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ABSTRACT

In real-world scenarios, node features frequently exhibit noise due to various factors,
making GNNs vulnerable. Various methods enhance robustness, but they make an
unrealistic assumption that the noise in node features is independent of the graph
structure and node labels, restricting their practicality. To this end, we introduce a
more realistic noise scenario, called feature-dependent graph-noise (FDGN), where
noisy node features may entail both structure and label noise, and propose a deep
generative model that directly captures the causal relationships among the variables
in the DGP of FDGN. We formulate a tractable and feasible learning objective
based on variational inference and provide detailed discussions on the instantiations
of the model components corresponding to the derived terms. Our proposed
method, PRINGLE, outperforms baselines on commonly used benchmark datasets
and newly introduced real-world graph datasets that simulate FDGN in e-commerce
systems. Our code is available at https://anonymous.4open.science/
r/FDGN-PRINGLE-4B31/

1 INTRODUCTION

Graphs are prevalent data structure that exist across diverse domains, including chemistry, economics,
and social media. Given their pervasive presence, it becomes essential to obtain effective graph
representations. In recent years, graph neural networks (GNNs) have demonstrated remarkable
achievements in graph representation learning and have been extensively applied in numerous
downstream tasks (Yao et al., 2019; Wang et al., 2019a; Wu & Hooi, 2023).

However, in the majority of real-world scenarios, node features frequently exhibit noise due to various
factors, leading to the creation of inaccurate graph representations (Liu et al., 2021; Jin et al., 2022).
For instance, in social networks, users may create fake profiles or posting, resulting in noisy node
features. Similarly, in product co-purchase networks found in e-commerce systems, node features
can be contaminated by fake reviews. Recent studies have revealed the vulnerability of GNNs to such
scenarios, highlighting the necessity to design robust GNN models against noisy node features. To
this end, various methods have been proposed to make a huge success in terms of model robustness
(Liu et al., 2021; Jin et al., 2022).
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Figure 1: Social network examples.

While such existing robust GNN models have proven
effective, we argue that their practicality is restricted
by an unrealistic assumption regarding graph noise:
they assume that the noise in node features is inde-
pendent of the graph structure or node labels. For
example, in the conventional graph noise (CGN) as-
sumption in terms of node features (Fig. 1(b)), Bob’s
fake profile does not influence other nodes, which is
also explained by the data generating process (DGP)
of CGN (See Fig. 2(a)) in which no causal relation-
ships exist among the noisy node features X , graph structure A, and node labels Y . However, in
reality (See Fig. 1(c)), other users may make connections with Bob based on his fake profile (i.e.,
structure noise), which may also eventually change their community (i.e., label noise), and such
causal relationships among X , A, and Y (i.e., A ← X , Y ← X , and Y ← A) are depicted in Fig.
2(b).

As another real-world scenario, consider a product co-purchase network in an e-commerce platform,
where nodes denote products and edges denote the co-purchase relationship between products.
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In this case, fake reviews on products written by a fraudster would make other users purchase
irrelevant products, which adds irrelevant edges between products (i.e., structure noise). Consequently,
this would make the automated product category labeling system to inaccurately annotate product
categories (i.e., label noise), as it relies on the node features and the graph structure, both of which
are contaminated.
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Figure 2: A directed graphical
model indicating a DGP of (a)
CGN, and (b) FDGN.

These examples demonstrate that, in reality, noisy node features
may entail both structure and label noise. To reflect such a realistic
scenario in graph learning, we define feature-dependent graph-noise
(FDGN) and model the data generation process in a graphical model.
We also observe that existing robust GNN models indeed fail to gen-
eralize effectively in a more realistic FDGN due to their inadequate
assumption on the data generation process (Sec 3.2).

In this work, we propose a principled noisy graph learning frame-
work (PRINGLE), which operates under a more realistic FDGN
assumption. We first define the DGP of FDGN as shown in Fig. 2(b).
More precisely, we introduce three observable variables (i.e., node
features X , graph structure A, and node labels Y ) and three latent
variables (i.e., noise incurring variable ϵ, latent clean graph structure
ZA, and latent clean node labels ZY ), while defining causal relationships among these variables to
represent the data generation process of FDGN. We then devise a deep generative model that directly
captures the causal relationships among the variables in the DGP of FDGN, and derive a tractable
and feasible learning objective based on variational inference. It is worth noting that although the
main focus of this paper is on the node feature noise and its influence across the graph, our proposed
robust graph learning framework is capable of generalizing not only to feature-dependent graph noise
(FDGN), but also to independent structure/feature/label noise that is also prevalent in real-world
applications. This implies that PRINGLE has a wider range of applicability than existing robust
GNN models. In order to conduct a rigorous evaluation of PRINGLE, we perform evaluations on not
only existing benchmark datasets, but also newly introduced real-world graph datasets that simulate
FDGN within e-commerce systems, providing a valuable alternative to synthetic settings.

In summary, the main contributions of the paper are three-fold:

• We investigate limitations of the conventional graph noise assumption in terms of node features,
and introduce a more realistic graph noise scenario, feature-dependent graph-noise (FDGN). To
the best of our knowledge, this is the first attempt to understand the data generation process in
graph domain that mimics the noise scenario in real-world.

• We propose the principled noisy graph learning framework (PRINGLE) which addresses FDGN
by modeling its DGP. PRINGLE outperforms state-of-the-art baselines in node classification
and link prediction tasks under various scenarios including feature-dependent graph-noise and
independent structure/feature/label noise.

• In addition to existing benchmark datasets in which noise is synthetically generated, we further
introduce novel graph benchmark datasets that simulate FDGN within e-commerce systems,
which is expected to foster practical research in noise-robust graph learning.

2 RELATED WORKS
The objective of noise-robust graph learning is to train GNN models when the input graph data
exhibits one or more of the following types of noise: 1) node feature noise, 2) graph structure noise,
and/or 3) node label noise. The majority of existing approaches focus primarily on graphs containing
only a single type of noise.

Feature noise-robust graph learning. To address the noisy node features, various approaches
including adversarial training (Tian et al., 2023) and test-time graph transformation (Jin et al., 2022),
have been proposed. Additionally, recent studies have highlighted the significance of fully leveraging
structural information. AirGNN (Liu et al., 2021) proposed a novel message passing mechanism
that identifies the nodes with noisy features and learns node-wise adaptive coefficients that balance
the feature aggregation and use of their own noisy features. The identification process is guided
by the intuition that nodes with noisy features tend to have dissimilar features within their local
neighborhoods. In summary, this approach tackles the noisy node features while assuming that the
structure of the input graph is noise-free.
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Structure noise-robust graph learning. To address the noisy graph structure, various approaches
including robust message passing scheme (Lei et al., 2022) and graph structure learning (Jin et al.,
2020) have been proposed. Among them, a representative approach is based on the graph structure
learning (GSL), which aims to learn a refined graph structure from a given graph. Specifically,
ProGNN (Jin et al., 2020) learns a graph structure aiming at satisfying the real-world graph properties,
e.g., feature-smoothness. Moreover, RSGNN (Dai et al., 2022) aims to train a graph structure learner,
which is composed of an MLP encoder and a regularizer for enhancing feature-smoothness, which
encourages the nodes with similar features to be connected in the refined structure. STABLE (Li
et al., 2022a) aims at acquiring robust node representations by roughly refining the given graph by
removing easily detectable noisy edges, typically those connecting nodes with low feature-similarity,
after which node representations are learned in an unsupervised manner. Finally, based on these
representations, a kNN graph is constructed to serve as the refined structure. In summary, these
methods tackle the noisy graph structure while assuming that node features are noise-free.

Label noise-robust graph learning. There are numerous studies that address the noisy labels on
non-graph data (Li et al., 2020; Wang et al., 2019b; Yao et al., 2021). However, since they are not
directly applicable for graph data (Dai et al., 2021), recent studies investigated the label noise-robust
graph learning methods. The key idea of NRGNN (Dai et al., 2021) is to correct the predictions of
unlabeled nodes affected by information propagation from falsely labeled nodes. To do so, NRGNN
learns a new graph structure where two nodes with similar features are connected, based on the
assumption that two nodes are more likely to have the same label if they have similar features. This
strategy mitigates the information propagation from falsely labeled nodes. RTGNN (Qian et al., 2023)
identifies clean labeled samples from noisy labeled ones based on the small-loss criteria and leverages
pseudo-labeling to supplement the labeled nodes. However, nodes with noisy features or structures
would yield a large-loss even if their labels do not contain any noise, which results in inaccuracies in
the selection of clean labeled samples. Therefore, these methods tackle the noisy node labels while
assuming that both node features and graph structure are noise-free.

Generative graph learning. Apart from the noise-robust graph learning methods, several studies
adopted deep generative modeling to infer latent graph data (Ma et al., 2019; Elinas et al., 2020; Lao
et al., 2022). Most recently, WSGNN (Lao et al., 2022) uses a probabilistic generative approach
and variational inference to infer the latent graph structure and node labels. However, it assumes
noise-free graphs, making it less effective in handling various noise scenarios commonly found in
real-world applications.

In summary, each of the aforementioned methods assumes the completeness of at least one of the
data sources, i.e., node features, graph structures, or node labels. In contrast, our proposed method
is constructed under a more realistic FDGN assumption, where noise in node features may result
in structural and label noise. This fundamental difference liberates the proposed method from such
limited assumptions.

3 FEATURE-DEPENDENT GRAPH-NOISE (FDGN)
3.1 DEFINITION
In this section, we define a realistic graph noise assumption, i.e., FDGN, and its DGP. Specifically,
we assume that the graph containing FDGN is generated according to the graphical model in Fig.
2(b). We first introduce each variable in the graphical model, and then explain each relationship
between variables through two real-world applications where FDGN exists: social networks (i.e.,
user-user graph) and co-purchase networks (i.e., product-product graph) within e-commerce systems.

In the graphical model in Fig. 2(b), X represents the node features, which may contain noisy node
features; Y represents the observed node labels, which may contain noisy labels; A represents the
observed edges between two nodes, which may contain noisy edges; ϵ represents the environment
variable that causes the noise; ZY represents the latent clean node labels; ZA represents the latent
clean graph structure that contains all potential connections between nodes. We provide explanations
for each relationship in the graphical model of FDGN shown in Fig. 2(b):

• X ← (ϵ, ZY ): ϵ and ZY are causes of X . In social networks, users create their profiles and postings
(i.e., X) regarding their true communities or interests (i.e., ZY ). However, if users decide to display
fake profiles for some reason (i.e., ϵ), ϵ is a cause of the noisy node features X . In co-purchase
networks, the reviews and descriptions of products (i.e., X) are written regarding their true categories
(i.e., ZY ). However, if a fraudster (i.e., ϵ) writes fake reviews on products, ϵ is a cause of the noisy
node features (i.e., X).
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• A← (ZA, X): ZA and X are causes of A. In social networks, the follow relationship among users
(i.e., A) are made based on their latent relationships (i.e., ZA). However, if a user creates a fake
profile (i.e., X), some irrelevant users may follow the user based on his/her fake profile, which leads
to noisy edges (i.e., A). In co-purchase networks, the co-purchase relationship among products (i.e.,
A) are made based on their true relevance (i.e., ZA). However, if a fraudster writes fake reviews (i.e.,
X) on multiple products, some irrelevant products may be connected by co-purchase relationship,
which leads to noisy edges (i.e., A).

• A← ϵ: To provide a broader scope, we also posit that ϵ is a potential cause of A. This extension is
well-founded, as real-world applications often exhibit graph structure noise originating from various
sources in addition to the feature-dependent noise (Liu et al., 2022; Fatemi et al., 2021).

• Y ← (ZY , X,A): ZY , X , and A are causes of Y . In social networks, the true communities (or
interests) of users (i.e., ZY ) are leveraged to promote products to targeted users within a community
(Ma et al., 2021). To detect the communities, both node features and graph structures are utilized.
However, if a user has noisy node features (i.e., X) or noisy edges (i.e., A), the user may be assigned
to a wrong community (or interest), which leads to noisy labels (i.e., Y ). In co-purchase networks,
machine learning-based automated labeling techniques are widely used in e-commerce systems
to label the true categories of products (i.e., ZY ) since new products are continuously released.
However, the automated labeling systems may become inaccurate due to noisy node features (i.e.,
X) and noisy graph structures (i.e., A), which leads to noisy node labels (i.e., Y ).

For simplicity, we assume that ϵ is not a cause of Y . This assumption aligns with practical scenarios
in real-world applications, where an instance is more likely to be mislabeled due to confusing or noisy
features rather than arbitrary sources, i.e., instance-dependent label-noise (Yao et al., 2021; Berthon
et al., 2021). In other words, label noise in graphs is predominantly caused by confusing or noisy
features and graph structure, i.e., Y ← (X,A), rather than an arbitrary external factor, i.e., Y ↚ ϵ.

3.2 PRELIMINARY ANALYSIS ON FDGN
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Figure 3: Node classification performance of baselines and
PRINGLE on Cora dataset. Here, + RFN, + RSN, and + RLN in-
dicate injecting the random feature noise, random structure noise,
and random label noise into the original graph, respectively.

We conduct an analysis to ex-
amine how well existing ro-
bust GNN models generalize to
FDGN. We generate three types
of noise: random feature noise
(Liu et al., 2021), random struc-
ture noise (Li et al., 2022a), and
random label noise (Dai et al.,
2021; Qian et al., 2023), follow-
ing the convention of the existing studies. As baselines, we consider (a) AirGNN as a feature
noise-robust graph learning method, (b) RSGNN and STABLE as structure noise-robust graph
learning methods, and (c) NRGNN and RTGNN as label noise-robust graph learning methods. A
comprehensive description of each method is provided in Sec. 2.

We observe that while existing noise-robust graph learning methods perform well under the random
feature noise (i.e., + RFN in Fig. 3(a)), structure noise (+ RSN in Fig. 3(b)), and label noise (+
RLN in Fig. 3(c)), their performance significantly drops under FDGN (i.e., + FDGN in Fig. 3). In
contrast, our proposed method (PRINGLE) demonstrates competitive results under the random noise
scenarios, while notably outperforming the baselines under FDGN. This points to a key distinction
– existing noise-robust graph learning methods struggle to generalize to FDGN due to their limited
assumptions regarding the graph noise. Specifically, as summarized in Sec. 2, each category of
methods assumes at least one of the data sources is noise-free: node features, graph structures, or
node labels. Nevertheless, the causal relationships among X , A, and Y within the data generation
process of FDGN gives rise to scenarios involving concurrent feature, structure, and label noise.
Consequently, existing robust GNN models fall short of effectively generalizing to FDGN, as they
overlook such underlying relationships among noise types, leading to model designs assuming the
completeness of at least one data source. Conversely, PRINGLE directly captures the underlying
relationships by modeling the DGP of FDGN, resulting in superior generalization to FDGN.

4 PRINCIPLED NOISY GRAPH LEARNING FRAMEWORK (PRINGLE)
In this section, we propose a principled noisy graph learning framework (PRINGLE) to tackle more
realistic noise scenario, FDGN. It is essential to highlight that under FDGN, noisy node features entail
both structure and label noise, resulting in a graph that does not contain any noise-free data sources,
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i.e., a graph with noisy X , noisy A, and noisy Y . This point presents a non-trivial challenge for
the existing noise-robust graph learning methods to tackle FDGN, as they assume the completeness
of at least one data source. To address this challenge, we design a deep generative model that
directly models the DGP of FDGN, thereby capturing the causal relationships among the variables
that introduce noise. First, we derive the Evidence Lower Bound (ELBO) for the observed data
log-likelihood P (X,A, Y ) based on the graphical model of FDGN (Section 4.2). Subsequently, we
discuss model instantiations for the model components corresponding to the derived terms, including
implementation details (Section 4.3). It is essential to highlight that our approach can handle both
node classification and link prediction tasks, making it versatile and applicable in various situations.
Appendix A shows the overall architecture and training algorithm of PRINGLE.
4.1 PROBLEM STATEMENT

Notations We have an undirected and unweighted graph G = ⟨V, E⟩ where V = {v1, ..., vN}
represents the set of nodes and E ∈ V×V indicates the set of edges. Each node vi has the node features
Xi ∈ RF and node labels Yi ∈ {0, 1}C , where F is the number of features for each node and C
indicates the number of classes. We represent the observed graph structure using the adjacency matrix
A ∈ RN×N , where Aij = 1 if there is an edge connecting nodes vi and vj , and Aij = 0 otherwise.

Tasks: node classification and link prediction In the node classification task, we assume the
semi-supervised setting where only a portion of nodes are labeled (i.e., VL). Our objective is to
predict the labels of unlabeled nodes (i.e., VU ) by inferring the latent clean node label ZY . In the link
prediction task, our goal is to predict reliable links based on partially observed edges by inferring the
latent clean graph structure ZA. It is important to note that, according to the FDGN assumption, the
observed node features, graph structure, and node labels may contain noise.
4.2 MODEL FORMULATION

We commence by modeling joint distribution P (X,A, Y ). We assume that the joint distribu-
tion P (X,A, Y ) is differentiable nearly everywhere regarding both θ and the latent variables
(ϵ, ZA, ZY ). Note that the generative parameter θ serves as the decoder network that mod-
els the distribution P (X,A, Y ). The joint distribution of P (X,A, Y ) can be represented as:
pθ(X,A, Y ) =

∫
ϵ

∫
ZA

∫
ZY

pθ(X,A, Y, ϵ, ZA, ZY )dϵdZAdZY . However, computing this evidence
integral is either intractable to calculate in closed form or requires exponential time. As the evidence
integral is intractable for computation, calculating the conditional distribution of latent variables
pθ(ϵ, ZA, ZY |X,A, Y ) is also intractable: pθ(ϵ, ZA, ZY |X,A, Y ) = pθ(X,A,Y,ϵ,ZA,ZY )

pθ(X,A,Y ) .

To infer the latent variables, we introduce an inference network ϕ to model the variational distribution
qϕ(ϵ, ZA, ZY |X,A, Y ), which serves as an approximation to the posterior pθ(ϵ, ZA, ZY |X,A, Y ).
To put it more concretely, the posterior distribution can be decomposed into three distributions
determined by trainable parameters ϕ1, ϕ2, and ϕ3. Based on the observed conditional independence
relationships 1, we decompose qϕ(ϵ, ZA, ZY |X,A, Y ) as follows:

qϕ(ϵ, ZA, ZY |X,A, Y ) = qϕ1(ZA|X,A, ϵ)qϕ2(ϵ|X,A,ZY )qϕ3(ZY |X,A, Y ). (1)

For simplicity, we introduce two additional assumptions. First, when the node features X and
observed graph structure A are given, latent clean graph structure ZA is conditionally independent
from the noise-incurring variable ϵ, i.e., qϕ1

(ZA|X,A, ϵ) = qϕ1
(ZA|X,A). Second, when X and

A are given, latent clean labels ZY is conditionally independent from the observed node labels Y ,
i.e., qϕ3

(ZY |X,A, Y ) = qϕ3
(ZY |X,A). This approximation, known as the mean-field method, is a

prevalent technique utilized in variational inference-based methods (Ma et al., 2019; Lao et al., 2022).
As a result, we can simplify Eqn. 1 as follows:

qϕ(ϵ, ZA, ZY |X,A, Y ) = qϕ1(ZA|X,A)qϕ2(ϵ|X,A,ZY )qϕ3(ZY |X,A). (2)

To jointly optimize the parameter ϕ and θ, we adopt the variational inference framework (Blei et al.,
2017; Yao et al., 2021) to optimize the Evidence Lower-BOund (ELBO) of the marginal likelihood
for observed data, rather than optimizing the marginal likelihood directly. Specifically, we derive the
negative ELBO, i.e., LELBO, as follows:
LELBO = −EZA∼qϕ1

(ZA|X,A)Eϵ∼qϕ2
(ϵ|X,A,ZY ) [log(pθ1(A|X, ϵ, ZA))] + kl(qϕ1

(ZA|X,A)||p(ZA))

− Eϵ∼qϕ2
(ϵ|X,A,ZY )EZY ∼qϕ3

(ZY |X,A) [log(pθ2(X|ϵ, ZY ))] + EZY ∼qϕ3
(ZY |X,A) [kl(qϕ2

(ϵ|X,A,ZY )||p(ϵ))]
− EZY ∼qϕ3

(ZY |X,A) [log(pθ3(Y |X,A,ZY ))] + kl(qϕ3
(ZY |X,A)||p(ZY )) (3)

1We observe the following conditional independence relationships in Fig. 2(b): (1) ZA ⊥ Y |X,A, ϵ, (2)
ZA ⊥ ZY |A,X, ϵ, (3) ϵ ⊥ Y |ZY , X,A.
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where kl(·||·) denotes KL divergence. The derivation details are provided in Appendix B. The
encoders ϕ1, ϕ2, and ϕ3 infer three latent variables, while θ1, θ2, and θ3 are decoder networks used
for generating three observable variables. Our objective is to find the optimal values of ϕ = {ϕ1, ϕ2,
ϕ3} and θ = {θ1, θ2, θ3} that minimize the value of LELBO, expressed as argminθ,ϕ LELBO.

4.3 MODEL INSTANTIATIONS

4.3.1 INFERENCE OF LATENT VARIABLES ZA, ZY , AND ϵ

Inference of ZA. The encoder qϕ1
(ZA|X,A) is instantiated as a graph structure learner predicting

the probability pij , where we consider each edge in ZA between node vi and vj as an independent
Bernoulli random variable, i.e., Bern(pij) (Wu et al., 2020). Specifically, we use a GCN encoder
to acquire deterministic node embeddings, i.e., Z = GCNϕ1

(X,A) ∈ RN×d1 , where d1 is the
dimension of node embedding. To acquire the latent graph Â = {âij}N×N , we sample from
âij ∼ Bern(p̂ij) where the estimated parameter p̂ij is computed as follows: p̂ij = ρ(s(Zi,Zj)),
where s(·, ·) is a cosine similarity function and ρ is the ReLU activation function.

Inference of ZY . The encoder qϕ3(ZY |X,A) is instantiated as a GCN classifier that deterministically
outputs the probability of the latent label ZY . In the practical implementation, we infer ZY through
Ŷ = GCNϕ3

(X, Â) ∈ RN×C because Â contains not only A, but also rich structural information
that is missing in A, which helps enhance the inference of ZY . We introduce the node label
classification loss Lcls-enc =

∑
i∈VL CE(Ŷi,Yi), where CE is the cross entropy loss.

Inference of ϵ. We decompose qϕ2(ϵ|X,A,ZY ) into qϕ21(ϵX |X,ZY ) and qϕ22(ϵA|X,A), where
ϵX and ϵA are independent variables that incur the feature and structure noise, respectively. For
the encoder qϕ21

(ϵX |X,ZY ), we use an MLP encoder that takes CONCAT(X,ZY ) as an input
and outputs ϵX . For the encoder qϕ22(ϵA|X,A), we regard ϵA as a set of scores indicating the
likelihood of each observed edge being noisy or not. Inspired by an early-learning phenomenon
(Arpit et al., 2017), we compute the set of link prediction losses using MSE on the observed edges E
as {(1− p̂elij)

2|(i, j) ∈ E}, where p̂elij represents the p̂ij value at the final epoch during early-learning
phase. Therefore, an edge with high p̂elij value can be considered as a clean edge. Hence, ϵA is
instantiated as {p̂elij |(i, j) ∈ E}.

4.3.2 LOSS TERMS IN LELBO

Loss term kl(qϕ1(ZA|X,A)||p(ZA)). To minimize this term, we encourage ZA to align with our
prior knowledge, i.e., p(ZA), that the latent graph structure predominantly consists of assortative
edges that have the potential to enhance feature propagation within GNNs (Zhao et al., 2023). In
recent studies (Choi et al., 2022; Dai et al., 2022), the γ-hop subgraph similarity has served as a
potent metric for identifying assortative edges. Hence, we model qϕ1

(ZA|X,A) to minimize the
KL divergence between the latent graph structure Â and prior graph structure Ap = {ap

ij}N×N ,
where ap

ij is sampled from a Bernoulli distribution with a probability as given by the γ-hop subgraph
similarity. This leads the estimated probability p̂ij between two nodes to increase if they exhibit a
high subgraph similarity. However, computing p̂ij in every epoch is impractical for large graphs, i.e.,
O(N2). To mitigate the issue, we pre-define a candidate graph that consists of the observed edge set
E and a k-NN graph based on the γ-hop subgraph similarity. Then, we compute the p̂ij values of
the edges in a candidate graph. Please refer to the Appendix C for detailed information on how this
approach mitigates the complexity issue.

Loss term kl(qϕ3
(ZY |X,A)||p(ZY )). To minimize this term, we encourage ZY to align with our

prior knowledge, i.e., p(ZY ), that the two end nodes on the latent graph structure ZA are expected
to have an identical latent labels ZY , known as class homophily (McPherson et al., 2001). Hence,
we model ZY to minimize the KL divergence between the probability predictions Ŷ of each node
and its first order neighbors in the estimated latent structure Â. The implemented loss function is

as: Lhom =
∑

i∈V

∑
j∈Ni

p̂ij ·kl(Ŷj ||Ŷi)∑
j∈Ni

p̂ij
, where Ni denotes the set of first-order neighbors of node vi

within the estimated latent structure Â.

Loss term EZY ∼qϕ3
[kl(qϕ2

(ϵ|X,A,ZY )||p(ϵ))]. We decompose kl(qϕ2
(ϵ|X,A,ZY )||p(ϵ)) into

two terms: kl(qϕ21(ϵX |X,ZY )||p(ϵX)) and kl(qϕ22(ϵA|X,A)||p(ϵA)). Moreover, the expec-
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tation can be removed since we empirically model qϕ2
(ϵ|X,A,ZY ) using a deterministic en-

coder GCNϕ3
(X, Â). We assume that p(ϵX) follows the standard multivariate normal distri-

bution, which means that a closed form solution of kl(qϕ21
(ϵX)||p(ϵX)) can be obtained as

Lp = − 1
2

∑d2

j=1(1 + log σ2
j − µ2

j − σ2
j ), where d2 is the dimension of a ϵX (Kingma & Welling,

2013). We have prior knowledge about ϵA, i.e., p(ϵA), that the loss-based criteria p̂elij can intro-
duce uncertainty in identifying clean edges as it relies on a single training point’s value. In other
words, qϕ22

(ϵA|X,A) follows an unknown distribution with high variance, while our prior knowl-
edge is that p(ϵA) follows the same distribution with low variance. To reduce uncertainty, i.e.,
reducing kl(qϕ22(ϵA|X,A)||p(ϵA)), we adopt an exponential moving average (EMA) technique:
p̂elij ← ξp̂elij + (1 − ξ)p̂cij , where p̂cij indicates the value of p̂ij at the current training point, and ξ
indicates the decaying hyperparameter fixed to 0.9.

Loss term −EZA∼qϕ1
Eϵ∼qϕ2

[log(pθ1(A|X, ϵ, ZA))]. This term is implemented as an edge recon-

struction loss forcing the estimated latent structure Â to assign greater weights to clean edges and
reduce the influence of noisy edges under the guidance of the positive edges E , which is defined as
Lrec-edge = N

|E|+|E−|

(∑
(i,j)∈E(wij − τij)

2 +
∑

(i,j)∈E−(p̂ij − 0)2
)

, where E− denotes randomly
sampled negative edges. However, the observed graph structure A contains noisy edges incurred by X
and ϵ, which introduce inaccurate supervision. Therefore, we employ regularizations on both the pre-
dictions (i.e., wij) and labels (i.e., τij) to obtain a robust Â. The regularized prediction wij is defined
as: wij = θ1p̂ij + (1 − θ1)s(Xi,Xj). Note that the feature similarity s(Xi,Xj) is considered in
the prediction of positive edges. The main idea is to penalize p̂ij when s(Xi,Xj) is high, as the edge
between vi and vj is potentially noisy due to the influence of noisy X . To create regularized labels, we
convert p̂elij into τij with a minimum value of 0.9 and a maximum value of 1. In other words, when an
edge is regarded as noisy (i.e., with a low p̂elij), its label is close to 0.9, while an edge considered clean
(i.e., with a high p̂elij) has a label close to 1. This approach achieves a similar effect to label smoothing,
enhancing robustness in the presence of noisy supervision. Note that θ1 is a hyperparameter, and the
value 0.9 is selected in the label regularization following Szegedy et al. (2016).

Loss term −Eϵ∼qϕ2
EZY ∼qϕ3

[log(pθ2(X|ϵ, ZY ))]. This term is implemented as a feature reconstruc-
tion loss Lrec-feat, where the decoder pθ2 is composed of an MLP that takes CONCAT(ϵX , ZY ) as
an input and outputs reconstructed node features. Note that the reparametrization trick (Kingma &
Welling, 2013) is used for sampling ϵX that follows the standard normal distribution. To minimize
Lrec-feat, the decoder needs to rely on the information contained in ZY , which essentially encourages
the value of ZY to be meaningful for the prediction process, i.e., generating X .

Loss term −EZY ∼qϕ3
[log(pθ3(Y |X,A,ZY ))]. The probability p(Y |X,A,ZY ) represents the tran-

sition relationship from the latent clean label ZY to the noisy label Y of an instance, i.e., how the
label noise was generated (Yao et al., 2021). For this reason, maximizing pθ3(Y |X,A,ZY ) (or
equivalently minimizing the loss term) would let us discover the latent true label ZY from which
the noisy label Y is generated given an instance, i.e., X and A. We implement the loss term as a
node classification loss Lcls-dec, i.e., the cross entropy loss, where the decoder pθ3 is composed of
a GCN classifier that takes A and CONCAT(X,ZY ) as inputs and outputs the prediction of Y , i.e.,
Ŷdec = GCNθ3(X,A, Ŷ) ∈ RN×C .

In summary, the overall learning objective can be written as follows and PRINGLE is trained to
minimize the Lfinal:

Lfinal = Lcls-enc + λ1Lrec-edge + λ2Lhom + λ3(Lrec-feat + Lcls-dec + Lp), (4)

where λ1, λ2, and λ3 are the balancing coefficients.

5 EXPERIMENTS

Datasets. We evaluate PRINGLE and baselines on four commonly used benchmark datasets (i.e.,
Cora, Citeseer, Photo, and Computers) and two newly introduced datasets (i.e., Auto and Garden).
Auto and Garden are proposed in this work based on Amazon review data (He & McAuley, 2016;
McAuley et al., 2015) to mimic FDGN on e-commerce systems (Refer to Appendix D.2.2 for details).
The details of the datasets are given in Appendix D.1.

Experimental Details. We evaluated PRINGLE in both node classification and link prediction
tasks, comparing it with noise-robust graph learning and generative graph learning methods. For a
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Table 1: Node classification performance under synthetic feature-dependent graph-noise (FDGN).
Dataset Setting WSGNN AirGNN ProGNN RSGNN STABLE EvenNet NRGNN RTGNN PRINGLE

Cora

Clean 86.2±0.1 85.0±0.2 85.3±0.4 86.2±0.5 86.1±0.2 86.2±0.0 86.2±0.2 86.1±0.2 86.2±0.7
FDGN-10% 80.7±0.3 79.7±0.5 79.6±0.7 81.9±0.3 82.2±0.7 80.7±0.7 81.0±0.5 81.6±0.5 82.9±0.6
FDGN-30% 70.0±0.6 71.5±0.8 74.5±0.1 71.9±0.5 74.3±0.3 65.2±1.7 73.5±0.8 72.1±0.6 78.2±0.3
FDGN-50% 55.9±1.1 56.2±0.8 66.4±0.4 58.1±0.2 62.8±2.4 47.1±1.8 61.9±1.4 60.8±0.4 69.7±0.6

Citeseer

Clean 76.6±0.6 71.5±0.2 72.6±0.5 75.8±0.4 74.6±0.6 76.4±0.5 75.0±1.3 76.1±0.4 77.3±0.6
FDGN-10% 72.8±0.8 66.2±0.7 67.5±0.6 73.3±0.5 71.5±0.3 71.1±0.4 71.9±0.3 73.2±0.2 74.3±0.9
FDGN-30% 63.3±0.7 58.0±0.4 61.0±0.2 63.9±0.5 62.5±1.4 61.2±0.6 62.5±0.7 63.5±2.1 65.6±0.6
FDGN-50% 53.4±0.6 50.0±0.6 53.3±0.2 55.3±0.4 54.7±1.7 47.2±1.1 52.6±0.9 54.2±1.8 59.0±1.8

Photo

Clean 92.9±0.3 93.5±0.1 90.1±0.2 93.6±0.8 93.4±0.1 94.5±0.4 90.3±1.7 91.3±0.6 94.8±0.3
FDGN-10% 83.9±1.8 87.3±0.9 84.3±0.1 89.4±2.4 92.2±0.1 92.6±0.0 84.3±1.3 88.9±0.3 93.2±0.2
FDGN-30% 51.9±6.8 67.8±4.3 74.7±0.2 82.1±1.1 88.0±1.0 89.6±0.2 69.0±2.2 86.4±0.5 90.5±0.4
FDGN-50% 31.9±5.6 57.8±0.7 48.9±0.5 75.6±2.6 80.2±1.8 84.6±0.4 57.5±1.8 79.2±0.3 87.6±0.2

Comp

Clean 83.1±3.1 83.4±1.2 83.9±0.8 91.1±0.1 90.2±0.2 90.1±0.2 87.5±1.0 87.3±1.0 92.2±0.0
FDGN-10% 75.0±1.2 76.8±1.8 72.0±0.2 86.0±1.9 85.9±0.5 87.6±0.7 85.7±0.9 81.7±0.2 89.8±0.2
FDGN-30% 48.5±5.8 59.2±0.9 66.9±0.8 81.5±1.7 80.4±1.0 84.8±0.5 74.8±3.5 73.9±0.2 86.9±0.3
FDGN-50% 39.6±4.0 44.1±1.4 43.3±0.3 73.9±2.3 68.8±1.3 77.5±1.9 65.3±3.2 68.5±0.3 82.2±0.4

thorough evaluation, we create synthetic and real-world FDGN settings, with details in Appendix D.2.
We also account for independent structure/feature/label noise that are also prevalent in real-world
applications, following Li et al. (2022a); Liu et al. (2021); Qian et al. (2023). Due to the space limit,
we provide additional analyses on the model robustness under independent structure/feature/label
noise in Appendix E.1. Further details about the baselines, evaluation protocol, and implementation
details can be found in Appendix D.3, D.4, and D.5, respectively.

5.1 QUANTITATIVE RESULTS

5.1.1 UNDER SYNTHETIC FEATURE-DEPENDENT GRAPH-NOISE

We first evaluate PRINGLE under synthetic FDGN settings. Appendix D.2.1 provides a description
of the synthetic data generation algorithm. Table 1 shows that PRINGLE consistently outperforms
all baselines in FDGN scenarios, especially when noise levels are high. This superiority is attributed
to the fact that PRINGLE captures the causal relationships involved in the DGP of FDGN, while the
baselines overlook such relationships, leading to their model designs assuming the completeness of
at least one data source. Additionally, PRINGLE performs well even in clean graph settings. We
attribute this to the accurate inference of ϵA, which is utilized as the label regularization in calculating
Lrec-edge. Specifically, in Fig 12(a) in Appendix E.4, we observe that the p̂elij values estimated from
the clean graph tend to be close to 1, while those from the graph with FDGN are considerably smaller.
Recall that the high value of p̂elij indicates the model regards the edge (i, j) as a clean edge. This
suggests that PRINGLE has the capability to adapt its model learning to the level of noise present in
the input graph, resulting in superior performance on both clean and noisy graphs.

Table 2: Node classification performance un-
der real-world FDGN.

Auto Garden

Methods Clean + FDGN Clean + FDGN

WSGNN 71.8±4.3 57.7±1.3 87.4±0.2 77.6±0.8
AirGNN 69.5±0.8 53.9±0.1 78.3±1.5 66.1±1.7
ProGNN 63.2±0.2 48.6±0.3 78.7±0.1 73.0±0.4
RSGNN 69.5±0.4 56.8±0.9 83.3±1.2 76.2±0.5
STABLE 71.6±0.9 57.5±0.2 84.2±0.4 77.2±3.3
EvenNet 73.4±0.5 57.1±2.1 85.7±0.5 75.6±2.4
NRGNN 74.3±0.8 55.8±1.0 87.7±0.4 76.1±0.2
RTGNN 75.1±0.3 59.6±0.8 85.5±0.2 76.0±0.6

PRINGLE 79.3±0.2 61.4±0.4 88.7±0.3 80.2±0.8

Table 3: Link prediction performance under
real-world FDGN.

Auto Garden

Methods Clean + FDGN Clean + FDGN

WSGNN 81.8±0.1 69.1±0.6 84.7±0.2 84.6±0.7
AirGNN 60.2±0.2 57.9±0.4 62.0±0.1 58.2±0.5
ProGNN 74.8±0.3 56.7±0.5 83.5±0.6 83.3±0.5
RSGNN 87.2±0.8 65.0±0.2 91.2±0.4 91.2±0.5
STABLE 78.6±0.1 57.3±0.1 85.2±0.2 85.0±0.1
EvenNet 86.8±0.1 70.5±0.2 89.2±0.3 90.0±0.7
NRGNN 76.6±1.3 47.5±1.7 87.0±0.9 58.6±4.5
RTGNN 84.4±0.1 72.2±0.2 90.4±0.3 90.4±0.2

PRINGLE 88.2±0.3 73.6±0.6 92.6±0.2 92.4±0.4

5.1.2 UNDER REAL-WORLD FEATURE-DEPENDENT GRAPH-NOISE

To investigate the robustness of PRINGLE under real-world noise scenarios, we newly design two
new benchmark graph datasets, i.e., Auto and Garden, where the node label is the product category,
the node feature is bag-of-words representation of product reviews, and the edges indicate the co-
purchase relationship between two products by the same user. To the best of our knowledge, this is the
first work proposing new datasets for evaluating the noise-robust graph learning under realistic noise
scenarios that are plausible in a real-world e-commerce system containing fraudsters. Appendix D.2.2
provides a comprehensive description of the data generation algorithm. In Table 2 and 3, we observe
that PRINGLE outperforms the baselines under FDGN caused by malicious actions of fraudsters on
both the node classification and link prediction tasks. This indicates that PRINGLE works well not
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Figure 4: Graphical
models of DGPs de-
rived from FDGN.

Table 4: Ablation studies regarding various DGPs in Fig 4.
In Case 3, the causal relationship Y ← (X,A) is removed
from the DGP of FDGN (See Fig 2(b)). In Case 2, A← X
is additionally removed. In Case 1, A ← ϵ is additionally
removed, which is equivalent to the DGP of CGN (See
Fig 2(a)). Cora and Citeseer datasets are used to evaluate
the node classification performance.
Dataset Setting (a) Case 1 (b) Case 2 (c) Case 3 PRINGLE

Cora

Clean 84.6±0.4 84.8±0.4 86.2±0.2 86.2±0.7
FDGN-10% 77.4±0.3 77.3±0.3 83.2±0.3 82.9±0.6
FDGN-30% 68.3±0.4 68.5±0.2 77.3±0.4 78.2±0.3
FDGN-50% 55.2±0.2 56.1±0.3 68.7±0.3 69.7±0.6

Citeseer

Clean 76.7±0.9 76.8±0.8 76.5±0.9 77.3±0.6
FDGN-10% 69.5±0.3 69.5±0.4 73.2±0.1 74.3±0.9
FDGN-30% 57.2±1.1 57.7±0.5 65.5±0.7 65.6±0.6
FDGN-50% 49.2±0.5 48.7±0.2 57.6±2.5 59.0±1.8

only under artificially generated noise, but also under noise scenarios that are plausible in real-world
applications.

5.2 ABLATION STUDIES

To emphasize the importance of directly capturing the causal relationships among variables in the
DGP of FDGN, i.e., Y ← (X,A), A ← X , and A ← ϵ, we remove them one by one from the
graphical model of FDGN (See Fig 2(b), and then design deep generative models based on the DGPs
in a similar manner to PRINGLE. The graphical models of the derived DGPs are illustrated in Fig 4.
In Table 4, we observe that as more causal relationships are removed from the DGP of FDGN, the
node classification performance decreases. Below, we offer explanations for this observation from
the perspective of model derivation.

1) By removing Y ← (X,A), i.e., Fig 4(c), the loss term −EZY ∼qϕ3
[log(pθ3(Y |X,A,ZY ))] can

be simplified to −EZY ∼qϕ3
[log(pθ3(Y |ZY ))]. This simplification hinders the accurate modeling

of the label transition relationship from ZY to the noisy label Y , resulting in a degradation of
model performance under FDGN. 2) Additionally, when eliminating A ← X (i.e., Fig 4(b)), the
inference of ZA and ZY is simplified as follows: qϕ1

(ZA|X,A) to qϕ1
(ZA|A) and qϕ3

(ZY |X,A) to
qϕ3

(ZY |X). Furthermore, the loss term −EZA∼qϕ1
Eϵ∼qϕ2

[log(pθ1(A|X, ϵ, ZA))] is also simplified
to −EZA∼qϕ1

Eϵ∼qϕ2
[log(pθ1(A|ϵ, ZA))]. These simplifications significantly hinder the accurate

inference of ZA and ZY , resulting in a notable performance degradation. 3) Furthermore, by
eliminating A← ϵ, i.e., Fig 4(a), the loss term −EZA∼qϕ1

Eϵ∼qϕ2
[log(pθ1(A|ϵ, ZA))] is simplified

to −EZA∼qϕ1
Eϵ∼qϕ2

[log(pθ1(A|ZA))]. This simplification hinders the robustness of the inferred
ZA, since the simplified loss excludes label regularization from the model training process, ultimately
resulting in performance degradation.

6 CONCLUSION AND FUTURE WORK

In this paper, we discover practical limitations of conventional graph noise in terms of node features,
i.e., the noise in node features is independent of the graph structure or node label. To mitigate
limitations of the conventional graph noise assumption, we introduce a more realistic graph noise
scenario called feature-dependent graph-noise (FDGN), and present a deep generative model that
effectively captures the causal relationships among variables in the DGP of FDGN. Our proposed
method, PRINGLE, consistently outperforms baselines in both node classification and link prediction
tasks. We evaluate PRINGLE on commonly used benchmark datasets and newly introduced real-
world graph datasets that simulate FDGN in e-commerce systmes, which is expected to foster practical
research in noise-robust graph learning. For future work, the practicality of FDGN can be further
enhanced by additionally considering the causal relationship X ← A, which indicates that the graph
structure noise inevitably entails the node feature noise, that may indeed manifest in some real-world
scenarios. Since it can cover a broader range of noise scenarios that occur in real-world applications
than FDGN, we expect directly modeling it has the potential to enhance practical applicability. We
provide a detailed discussion on this topic in Appendix F.
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REPRODUCIBILITY STATEMENT

To ensure clarity and reproducibility, in Sec 4.3, we offer comprehensive explanations of our proposed
method (PRINGLE). Implementation details for both baseline methods and our method can be found
in Appendix D.3 and D.5. Furthermore, as we introduce novel settings to address the more realistic
graph noise scenario, FDGN, we provide a comprehensive discussion of the problem formulation in
Sec 3.1 and elaborate the experimental setup construction procedure in Appendix D.2 Our code is
available at https://anonymous.4open.science/r/FDGN-PRINGLE-4B31/
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Figure 5: Overall architecture of PRINGLE.

A OVERALL ARCHITECTURE AND ALGORITHM

Fig. 5 shows the overall architecture of PRINGLE, and the detailed algorithm is provided in
Algorithm. 1.

B DERIVATION DETAILS OF EVIDENCE LOWER BOUND (ELBO)

In this section, we derive the Evidence Lower BOund (ELBO) for the observed data log-likelihood
P (X,A, Y ). First, we factorize the joint distribution P (X,A, Y, ϵ, ZA, ZY ) based on the graphical
model in Fig. 2(b) in the main paper:

P (X,A, Y, ϵ, ZA, ZY ) = P (ϵ)P (ZA)P (ZY )P (X|ϵ, ZY )P (A|ϵ,X,ZA)P (Y |X,A,ZY ). (5)

Thus, the conditional distribution Pθ(X,A, Y |ϵ, ZA, ZY ) can be represented as follows:

Pθ(X,A, Y |ϵ, ZA, ZY ) = Pθ1(X|ϵ, ZY )Pθ2(A|ϵ,X,ZA)Pθ3(Y |X,A,ZY ). (6)

Recall that the conditional distribution qϕ(ϵ, ZA, ZY |X,A, Y ) is factorized as in Eqn. 2 in the main
paper:

qϕ(ϵ, ZA, ZY |X,A, Y ) = qϕ1(ZA|X,A)qϕ2(ϵ|X,A,ZY )qϕ3(ZY |X,A). (7)

Now, we derive the ELBO for the observed data log-likelihood P (X,A, Y ):
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log pθ(X,A, Y ) = log

∫
ϵ

∫
ZA

∫
ZY

pθ(X,A, Y, ϵ, ZA, ZY )dϵdZAdZY

= log

∫
ϵ

∫
ZA

∫
ZY

pθ(X,A, Y, ϵ, ZA, ZY )
qϕ(ϵ, ZA, ZY |X,A, Y )

qϕ(ϵ, ZA, ZY |X,A, Y )
dϵdZAdZY

= logE(ϵ,ZA,ZY )∼qϕ(ϵ,ZA,ZY |X,A,Y )

[
pθ(X,A, Y, ϵ, ZA, ZY )

qϕ(ϵ, ZA, ZY |X,A, Y )

]
≥ E(ϵ,ZA,ZY )∼qϕ(ϵ,ZA,ZY |X,A,Y )

[
log

pθ(X,A, Y, ϵ, ZA, ZY )

qϕ(ϵ, ZA, ZY |X,A, Y )

]
:= ELBO

= E(ϵ,ZA,ZY )∼qϕ(ϵ,ZA,ZY |X,A,Y )

[
log

p(ϵ)p(ZA)p(ZY )pθ1(A|X, ϵ, ZA)pθ2(X|ϵ, ZY )pθ3(Y |X,A,ZY )

qϕ(ϵ, ZA, ZY |X,A, Y )

]
= E(ϵ,ZA,ZY )∼qϕ(ϵ,ZA,ZY |X,A,Y ) [log(pθ1(A|X, ϵ, ZA)) + log(pθ2(X|ϵ, ZY )) + log(pθ3(Y |X,A,ZY ))]

+ E(ϵ,ZA,ZY )∼qϕ(ϵ,ZA,ZY |X,Y,A)

[
log

p(ϵ)p(ZA)p(ZY )

qϕ1
(ZA|X,A)qϕ2

(ϵ|X,A,ZY )qϕ3
(ZY |X,A)

]
(8)

The last equation of Eq. 8 can be more simplified as follows:

E(ϵ,ZA,ZY )∼qϕ(ϵ,ZA,ZY |X,A,Y ) [log(pθ1(A|X, ϵ, ZA))]

= EZA∼qϕ1
(ZA|X,A)Eϵ∼qϕ2

(ϵ|X,A,ZY )EZY ∼qϕ3
(ZY |X,A) [log(pθ1(A|X, ϵ, ZA))]

= EZA∼qϕ1
(ZA|X,A)Eϵ∼qϕ2

(ϵ|X,A,ZY ) [log(pθ1(A|X, ϵ, ZA))] , (9)

and

E(ϵ,ZA,ZY )∼qϕ(ϵ,ZA,ZY |X,A,Y ) [log(pθ2(X|ϵ, ZY ))]

= EZA∼qϕ1
(ZA|X,A)Eϵ∼qϕ2

(ϵ|X,A,ZY )EZY ∼qϕ3
(ZY |X,A) [log(pθ2(X|ϵ, ZY ))]

= Eϵ∼qϕ2
(ϵ|X,A,ZY )EZY ∼qϕ3

(ZY |X,A) [log(pθ2(X|ϵ, ZY ))] , (10)

and

E(ϵ,ZA,ZY )∼qϕ(ϵ,ZA,ZY |X,A,Y ) [log(pθ3(Y |X,A,ZY ))]

= EZA∼qϕ1
(ZA|X,A)Eϵ∼qϕ2

(ϵ|X,A,ZY )EZY ∼qϕ3
(ZY |X,A) [log(pθ3(Y |X,A,ZY ))]

= EZY ∼qϕ3
(ZY |X,A) [log(pθ3(Y |X,A,ZY ))] . (11)

In a similar way, the last term can be also simplified:

E(ϵ,ZA,ZY )∼qϕ(ϵ,ZA,ZY |X,Y,A)

[
log

p(ϵ)p(ZA)p(ZY )

qϕ1
(ZA|X,A)qϕ2

(ϵ|X,A,ZY )qϕ3
(ZY |X,A)

]
= EZA∼qϕ1

(ZA)Eϵ∼qϕ2
(ϵ|ZY )EZY ∼qϕ3

(ZY )

[
log

p(ZA)p(ϵ)p(ZY )

qϕ1
(ZA)qϕ2

(ϵ|ZY )qϕ3
(ZY )

]
= EZA∼qϕ1

(ZA)Eϵ∼qϕ2
(ϵ|ZY )EZY ∼qϕ3

(ZY )

[
log

p(ZA)

qϕ1(ZA)
+ log

p(ϵ)

qϕ2(ϵ|ZY )
+ log

p(ZY )

qϕ3(ZY )

]
= EZA∼qϕ1

(ZA)

[
log

p(ZA)

qϕ1
(ZA)

]
+ Eϵ∼qϕ2

(ϵ|ZY )EZY ∼qϕ3
(ZY )

[
log

p(ϵ)

qϕ2
(ϵ|ZY )

]
+ EZY ∼qϕ3

(ZY )

[
log

p(ZY )

qϕ3
(ZY )

]
= −kl(qϕ1

(ZA)||p(ZA))− EZY ∼qϕ3
(ZY ) [kl(qϕ2

(ϵ|ZY )||p(ϵ))]− kl(qϕ3
(ZY )||p(ZY )) (12)
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where we abuse the notation qϕ1
(ZA|X,A), qϕ2

(ϵ|X,A,ZY ), and qϕ3
(ZY |X,A) as qϕ1

(ZA),
qϕ2

(ϵ|ZY ), and qϕ3
(ZY ), respectively. We combine Eqn. 9, 10, 11, and 12 to get the negative

ELBO, i.e., LELBO:

LELBO =

− EZA∼qϕ1
(ZA|X,A)Eϵ∼qϕ2

(ϵ|X,A,ZY ) [log(pθ1(A|X, ϵ, ZA))] + kl(qϕ1(ZA|X,A)||p(ZA))

− Eϵ∼qϕ2
(ϵ|X,A,ZY )EZY ∼qϕ3

(ZY |X,A) [log(pθ2(X|ϵ, ZY ))] + EZY ∼qϕ3
(ZY |X,A) [kl(qϕ2

(ϵ|X,A,ZY )||p(ϵ))]
− EZY ∼qϕ3

(ZY |X,A) [log(pθ3(Y |X,A,ZY ))] + kl(qϕ3
(ZY |X,A)||p(ZY )) (13)

C DETAILS OF MODEL INSTANTIATIONS

Loss term kl(qϕ1
(ZA|X,A)||p(ZA)). To minimize this term, we encourage ZA to align with our

prior knowledge, i.e., p(ZA), that the latent graph structure predominantly consists of assortative
edges that have the potential to enhance feature propagation within GNNs (Zhao et al., 2023). In
recent studies (Choi et al., 2022; Dai et al., 2022), the γ-hop subgraph similarity has served as a
potent metric for identifying assortative edges. Hence, we model qϕ1

(ZA|X,A) to minimize the
KL divergence between the latent graph structure Â and prior graph structure Ap = {ap

ij}N×N ,
where ap

ij is sampled from a Bernoulli distribution with a probability as given by the γ-hop subgraph
similarity. This leads the estimated probability p̂ij between two nodes to increase if they exhibit a
high subgraph similarity. However, computing p̂ij in every epoch is impractical for large graphs, i.e.,
O(N2). To mitigate the issue, we pre-define a candidate graph that consists of the observed edge
set E and a k-NN graph based on the γ-hop subgraph similarity. We denote the set of edges in the
k-NN graphs as Eγk . Then, we compute the p̂ij values of the edges in a candidate graph, i.e., Eγk ∪ E ,
instead of all edges in {(i, j)|i ∈ V, j ∈ V}, to estimate the latent graph structure denoted as Â. It is
important to highlight that obtaining Eγk is carried out offline before model training, thus incurring
no additional computational overhead during training. This implementation technique achieves a
similar effect as minimizing kl(qϕ1(ZA|X,A)||p(ZA)) while significantly addressing computational
complexity from O(N2) to O(|Eγk ∪ E|), where N2 ≫ |Eγk ∪ E|.

D DETAILS ON EXPERIMENTAL SETTINGS

D.1 DATASETS

We evaluate PRINGLE and baselines on four existing datasets (i.e., Cora (Yang et al., 2016),
Citeseer (Yang et al., 2016), Amazon Photo, and Amazon Computers (Shchur et al., 2018)) and two
newly introduced datasets (i.e., Amazon Auto and Amazon Garden) that are proposed in this work
based on Amazon review data (He & McAuley, 2016; McAuley et al., 2015) to mimic FDGN caused
by malicious fraudsters on e-commerce systems (Refer to Appendix D.2.2 for details). The statistics
of the datasets are given in Table 5. These six datasets can be found in these URLs:

• Cora: https://github.com/ChandlerBang/Pro-GNN/
• Citeseer: https://github.com/ChandlerBang/Pro-GNN/
• Photo: https://pytorch-geometric.readthedocs.io/en/latest/
• Computers: https://pytorch-geometric.readthedocs.io/en/latest/
• Auto: http://jmcauley.ucsd.edu/data/amazon/links.html
• Garden: http://jmcauley.ucsd.edu/data/amazon/links.html

D.2 DETAILS OF GENERATING FDGN

D.2.1 SYNTHETIC FDGN

For the synthetic FDGN settings, we artificially generate the noise following the data generation
process of the proposed FDGN scenario. First, we randomly sample a subset of nodes Vnoisy (i.e.,
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Table 5: Statistics for datasets.

Dataset # Nodes # Edges # Features # Classes

Cora 2,485 5,069 1,433 7
Citeseer 2,110 3,668 3,703 6
Photo 7,487 119,043 745 8

Computers 13,381 245,778 767 10

Auto 8,175 13,371 300 5
Garden 7,902 19,383 300 5

10%, 30%, and 50% of the whole node set V). To inject node feature noise into the sampled nodes,
we randomly flip 0/1 value on each dimension of node features Xi from Bernoulli distribution with
probability p = 1

F

∑F
i=1 Xi, which results in the noisy features Xnoisy

i . After injecting the feature
noise, we generate a feature-dependent structure noise (i.e., A ← X) and feature-dependent label
noise (i.e., Y ← (X,A)). For the feature-dependent structure noise, we first calculate the similarity
vector for each node vi as {s(Xnoisy

i ,Xj)|vi ∈ Vnoisy, vj ∈ V} where s(·, ·) is a cosine similarity
function, and select the node pairs whose feature similarity is top-k highest values. We add the
selected node pairs to the original edge set E , which results in Enoisy. To address feature-dependent
label noise, we replace the labels of labeled nodes (i.e., training and validation nodes) with randomly
sampled labels from a Multinomial distribution, with parameters determined by the normalized
neighborhood class distribution. Finally, for the independent structure noise (i.e., A← ϵ), we add
the randomly selected non-connected node pairs to the Enoisy. Detailed algorithm is provided in
Algorithm 2.

D.2.2 REAL-WORLD FDGN

We have introduced and released two new graph benchmark datasets, i.e., Auto and Garden, that
simulate real-world FDGN scenarios on e-commerce systems. To construct these graphs, we utilized
metadata and product review data from two categories, "Automotives" and "Patio, Lawn and Garden,"
obtained from Amazon product review data sources (He & McAuley, 2016; McAuley et al., 2015).
Specifically, we generated a clean product-product graph where node features are represented using a
bag-of-words technique applied to product reviews. The edges indicate co-purchase relationships
between products that have been purchased by the same user, and the node labels correspond
to product categories. We perform both node classification and link prediction tasks, which are
equivalent to categorizing products and predicting co-purchase relationships, respectively.

We simulate the behaviors of fraudsters on a real-world e-commerce platform that incurs FDGN.
When the fraudsters engage with randomly selected products (i.e., when they write fake product
reviews), it would make other users purchase irrelevant products, which introduces a substantial
number of malicious co-purchase edges within the graph structure. Additionally, this activity involves
the injection of noisy random reviews into the node features. To provide a more detailed description,
we designated 100 uers as fraudsters. Furthermore, each of these users was responsible for generating
10 fraudulent reviews in both the Auto and Garden datasets. To generate fake review content, we
randomly choose text from existing reviews and duplicate it for the targeted products. This approach
guarantees that the fake reviews closely mimic the writing style and content of genuine reviews, while
also incorporating irrelevant information that makes it more difficult to predict the product category.

In e-commerce systems, to annotate the node labels (i.e., product categories), machine learning-
based automated labeling systems are commonly utilized. Specifically, human annotators manually
label a small set of examples, which is used as the training examples to the machine learning
model. Subsequently, a machine learning model is trained on these manually labeled product
samples to automatically assign categories to other products. Therefore, the systems rely on the
information about the products, e.g., reviews of products and co-purchase relationships, to assign
categories to products. However, due to the influence of the fraudsters, the noisy node features (i.e.,
fake product reviews) and noisy graph structure (i.e., co-purchase relationships between irrelevant
products) may hinder the accurate assignment of the automated labeling systems, which leads
to the noisy node label. To replicate this procedure, we selected 5 examples per category class,
which is equivalent to manual labeling process. We then trained a GCN model, leveraging the
node features, graph structure, and manually labeled nodes, to predict the true product categories.
Consequently, our set of labeled nodes are composed of both manually labeled nodes and nodes
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labeled using the GCN model. Importantly, the labels of unlabeled nodes were left unchanged
and still represented their actual categories. The data generation code is also available at https:
//anonymous.4open.science/r/FDGN-PRINGLE-4B31/.

We again emphasize that while existing works primarily focus on the unrealistic noise scenario
where graphs contain only a single type of noise, to the best of our knowledge, this is the first
attempt to understand the noise scenario in the real-world applications. Furthermore, we propose new
graph benchmark datasets that closely imitate a real-world e-commerce system containing malicious
fraudsters, which incurs FDGN. We expect these datasets to foster practical research in noise-robust
graph learning.

D.3 BASELINES

We compare PRINGLE with a wide range of noise-robust graph learning methods, which includes
feature noise-robust grah learning methods (i.e., AirGNN (Liu et al., 2021)), structure-noise robust
graph learning methods (i.e., ProGNN (Jin et al., 2020), RSGNN (Dai et al., 2022), STABLE (Li
et al., 2022a) and EvenNet (Lei et al., 2022)), and label noise-robust graph learning methods (i.e.,
NRGNN (Dai et al., 2021) and RTGNN (Qian et al., 2023)). We also consider WSGNN (Lao et al.,
2022) that is a generative graph learning method utilizing variational inference technique.

The publicly available implementations of baselines can be found at the following URLs:

• AirGNN (Liu et al., 2021) : https://github.com/lxiaorui/AirGNN

• ProGNN (Jin et al., 2020) : https://github.com/ChandlerBang/Pro-GNN

• RSGNN (Dai et al., 2022) : https://github.com/EnyanDai/RSGNN

• STABLE (Li et al., 2022a) : https://github.com/likuanppd/STABLE

• EvenNet (Lei et al., 2022) : https://github.com/Leirunlin/EvenNet

• NRGNN (Dai et al., 2022) : https://github.com/EnyanDai/NRGNN

• RTGNN (Dai et al., 2022) : https://github.com/GhostQ99/RobustTrainingGNN

• WSGNN (Lao et al., 2022) : https://github.com/Thinklab-SJTU/WSGNN

D.4 EVALUATION PROTOCOL

We mainly compare the robustness of PRINGLE and the baselines under both the synthetic and
real-world feature-dependent graph-noise (FDGN). More details of generating FDGN is provided in
Sec D.2. Additionally, we consider independent feature/structure/label noise, i.e., random feature
noise, random structure noise, uniform label noise, and pair label noise following existing works
(Liu et al., 2021; Dai et al., 2022; Li et al., 2022a; Qian et al., 2023). Specifically, for the feature
noise (Liu et al., 2021), we sample a subset of nodes (i.e., 10%, 30%, and 50%) and randomly
flip 0/1 value on each dimension of node features Xi from Bernoulli distribution with probability
p = 1

F

∑F
i=1 Xi. For the structure noise, we adopt the random perturbation method that randomly

injects non-connected node pairs into the graph (Li et al., 2022a). For the label noise, we generate
uniform label noise and pair label noise following the existing works (Qian et al., 2023; Dai et al.,
2021).

We conduct both the node classification and link prediction tasks. For node classification, we perform
a random split of the nodes, dividing them into a 1:1:8 ratio for training, validation, and testing nodes.
Once a model is trained on the training nodes, we use the model to predict the labels of the test nodes.
Regarding link prediction, we partition the provided edges into a 7:3 ratio for training and testing
edges. Additionally, we generate random negatives that are selected randomly from pairs that are not
directly linked in the original graphs. After mode learning with the training edges, we predict the
likelihood of the existence of each edge. This prediction is based on a dot-product or cosine similarity
calculation between node pairs of test edges and their corresponding negative edges. To evaluate
performance, we use Accuracy as the metric for node classification and Area Under the Curve (AUC)
for link prediction.
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Table 6: Hyperparameter settings on PRINGLE for Table 1.

Dataset Setting lr λ1 λ2 θ1 k γ

Cora

Clean 0.01 0.003 0.003 0.1 300 1
FDGN-10% 0.005 0.003 0.003 0.2 50 1
FDGN-30% 0.001 0.003 0.003 0.2 100 1
FDGN-50% 0.0005 30 0.003 0.3 50 1

Citeseer

Clean 0.0005 0.003 0.3 0.1 50 0
FDGN-10% 0.005 0.3 0.003 0.3 10 0
FDGN-30% 0.001 0.003 0.003 0.1 300 1
FDGN-50% 0.001 0.003 0.003 0.1 300 1

Photo

Clean 0.01 0.03 0.3 0.1 10 0
FDGN-10% 0.0005 0.03 0.3 0.1 10 0
FDGN-30% 0.001 3 0.03 0.1 10 0
FDGN-50% 0.0005 30 0.03 0.1 10 0

Comp

Clean 0.01 30 0.03 0.1 10 0
FDGN-10% 0.01 0.3 0.03 0.1 10 0
FDGN-30% 0.01 0.003 0.003 0.1 10 0
FDGN-50% 0.0005 0.003 0.03 0.1 10 0

D.5 IMPLEMENTATION DETAILS

For each experiment, we report the average performance of 3 runs with standard deviations. For
all baselines, we use the publicly available implementations and follow the implementation details
presented in their original papers.

For PRINGLE, the learning rate is tuned from {0.01, 0.005, 0.001, 0.0005}, and dropout rate and
weight decay are fixed to 0.6 and 0.0005, respectively. In the inference of ZA, we use a 2-layer GCN
model with 64 hidden dimension as GCNϕ1

and the dimension of node embedding d1 is fixed to
64. The γ value in calculating γ-hop subgraph similarity is tuned from {0, 1} and k in generating
k-NN graph is tuned from {0, 10, 50, 100, 300}. In the inference of ZY , we use a 2-layer GCN
model with 128 hidden dimension as GCNϕ3

. In the inference of ϵX , the hidden dimension of
embedding of ϵX is fixed to 16. In the inference of ϵA, the early-learning phase is fixed to 30 epochs.
In the implementation of the loss term −EZA∼qϕ1

Eϵ∼qϕ2
[log(pθ1(A|X, ϵ, ZA))], we tune the θ1

value from {0.1, 0.2, 0.3}. In the overall learning objective, i.e., Eqn 4, λ1 is tuned from { 0.003,
0.03. 0.3, 3, 30 }, λ2 is tuned from { 0.003, 0.03. 0.3 }, and λ3 is fixed to 0.001. It is important
to note that when we calculate Eqn. 4, Lrec-feat, Lcls-dec, and Lp share the same coefficient λ3. In
our experiments, we observed that these three terms have a relatively minor impact on the model’s
performance compared to the others. As a result, we have made a strategic decision to simplify the
hyperparameter search process and improve the practicality of PRINGLE by sharing the coefficient
λ3 among these three loss terms. We report the details of hyperparameter settings in Table 6.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 UNDER INDEPENDENT FEATURE/STRUCTURE/LABEL NOISE SETTINGS

In this subsection, we further evaluate the robustness of PRINGLE under independent feature/struc-
ture/label noise settings. In this setup, each type of noise occurs independently and does not affect the
occurrence of the others. To this end, we generate three types of noise: random feature noise, random
structure noise, and random label noise. More details of generating noises is provided in Sec D.4.

Evaluating robustness under independent feature noise. In this setting, we evaluate the models on
a graph containing only the feature noise, i.e., random feature noise. In Fig 6, PRINGLE consistently
outperforms the feature noise-robust graph learning method (i.e., AirGNN) under independent feature
noise. We attribute the robustness of PRINGLE under independent feature noise to the graph structure
learning module that accurately infers the latent graph structure ZA. The utilization of abundant local
neighborhoods acquired through the inference of ZA enables effective smoothing for nodes with
noisy features, leveraging the information within these neighborhoods.
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Figure 6: Node classification performance of
baselines and PRINGLE on Cora and Cite-
seer dataset under independent feature noise.
We vary a noise rate from 0% to 50%
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Figure 7: Node classification performance of
baselines and PRINGLE on Cora and Cite-
seer dataset under independent structure noise.
We vary a noise rate from 0% to 50%.

Evaluating robustness under independent structure noise. In this setting, we evaluate the models
on a graph containing only the structure noise, i.e., random structure noise. In Fig 7, Under the
influence of independent structure noise, PRINGLE maintains a consistently competitive performance
when compared to other structure noise-robust graph learning methods, namely RSGNN and STABLE.
We attribute the effectiveness of PRINGLE under independent structure noise to inferring the robust
latent clean graph structure. In other words, the inference of the latent clean graph structure ZA

assigns greater weights to latent clean edges and lower weights to observed noisy edges by employing
regularizations on both the edge predictions and labels, thereby mitigating structural noise.
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Figure 8: Node classification performance of
baselines and PRINGLE on Cora and Cite-
seer dataset under independent uniform label
noise. We vary a noise rate from 0% to 50%.
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Figure 9: Node classification performance
of baselines and PRINGLE on Cora and
Citeseer dataset under independent pair la-
bel noise. We vary a noise rate from 0% to
50%.

Evaluating robustness under independent label noise In this setting, we evaluate the models on
a graph containing only the label noise, i.e., uniform label noise and pair label noise. In Fig 8 and
9, PRINGLE demonstrates consistent superiority or competitive performance compared to label
noise-robust graph learning methods, namely NRGNN and RTGNN, in the presence of independent
label noise. We argue that the effectiveness of PRINGLE stems from the accurate inference of the
latent clean structure. Specifically, the inferred latent node label ZY is regularized using the inferred
latent structure ZA to meet the homophily assumption (i.e., Lhom). Leveraging the clean neighbor
structure, this regularization technique has been demonstrated to effectively address noisy labels
(Iscen et al., 2022).

Evaluating robustness under simultaneous noise. In addition to a single type of independent noise,
we explore a more challenging yet realistic noise scenario where all three types of independent noises
occur simultaneously, denoted as simultaneous noise. More specifically, for the feature and structure
noise, we generate random feature noise and random structure noise in a same way as described in
Sec D.4. Regarding the label noise, we generate uniform label noise following Qian et al. (2023). It is
important to note that each type of noise does not affect the occurrence of the other types of noise. In
Fig 10, PRINGLE consistently outperforms the noise-robust graph learning methods and generative
graph learning methods under simultaneous noise setting. Based on these results, we can assert
that modeling the DGP of FDGN is advantageous for robustness under independent graph noise, as
PRINGLE is inherently capable of handling each type of noise. In contrast, the baseline methods
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Figure 10: Node classification performance of baselines and PRINGLE on Cora and Citeseer dataset
under simultaneous noise, where random feature, structure, and label noise independently exist in a
graph. We vary a noise rate from 0% to 50%.

Table 7: Comparison with the naive combination of existing noise-robust graph learning methods.
FNR, SNR, and LNR denote the feature noise-robust, structure noise-robust, and label noise-robust
graph learning methods, respectively. We consider AirGNN as FNR, RSGNN as SNR, and RTGNN
as LSR methods.

Component Cora Citeseer

FNR SNR LNR Clean FDGN 10% FDGN 30% FDGN 50% Clean FDGN 10% FDGN 30% FDGN 50%

✓ ✗ ✗ 85.0±0.2 79.7±0.5 71.5±0.8 56.2±0.8 71.5±0.2 66.2±0.7 58.0±0.4 50.0±0.6
✗ ✓ ✗ 86.2±0.5 81.9±0.3 71.9±0.5 58.1±0.2 75.8±0.4 73.3±0.5 63.9±0.5 55.3±0.4
✗ ✗ ✓ 86.1±0.2 81.6±0.5 72.1±0.6 60.8±0.4 76.1±0.4 73.2±0.2 63.5±2.1 54.2±1.8
✓ ✓ ✗ 86.0±0.3 82.0±0.3 75.0±0.8 68.8±0.6 75.1±0.8 73.1±0.6 63.6±0.8 57.8±0.8
✓ ✗ ✓ 85.2±0.7 70.1±0.1 56.7±0.4 48.0±0.5 75.8±0.5 72.3±0.3 59.0±0.7 49.0±0.2
✗ ✓ ✓ 85.0±0.2 79.4±0.9 72.3±0.5 63.0±0.4 76.7±0.3 74.3±0.9 64.8±0.3 55.3±0.5
✓ ✓ ✓ 86.3±0.3 82.4±0.3 67.0±0.9 53.6±0.6 76.6±0.2 73.0±0.7 64.1±0.2 52.7±1.1

PRINGLE 86.2±0.7 82.9±0.6 78.2±0.3 69.7±0.6 77.3±0.6 74.3±0.9 65.6±0.6 59.0±1.8

assume the completeness of at least one of the data sources, resulting in a significant performance
drop when the noise rate is high. This suggests that PRINGLE has a broader range of applicability
in real-world scenarios.

E.2 COMPARISON WITH THE NAIVE COMBINATION OF EXISTING WORKS

So far, we have observed that existing approaches fail to generalize to FDGN since they primarily
focus on graphs containing only a single type of noise. A straightforward solution might be to
naively combine methods that address each type of noise individually. To explore this idea, we
consider AirGNN as the feature noise-robust graph learning method (FNR), RSGNN as the structure
noise-robust graph learning method (SNR), and RTNN as the label noise-robust graph learning method
(LNR). We carefully implement all possible combinations among FNR, SNR, and LNR.

In Table 7, we observe that naive combination can improve robustness in some cases, but it may
not consistently yield favorable results. For example, combining FNR and SNR notably enhances
robustness. However, when we combine all three (FNR, SNR, and LNR), which is expected to yield
the best results, performance even decreases. This could be attributed to compatibility issues among
the methods arising from the naive combination. Furthermore, although some combinations improve
robustness, PRINGLE consistently outperforms all combinations. We attribute this to the fact that
naively combining existing methods may not capture the causal relationships in the DGP of FDGN,
limiting their robustness. In contrast, PRINGLE successfully captures these relationships, resulting
in superior performance.

E.3 SENSITIVITY ANALYSIS

In this section, we analyze the sensitivity of the coefficient λ1, λ2, and λ3 in Eqn 4. To be specific, we
increase λ1 value from {0.0, 0.003, 0.03, 0.3, 3}, λ2 value from {0.0, 0.003, 0.03, 0.3}, and λ3 from
{0.0, 0.01, 0.1, 1, 10}. We then evaluate the node classification accuracy of PRINGLE under FDGN.
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Figure 11: Sensitivity analysis on λ1, λ2, and λ3. We conduct the experiments on Photo dataset under
FDGN-30%

In Fig 11(a), we observe that the performance significantly drops when λ1 = 0. This highlights the
importance of modeling the causal relationship A← (X, ϵ, ZA) for robustness under FDGN, as λ1

is directly related to the loss term Ledge-rec, i.e., −EZA∼qϕ1
Eϵ∼qϕ2

[log(pθ1(A|X, ϵ, ZA))].

In Fig 11(b), we can see a performance decrease when λ2 = 0. This observation suggests that the
regularization on the inferred latent node label ZY using the inferred latent structure ZA effectively
handles the noisy labels. This conclusion is drawn from the fact that λ2 is directly linked to the loss
term Lhom, i.e., kl(qϕ3

(ZY |X,A)||p(ZY )).

In Fig 11(c), we can clearly observe a substantial performance drop when λ3 = 0, and the per-
formance tends to improve as λ3 increases. This observation strongly suggests the importance of
modeling the causal relationships X ← (ϵ, ZY ) and Y ← (X,A,ZY ) for robustness under FDGN.
We draw this conclusion by considering that λ3 is directly associated to the loss terms Lrec-feat,
Lcls-dec, and Lp, i.e., −Eϵ∼qϕ2

EZY ∼qϕ3
[log(pθ2(X|ϵ, ZY ))], −EZY ∼qϕ3

[log(pθ3(Y |X,A,ZY ))],
and EZY ∼qϕ3

[kl(qϕ2
(ϵ|X,A,ZY )||p(ϵ))].

E.4 ANALYSIS OF THE INFERRED ZA AND ϵA
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Figure 12: (a) Distribution of p̂elij values
estimated from clean and FDGN-50%
Cora dataset. (b) Distribution of p̂ij val-
ues of clean edges and noisy edges under
FDGN-50%. Dashed lines indicate aver-
age values. Cora dataset is used.

In this subsection, we qualitatively analyze how well
PRINGLE infers the latent variable ϵA and ZA. In
Fig 12(a), we conducted an analysis of the inference of ϵA
by comparing the distribution of p̂elij values estimated dur-
ing the training of PRINGLE on clean and noisy graphs
(FDGN-50%). We observe that p̂elij values estimated from
the clean graph tend to be close to 1, while those from the
graph with FDGN are considerably smaller. This observa-
tion suggests that the inference of ϵA was accurate, as the
high values of p̂elij indicate that the model recognizes the
edge (i, j) as a clean edge.

In Fig 12(b), we analyze the inference of ZA by com-
paring the distribution of p̂ij values, which constitute the
estimated latent graph structure Â, between noisy edges
and the original clean edges. It is evident that the estimated
edge probabilities p̂ij for noisy edges are predominantly
assigned smaller values, while those for clean edges tend
to be assigned larger values. This observation illustrates
that PRINGLE effectively mitigates the impact of noisy
edges during the message-passing process, thereby enhanc-
ing its robustness in the presence of noisy graph structure.
This achievement can be attributed to the label regularization effect achieved through the accurate
inference of ϵA. Specifically, as the observed graph structure contains noisy edges, the inaccurate
supervision for Lrec-edge impedes the distinction between noisy edges and the original clean edges in
terms of edge probability values p̂ij . However, the label regularization technique proves crucial for
alleviating this issue, benefitting from the accurate inference of ϵA.
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F FURTHER DISCUSSION ON FDGN
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Figure 13: A directed graphi-
cal model indicating a DGP of
(a) FDGN, and (b) FSDGN.

In this work, our main focus is on the limitations of the conventional
graph noise assumption in terms of node features: the noise in node
features is independent of the graph structure or node labels. To
this end, we propose a more realistic noise scenario FDGN by intro-
ducing the causal relationships A ← X and Y ← (X,A) into the
DGP of CGN. However, it is crucial to acknowledge that in some
real-world scenarios, the causal relationship X ← A may indeed
manifest, which indicates that the graph structure noise inevitably
entails the node feature noise. For instance, consider a social net-
work where node features represent the content to which a user is
exposed or interacts with (e.g., views, clicks, or likes), while the
graph structure denotes the follower relationships. In such a scenario,
if a user follows or is followed by fake accounts, the graph structure
might incorporate noisy links (i.e., noisy graph structure). This, in
turn, can impact the content to which users are exposed and their
interactions (i.e., noisy node features), eventually influencing their community assignments (i.e., noisy
node labels). In other words, the noisy node feature and noisy graph structure mutually influence
the noise of each other, ultimately incurring the noisy node label. We denote this scenario as feature
structure-dependent graph-noise (FSDGN), and its DGP is illustrated in Fig 13(b). Given that the
DGP of FSDGN covers a broader range of noise scenarios that occur in real-world applications than
FDGN, we expect that directly modeling the DGP of FSDGN has the potential to enhance practical
applicability. However, this is a topic we leave for future work.

G COMPARISON TO CAUSALNL (YAO ET AL., 2021)

One can suggest that our work may appear to lack technical novelty in comparison to CausalNL
(Yao et al., 2021). However, it is important to note that we tackle additional, more challenging
aspects unique to our specific problem that do not exist in CausalNL. Specifically, when additionally
introducing A, we handle four more causal relationships: A← ϵ, A← X , Y ← A, A← ZA, each
of which is non-trivial to consider. We would like to specify the challenges in instantiations caused
by their additional introduction.

Inference of ϵ. In contrast to CausalNL, which assumes that ϵ is a cause of X , our proposed FDGN
consider that ϵ is a cause of both X and A. In other words, the DGP of FDGN contains the causal
relationships X ← ϵ and A ← ϵ, as real-world applications often exhibit graph structure noise
originating from arbitrary sources (i.e., ϵ) in addition to the feature-dependent noise. Therefore, this
scenario is a unique characteristic of our problem and not addressed in CausalNL. To deal with this,
we decompose qϕ2(ϵ|X,A,ZY ) into qϕ21(ϵX |X,ZY ) and qϕ22(ϵA|X,A). While the instantiation
of qϕ21

(ϵX |X,ZY ) is similar to CausalNL, that of qϕ22
(ϵA|X,A) is non-trivial and is absent in

CausalNL. In our approach, we regard ϵA as a set of scores indicating the likelihood of each observed
edge being noisy or not. Moreover, we leverage the concept of early-learning phenomenon to infer
ϵA. It is worth emphasizing once again that the instantiation of this scenario is novel and not a
straightforward extension of CausalNL.

Loss term kl(qϕ1
(ZA|X,A)||p(ZA)) To compute this loss term, we encounter two primary chal-

lenges:

1. Designing an appropriate prior for the latent graph structure p(ZA)

2. Addressing the complexity associated with calculating the KL divergence between the two
matrices sampled from Bernoulli distributions.

In response to the first challenge, we employ the γ-hop subgraph similarity as a metric to identify
assortative edges. Regarding the second challenge, we introduce a predefined candidate graph, which
includes the observed edge set along with a k-NN graph based on the γ-hop subgraph similarity.
Both of these challenges represent non-trivial aspects of our approach and are absent in CausalNL.

Loss term kl(qϕ3(ZY |X,A)||p(ZY )) To compute this loss term, CausalNL employs a uniform
distribution as the prior p(ZY ). In contrast, we introduce the concept of class homophily to effectively
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regularize the inference of latent clean node label ZY . Specifically, we encourage ZY to align with
our prior knowledge, i.e., p(ZY ), that the two end nodes on the accurately inferred latent graph
structure ZA are expected to have identical latent labels. Therefore, using this prior helps alleviate
the noisy node label issues. It is essential to highlight that this instantiation effectively utilizes the
property unique to the graph domain, which is not present in CausalNL. It is worth emphasizing once
again that such an instantiation is novel and not a straightforward extension of CausalNL.

Loss term EZY ∼qϕ3
[kl(qϕ2

(ϵ|X,A,ZY )||p(ϵ))] This term is decomposed into
kl(qϕ21(ϵX |X,ZY )||p(ϵX)) and kl(qϕ22(ϵA|X,A)||p(ϵA)). The first term is calculated in a
similar manner to CausalNL. Specifically, a Gaussian distribution is employed as the prior p(ϵX).
However, the second term is unique to our problem, and its computation necessitates prior
information about ϵA. As ϵA indicates the likelihood of each observed edge being noisy or not, it is
not appropriate to simply assume p(ϵA) as a Gaussian distribution as done in CausalNL. This aspect
makes the problem more challenging. To address this challenge, we introduce a new assumption
that the inferred ϵA follows an unknown distribution with high variance, while our prior knowledge
suggests that p(ϵA) follows the same distribution but with low variance. Additionally, we employ an
Exponential Moving Average (EMA) technique to reduce the uncertainty of the inferred ϵA. This
challenge represent non-trivial aspects of our approach and is absent in CausalNL.

H ADDITIONAL REAL-WORLD EXAMPLES OF FDGN

In this paper, we consistently assert that FDGN represents a more realistic graph noise scenario. In
order to substantiate this assertion further, we present additional real-world application examples, in
addition to those involving social networks and co-purchase networks:

• Biological Networks: A cell-cell graph is widely used in computational biology. In the cell-cell
graph, each node represents each cell. Then corresponding node features and node labels are
represented as gene expression and cell type, respectively. However, gene expression as cell-gene
count matrix often contain noises such as dropout phenomenon and batch effect. Due to the lack
of cell-cell graph structure (i.e., graph adjacency), many works design cell-cell graph structures
via utilizing the node features (Wang et al., 2021; Xiong et al., 2023; Yun et al., 2023), which may
entail the noisy cell-cell graph structures. Furthermore, regarding the cell type (i.e., node label) is
annotated by using transcripted marker genes (i.e., important features), noisy node features may
lead the noisy node labels.

• Recommendation systems: In recommendation systems of various domains (e.g., e-commerce,
news, and music), user-item interaction graphs are common. The node features may represent
users’ and products’ information and user-item interactions represent the graph structures. Fur-
thermore, the node labels can be represented by the users’ communities (interests) and products’
categories. When a user creates a fake or incomplete profile due to various reasons (e.g., privacy),
products irrelevant to the user’s genuine interest can be exposed in a web/app page to promote the
user to view/click/purchase the products. Then, the user is more likely to interact with irrelevant
products (i.e., noisy graph structure) due to the user’s noisy features. Furthermore, such noisy
users’ information and interactions may also eventually change their communities (i.e., noisy
node label).

I FURTHER COMPARISON TO LABEL NOISE-ROBUST BASELINES

We agree with the reviewer’s comment about the missing baselines. Hence, we further compare
PRINGLE with the widely used label noise baselines: Co-teaching+ (Yu et al., 2019), CP (Zhang
et al., 2020), D-GNN (NT et al., 2019), and CGNN (Yuan et al., 2023). From Table 8, we clearly see
that the proposed method, PRINGLE, outperforms all the baselines. We argue that these baseline
methods were designed to tackle the noisy node labels while assuming that both node features and
graph structure are noise-free. However, the proposed FDGN introduces a more realistic noise
scenario, wherein node features, graph structures, and node labels simultaneously contain noise. As a
consequence, the performance of these existing methods is considerably more constrained compared
to PRINGLE.
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Table 8: Node classification performance under synthetic feature-dependent graph-noise (FDGN).
Dataset Setting Co-teaching+ CP D-GNN CGNN PRINGLE

Cora

Clean 84.7±0.9 84.3±0.4 83.7±0.5 85.2±0.7 86.2±0.7
FDGN-10% 76.9±0.5 78.7±0.6 78.6±0.5 77.4±0.3 82.9±0.6
FDGN-30% 66.0±0.8 68.2±0.5 68.5±0.4 69.2±0.8 78.2±0.3
FDGN-50% 55.0±0.1 53.1±0.9 57.7±0.3 55.1±0.2 69.7±0.6

Citeseer

Clean 72.7±0.4 72.8±0.9 75.1±0.2 71.1±0.9 77.3±0.6
FDGN-10% 67.7±0.6 68.4±0.8 69.0±0.5 65.6±0.4 74.3±0.9
FDGN-30% 55.0±0.9 56.8±0.9 54.0±0.7 54.1±0.3 65.6±0.6
FDGN-50% 47.4±0.8 46.5±1.0 44.7±0.1 46.9±1.4 59.0±1.8

Photo

Clean 93.1±0.0 93.3±0.5 93.1±0.1 92.7±0.5 94.8±0.3
FDGN-10% 87.9±0.8 90.5±0.5 90.3±0.6 87.1±0.3 93.2±0.2
FDGN-30% 83.1±0.2 85.1±1.0 85.9±0.3 85.1±0.2 90.5±0.4
FDGN-50% 61.9±0.3 80.4±0.6 85.1±0.8 80.5±0.7 87.6±0.2

Comp

Clean 88.6±0.8 90.7±0.3 89.4±0.9 90.0±0.5 92.2±0.0
FDGN-10% 85.6±0.6 87.1±0.8 86.8±0.4 83.0±0.4 89.8±0.2
FDGN-30% 81.5±0.3 82.8±0.6 82.9±0.5 82.3±0.8 86.9±0.3
FDGN-50% 72.8±0.9 74.3±1.0 74.5±0.6 75.3±0.1 82.2±0.4

J COMPLEXITY ANALYSIS

Table 9: Training time comparison on Cora dataset under FDGN 50%.

WSGNN AirGNN ProGNN RSGNN STABLE EvenNet NRGNN RTGNN PRINGLE

Total training time (sec) 93.90 20.9 702.14 159.87 53.33 0.81 100.33 118.7 46.27
Training time / epoch (sec) 0.19 0.04 1.77 0.16 - 0.004 0.20 0.18 0.09

We compare the training time of PRINGLE with the baselines to analyze the computational complex-
ity of PRINGLE . In Table 9, we report the total training time and training time per epoch on Cora
with FDGN 50% for all models. Note that since STABLE is a 2-stage method, we did not report the
training time per epoch. The results show that PRINGLE requires significantly less total training
time and training time per epoch compared to WSGNN, ProGNN, RSGNN, STABLE, NRGNN,
and RTGNN. This suggests that PRINGLE’s training procedure is faster than that of most baselines
while still achieving substantial performance improvements. Although AirGNN and EvenNet require
much less training time than PRINGLE, their node classification accuracy is notably worse than
other methods, including PRINGLE. This indicates that, despite their fast training times, they may
not be suitable for real-world scenarios. In summary, PRINGLE demonstrates superior performance
compared to the baselines while maintaining acceptable training times.

K FURTHER DISCUSSION WITH GRAPHDE AND RGIB

Li et al. (2022b) introduced a debiased learning framework, GraphDE, designed to handle situations
where out-of-distribution (OOD) samples are present in training data. Given that a noisy sample
can be viewed as an OOD sample, GraphDE shares a similar objective with our work. Additionally,
GraphDE employs a generative model based on variational inference, relevant to learning approach.
However, there are significant distinctions in the DGP that we assume compared to GraphDE.
Specifically, GraphDE assumes that a latent variable e determines whether an instance is an OOD
sample or not, overlooking the way that the OOD sample is generated. Conversely, the DGP of our
proposed FDGN characterizes the process by which noisy samples (i.e., OOD sample) are generated
(e.g., in a feature-dependent manner). This crucial difference enables a more fine-grained model
learning than GraphDE, which may weaken the applicability of GraphDE to complex real-world
noise scenarios, such as FDGN.

Zhou et al. (2023) introduced a graph structure denoising framework called RGIB, primarily centered
on the link prediction task. In their work, while ZA and A share the same meaning as in our paper,
Y denotes "edge labels" rather than node labels (i.e., it serves as a binary indicator for the presence
of query edges), and ZY refers to "clean edge labels" rather than clean latent node labels. These
distinctions significantly differentiate their approach from ours. Furthermore, it’s important to note
that RGIB primarily addressed noisy graph structures while assuming that node features and node
labels are noise-free. In contrast, our proposed method, PRINGLE, is developed under the more
realistic FDGN assumption, where node features, graph structures, and node labels all simultaneously
contain noise. This fundamental difference underscores the enhanced applicability and robustness of
PRINGLE compared to RGIB.
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Algorithm 1 Training Algorithm of PRINGLE.

1: Input: Observed graph G = ⟨V, E⟩, node feature X ∈ RN×F , node label Y ∈ RN×C

2: Initialize trainable parameters ϕ1, ϕ2, ϕ3, θ2, θ3
3: Initialize p̂elij to one vector 1.
4: Generate a k-NN graph Eγk based on the γ-hop subgraph similarity
5: Pre-define a candidate graph by Eγk ∪ E
6: while not converge do
7: /* Inference of ZA */
8: Feed X and A to GCNϕ1

to obtain the node embeddings Z
9: Calculate the p̂ij on the candidate graph Eγk ∪ E based on Z to obtain Â.

10: /* Inference of ZY */
11: Feed X and Â to GCNϕ3

to get Ŷ
12: /* Inference of ϵX */
13: Feed X and Ŷ to the MLPϕ2

to get node embeddings that follow N (0, I)
14: /* Inference of ϵA */
15: if early-learning phase then
16: p̂cij ← ρ(s(Zi,Zj))

17: p̂elij ← ξp̂elij + (1− ξ)p̂cij
18: Convert p̂elij into τij
19: end if
20: /* Generation of A */
21: Obtain an edge prediction wij = θ1p̂ij + (1− θ1)s(Xi,Xj)
22: /* Generation of X */
23: Obtain the reconstruction of node features based on decoder MLPθ2 and its input ϵX and Ŷ.
24: /* Generation of Y */
25: Obtain node prediction Ŷdec based on classifier GCNθ3 and its input X and A.
26: /* Loss calculation */
27: Calculate the objective function Lcls-enc +λ1Lrec-edge +λ2Lhom +λ3(Lrec-feat +Lcls-dec +Lp).
28: /* Parameter updates */
29: Update the parameters ϕ1, ϕ2, ϕ3, θ2, θ3 to minimize the overall objective function.
30: end while
31: Return: learned model parameters ϕ1, ϕ2, ϕ3, θ2, θ3

26



Under review as a conference paper at ICLR 2024

Algorithm 2 Data Generation Algorithm of Synthetic FDGN.

1: Input: Clean graph G = ⟨V, E⟩, node feature X ∈ RN×F , node label Y ∈ RN×C , noise rate
η%

2: /* Injection of feature noise */
3: Vnoisy ← Randomly sample a η% subset of nodes
4: Xnoisy ← X
5: for vi in Vnoisy do
6: pi ← 1

F

∑F
j=1 Xij

7: for j ← 1 to F do
8: Xnoisy

ij ← BernoulliSample(pi)
9: end for

10: end for
11: /* Injection of feature-dependent structure noise */
12: Enoisy ← E
13: for vi in Vnoisy do
14: s← 0 ∈ RN

15: for j ← 1 to N do
16: sj ← s(Xnoisy

i ,Xj)
17: end for
18: Append k pairs of nodes with the highest s values to Enoisy

19: end for
20: /* Injection of feature-dependent label noise */
21: Ynoisy ← Y
22: for vi in VL do
23: if vi has noisy feature or noisy structure then
24: pi ← Obtain normalized neighborhood class distribution of node vi
25: Ynoisy

i ←MultinomialSample(pi)
26: end if
27: end for
28: /* Injection of independent structure noise */
29: Randomly append pairs of nodes to Enoisy

30: Return: noisy graph G = ⟨V, Enoisy⟩, noisy node feature Xnoisy, noisy node label Ynoisy
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