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ABSTRACT

Multimodal large language models (MLLMs) trained with visual instruction tun-
ing have achieved strong performance across diverse tasks, yet they remain limited
in vision-centric tasks such as object counting or spatial reasoning. We attribute
this gap to the prevailing text-only supervision paradigm, which provides only
indirect guidance for the visual pathway and often leads MLLMs to discard fine-
grained visual details from the vision encoder during training. In this paper, we
present VIsual Representation ALignment (VIRAL), a simple yet effective reg-
ularization strategy that aligns the internal visual representations of MLLMs with
those of pre-trained vision foundation models (VFMs). By explicitly enforcing
this alignment, VIRAL enables the model not only to retain critical visual details
from its own vision encoder but also to complement additional visual knowledge
from VFMs, thereby enhancing its ability to reason over complex visual inputs.
Our experiments consistently demonstrate performance improvements across all
tasks on widely adopted multimodal benchmarks, with gains reaching up to 17.3%
and an average improvement of 9.4% over the baseline. Furthermore, we conduct
comprehensive ablation studies to validate the key design choices underlying our
framework. We believe this simple finding opens up an important direction for the
effective integration of visual information in training MLLMs.
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Figure 1: (a) VIsual Representation ALignment (VIRAL) introduces an auxiliary regularization
objective on the visual pathway, preventing MLLMs from discarding detailed attributes of the input
vision encoder during training while incorporating additional visual knowledge from vision founda-
tion models (VFMs). (b) When trained with DINOv2 (Oquab et al., 2023) as the VFM, VIRAL con-
sistently yields more accurate visually grounded responses and achieves substantial improvements
over standard baselines (Liu et al., 2023) across diverse vision encoders, including CLIP (Radford
et al., 2021) and SigLIPv2 (Tschannen et al., 2025).

1 INTRODUCTION

Recent advancements in multimodal large language models (MLLMs) (OpenAI, 2023; Bai et al.,
2023a; Team et al., 2023; Chen et al., 2024d), particularly those employing visual instruction tuning
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techniques such as LLaVA (Liu et al., 2023), have achieved notable success in diverse multimodal
tasks. By connecting pretrained large language models (LLMs) (Touvron et al., 2023; Chiang et al.,
2023; Chen et al., 2024d; Bai et al., 2025) with vision encoders (Radford et al., 2021; Chen et al.,
2024d; Tong et al., 2024a) through a lightweight vision–language projector, visual instruction tuning
enables LLMs to interpret visual context and achieve strong performance across diverse tasks (Chen
et al., 2024a; 2025a; Li et al., 2025a).

Despite these successes, numerous studies report persistent limitations in vision-centric tasks such
as object counting and spatial reasoning (Tong et al., 2024b; Qi et al., 2025; Yuksekgonul et al.,
2022; Ma et al., 2023). Early approaches largely attribute these shortcomings to the visual encoder
or the projector. In response, subsequent works have introduced stronger vision encoders (Lu et al.,
2024; Li et al., 2024) and more expressive projectors (Liu et al., 2024a; Cha et al., 2024; McKinzie
et al., 2024), aiming to supply the language model with richer and more comprehensive visual rep-
resentations. While they yield notable improvements, approaches that rely solely on more powerful
vision encoders or projectors are inherently constrained in scalability and efficiency.

In this paper, we first revisit the conventional training paradigm of visual instruction tuning. Ex-
isting MLLMs are predominantly fine-tuned with a language-modeling objective, updating both the
LLM and the vision-language projector while concentrating supervision almost entirely on textual
outputs (Li et al., 2024; Bai et al., 2023b; Chen et al., 2024d). As a result, visual tokens receive
only indirect, language-mediated supervision despite comprising a substantial fraction of the multi-
modal input. In effect, the visual pathway remains under-supervised, raising a central question: Is
the prevailing multimodal training setup adequate for capturing and preserving visual information?

We hypothesize that text-only supervision encourages the model to retain only those visual details
that immediately aid text prediction, discarding other potentially useful cues. For example, a caption
such as “A photo of a group of people holding a large flag.” provides little incentive to preserve the
flag’s color, the exact number of people, or their spatial layout—attributes needed for downstream
scenarios as in examples shown in Figure 1. In short, text-only supervision aligns visual features
with language efficiently (Venhoff et al., 2025; Neo et al., 2024), but does so at the cost of losing the
richer and more structured representations provided by the vision encoder.

To validate this hypothesis, we conduct an experiment (see Figure 2) and observe that visual rep-
resentations trained under exclusive textual supervision rapidly diverge from those produced by the
input vision encoder, which we refer to as visual representation misalignment. Importantly, we fur-
ther demonstrate that explicitly preserving alignment with the input vision encoder’s representations
yields substantial gains in fine-grained visual understanding.

Motivated by these findings, we propose VIsual Representation ALignment (VIRAL), a simple
yet effective regularization strategy that directly supervises the visual pathway in MLLMs to prevent
the model from discarding fine-grained visual attributes provided by the vision encoder during train-
ing. Specifically, we align the internal visual representations of the MLLMs with those of the initial
vision encoder using an alignment loss based on cosine similarity. In addition, we further find that
this alignment signal is much more effective when provided from stronger vision foundation models
(VFMs) (Oquab et al., 2023; Kirillov et al., 2023; Yang et al., 2024; Ranzinger et al., 2024). Since
VFMs are trained on vision-centric objectives, they provide rich visual representations that com-
plement language supervision. Therefore, aligning the internal visual representations of MLLMs
with those of VFMs likely allows the model to preserve critical visual details while also absorbing
additional visual knowledge from VFMs, which in turn enhances its ability to reason over complex
visual inputs. Through extensive experiments on widely adopted multimodal benchmarks, we show
that VIRAL consistently delivers significant improvements across all tasks.

We summarize our contributions as following:

• We show that, under the visual instruction tuning paradigm, internal visual representations
in MLLMs often lose alignment with the rich features produced by vision encoders, lead-
ing to the degradation of spatial reasoning capacity due to the loss of fine-grained visual
information.

• We propose a novel regularization strategy VIRAL, which explicitly aligns MLLM visual
representations with features from pretrained VFMs, thereby preventing the loss of fine-
grained attributes and enabling richer multimodal understanding.

2
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• Through comprehensive experiments on standard multimodal benchmarks, we show con-
sistent and significant improvements of an average 9.4% over the baseline. In addition, we
conduct extensive ablation studies and analysis to validate our design choices.

2 RELATED WORK

Internal information flows in MLLMs. Recent studies (Kaduri et al., 2025; Zhang et al., 2025b)
have revealed a structured processing hierarchy in MLLMs for vision–language inputs: early lay-
ers aggregate global visual context into token embeddings, intermediate layers capture fine-grained
spatial features, and later layers integrate multimodal information to facilitate response generation.

Within this hierarchy, the middle layers have been shown to be particularly critical for visual un-
derstanding. Jiang et al. (2025) decompose these layers into enrichment and refinement phases,
showing that insufficient visual information from earlier stages propagates forward and induces ob-
ject hallucination. Similarly, Kang et al. (2025) shows that only a small subset of attention heads in
the middle layers are pivotal for visual grounding. Consistent with these findings, our analysis of
visual representation alignment indicates that the preservation of visual information in the middle
layers is strongly linked to spatial reasoning ability, which in turn is crucial for vision-centric tasks.

Improving visual information in MLLMs. While recent works have increasingly examined
the internal information flow of MLLMs, most prior efforts remain concentrated on the input
stage—particularly the use of frozen vision encoders. Improvements at this stage have largely fo-
cused on adopting stronger or multiple vision encoders (Kar et al., 2024; Lu et al., 2024; Shi et al.,
2024; Azadani et al., 2025) or enhancing efficiency by reducing the overhead of visual tokens (Vasu
et al., 2025; Yang et al., 2025; Wen et al., 2025). These advances have proven valuable, yet they pri-
marily address the quality and efficiency of the initial visual representations, with comparatively less
attention given to how visual information is processed and propagated once injected into the model.
Recent efforts (Wang et al., 2024; 2025) take a step further by advocating direct supervision of vi-
sual tokens, but their focus remains on endpoint supervision with less consideration of the internal
information flow. Moreover, their reconstruction-based objectives, while effective for preserving
low-level fidelity, are less suited for capturing the higher-level semantic abstractions required by
complex reasoning tasks (Zhang et al., 2023; Tong et al., 2024a).

In this context, our approach complements these directions by focusing on the internal visual repre-
sentations—particularly those in the middle layers where fine-grained semantics emerge. By align-
ing these intermediate features with embeddings from pretrained VFMs, we provide structured su-
pervision that helps preserve semantically meaningful visual content throughout the model.

3 PRELIMINARIES

Multimodal large language models (MLLMs). MLLMs typically consist of a pre-trained LLM
LMθ(·) and a vision encoder Vψ(·), which is connected with a vision-language projector Pϕ(·),
where θ, ψ, and ϕ denote corresponding learnable parameters. To generate answers grounded on
both input image and text, the frozen vision encoder Vψ(·) first extracts patch-level features from an
input image I ∈ RH×W×3 with height H and width W such that z = Vψ(I) ∈ RN×Dz , where N
and Dz denote the number of visual tokens and the dimension of the visual features, respectively.
Projection modules vary across models—Resampler (Alayrac et al., 2022), Q-Former (Dai et al.,
2023), and linear layers (Liu et al., 2023)—with linear layers recently dominating for their simplicity
and strong performance. In this case, the linear projector Pϕ(·) maps these visual features into the
language model’s embedding space, producing a sequence of visual tokens eimg = Pϕ(z) ∈ RN×D,
where D denotes the hidden dimension of the language model. The text sequence is tokenized
and embedded into the same embedding space using the language model’s token embedding layer,
resulting in textual embeddings etext ∈ RK×D, where K denotes the length of the text tokens. The
language model then processes the concatenated multimodal sequence [eimg; etext] ∈ R(N+K)×D

and models the causal distribution over the text tokens etext as:

pθ,ϕ(e
text
1:K | eimg) =

K∏
i=1

pθ,ϕ(e
text
i | etext<i , e

img). (1)
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During inference, the language model autoregressively generates text tokens conditioned on the
visual representations, the given text prompt, and the previously generated text tokens.

Training stages of MLLMs. To enable the language model to incorporate visual information,
modern MLLMs typically follow a two-stage training paradigm (Liu et al., 2023; 2024a): a vi-
sion–language pretraining stage followed by visual instruction tuning. Both stages share the same
language-modeling objective but differ in parameter updates. During vision–language pretrain-
ing, only the projector parameters ϕ are optimized, while the language model parameters θ remain
frozen. In contrast, visual instruction tuning jointly optimizes both ϕ and θ, enabling the language
model to adapt more deeply to visual inputs.

It is worth noting that both stages are trained using the same language-centric objective, which is
designed to maximize the log-likelihood of the text outputs. Specifically, a language modeling (LM)
loss is given by:

LLM = − 1

K

K∑
i=1

log pθ,ϕ(e
text
i | etext<i , e

img). (2)

4 METHODOLOGY

4.1 DO MLLMS UNDERGO VISUAL INFORMATION LOSS?

While MLLMs take a substantial number of visual tokens as input, they are typically trained with a
text-only language modeling loss applied to the output text tokens. Consequently, all learning signals
are mediated through language supervision, and the visual representations eimg receive no vision-
specific supervision, as illustrated in Figure 2-(a). In the absence of explicit visual supervision, we
hypothesize that the model learns to prioritize only those visual features that immediately aid textual
prediction, often discarding other potentially useful information. This, in turn, causes the internal
visual representations to drift away from the rich features produced by the vision encoder—an effect
that can undermine performance on tasks requiring complex visual reasoning or grounding.

To empirically validate this hypothesis, we measure the similarity between the internal visual rep-
resentations of LLaVA (Liu et al., 2024a) and the original visual features z extracted by its vision
encoder (e.g., CLIP (Radford et al., 2021)). We adopt CKNNA (Huh et al., 2024) as a metric to
quantify representational similarity.

As shown in Figure 2-(d), similarity to CLIP features drops sharply after the early layers and remains
low in deeper layers, indicating that the model’s internal visual representations increasingly diverge
from the encoder’s input features. This trend suggests that, without explicit visual supervision, the
model has little incentive to preserve the encoder’s rich visual information.

Interestingly, despite the overall decline in alignment, the middle layers show a clear attenuation of
this trend, with even slight increase, suggesting that the network implicitly benefits from retaining
visual representations at these depths when generating visually grounded answers. This observation
aligns with prior analyses of information flow in MLLMs (Zhang et al., 2025b; Kaduri et al., 2025)
and is also confirmed by our later layer-wise ablations, which show that leveraging the middle layers
for vision-centric tasks shows the largest gains (see Section 5.3).

4.2 IS PRESERVING VISUAL INFORMATION BENEFICIAL?

Having observed the mid-layer local increase in representation alignment, we ask whether explicitly
preserving such visual information is beneficial. Let eimg

ℓ ∈ RN×D denote the visual representations
at the ℓ-th layer of MLLMs. As a direct approach (Figure 2-(b)), we re-inject the projected visual
representation Pϕ(z) into an intermediate layer of the language model via a residual path:

eimg
ℓ,i ← eimg

ℓ,i + Pϕ(zi). (3)

To isolate the effect of visual information retention without introducing new supervision, the model
is trained solely with the original text loss LLM. Unless otherwise stated, we set ℓ = 16 in a 32-
layer model LLaVA (Liu et al., 2024a), following our analysis that fine-grained visual understanding
emerges most prominently in middle layers, supported by later layer-wise ablations (see Section 5.3).

4
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Figure 2: Re-injecting or aligning visual features improves representation alignment and per-
formance. (a–c) Comparison of (a) baseline visual instruction tuning (Liu et al., 2023), (b) re-
injecting visual features, and (c) visual representation alignment, all applied at the 16th layer. (d)
Layer-wise alignment between visual tokens in MLLMs and vision encoder features, measured by
CKNNA (Huh et al., 2024), with shaded regions denoting middle layers that are particularly impor-
tant for visual understanding. (e) Benchmark performance corresponding to (a–c).

As shown in Figure 2-(d), adding the residual connection better preserves the alignment with the
encoder’s visual features, as indicated by higher CKNNA similarity. Evaluated across standard
benchmarks (Figure 2-(e)), this approach shows general improvements over the baseline, supporting
the hypothesis that retaining encoder-aligned visual information benefits downstream tasks.

Although residual connection provides general gains, concerns remain that the vision-language pro-
jector, Pϕ(·), may not fully preserve the original visual information (Verma et al., 2024; Cha et al.,
2024). This raises the question of whether using the encoder’s visual representations directly could
better preserve visual information. To validate this hypothesis, we explore directions for connecting
the raw encoder features directly to the language model in the following part.

4.3 VISUAL REPRESENTATION ALIGNMENT FOR MLLMS

Representation alignment with encoder features. Beyond residual connection, we further ex-
plore a more principled approach, which is to explicitly align intermediate visual representations
with the encoder features (Yu et al., 2024); see Figure 2-(c). Let z denote the frozen encoder fea-
tures from Vψ(·) and eimg

ℓ ∈ RN×D the visual representations at the ℓ-th layer of the MLLM. We
introduce a learnable projection Pπ(·) to map eimg

ℓ into the encoder feature space and define the
visual representation alignment loss:

LVRA = − 1

N

N∑
i=1

sim
(
Pπ(e

img
ℓ,i ), zi

)
, (4)

where sim(·, ·) is cosine similarity and gradients do not flow into z. Finally, the total objective
augments the language modeling loss with this alignment term:

Ltotal = LLM + λLVRA, (5)

with λ controlling the strength of alignment.

As shown in Figure 2-(d,e), this alignment outperforms residual connection in both CKNNA simi-
larity and multimodal benchmarks. Further analysis on this finding is provided in Appendix B. This
shows that constraining intermediate features through an alignment loss offers stronger preserva-
tion of fine-grained semantics through explicit regularization, while residual connections offers only
weak constraints without enforcing consistency at the feature level.

Despite the general performance boost from retaining encoder-aligned visual information, either by
re-injecting projected features or applying visual representation alignment, a notable exception is
MMVP (Tong et al., 2024b), which targets cases where CLIP-like features underperform. In this

5
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setting, performance shows only marginal improvement or even a slight drop, suggesting that prop-
agating the encoder’s features can also transmit its inductive biases and limitations. These findings
raise the question of the alignment target: should the model remain tied to the original encoder
features z, or be guided toward more informative visual semantics? While aligning to z helps retain
meaningful attributes, its utility is constrained by the encoder’s representational capacity.
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Figure 3: Illustration of VIRAL.
We align visual pathway representation
from MLLMs to strong, informative
representations from VFMs to improve
the vision understanding performance
of MLLMs.

From encoder features to other VFMs. Motivated
by this, we adopt stronger vision foundation models
(VFMs) as teachers to supervise internal visual represen-
tations, providing richer vision-centric targets that com-
plement language supervision. Building on this insight,
we propose VIsual Representation ALignment (VI-
RAL), which aligns intermediate MLLM visual represen-
tations with features from a pretrained VFM, thereby pre-
serving richer visual semantics than those available from
the encoder alone. Let E(·) denote a pretrained VFM en-
coder. Given an input image I , the encoder produces tar-
get features y = E(I) ∈ RN×d, where d is the VFM
feature dimension. Let eimg

ℓ ∈ RN×D be the MLLM’s vi-
sual representations at layer ℓ, and let Pπ(·) be a learnable
projection that maps eimg

ℓ into the VFM feature space.
We instantiate the visual representation alignment loss by
replacing the encoder target z in Eq. 4 with y:

LVRA = − 1

N

N∑
i=1

sim
(
Pπ(e

img
ℓ,i ), yi

)
. (6)

Minimizing LVRA regularizes the MLLM’s internal visual pathway to align with the VFM. The
overall framework is illustrated in Figure 3.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Implementation details. We build on the widely used LLaVA-1.5 (Liu et al., 2024a), leveraging
Vicuna-1.5 (Chiang et al., 2023) as the language model with a CLIP vision encoder (Radford et al.,
2021). Following its instruction-tuning recipe, we adopt LoRA (Hu et al., 2022) for efficient adap-
tation as prior work reports that LLaVA-1.5 with LoRA attains comparable performance to full fine-
tuning (Liu et al., 2024a). Unless otherwise noted, we use the original LLaVA-665K dataset (Liu
et al., 2024a) without any additional data. The visual-representation projector Pπ(·) is a lightweight
three-layer MLP with SiLU activations, and we set E(·) to DINOv2 as default (Section 5.3).

Evaluation. To demonstrate the effectiveness of VIRAL, we evaluate it on widely used bench-
marks across three categories: (1) vision-centric tasks requiring spatial reasoning or object count-
ing, including CV-Bench2D (Tong et al., 2024a), What’s Up (Chen et al., 2025b; Kamath et al.,
2023), and MMVP (Tong et al., 2024b); (2) multimodal hallucination detection, using POPE (Li
et al., 2023b); and (3) general multimodal understanding, assessed via MME (Yin et al., 2024),
MMStar (Chen et al., 2024b). These benchmarks align with goals of our method: improving visual
grounding should enhance performance on vision-centric and hallucination-sensitive tasks, while
ensuring strong performance on general multimodal benchmarks to preserve overall capability. For
evaluation, we report overall accuracy for CV-Bench2D, MMVP, What’s Up, POPE, and MMStar
and total score for MME. Additional details on the evaluation settings are provided in Appendix A.

5.2 MAIN RESULTS

The results on vision-centric benchmarks, visual hallucination tasks, and general vision–language
evaluations are summarized in Table 1. Across identical training settings, the model trained with
VIRAL consistently outperforms the baseline—with the largest gains on fine-grained vision-centric

6
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Table 1: Effects of visual representation alignment. We compare models trained with and with-
out LVRA across various vision encoders and LLM backbones, evaluating them on both vision-
centric and general multimodal benchmarks. Our simple regularization, LVRA, combined with DI-
NOv2 (Oquab et al., 2023), consistently improves performance across all encoders.

Language Vision LVRA CV-Bench2D MMVP What’s Up POPE MMStar MMEModel Encoder

Vicuna-1.5-7B
CLIP ✗ 56.82% 28.20% 40.13% 85.70% 33.93% 1650.21

✓ 59.67%(+2.85) 33.33%(+5.13) 48.55%(+8.42) 88.32%(+2.62) 33.93%(±0.00) 1694.52(+44.31)

SigLIPv2 ✗ 58.90% 28.22% 40.90% 90.13% 36.53% 1738.96
✓ 62.66%(+3.76) 33.11%(+4.89) 44.40%(+3.50) 90.77%(+0.64) 37.20%(+0.67) 1835.62(+96.66)

Qwen2.5-7B CLIP ✗ 58.97% 33.47% 59.08% 85.88% 39.20% 1743.56
✓ 60.50%(+1.53) 36.07%(+2.60) 63.57%(+4.49) 84.92%(-0.96) 39.67%(+0.47) 1765.65(+22.09)

Vicuna-1.5-13B CLIP ✗ 57.51% 32.30% 44.44% 87.12% 34.47% 1599.04
✓ 58.97%(+1.46) 37.80%(+5.50) 62.26%(+17.82) 87.79%(+0.67) 37.00%(+2.53) 1636.62(+37.58)

Table 2: Ablation study on key design components. We analyze the effects of (i) different vision
foundation models (VFMs) and (ii) alignment target layers, through evaluation on vision-centric and
general multimodal benchmarks. All experiments are conducted on the LLaVA-1.5-7B baseline.

VFM Layer Index CV-Bench2D MMVP What’s Up POPE MME

Baseline 56.82% 28.20% 40.13% 85.70% 1650.21

Ablation studies on different VFMs
DINOv2 16 59.67% 33.33% 48.55% 88.32% 1694.52

CLIP 16 59.53% 29.33% 44.50% 88.10% 1548.49
SAM 16 57.58% 30.27% 49.84% 88.34% 1648.77
DAv2 16 58.55% 28.67% 47.29% 88.70% 1682.42

RADIO 16 57.59% 31.80% 47.35% 88.52% 1692.94

Ablation studies on different target layers
DINOv2 4 58.55% 30.67% 45.05% 87.68% 1720.36
DINOv2 8 58.28% 27.70% 48.32% 88.43% 1662.67
DINOv2 12 57.77% 28.59% 48.19% 88.27% 1648.88
DINOv2 16 59.67% 33.33% 48.55% 88.32% 1694.52
DINOv2 20 55.22% 27.41% 48.04% 88.39% 1705.97
DINOv2 24 55.77% 27.48% 47.99% 88.10% 1740.55
DINOv2 28 54.87% 27.19% 47.82% 88.56% 1755.86
DINOv2 32 56.12% 26.52% 47.60% 87.32% 1678.69

tasks while retaining strong performance on general multimodal benchmarks—through a simple
strategy that aligns intermediate MLLM features with VFM targets to strengthen the visual pathway.

To test whether the observed gains arise only when using CLIP as the vision encoder—by compen-
sating for the limitations of a contrastive-only encoder with visually self-supervised features—we
further evaluate SigLIPv2 (Tschannen et al., 2025) as the vision encoder, which is trained with
both contrastive and self-supervised objectives. Even with this stronger encoder, our alignment loss
yields consistent improvements, showing that the gains stem from the alignment itself. Moreover,
to examine whether our method follows a scaling trend and is not confined to a particular language
model, we also include results with a scaled-up backbone, comparing Vicuna-1.5-13B against 7B,
and with an alternative language backbone, Qwen2.5-7B (Bai et al., 2025). Taken together, these
findings highlight a broader principle: regularizing intermediate visual representations is a generally
applicable strategy that strengthens MLLMs across vision encoders, scales, and language backbones.

5.3 COMPONENT-WISE ANALYSIS

In this ablation study, we conduct a comprehensive analysis of key design choices underlying our
framework, focusing on core components: the selection of target visual features and the choice of
alignment layer. As in Table 2, we evaluate the impact of each component across five benchmarks
(CV-Bench, MMVP, What’s Up, POPE, and MME) to validate their respective contributions to the
model’s performance on vision-grounded tasks. Additional ablation studies on alignment objectives
and target layers are provided in Appendix C.

Vision foundation models. We begin by identifying the most effective target visual features for
enhancing the alignment of internal visual representations within MLLMs. While residual connec-
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Figure 4: Analysis of attention. Qualitative comparison on text-to-image attention maps (left) and
quantified spatial entropy of attention across layers and heads (right). Applying visual representa-
tion alignment encourages model to attend to more contextually important content, yielding a more
focused and structured attention pattern.

tions and alignment with CLIP (LLaVA-1.5’s original vision encoder) help improve visual compre-
hension (Figure 2), their performance on spatial tasks like MMVP is limited—likely due to CLIP’s
weakness in modeling spatial relations (Yuksekgonul et al., 2022). To address this, we evaluate sev-
eral stronger vision foundation models (VFMs), including DINOv2 (Oquab et al., 2023), CLIP (Rad-
ford et al., 2021), Segment Anything (Kirillov et al., 2023) (SAM), Depth Anything v2 (Yang et al.,
2024) (DAv2), and RADIOv2.5 (Heinrich et al., 2025). As shown in Table 2, our analysis confirms
that aligning with stronger visual features indeed enhances visual understanding, with DINOv2 and
other VFMs demonstrating improved performance compared to CLIP. Results show that DINOv2
consistently emerges as the most effective and versatile, and we thus adopt DINOv2 as the default
visual foundation model for all experiments.

Target layers. We then analyze alignment at individual target layers to determine the most ef-
fective position. As shown in the target-layers ablation results in Table 2, we report performance at
every 4th layer throughout the network. We observe that performance varies depending on the align-
ment layer, with the 16th layer of the 32-layer model consistently yielding stronger results across
multiple benchmarks. This trend is consistent with prior findings (Zhang et al., 2025b; Kaduri et al.,
2025) and our earlier analysis, suggesting that certain intermediate layers in MLLMs are particularly
attuned to visual information processing.

5.4 ATTENTION ANALYSIS

We analyze the effectiveness of our proposed framework with visual representation alignment in
terms of text-to-image attention, as shown in Figure 4 (left). The attention map produced by the
LVRA trained model exhibits more semantically aligned focus on image regions corresponding to the
given textual prompts. To quantify this, we adopt spatial entropy (Batty, 1974), motivated by (Kang
et al., 2025), as a metric of attention localization. As shown in Figure 4 (right), LLaVA-1.5-7B
exhibits high entropy across layers and heads, reflecting dispersed attention patterns, whereas our
model shows consistently lower entropy—particularly at the aligned intermediate layer—indicating
more selective and meaningful attention patterns.

5.5 ROBUSTNESS ANALYSIS

Table 3: Robustness to token permutation.
Number of correct predictions out of 788 spatial
reasoning tasks in CV-Bench2D.

Vision Enc. LVRA original patch shuffle ∆

CLIP ✗ 400 374 −26 (6.5%)
✓ 414 360 −54 (13.0%)

SigLIPv2 ✗ 374 353 −21 (5.6%)
✓ 436 353 −83 (19.0%)

We investigate whether our representation
alignment loss enables MLLMs to better cap-
ture spatial relationships. Prior work (Qi et al.,
2025) shows that MLLMs often overlook spa-
tial cues, exhibiting only minor performance
drops even when the order of visual tokens is
randomly permuted (see Appendix A). To as-
sess whether our method makes models more
sensitive to such cues, we extract visual features
z = Vψ(I) from an image I , randomly permute the tokens, and feed them into the language model
LMθ(·). We then evaluate performance on the spatial reasoning category of CV-Bench2D. Table 3
shows that while the text-only baseline undergoes little degradation under permutation, our model
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suffers larger drops, reflecting increased sensitivity to spatial structure. This confirms that our loss
encourages MLLMs to capture and exploit fine-grained spatial relationships.

5.6 QUALITATIVE RESULTS
PCA VisualizationImage

How many dogs 
are in the image? !

LLaVA-1.5

... where is the plant 
located with respect 
to the hot tub?

!
LLaVA-1.5

There are three
dogs in the image.

There are four
dogs in the image.Ours

Beyond Above
Ours

!
LLaVA-1.5

!
LLaVA-1.5

Figure 5: Qualitative comparison of baseline
and VIRAL. The first column shows the input
image–question pairs, and the next two present
LLaVA-1.5 and VIRAL results with PCA visu-
alizations and answers. VIRAL yields structured
embeddings and correct answers on counting and
spatial tasks where the baseline fails.

We qualitatively demonstrate the effectiveness
of our proposed approach through detailed
analyses of model outputs and internal visual
representations. By adopting VIRAL, we ob-
serve substantial improvements in performance
on vision-centric tasks such as instance count-
ing and understanding spatial relationships. As
illustrated in Figure 5, VIRAL correctly an-
swers challenging visual questions related to
the number of objects and spatial positioning,
whereas the baseline model, LLaVA-1.5-7B,
frequently fails.

Furthermore, by aligning internal visual repre-
sentations with robust vision foundation mod-
els (VFMs), the semantic quality of interme-
diate representations is significantly enhanced.
This improvement is clearly evidenced in the
PCA visualizations shown in Figure 5. We
apply PCA to the visual representations ob-
tained from the 16-th layer of Ours and LLaVA-
1.5-7B, where our method yields more struc-
tured and semantically coherent embeddings
compared to the baseline. These visualizations
highlight that our alignment strategy effectively
guides the model to preserve critical visual details, thereby facilitating better fine-grained visual
comprehension. Additional visualizations are provided in Appendix F.1 and F.2.

5.7 TRAINING EFFICIENCY

(a) POPE
1K 2K 3K 4K 5K 5.2K

CLIP
-Vicuna-1.5-7B

(a) CV-Bench2D

1K 2K 3K 4K 5K 5.2K

CLIP-Qwen2.5-7B

(b) MMVP

1K

CLIP-Vicuna-1.5-13B

w/o ℒVRA

2K 3K 4K 5K 5.2K

1K 2K 3K 4K 5.2K

5.2K

CLIP-Vicuna-1.5-7B

1K 2K 3K 4K 5.2K 1K 2K 3K 4K 5.2K

CLIP-Qwen2.5-7B CLIP-Vicuna-1.5-13BCLIP-Vicuna-1.5-7B

Average 
Performance

Figure 6: Training Efficiency. Performance with LVRA (solid) evaluated every 1K steps, averaging
accuracies on CV-Bench2D and MMVP. Models trained with LVRA achieve faster convergence.
Dashed lines represent converged performance of baseline.

To further showcase the additional benefits of VIRAL, we evaluated vision-centric benchmarks, in-
cluding CV-Bench2D and MMVP, and averaged the accuracy at every 1K training step from the total
of 5.2K training steps of the visual instruction tuning stage in Figure 6. Across three CLIP-based
models (CLIP-Vicuna-1.5-7B, CLIP-Qwen2.5-7B, CLIP-Vicuna-1.5-13B), the models trained with
VIRALshow that convergence is faster and quickly surpasses the baseline performance in 3K steps.
Since our method introduces only about a 3% overhead in total training time, these earlier perfor-
mance gains may translate into improved scalability.

6 CONCLUSION

In this work, we propose VIRAL, a simple yet effective regularization strategy that aligns the in-
ternal visual representations of MLLMs with those from pre-trained vision foundation models. Our
approach helps preserve fine-grained visual semantics often discarded under text-only supervision,
thereby enabling more accurate spatial reasoning and object grounding.
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REPRODUCIBILITY STATEMENT

We detail the training configurations in Section 5.1 and Appendix A. We will also release our code
and model checkpoints to ensure reproducibility.
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APPENDIX

A ADDITIONAL IMPLEMENTATION DETAILS

All experiments in this paper are conducted on four NVIDIA A100 GPUs (40 GB each).

Vision foundation models. We use a diverse set of pretrained VFMs to supervise internal visual
representations. DINOv2 (Oquab et al., 2023), CLIP (Radford et al., 2021), and Depth Anything
v2 (Yang et al., 2024) (DAv2) are used as patch size 14 models, while RADIO-v2.5 (Heinrich et al.,
2025) and SAM (Kirillov et al., 2023) are used as patch size 16 models. To match the 576 visual
tokens produced by CLIP-ViT-L/14 at 336×336 resolution in LLaVA-1.5 (Liu et al., 2024a), we
adopt the same resolution for patch size 14 models and resize inputs to 384×384 for patch size 16
models. For SAM, which expects 1024×1024 inputs, we pad the interpolated features to 1024×1024
and crop them to the region corresponding to the original image, following AM-RADIO (Ranzinger
et al., 2024) to avoid quality degradation.

Loss function and weighting. The cosine similarity sim(x,y), as done in previous works, is com-
puted as following sim(x,y) = x⊤y

∥x∥2∥y∥2
. To balance the alignment loss LVRA with the language

modeling loss LLM, we set λ = 0.5 by default.

Benchmark settings. To demonstrate the effectiveness of VIRAL, we evaluate it on widely used
benchmarks including CV-Bench, MMVP, What’s Up, POPE, MME, and MM-Star. We only use the
2D subset of CV-Bench, as 3D tasks are beyond our scope. For simplicity, we report overall accuracy
on CV-Bench2D instead of separately averaging ADE20K and COCO. For MMVP, we follow its
standard evaluation protocol using pair accuracy, but for stability, we report the average accuracy
over 10 runs. For POPE, we evaluate on COCO following LLaVA and report the average accuracy
across the “random” and “popular” subsets. For What’s Up, we report the average accuracy between
COCOone and COCOtwo. For MME, we report MMEEN along with the sum of the perception and
cognition categories, and for MM-Star, we follow their standard evaluation protocols.

Spatial entropy. For Figure 4, we compute average spatial entropy over generated text tokens. We
use question–answer pairs from (Zhang et al., 2025b), which augment GQA (Hudson & Manning,
2019) with diverse categories and constrain answers to a single word or phrase. Among these, we
focus on the Relation category and report the average spatial entropy within this subset.
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Figure 7: Visualization of patch random permutation experiments.

Patch permutation. For our patch permutation experiment, we adopt the analysis pipeline origi-
nally proposed in (Qi et al., 2025). Specifically, we begin by extracting image features z from the
vision encoder using z = Vψ(I), where I is the input image. Here, z ∈ RN×H , withN denoting the
number of visual tokens and H the dimensionality of the vision encoder features. Before processing
the vision features z with the vision-language projector Pϕ(·) and language model LMθ(·), we ap-
ply a random permutation on the order of the visual tokensN , which is shown in the visualization of

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7. This makes it extremely difficult to understand the visual attributes of the image, enabling
us to evaluate how much the MLLM was understanding and utilizing the visual attributes originally
available in the image.

B EXTENDED EXPLORATION OF THE PILOT STUDY
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Figure 8: Extended exploration of the pilot study.

In Section 4, we demonstrated that MLLMs exhibit progressive visual information loss across layers,
and that preserving such information can enhance their visual understanding (Figure 8-(b,c)). In
this section, we compare two additional strategies for preserving visual information: a residual
connection with the raw encoder feature prior to projection (pre-projection) as a direct approach
to feature re-injection (Figure 8-(d)), and our proposed visual representation alignment with the
projected features (post-projection) provided to the language model (Figure 8-(e)).

Table 4: Benchmark performance of the pilot study.

POPE CV-Bench2D MMVP
Baseline 85.70% 56.82% 28.20%

(b) 87.17% 57.51% 26.67%
(c) 88.10% 59.53% 29.33%
(d) 85.47% 53.62% 19.33%
(e) 86.99% 57.23% 28.53%

Residual connection with pre-projection features. Our investigation leverages pre-projection
features—raw encoder features z prior to the projector—through a direct residual connection to
mitigate visual information loss within the language model, where a lightweight adapter Pϕ′(·)
is employed for dimensional compatibility. As illustrated in Figure 8-(d), we conduct one such
experiment that re-injects zi into eimg

ℓ,i such that

eimg
ℓ,i ← eimg

ℓ,i + Pϕ′(zi). (7)
However, as shown in Table 4-(d), this approach generally performs worse than the baseline. This
is because the raw encoder features, which have not passed through the pre-trained projector, are
not sufficiently aligned with language features (Liu et al., 2023), and their direct residual connection
consequently disrupts vision–language alignment in the intermediate layers. These findings suggest
that incorporating external features into the internal visual pathway of LLMs requires more careful
design.

Visual representation alignment with post-projection features. Next we further explore align-
ing the intermediate visual representation with the post-projection features, as shown in Figure 8-(e).
Here, we follow the same experimental setting as in Section 4.3, while LVRA is defined as:

LVRA = − 1

N

N∑
i=1

sim
(
Pπ(e

img
ℓ,i ), Pϕ(zi)

)
. (8)
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The results presented in Table 4-(e) indicate that this approach generally improves performance over
the baseline on vision-centric benchmarks, yet underperforms compared to leveraging raw features
from the vision encoder. This may be attributed to the insufficient preservation of visual information
in the post-projection features compared to the raw encoder outputs (Verma et al., 2024; Cha et al.,
2024; Li et al., 2025b).

C ADDITIONAL ABLATION STUDIES

Table 5: Ablation study on key design components.

VFM Ladyer Index Objective CV-Bench2D MMVP What’s Up POPE MME

Baseline 56.82% 28.20% 40.13% 85.70% 1650.21

Ablation studies on different multi-layer targets
DINOv2 16 Cos. Sim. 59.67% 33.33% 48.55% 88.32% 1694.52
DINOv2 15− 17 Cos. Sim. 59.32% 28.00% 47.17% 87.61% 1639.72
DINOv2 14− 18 Cos. Sim. 49.62% 22.55% 42.58% 87.90% 1444.32

Ablation studies on different alignment objectives
DINOv2 16 Cos. Sim. 59.67% 33.33% 48.55% 88.32% 1694.52
DINOv2 16 Relation 58.83% 26.60% 49.05% 87.58% 1674.30

Number of target layers. To investigate the effective number of target layers, we evaluate multi-
layer targets around the 16th—specifically ±1 (15–17) and ±2 (14–18) ranges—and observe that
applying alignment solely at the 16th layer achieves the best performance. These findings high-
light that aligning visual representations at a specific pathway responsible for visual representation
processing, rather than uniformly across multiple layers, is more effective in enhancing the visual
understanding capabilities of MLLMs. Based on this observation, we adopt the 16th layer as the
default alignment target with DINOv2.

Alignment objectives. We investigate the impact of different feature alignment objectives dur-
ing instruction tuning. Specifically, we compare the performance of models trained with a fea-
ture relation alignment objective, as a substitute for the proposed direct visual representation align-
ment loss. Here, the alignment objective is defined as a mean squared error (MSE) loss between
the self-similarity matrices of the VFM features and the transformed intermediate representations,
which effectively distills the structural relationships among visual features following recent ap-
proaches (Zhang et al., 2025a; Bolya et al., 2025). As shown in Table 5, we find that simple cosine
similarity-based alignment loss yields higher performance, and adopt it as our default strategy for
alignment.

D COMPARISON WITH OTHER TRAINING OBJECTIVES

Table 6: Comparison with reconstructive objective.

Language Vision
Objective CV-Bench2D MMVP What’s Up POPE MMStar MME

Model Encoder

Vicuna-1.5-7B CLIP

Baseline 56.82% 28.20% 40.13% 85.70% 33.93% 1650.21
ROSS (Default) 54.24% 29.73% 43.57% 88.19% 34.73% 1648.87
ROSS (Middle) 56.05% 31.40% 45.98% 88.21% 33.53% 1647.27

VIRAL 59.67% 33.33% 48.55% 88.32% 33.93% 1694.52

We compare our method with ROSS (Wang et al., 2024), which applies a reconstructive objective
to the final hidden state of the visual representations. To isolate the sources of improvement, we
implement two variants under identical experimental conditions: ROSS (Default), reproducing the
original method, and ROSS (Middle), which applies the same objective to an intermediate layer
(16th layer as in our configuration for target supervision).
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Table 6 reveals several key findings that validate our approach. First, the critical importance of in-
termediate layer supervision—a contribution of our work—is evidenced by ROSS (Middle) outper-
forming ROSS (Default), particularly on vision-centric benchmarks. Although both ROSS (Default)
and ROSS (Middle) show improvements over the baseline which also shows the importance of pro-
viding supervision to the visual pathways, the superiority of ROSS (Middle) over ROSS (Defaults)
confirms our hypothesis that supervising visual information flow at strategically chosen intermediate
layers, rather than naively at the model’s output, yields superior performance gains.

Second, and more fundamentally, our method significantly outperforms both ROSS variants across
all benchmarks. This performance gap stems from a crucial distinction in objectives: while ROSS
employs reconstruction-based objectives that excel at preserving low-level fidelity, such approaches
are inherently less suited for capturing the higher-level semantic abstractions required by complex
reasoning tasks (Zhang et al., 2023; Tong et al., 2024a). In contrast, our direct alignment with
pretrained vision foundation models provides richer semantic supervision that better bridges the
vision-language gap.

These results demonstrate that our method’s superiority arises from two synergistic contribu-
tions: (1) the strategic placement of supervision at critical intermediate layers, and (2) the use of
semantically-rich alignment signals from vision foundation models rather than reconstruction-based
objectives. Together, these design choices enable more effective visual representation learning for
multimodal understanding.

E APPLICABILITY OF VIRAL TO OTHER MLLM ARCHITECTURES
CK

NN
A

Layer Index

LLaVA-NeXT

Figure 9: Visual alignment of LLaVA-
NeXT (Liu et al., 2024b). Layer-wise
alignment between visual tokens in MLLM
and vision encoder features, measured by
CKNNA and averaged across representations
from tiled image splits.

Recent MLLMs employ various strategies to han-
dle inputs with dynamic resolutions, including dy-
namically adjusting the sequence length of visual to-
kens (Bai et al., 2023b) or dividing high-resolution
images into independently encoded tile grids (Liu
et al., 2024b; Chen et al., 2024c). The latter ap-
proach preserves the original image resolution and
is commonly adopted to capture fine-grained visual
details.

To investigate whether VIRAL can be applied to
such recent MLLM paradigms, we examine if
our core motivation—mitigating vision information
loss—remains relevant within this tiled image pro-
cessing strategy. Figure 9 demonstrates a decline in
alignment scores between input visual features and
layer-wise visual representations across the layers in
LLaVA-NeXT (Liu et al., 2024b), as measured using
CKNNA (Huh et al., 2024). This shows similar pat-
terns observed in Figure 2(d), suggesting that VIRAL can be applied orthogonally to such techniques
and has the potential to similarly enhance fine-grained visual understanding in MLLMs designed for
dynamic resolution handling.

F ADDITIONAL VISUALIZATIONS AND RESULTS

F.1 LAYER-WISE INTERNAL REPRESENTATIONS

We present PCA visualizations of the intermediate visual representations from all layers of LLaVA-
1.5-7B and VIRAL in Figure 10, enabling a layer-wise comparison of their representational struc-
tures. A qualitative comparison with the baseline reveals that visual representation alignment reg-
ularizes the MLLM’s internal visual features, leading to more semantically coherent and structured
representation, especially in the middle and later layers where meaningful vision understanding
emerges.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We present PCA visualizations of the intermediate visual representations from all layers of LLaVA-
1.5-7B and VIRAL in Figure 10, enabling a layer-wise comparison of their representational struc-
tures. A qualitative comparison with the baseline reveals that visual representation alignment reg-
ularizes the MLLM’s internal visual features, leading to more semantically coherent and structured
representation, especially in the middle and later layers where meaningful vision understanding
emerges.

F.2 VISUAL REPRESENTATIONS WITH DIFFERENT VFMS

In addition to Figure 5, we qualitatively present in Figure 11 PCA visualizations of how internal
visual representations evolve when aligned with different VFMs. Compared to the baseline rep-
resentation from LLaVA-1.5-7B, VFM features exhibit more semantically structured organization.
Aligning the MLLM’s internal representations with these VFM features distills such structure, en-
abling the model to refer to enhanced and more coherent visual representations.

F.3 ATTENTION MAP VISUALIZATIONS

In Figure 12, we provide visualizations of text-to-image cross-attention maps in the MLLM to qual-
itatively support the attention analysis from the main paper. Compared to the baseline, the model
trained with our method exhibits improved attention behavior by focusing more accurately and lo-
cally on regions relevant to the given multimodal context. This observation aligns well with the
spatial entropy analysis in Figure 4, where models trained with visual representation alignment
show more focused and discriminative attention patterns.

G LIMITATIONS

While our method demonstrates general improvements across vision encoders, model scales, and
language backbones (Table 1), several considerations remain. First, since VFMs generally produce
representations aligned with the spatial grid of the original image, our alignment relies on projection
modules that preserve this structure (e.g., linear projection layers, the de facto choice in current
MLLMs (Li et al., 2024; Chen et al., 2024d; Bai et al., 2023b; Lu et al., 2024)). Architectures
such as Resampler (Alayrac et al., 2022; Wang et al., 2023) or Q-Former (Dai et al., 2023; Li et al.,
2023a) disrupt this grid, making our approach less directly applicable. In the same vein, effective
alignment also requires that the resulting grid be resolution-adjustable so that the number of visual
tokens matches those expected by the MLLM. Also, because our alignment strengthens the semantic
utility of each vision token and their relationships, approaches that rely on token pruning to exploit
redundancy (Vasu et al., 2025; Wen et al., 2025) may yield reduced benefits when combined with
our method. Finally, while our experiments—as well as prior studies—indicate that the middle
layers of MLLMs are primarily responsible for fine-grained information, this behavior may not hold
universally as more diverse architectures continue to emerge.

H USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 submission policy, we disclose that Large Language Models were
used to assist in grammar correction and polishing of the writing in this paper.
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(a) LLaVA-1.5-7B
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How many pillows are in the image? 
(A) 2 (B) 1 (C) 4 (D) 0 (E) 3
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Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15
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Layer 24 Layer 25 Layer 26 Layer 27 Layer 28 Layer 29 Layer 30 Layer 31

!
LLaVA-1.5 VIRAL

(A) 2 (D) 0 

(b) LLaVA-1.5-7B + VIRAL

Figure 10: Layer-wise PCA visualizations of visual representations from (a) LLaVA-1.5-7B and
(b) VIRAL (Ours).
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Image

LLaVA-1.5-7B

CLIP DINOv2 SAM DAv2 RADIO

w/ CLIP w/ DINOv2 w/ SAM w/ DAv2 w/ RADIO

Figure 11: PCA visualizations of 16th layer visual representations aligned with different VFMs:
CLIP (Radford et al., 2021), DINOv2 (Oquab et al., 2023), SAM (Kirillov et al., 2023), DAv2 (Yang
et al., 2024), and RADIO (Heinrich et al., 2025).

LLaVA-1.5-7B VIRAL

How many pictures are in the image?
(A) 2 (B) 1 (C) 4 (D) 0 (E) 3

🌋
LLaVA-1.5

(A) 0

VIRAL

(B) 1

VIRAL

Considering the relative positions of the 
building (annotated by the red box) and 
the skyscraper in the image provided, 

where is the building located with respect 
to the skyscraper?
 (A) left (B) right

(A) left

(B) right

🌋
LLaVA-1.5

VIRAL

Considering the relative positions of the bed 
(annotated by the red box) and the table 
lamp in the image provided, where is the 

bed located with respect to the table lamp?
(A) left (B) right

(A) left

(B) right

🌋
LLaVA-1.5

Layer 24 Layer 25 Layer 26 Layer 27 Layer 28 Layer 29 Layer 30 Layer 31

(b) LLaVA-1.5-7B + VIRAL

Figure 12: Cross-attention map comparison for vision centric tasks.
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