that the learning of GUI-CURSOR mainly has three stages.

Phase one (cold start) – From 0 to 25 steps, the response length decreases, and the trajectory reward increases. At this stage, the model learns to output the correct format, and the accuracy of prediction improves, resulting in higher trajectory reward values.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098



1099
1100
1101
Figure 10: Example of a box position in the white background. The black frames are used for edge
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 10: Example of a box position in the white background. The black frames are used for edge visualisation and are not a part of the image for testing. For each test example, we only show one box with one cursor in the white background.

Phase two (single-step grounding) – From 50 to 150 steps, the response length decreases, and the trajectory reward also decreases. Since we apply the online filtering, the easy training samples will be filtered out. The decrease in the trajectory reward indicates that more difficult samples are used to train the model. As shown in Fig. 4b, the average number of movement steps is close to 1 at this stage. These results indicate that at this stage, the model continues to improve one-step grounding accuracy but hasn't learnt a good cursor moving policy.

Phase three (multi-step movements) – From 150 to 200 steps, the trajectory rewards, the response length, and the average number of movement steps increase. This indicates that the model learns to execute multiple movements to refine the cursor position, thereby obtaining better accuracy. Additionally, the increase in response length may indicate that the model generates more spatial analysis, thereby improving the moving correctness.

We also present the evaluation results on saved checkpoints (every 50 steps) in Fig. 9, which also shows a three-stage learning property. We observe that on ScreenSpot-v2, the accuracy is highest at the 150th step, which is the end of the second stage. In contrast, on the more difficult ScreenSpot-Pro benchmark, the accuracy continues to improve after the 150th steps. These results indicate that 1) the model improves one-step grounding accuracy at the first two stages, which is usually sufficient for easier tasks in ScreenSpot-v2; 2) it learns rational multi-step movement at the third stage, which helps to improve accuracy for more difficult tasks in ScreenSpot-Pro; and 3) though it hasn't learn a moving policy well at the second stage, the visual feedback helps the alignment between coordinates and their on-screen positions, and the accuracy at the 150th steps in ScreenSpot-v2 is 94.2, significantly higher than the baselines presented in Table 1.

E CURSOR-IN-BOX TEST

We design the "cursor-in-box" test to evaluate how well a VLM can infer the spatial relationship between a cursor and another object. We present the model with a white background showing a red

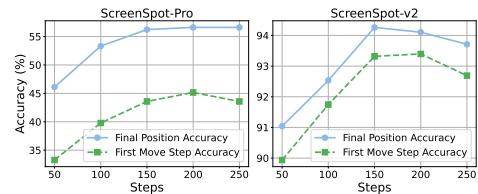


Figure 9: Accuracy of intermediate checkpoints on test benchmarks.

1134 bounding box and a black mouse cursor, and the model classifies whether the cursor is inside the
 1135 box. We present the prompt in Fig. 18. We generate the test dataset by putting the bounding box
 1136 across different positions of the white background, and putting the cursor inside or outside each box.
 1137 In Fig. 10, we present an example showing a box in a white background, and several cursors around
 1138 it are used to test the classification accuracy at this box position. We only show one box with one
 1139 cursor for each test example. For each box, we select 5 positions inside it, with 4 close to the corners
 1140 and one at the centre; the positions outside the box have a distance shorter than 3 times the cursor
 1141 size. We test the classification F1 scores at different positions of the background, and then obtain
 1142 the heatmap as shown in Fig. 6.

1143

1144 F TRAINING AND INFERENCE EFFICIENCY

1145

1146 We compare the number of training samples of different grounding models in Table 7. We can
 1147 see that GUI-CURSOR achieves the best accuracy while using the fewest training samples, demon-
 1148 strating the data efficiency feature of our method. Regarding the efficiency of multi-turn RL, the
 1149 average training time per step for one-step and four-step movements is 289 and 680 seconds in our
 1150 implementation. The primary bottleneck is online trajectory rollout, which increases from 157 to
 1151 432 seconds when using four-step movement in our implementation. To accelerate the multi-step
 1152 rollout, we can improve parallelism through asynchronous processing or by adding more machines
 1153 for the rollout. In summary, our method remains more efficient overall, achieving better accuracy
 1154 with significantly fewer samples and fewer total steps.

1155

1156 In Table 8, we compare the inference speed when taking different steps of movement. Compared
 1157 to one-step inference, the samples that conduct 2- and 3-step movement decrease the throughput
 1158 by 11% and 41%. As 95% of samples can be solved within two steps, our method decreases the
 1159 efficiency by 12.5% compared to one-step methods on average.

1160

Model	# Training Samples	ScreenSpot-Pro Acc.
<i>Initialised from Qwen2.5-VL-7B</i>		
Qwen2.5-VL-7B (Bai et al., 2025)	-	26.8
GUI-Actor-7B (Wu et al., 2025b)	1.76M	47.7
GUI-G ² -7B (Tang et al., 2025a)	100K	47.5
GUI-Spotlight-7B (Lei et al., 2025)	18.6K	38.7%
GUI-Cursor-7B	8K	56.5
<i>Initialised from UI-TARS-1.5-7B</i>		
UI-TARS-1.5-7B (Qin et al., 2025)	-	38.7
GTA1-7B (Yang et al., 2025a)	64K	50.1
GUI-Spotlight-7B (Lei et al., 2025)	18.6K	52.8
GUI-Cursor-7B	8K	58.1

1171

1172 Table 7: Comparison of the number of training samples and the accuracy on ScreenSpot-Pro.

1173

1174

1175

1176

1177

Steps	1	2	3
# Samples per Second	2.35	2.08	1.38

1178

Table 8: Inference speed (Samples per Second) by number of steps.

1179

1180

1181 G DISCUSSION ON CONCURRENT ITERATIVE CROPPING METHODS

1182

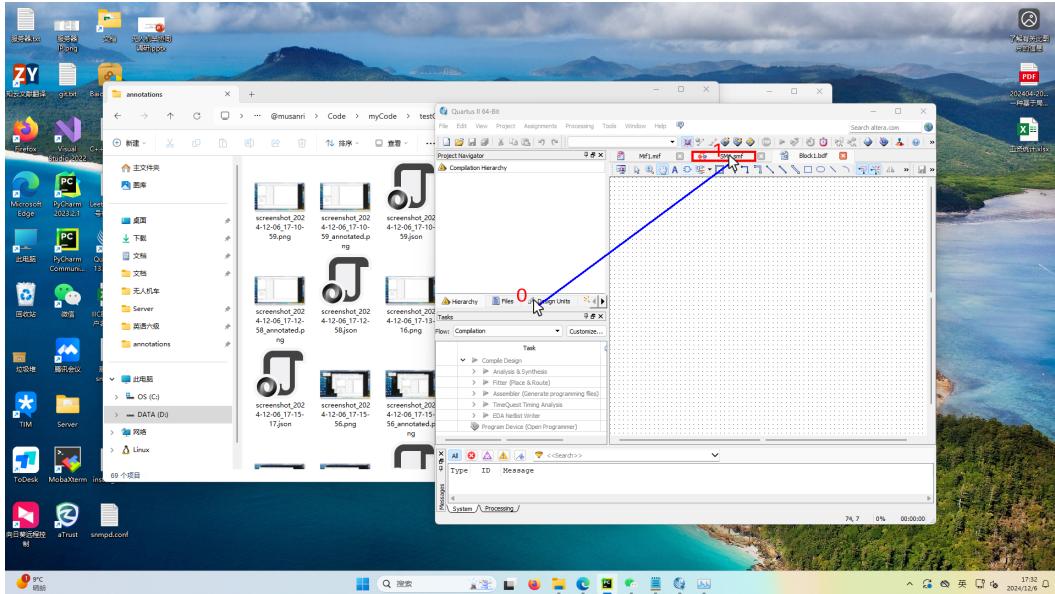
1183 Some concurrent works propose to crop GUI images and narrow the prediction region iteratively (Lei
 1184 et al., 2025; Ye et al., 2025; Du et al., 2025). We compare CCF with them in the following. GUI-
 1185 Spotlight (Lei et al., 2025) introduces three tools for narrowing the region iteratively and is trained
 1186 by multi-step RL. CCF is simpler and more effective, e.g., applying CCF to GTA1 surpasses GUI-
 1187 Spotlight on ScreenSpot-Pro by 2.2% without training. GUI-ARP (Ye et al., 2025) proposes a crop-
 1188 ping strategy by taking the signals from attention scores, but it needs two-stage large-scale training.

1188
 1189 Though it shows advantage on the larger images, it is less effective in tasks with standard image
 1190 sizes (e.g., it only obtains 91.8% accuracy in ScreenSpot-v2) due to it does not solve the spatial
 1191 semantic alignment issue. GUI-RC/RCPO (Du et al., 2025) samples multiple predictions and then
 1192 conducts voting or test-time RL to improve the grounding accuracy. GUI-RC also does not require
 1193 training, but CCF remains simpler and more effective, e.g., in ScreenSpot-Pro, GUI-G2-7B +CCF
 1194 achieves 52.1% accuracy, but GUI-G2-7B +GUI-RC only achieves 47.9%.

1195 H CASE STUDY

1196
 1197 We present case studies and visualise the prediction process of GUI-CURSOR. We render the pre-
 1198 dicted cursor trajectory as a sequence of positions connected by blue lines. Each cursor position is
 1199 labelled with a red number at its top-left position to indicate the step number. The target is high-
 1200 lighted with a red bounding box. If CCF is applied, the corresponding focused region is shown with an
 1201 orange bounding box.

1202 We present positive examples with single-step movement (Fig. 11), multi-step movement (Fig. 17),
 1203 Fig. 12 and Fig. 16). We also present negative examples with single-step movement (Fig. 15), and
 1204 multi-step movement (Fig. 13 and Fig. 14).



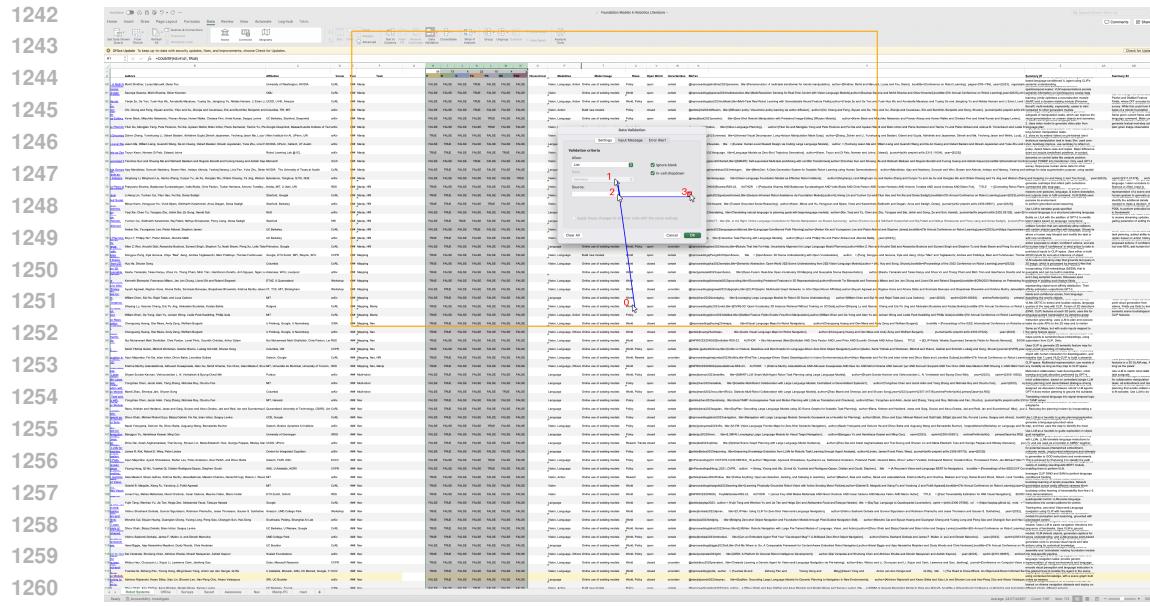
1226 **Task:** select the SM1.smf file in Quartus window

1227 **Step 0:** <think>To select the "SM1.smf" file in the Quartus window, I need to click on the tab or
 1228 button that represents this file. It appears to be located near the top of the Quartus window, among
 1229 other tabs.</think><answer>(1324, 281)</answer>

1230 **Step 1:** <think>The target, the "SM1.smf" file, has been successfully located and the cursor is posi-
 1231 tioned over it, indicating the task is complete.</think><answer>STOP</answer>

1234 Figure 11: Positive example from ScreenSpot-Pro with single-step movements.

1235
 1236
 1237
 1238
 1239
 1240
 1241



1263 **Task:** enter the interactive cell selection mode to select sources for data validation

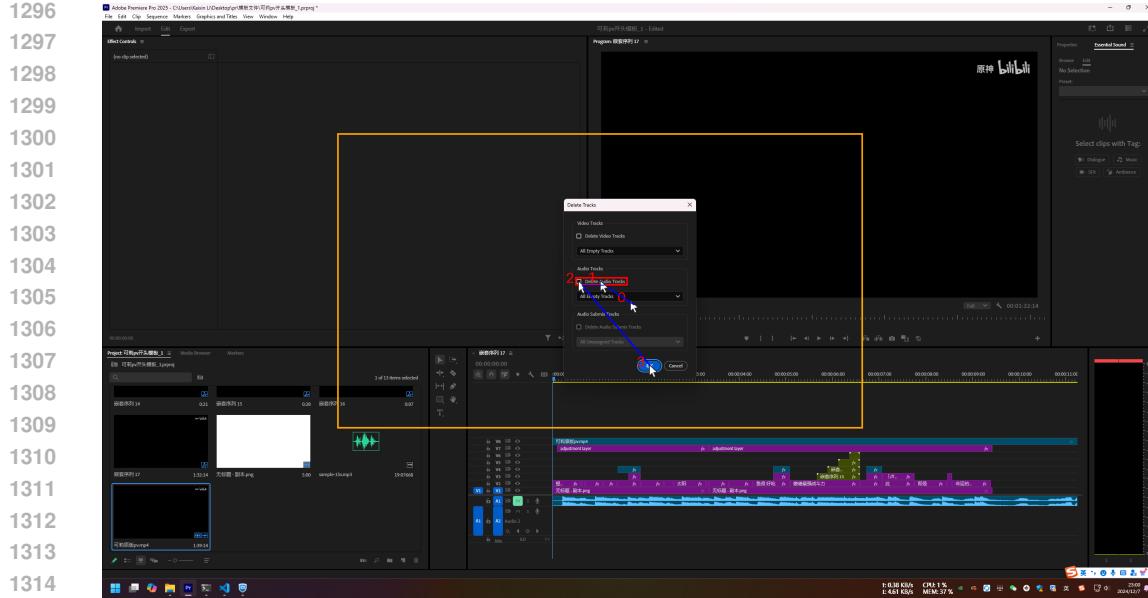
1264 **Step 0:** <think>To enter the interactive cell selection mode for data validation, I need to click on
 1265 the "between" button, which is typically a dropdown or a checkbox that allows for cell range selec-
 1266 tion.</think><answer>(1814, 606)</answer>

1267 **Step 1:** <think>To enter the interactive cell selection mode for data validation, I need to click on the
 1268 "Source" field and then click on the cell or range in the spreadsheet that I want to select as the data
 1269 source.</think><answer>(978, 603)</answer>

1270 **Step 2:** <think>The target, the interactive cell selection mode, seems to be the
 1271 small white arrow icon located at the bottom right of the "Source" field. This icon is likely the button
 1272 that allows for interactive cell selection.</think><answer>(1242, 602)</answer>

1273 **Step 3:** <think>The target, the interactive cell selection mode, appears to be the small white arrow
 1274 at the bottom right of the "Source" field, which aligns with the description of the interactive selection
 1275 tool.</think><answer>STOP</answer>

1276
 1277 Figure 12: Positive example from ScreenSpot-Pro with multi-step movements. The model changes
 1278 targets during interaction.



1317 **Task:** i want to delete all blank audio tracks

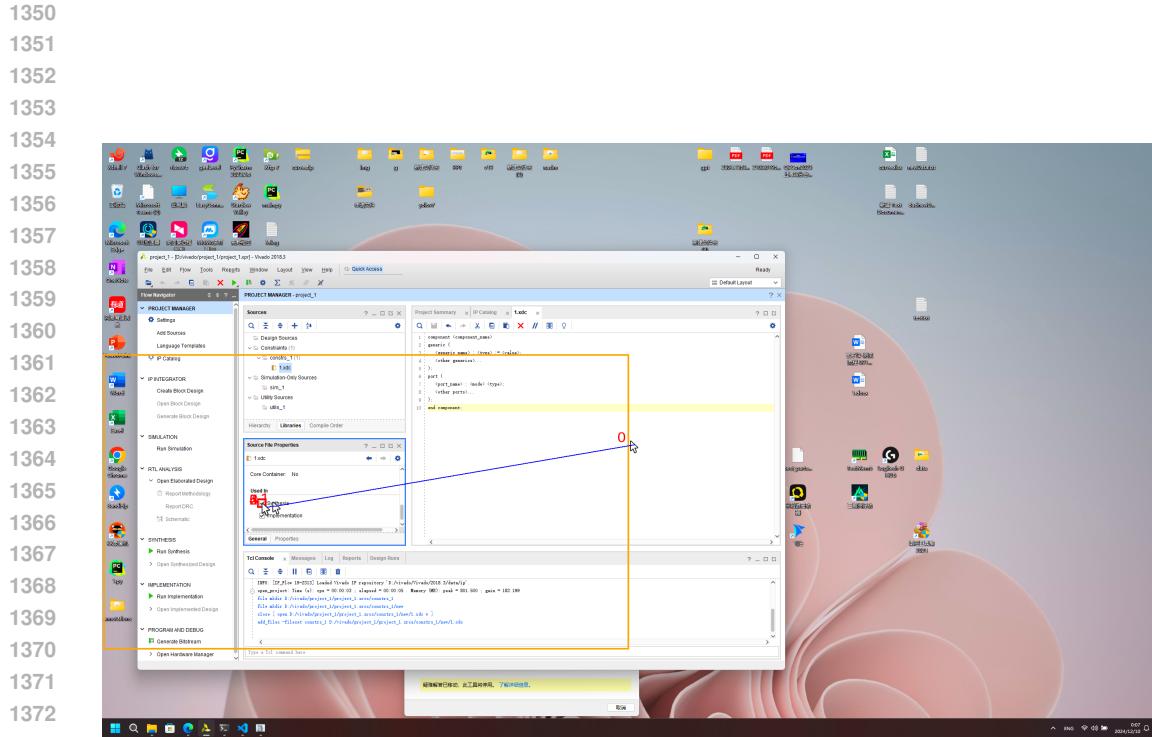
1318 **Step 0:** <think>To delete all blank audio tracks, I need to click on the "Delete Audio Tracks" check-
 1319 box and select "All Empty Tracks" from the dropdown menu.</think><answer>(1202, 667)</an-
 1320 swer>

1321 **Step 1:** <think>To delete all blank audio tracks, I need to click on the checkbox labeled "Delete Audio
 1322 Tracks" and ensure the dropdown is set to "All Empty Tracks".</think><answer>(784, 478)</an-
 1323 swer>

1324 **Step 2:** <think>The target, the checkbox for "Delete Audio Tracks," appears to be correctly clicked,
 1325 aligning with the goal to delete all empty audio tracks. The next logical step is to confirm this action
 1326 by interacting with the "OK" button.</think><answer>(1013, 746)</answer>

1327 **Step 3:** <think>The goal is to confirm the deletion of all empty audio tracks. The "OK" button
 1328 is clearly visible and seems to be the appropriate button to click to confirm the ac-
 1329 tion.</think><answer>STOP</answer>

1330
 1331 Figure 13: Negative example from ScreenSpot-Pro with multi-step movements. The task is to locate
 1332 the position for the given instruction, but the model hallucinates taking a series of actions.



1383 **Task:** turn off the synthesis of 1.xdc in vivado

1384 **Step 0:** <think>To turn off the synthesis of 1.xdc in Vivado, I need to uncheck the "Synthesis" 1385 checkbox in the "Source File Properties" window.</think><answer>(412, 861)</answer>

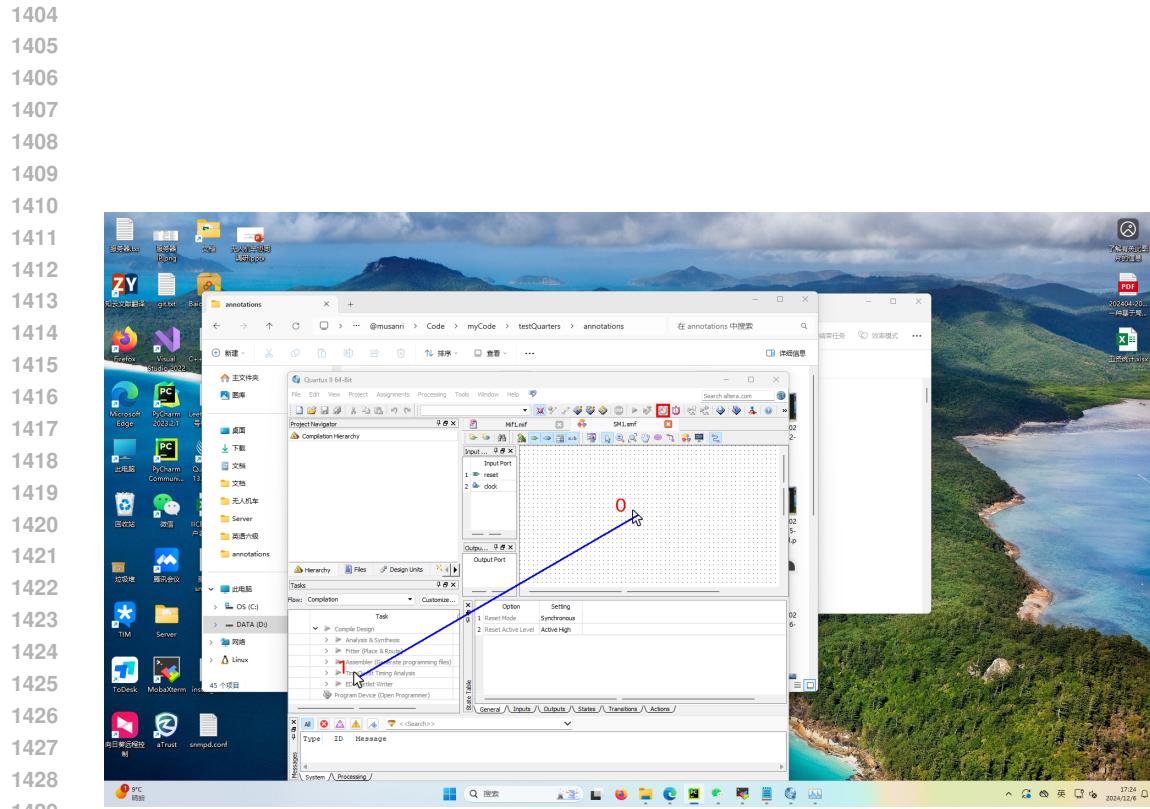
1386 **Step 1:** <think>To turn off the synthesis of the 1.xdc file, I need to uncheck the "Synthesis" checkbox 1387 in the "Source File Properties" window.</think><answer>(517, 480)</answer>

1388 **Step 2:** <think>The task is to uncheck the "Synthesis" option in the "Source File Properties" window. 1389 The checkbox for "Synthesis" is currently checked, and it needs to be unchecked to turn off synthesis.</think><answer>(517, 480)</answer>

1391 **Step 3:** <think>To turn off the synthesis of the 1.xdc file, I need to click on the checkbox labeled "Synthesis" to uncheck it. This will disable the synthesis for the file.</think><answer>(517, 1392 480)</answer>

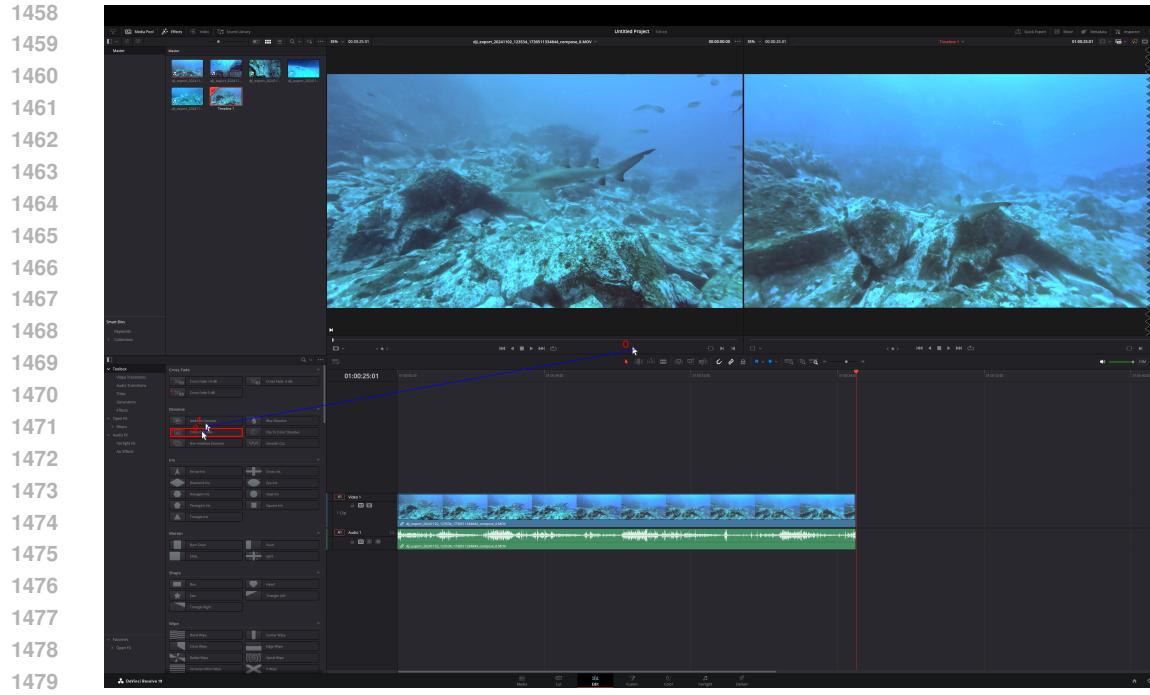
1394 **Step 4:** <think>I need to uncheck the "Synthesis" option in the "Source File Properties" window 1395 to turn off the synthesis for the 1.xdc file. The checkbox for "Synthesis" is currently checked, and 1396 clicking on it should toggle the checkbox off.</think><answer>(517, 480)</answer>

1398 Figure 14: The cursor is correctly positioned, but the same position is predicted repeatedly. The 1399 model is waiting for the action to be executed.



1443 **Task:** Start TimeQuest Timing Analyzer in toolbar of Quartus
 1444 **Step 0:** <think>To start the TimeQuest Timing Analyzer in the toolbar of Quartus, I need to locate and
 1445 click on the corresponding icon in the toolbar area of the Quartus window.</think><answer>(456,
 1446 844)</answer>
 1447 **Step 1:** <think>The target, the TimeQuest Timing Analyzer button, appears to be correctly identified
 1448 and clicked in the previous step.</think><answer>STOP</answer>

1451 Figure 15: Negative example of one-step movement. The model misidentifies the target
 1452
 1453
 1454
 1455
 1456
 1457



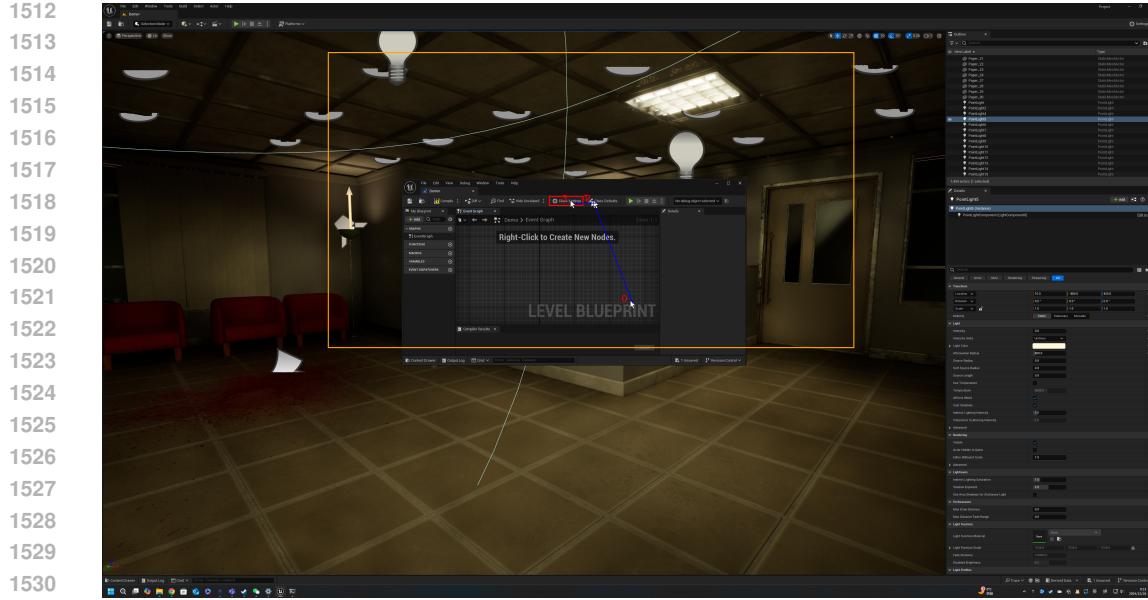
Task: Cross Dissolve

Step 0: <think>To locate the "Cross Dissolve" option, I need to find the icon and label associated with it in the toolbox. It appears to be a circular icon with a red border, which is typically used to represent a dissolve effect.</think><answer>(330, 1371)</answer>

Step 1: <think>Given the new position, it seems the "Cross Dissolve" is correctly identified.</think><answer>(318, 1398)</answer>

Step 2: <answer>STOP</answer>

Figure 16: Positive example with multi-step movement. The model outputs STOP at the last step without thinking.



1532
Task: Edit Class Settings

1533 **Step 0:** <think>To locate the "Edit Class Settings" button, I need to scan the area near the top of the
 1534 interface where such UI elements are typically placed. It appears to be in the vicinity of the "Class
 1535 Settings" label.</think><answer>(1738, 696)</answer>

1536 **Step 1:** <think>To locate the "Edit Class Settings" button, I need to look for a button that typically
 1537 represents settings or configurations, often depicted with a gear icon or a settings gear symbol. It is
 1538 usually positioned near the top of the interface, often in a toolbar or menu.</think><answer>(975,
 1539 548)</answer>

1540 **Step 2:** <think>The target, the "Edit Class Settings" button, seems to be misidentified. It appears
 1541 that the "Class Defaults" button is being pointed at instead. The "Edit Class Settings" button is likely
 1542 the one with a gear icon, which is typically used for settings, and it is located to the left of the "Class
 1543 Defaults" button.</think><answer>(890, 548)</answer>

1544 **Step 3:** <think>The goal is to click on the "Edit Class Settings" button, which is part of the toolbar
 1545 and visually distinct from the "Class Defaults" button. The "Class Settings" button is the one with a
 1546 gear icon, and it is correctly identified in the previous step.</think><answer>STOP</answer>

1548 Figure 17: Positive example with multi-step movement.
 1549

1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562 You are given an image showing a white background, a red bounding box, and a computer mouse
 1563 cursor. Is the cursor located inside the red bounding box? Please answer with "Yes" or "No".
 1564
 1565

Figure 18: The prompt of "cursor-in-box" test.

1566

1567

1568 You are an expert UI element locator. Given a GUI image and a user's element description, your goal
 1569 is to provide the coordinate of the element intended by the user. A cursor will be exactly placed to the
 1570 coordinate provided by you. Please make sure to check whether the cursor is at the target position.
 1571 The image resolution is height `{height}` and width `{width}`. The cursor is a black arrow with
 1572 white fill, initialized at the center of the image. The cursor's hotspot is at the top-left corner.
 1573 Please output `<answer>STOP</answer>` if the cursor's hotspot is on the target position. Other-
 1574 wise, provide a new coordinate by `<answer>(<x>, <y>)</answer>`, where x and y must be positive
 1575 integer values. You will receive a new image with updated cursor position at each turn.
 1576 Your response must contain a thinking process before the answer. The thinking process is enclosed in
 1577 a `<think>` tag, and the answer is enclosed in an `<answer>` tag. In your thinking process, you
 1578 should identify the target element and the spatial relation between the cursor and the target. Make sure
 1579 to use the updated cursor position to refine your estimation about the coordinate of the target element.

1580

1581

1582

1583

1584

1585 You are an AI assistant designed for precise cursor control within a graphical user interface.

1586 Your Primary Goal: Based on the user query, accurately move the cursor to the center of the intended
 1587 target UI element on the screen.

1588 Information Provided at Each Step:

1589 1. **Screenshot:**

- 1590 • Dimensions: `{screen_width} × {screen_height}` pixels.
- 1591 • Content: An image of the current screen, showing the cursor you are controlling.
- 1592 • Updates: After each `MOVE` command you issue, a new screenshot will be provided in the subse-
 1593 quent turn reflecting the new cursor position.

1594 2. **Cursor Details:**

- 1595 • The cursor is black and is initially positioned at the center of the screen.
- 1596 • If you attempt to move the cursor outside the screen, its position will be automatically adjusted
 1597 to remain within the screen boundaries.

1598 Your Iterative Task and Output:

1599 1. **Identify Target and Analyze:**

- 1600 • Carefully examine the user's query and the current screenshot to pinpoint the intended target UI
 1601 element.
- 1602 • If your understanding of the target element is incorrect or needs adjustment during the process,
 1603 revise your identified target.
- 1604 • Determine the relative position between the cursor's current position and the center of your iden-
 1605 tified target UI element.

1606 2. **Determine Action & Output:**

- 1607 • **If the cursor is not yet at the target:**
 - 1608 – **Output:** `MOVE (dx, dy)`
 - 1609 – **dx (Horizontal Movement):**
 - 1610 * Positive dx moves the cursor right. Negative dx moves the cursor left.
 - 1611 – **dy (Vertical Movement):**
 - 1612 * Positive dy moves the cursor down. Negative dy moves the cursor up.
- 1613 • **If the cursor is at the target:**
 - 1614 – **Output:** `STOP`
 - 1615 – This command should only be issued when the cursor is accurately positioned at the center
 1616 of the intended UI element.

1617

1618

1619

Figure 20: The system prompt of GPT-4o used in the relative move strategy.