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ABSTRACT

Proximal operators are ubiquitous in inverse problems, commonly appearing as
part of algorithmic strategies to regularize problems that are otherwise ill-posed.
Modern deep learning models have been brought to bear for these tasks too, as
in the framework of plug-and-play or deep unrolling, where they loosely resem-
ble proximal operators. Yet, something essential is lost in employing these purely
data-driven approaches: there is no guarantee that a general deep network repre-
sents the proximal operator of any function, nor is there any characterization of
the function for which the network might provide some approximate proximal.
This not only makes guaranteeing convergence of iterative schemes challenging
but, more fundamentally, complicates the analysis of what has been learned by
these networks about their training data. Herein we provide a framework to de-
velop learned proximal networks (LPN), prove that they provide exact proximal
operators for a data-driven nonconvex regularizer, and show how a new train-
ing strategy, dubbed proximal matching, provably promotes the recovery of the
log-prior of the true data distribution. Such LPN provide general, unsupervised,
expressive proximal operators that can be used for general inverse problems with
convergence guarantees. We illustrate our results in a series of cases of increas-
ing complexity, demonstrating that these models not only result in state-of-the-art
performance, but provide a window into the resulting priors learned from data.

1 INTRODUCTION

Inverse problems concern the task of estimating underlying variables that have undergone a degra-
dation process, such as in denoising, deblurring, inpainting, or compressed sensing (Bertero et al.,
2021; Ongie et al., 2020). Since these problems are naturally ill-posed, solutions to any of these
problems involve, either implicitly or explicitly, the utilization of priors, or models, about what
type of solutions are preferable (Engl et al., 1996; Benning & Burger, 2018; Arridge et al., 2019).
Traditional methods model this prior directly, by constructing regularization functions that promote
specific properties in the estimate, such as for it to be smooth (Tikhonov & Arsenin, 1977), piece-
wise smooth (Rudin et al., 1992; Bredies et al., 2010), or for it to have a sparse decomposition under
a given basis or even a potentially overcomplete dictionary (Bruckstein et al., 2009; Sulam et al.,
2014). On the other hand, from a machine learning perspective, the complete restoration mapping
can also be modeled by a regression function and by providing a large collection of input-output (or
clean-corrupted) pairs of samples (McCann et al., 2017; Ongie et al., 2020; Zhu et al., 2018).
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An interesting third alternative has combined these two approaches by making the insightful obser-
vation that many iterative solvers for inverse problems incorporate the application of the proximal
operator for the regularizer. Such a proximal step can be loosely interpreted as a denoising step
and, as a result, off-the-shelf strong-performing denoising algorithms (as those given by modern
deep learning methods) can be employed as a subroutine. The Plug-and-Play (PnP) framework is a
notable example where proximal operators are replaced with such denoisers (Venkatakrishnan et al.,
2013; Zhang et al., 2017b; Meinhardt et al., 2017; Zhang et al., 2021; Kamilov et al., 2023b; Tachella
et al., 2019), but these can be applied more broadly to solve inverse problems, as well (Romano et al.,
2017; Romano & Elad, 2015). While this strategy works very well in practice, little is known about
the approximation properties of these methods. For instance, do these denoising networks actually
(i.e., provably) provide a proximal operator for some regularization function? Moreover, and from
a variational perspective, would this regularization function recover the correct regularizer, such as
the (log) prior of the data distribution? Partial answers to some of these questions exist, but how to
address all of them in a single framework remains unclear (Hurault et al., 2022b; Lunz et al., 2018;
Cohen et al., 2021a; Zou et al., 2023; Goujon et al., 2023) (see a thorough discussion of related
works in Appendix A). More broadly, the ability to characterize a data-driven (potentially noncon-
vex) regularizer that enables good restoration is paramount in applications that demand notions of
robustness and interpretability, and this remains an open challenge.

In this work, we address these questions by proposing a new class of deep neural networks,
termed learned proximal networks (LPN), that exactly implement the proximal operator of a gen-
eral learned function. Such a LPN implicitly learns a regularization function that can be charac-
terized and evaluated, shedding light onto what has been learned from data. In turn, we present
a new training problem, which we dub proximal matching, that provably promotes the recovery
of the correct regularization term (i.e., the log of the data distribution), which need not be con-
vex. Moreover, the ability of LPNs to implement exact proximal operators allows for guaranteed
convergence to critical points of the variational problem, which we derive for PnP reconstruction
algorithms under no additional assumptions on the trained LPN. We demonstrate through exper-
iments on that our LPNs can recover the correct underlying data distribution, and further show
that LPNs lead to state-of-the-art reconstruction performance on image deblurring, CT recon-
struction and compressed sensing, while enabling precise characterization of the data-dependent
prior learned by the model. Code for reproducing all experiments is made publicly available at
https://github.com/Sulam-Group/learned-proximal-networks.

2 BACKGROUND

Consider an unknown signal in an Euclidean space1, x ∈ Rn, and a known measurement operator,
A : Rn → Rm. The goal of inverse problems is to recover x from measurements y = A(x) + v ∈
Rm, where v is a noise or nuisance term. This problem is typically ill-posed: infinitely many
solutions x may explain (i.e. approximate) the measurement y (Benning & Burger, 2018). Hence, a
prior is needed to regularize the problem, which can generally take the form

min
x

1

2
∥y −A(x)∥22 +R(x), (2.1)

for a function R(x) : Rn → R promoting a solution that is likely under the prior distribution of x.
We will make no assumptions on the convexity of R(x) in this work.

Proximal operators Originally proposed by Moreau (1965) as a generalization of projection oper-
ators, proximal operators are central in optimizing the problem (2.1) by means of proximal gradient
descent (PGD) (Beck, 2017), alternating direction method of multipliers (ADMM) (Boyd et al.,
2011), or primal dual hybrid gradient (PDHG) (Chambolle & Pock, 2011). For a given functional R
as above, its proximal operator proxR is defined by

proxR(y) := argmin
x

1

2
∥y − x∥2 +R(x). (2.2)

When R is non-convex, the solution to this problem may not be unique and the proximal mapping is
set-valued. Following (Gribonval & Nikolova, 2020), we define the proximal operator of a function

1The analyses in this paper can be generalized directly to more general Hilbert spaces.
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R as a selection of the set-valued mapping: f(y) is a proximal operator of R if and only if f(y) ∈
argminx

1
2∥y − x∥2 + R(x) for each y ∈ Rn. A key result in (Gribonval & Nikolova, 2020) is

that the continuous proximal of a (potentially nonconvex) function can be fully characterized as the
gradient of a convex function, as the following result formalizes.
Proposition 2.1. [Characterization of continuous proximal operators, (Gribonval & Nikolova,
2020, Corollary 1)] Let Y ⊂ Rn be non-empty and open and f : Y → Rn be a continuous
function. Then, f is a proximal operator of a function R : Rn → R ∪ {+∞} if and only if there
exists a convex differentiable function ψ such that f(y) = ∇ψ(y) for each y ∈ Y .

Figure 1: Sketch
of Prop. 2.1 for
R(·) = ∥ · ∥1.

It is worth stressing the differences between R and ψ. While f is the proximal
operator of R, i.e. proxR = f , f is also the gradient of a convex ψ, ∇ψ = f
(see Figure 1). Furthermore, R may be non-convex, while ψ must be convex.
As can be expected, there exists a precise relation betweenR and ψ, and we will
elaborate further on this connection shortly. The characterization of proximals
of convex functions is similar but additionally requiring f to be non-expansive
(Moreau, 1965). Hence, by relaxing the nonexpansivity, we obtain a broader
class of proximal operators. As we will show later, the ability to model proximal
operators of non-convex functions will prove very useful in practice, as the log-
priors2 of most real-world data are indeed non-convex.

Plug-and-Play This paper closely relates to the Plug-and-Play (PnP) framework (Venkatakrishnan
et al., 2013). PnP employs off-the-shelf denoising algorithms to solve general inverse problems
within an iterative optimization solver, such as PGD (Beck, 2017; Hurault et al., 2022b), ADMM
(Boyd et al., 2011; Venkatakrishnan et al., 2013), half quadratic splitting (HQS) (Geman & Yang,
1995; Zhang et al., 2021), primal-dual hybrid gradient (PDHG) (Chambolle & Pock, 2011), and
Douglas-Rachford splitting (DRS) (Douglas & Rachford, 1956; Lions & Mercier, 1979; Combettes
& Pesquet, 2007; Hurault et al., 2022b). Inspired by the observation that proxR(y) resembles the
maximum a posteriori (MAP) denoiser at y with a log-prior R, PnP replaces the explicit solution
of this step with generic denoising algorithms, such as BM3D (Dabov et al., 2007; Venkatakrishnan
et al., 2013) or CNN-based denoisers (Meinhardt et al., 2017; Zhang et al., 2017b; 2021; Kamilov
et al., 2023b), bringing the benefits of advanced denoisers to general inverse problems. While useful
in practice, such denoisers are not in general proximal operators. Indeed, modern denoisers need not
be MAP estimators at all, but instead typically approximate a minimum mean squared error (MMSE)
solution. Although deep learning denoisers have achieved impressive results when used with PnP,
little is known about the implicit prior—if any—encoded in these denoisers, thus diminishing the
interpretability of the reconstruction results. Some convergence guarantees have been derived for
PnP with MMSE denoisers (Xu et al., 2020), chiefly relying on the assumption that the denoiser is
non-expansive (which can be hard to verify or enforce in practice). Furthermore, when interpreted
as proximal operators, the prior in MMSE denoisers can be drastically different from the original
(true data) prior Gribonval (2011), raising concerns about correctness. There is a broad family of
works that relate to the ideas in this work, and we expand on them in Appendix A.

3 LEARNED PROXIMAL NETWORKS

First, we seek a way to parameterize a neural network such that its mapping is the proximal operator
of some (potentially nonconvex) scalar-valued functional. Motivated by Proposition 2.1, we will
seek network architectures that parameterize gradients of convex functions. A simple way to achieve
this is by differentiating a neural network that implements a convex function: given a scalar-valued
neural network, ψθ : Rn → R, whose output is convex with respect to its input, we can parameterize
a LPN as fθ = ∇ψθ, which can be efficiently evaluated via back propagation. This makes LPN a
gradient field—and a conservative vector field—of an explicit convex function. Fortunately, this is
not an entirely new problem. Amos et al. (2017) proposed input convex neural networks (ICNN) that
guarantee to parameterize convex functions by constraining the network weights to be non-negative
and the nonlinear activations convex and non-decreasing3. Consider a single-layer neural network
characterized by the weights W ∈ Rm×n, bias b ∈ Rm and a scalar non-linearity g : R→ R. Such
a network, at y, is given by z = g(Wy+ b). With this notation, we now move to define our LPNs.

2In this paper, the “log-prior” of a data distribution px means its negative log-likelihood, − log px.
3Other ways to parameterize gradients of convex functions exist (Richter-Powell et al., 2021), but come

with other constraints and limitations (see discussion in Appendix F.1).
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Proposition 3.1 (Learned Proximal Networks). Consider a scalar-valued (K + 1)-layered neural
network ψθ : Rn → R defined by ψθ(y) = wT zK + b and the recursion

z1 = g(H1y + b1), zk = g(Wkzk−1 +Hky + bk), k ∈ [2,K]

where θ = {w, b, (Wk)
K
k=2, (Hk,bk)

K
k=1} are learnable parameters, and g is a convex, non-

decreasing andC2 scalar function, and Wk and w have non-negative entries. Let fθ be the gradient
map of ψθ w.r.t. its input, i.e. fθ = ∇yψθ. Then, there exists a function Rθ : Rn → R ∪ {+∞}
such that fθ(y) ∈ proxRθ

(y), ∀ y ∈ Rn.

The simple proof of this result follows by combining properties of ICNN from Amos et al.
(2017) and the characterization of proximal operators from Gribonval & Nikolova (2020) (see Ap-
pendix C.1). The C2 condition for the nonlinearity4 g is imposed to ensure differentiability of the
ICNN ψθ and the LPN fθ, which will become useful in proving convergence for PnP algorithms
with LPN in Section 4. Although this rules out popular choices like Rectifying Linear Units (Re-
LUs), there exist several alternatives satisfying these constraints. Following (Huang et al., 2021),
we adopt the softplus function g(x) = 1

β log(1 + exp (βx)), a β-smooth approximation of ReLU.
Importantly, LPN can be highly expressive (representing any continuous proximal operator) under
reasonable settings, given the universality of ICNN (Huang et al., 2021).

Networks defined by gradients of ICNN have been explored for inverse problems: Cohen et al.
(2021a) used such networks to learn gradients of data-driven regularizers, thereby enforcing the
learned regularizer to be convex. While this is useful for the analysis of the optimization problem,
this cannot capture nonconvex log-priors that exist in most cases of interest. On the other hand,
Hurault et al. (2022b) proposed parameterizing proximal operators as f(y) = y − ∇g(y), where
∇g is L-Lipschitz with L < 1. In practice, this is realized only approximately by regularizing its
Lipschitz constant during training (see discussion in Appendix A). Separately, gradients of ICNNs
are also important in data-driven optimal transport (Makkuva et al., 2020; Huang et al., 2021).

Recovering the prior from its proximal Once an LPN fθ is obtained, we would like to recover its
prox-primitive5, Rθ. This is important, as this function is precisely the regularizer in the variational
objective, minx

1
2∥y−A(x)∥

2
2+Rθ(x). Thus, being able to evaluateRθ at arbitrary points provides

explicit information about the prior, enhancing interpretability of the learned regularizer. We start
with the relation between f , Rθ and ψθ from Gribonval & Nikolova (2020) given by

Rθ(fθ(y)) = ⟨y, fθ(y)⟩ −
1

2
∥fθ(y)∥22 − ψθ(y). (3.1)

Given our parameterization for fθ, all quantities are easily computable (via a forward pass of the
LPN in Proposition 3.1). However, the above equation only allows to evaluate the regularizer Rθ at
points in the image of fθ, fθ(y), and not at an arbitrary point x. Thus, we must invert fθ, i.e. find
y such that fθ(y) = x. This inverse is nontrivial, since in general an LPN may not be invertible
or even surjective. Thus, as in Huang et al. (2021), we add a quadratic term to ψθ, ψθ(y;α) =
ψθ(y)+

α
2 ∥y∥

2
2, with α > 0, turning ψθ strongly convex, and its gradient map, fθ = ∇ψθ, invertible

and bijective. To compute this inverse, it suffices to minimize the strongly convex objective

min
y
ψθ(y;α)− ⟨x,y⟩, (3.2)

which has a unique global minimizer ŷ satisfying the first-order optimality condition fθ(ŷ) =
∇ψθ(ŷ;α) = x: the inverse we seek. Hence, computing the inverse amounts to solving a con-
vex optimization problem—efficiently addressed by a variety of solvers, e.g. conjugate gradients.

Another feasible approach to invert fθ is to simply optimize miny ∥fθ(y) − x∥22, using, e.g., first-
order methods. This problem is nonconvex in general, however, and thus does not allow for global
convergence guarantees. Yet, we empirically find this approach work well on multiple datasets,
yielding a solution ŷ with small mean squared error ∥fθ(ŷ) − x∥22. We summarize the procedures
for estimating the regularizer from an LPN in Algorithm 2 and Appendix D.1.

4Proposition 3.1 also holds if the nonlinearities are different, which we omit for simplicity of presentation.
5Note our use of prox-primitive to refer to the function R with respect to the operator proxR.
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3.1 TRAINING LEARNED PROXIMAL NETWORKS VIA PROXIMAL MATCHING

To solve inverse problems correctly, it is crucial that LPNs capture the true proximal operator of
the underlying data distribution. Given an unknown distribution px, the goal of training an LPN
is to learn the proximal operator of its log, prox− log px := f∗. Unfortunately, paired ground-truth
samples {xi, f∗(xi)} do not exist in common settings—the prior distributions of many types of
real-world data are unknown, making supervised training infeasible. Instead, we seek to train an
LPN using only i.i.d. samples from the unknown data distribution in an unsupervised way.

To this end, we introduce a novel loss function that we call proximal matching. Based on the obser-
vation that the proximal operator is the maximum a posteriori (MAP) denoiser for additive Gaussian
noise, i.e. for samples y = x+ σv with x ∼ px,v ∼ N (0, I), we train LPN to perform denoising
by minimizing a loss of the form

E
x,y

[d(fθ(y),x)] , (3.3)

where d is a suitable metric. Popular choices for d include the squared ℓ2 distance ∥fθ(y)−x∥22, the
ℓ1 distance ∥fθ(y)− x∥1, or the Learned Perceptual Image Patch Similarity (LPIPS, (Zhang et al.,
2018)), all of which have been used to train deep learning based denoisers (Zhang et al., 2017a; Yu
et al., 2019; Tian et al., 2020). However, denoisers trained with these losses do not approximate the
MAP denoiser, nor the proximal operator of the log-prior, prox− log px . The squared ℓ2 distance,
for instance, leads to the minimum mean square error (MMSE) estimategiven by the mean of the
posterior, E[x | y]. Similarly, the ℓ1 distance leads to the conditional marginal median of the
posterior – and not its maximum. As a concrete example, Figure 2 illustrates the limitations of these
metrics for learning the proximal operator of the log-prior of a Laplacian distribution.

We thus propose a new loss function that promotes the recovery of the correct proximal, dubbed
proximal matching loss:

LPM (θ; γ) = E
x,y

[mγ(∥fθ(y)− x∥2)] , mγ(x) = 1− 1

(πγ2)n/2
exp

(
−x

2

γ2

)
, γ > 0. (3.4)

Crucially, LPM only depends on px (and Gaussian noise), allowing (approximate) proximal learn-
ing given only finite i.i.d. samples. Intuitively, mγ can be interpreted as an approximation to the
Dirac function controlled by γ. Hence, minimizing the proximal matching loss LPM amounts to
maximizing the posterior probability px|y(fθ(y)), and therefore results in the MAP denoiser (and
equivalently, the proximal of log-prior). We now make this precise and show that minimizing LPM
yields the proximal operator of the log-prior almost surely as γ ↘ 0.
Theorem 3.2 (Learning via Proximal Matching). Consider a signal x ∼ px, where x is bounded
and px is a continuous density,6 and a noisy observation y = x + σv, where v ∼ N (0, I) and
σ > 0. Let mγ(x) : R→ R be defined as in (3.4). Consider the optimization problem

f∗ = argmin
f measurable

lim
γ↘0

Ex,y [mγ (∥f(y)− x∥2)] . (3.5)

Then, almost surely (i.e., for almost all y), f∗(y) = argmaxc px|y(c) ≜ prox−σ2 log px(y).

We defer the proof to Appendix C.2 and instead make a few remarks. First, while the result above
was presented for the loss defined in (3.4) for simplicity, this holds in greater generality for loss
functions satisfying specific technical conditions (see Appendix C.2). Second, an analogous result
for discrete distributions can also be derived, and we include this companion result in Theorem B.1,
Appendix B.1. Third, the Gaussian noise level σ acts as a scaling factor on the learned regularizer, as
indicated by f∗(y) = prox−σ2 log px(y). Thus varying the noise level effectively varies the strength
of the regularizer. Lastly, to bring this theoretical guarantee to practice, we progressively decrease γ
until a small positive amount during training according to a schedule function γ(·) for an empirical
sample (instead of the expectation), and pretrain LPN with ℓ1 loss before proximal matching. We
include an algorithmic description of training via proximal matching in Appendix D.2, Algorithm 3.
Connections between the proximal matching loss (3.4) and prior work on impulse denoising and
modal regression are discussed in Appendix A.

Before moving on, we summarize the results of this section: the parameterization in Proposition 3.1
guarantees that LPN implement a proximal operator for some regularizer function; the optimization

6That is, x admits a continuous probability density p with respect to the Lebesgue measure on Rn.
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problem in (3.2) then provides a way to evaluate this regularizer function at arbitrary points; and
lastly, Theorem 3.2 shows that if we want the LPN to recover the correct proximal (of the log-prior
of data distribution), then proximal matching is the correct learning strategy for these networks.

4 SOLVING INVERSE PROBLEMS WITH LPN

Once an LPN is trained, it can be used to solve inverse problems within the PnP framework
(Venkatakrishnan et al., 2013) by substituting any occurrence of the proximal step proxR with the
learned proximal network fθ. As with any PnP method, our LPN can be flexibly plugged into a
wide range of iterative algorithms, such as PGD, ADMM, or HQS. Chiefly, and in contrast to pre-
vious PnP approaches, our LPN-PnP approach provides the guarantee that the employed denoiser is
indeed a proximal operator. As we will now show, this enables convergence guarantees absent any
additional assumptions on the learned network. We provide an instance of solving inverse problems
using LPN with PnP-ADMM in Algorithm 1, and another example with PnP-PGD in Algorithm 4.

Algorithm 1 Solving inverse problem with LPN and
PnP-ADMM
Input: Trained LPN fθ, operator A, measurement y,

initial x0, number of iterationsK, penalty param-
eter ρ

1: u0 ← 0, z0 ← x0

2: for k = 0 to K − 1 do
3: xk+1 ← argminx{ 12∥y − A(x)∥

2
2 +

ρ
2∥zk −

uk − x∥22}
4: uk+1 ← uk + xk+1 − zk
5: zk+1 ← fθ (uk+1 + xk+1)
6: end for

Output: xK

Convergence Guarantees in Plug-and-
Play Frameworks Because LPNs are
by construction proximal operators, PnP
schemes with plug-in LPNs correspond
to iterative algorithms for minimizing
the variational objective (2.1), with the
implicitly-defined regularizer Rθ associ-
ated to the LPN. As a result, convergence
guarantees for PnP schemes with LPNs
follow readily from convergence analyses
of the corresponding optimization proce-
dure, under suitably general assumptions.
We state and discuss such a guarantee for
using an LPN with PnP-ADMM (Algo-
rithm 1) in Theorem 4.1—our proof appeals to the nonconvex ADMM analysis of Themelis &
Patrinos (2020).

Theorem 4.1 (Convergence guarantee for running PnP-ADMM with LPNs). Consider the sequence
of iterates (xk,uk, zk), k ∈ {0, 1, . . . }, defined by Algorithm 1 run with a linear measurement
operator A and an LPN fθ with softplus activations, trained with 0 < α < 1. Assume further that
the penalty parameter ρ satisfies ρ > ∥ATA∥. Then the sequence of iterates (xk,uk, zk) converges
to a limit point (x∗,u∗, z∗) which is a fixed point of the PnP-ADMM iteration (Algorithm 1).

We defer the proof of Theorem 4.1 to Appendix C.4.2. There, we moreover show that xk converges
to a critical point of the regularized reconstruction cost (2.1) with regularization function R = λRθ,
where Rθ is the implicitly-defined regularizer associated to fθ (i.e. fθ = proxRθ

) and the regular-
ization strength λ depends on parameters of the PnP algorithm (λ = ρ for PnP-ADMM). In addition,
we emphasize that Theorem 4.1 requires the bare minimum of assumptions on the trained LPN: it
holds for any LPNs by construction, under assumptions that are all actionable and achievable in
practice (on network weights, activation, and strongly convex parameter). This should be contrasted
to PnP schemes that utilize a black-box denoiser – convergence guarantees in this setting require re-
strictive assumptions on the denoiser, such as contractivity (Ryu et al., 2019), (firm) nonexpansivity
(Sun et al., 2019; 2021; Cohen et al., 2021a;b; Tan et al., 2023), or other Lipschitz constraints (Hu-
rault et al., 2022a;b), which are difficult to verify or enforce in practice without sacrificing denoising
performance. Alternatively, other PnP schemes sacrifice expressivity for a principled approach by
enforcing that the denoiser takes a restrictive form, such as being a (Gaussian) MMSE denoiser (Xu
et al., 2020), a linear denoiser (Hauptmann et al., 2023), or the proximal operator of an implicit
convex function (Sreehari et al., 2016; Teodoro et al., 2018).

The analysis of LPNs we use to prove Theorem 4.1 is general enough to be extended straight-
forwardly to other PnP optimization schemes. Under a similarly-minimal level of assumptions to
Theorem 4.1, we give in Theorem B.2 (Appendix B.2) a convergence analysis for PnP-PGD (Algo-
rithm 4), which tends to perform slightly worse than PnP-ADMM in practice.
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Figure 3: Left: log-prior Rθ learned by LPN on MNIST (computed over 100 test images), evaluated
at images corrupted by (a) additive Gaussian noise, and (b) convex combination of two images
(1− λ)x+ λx′. Right: the prior evaluated at individual examples.

5 EXPERIMENTS
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Figure 2: The proximal fθ, convex potential ψθ, and log-prior Rθ
learned by LPN via the squared ℓ2 loss, ℓ1 loss, and proximal matching
loss LPM for a Laplacian distribution (ground truth in gray).

We evaluate LPN on
datasets of increasing com-
plexity, from an analytical
one-dimensional example
of a Laplacian distribu-
tion to image datasets of
increasing dimensions:
MNIST (28 × 28) (LeCun,
1998), CelebA (128× 128)
(Liu et al., 2018), and
Mayo-CT (512 × 512)
(McCollough, 2016). We
demonstrate how the ability of LPN to learn an exact proximal for the correct prior reflects on
natural values for the obtained log-likelihoods. Importantly, we showcase the performance of LPN
for real-world inverse problems on CelebA and Mayo-CT, for deblurring, sparse-view tomographic
reconstruction, and compressed sensing, comparing it with other state-of-the-art unsupervised
approaches for (unsupervised) image restoration. See full experimental details in Appendix E.

5.1 WHAT IS YOUR PRIOR?

Learning soft-thresholding from Laplacian distribution We first experiment with a distribu-
tion whose log-prior has a known proximal operator, the 1-D Laplacian distribution p(x | µ, b) =
1
2b exp

(
− |x−µ|

b

)
. Letting µ = 0, b = 1 for simplicity, the negative log likelihood (NLL) is the ℓ1

norm, − log p(x) = |x| − log( 12 ), and its proximal can be written is the soft-thresholding function
prox− log p(x) = sign(x)max(|x| − 1, 0). We train a LPN on i.i.d. samples from the Laplacian and
Gaussian noise, as in (3.3), and compare different loss functions, including the proximal matching
loss LPM, for which we consider different γ ∈ {0.5, 0.3, 0.1} in LPM (see (3.4)).

As seen in Figure 2, when using either the ℓ2 or ℓ1 loss, the learned prox differs from the correct soft-
thresholding function. Indeed, verifying our analysis in Section 3.1, these yield the posterior mean
and median, respectively, rather than the posterior mode. With the matching loss LPM (γ = 0.1
in (3.4)), the learned proximal matches much more closely the ground-truth prox. The third panel
in Figure 2 further depicts the learned log-prior Rθ associated with each LPN fθ, computed using
the algorithm in Section 3. Note that Rθ does not match the ground-truth log-prior | · | for ℓ2
and ℓ1 losses, but converges to the correct prior with LPM (see more results for different γ in
Appendix G.1). Note that we normalize the offset of learned priors by setting the minimum value
to 0 for visualization: the learned log-prior Rθ has an arbitrary offset (since we only estimate the
log-prior). In other words, LPN is only able to learn the relative density of the distribution due to
the intrinsic scaling symmetry of the proximal operator.

Learning a prior for MNIST Next, we train an LPN on MNIST, attempting to learn a general
restoration method for hand-written digits—and through it, a prior of the data. For images, we
implement the LPN with convolution layers; see Appendix E.2 for more details. Once the model
is learned, we evaluate the obtained prior on a series of inputs with different types and degrees of
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(a) σblur = 1.0, σnoise = 0.02. (b) σblur = 1.0, σnoise = 0.04.

Figure 5: Visual results for deblurring on CelebA using Plug-and-Play with different denoisers
(BM3D, DnCNN, the gradient step (GS) Prox-DRUNet, and our LPN), for different Gaussian blur
kernel standard deviation σblur and noise standard deviation σnoise. PSNR and SSIM are presented
above each prediction.

Table 1: Deblurring on CelebA, over 20 samples. Bold (underline) for the best (second best) score.

METHOD σblur = 1, σnoise = .02 σblur = 1, σnoise = .04 σblur = 2, σnoise = .02 σblur = 2, σnoise = .04

PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑)
Blurred and Noisy 27.0 ± 1.6 .80 ± .03 24.9 ± 1.0 .63 ± .05 24.0 ± 1.7 .69 ± .04 22.8 ± 1.3 .54 ± .04

PnP-BM3D (Venkatakrishnan et al., 2013) 31.0 ± 2.7 .88 ± .04 29.5 ± 2.2 .84 ± .05 28.5 ± 2.2 .82 ± .05 27.6 ± 2.0 .79 ± .05
PnP-DnCNN (Zhang et al., 2017a) 32.3 ± 2.6 .90 ± .03 30.9 ± 2.1 .87 ± .04 29.5 ± 2.0 .84 ± .04 28.3 ± 1.8 .79 ± .05

PnP-GS (Hurault et al., 2022b) 33.0 ± 3.0 .92 ± .03 31.4 ± 2.4 .89 ± .03 30.1 ± 2.5 .87 ± .04 29.3 ± 2.3 .84 ± .05
Ours 33.0 ± 2.9 .92 ± .03 31.3 ± 2.3 .89 ± .03 30.1 ± 2.4 .87 ± .04 29.1 ± 2.2 .84 ± .04

perturbations in order to gauge how such modifications to the data are reflected by the learned prior.
Figure 3a visualizes the change of prior Rθ after adding increasing levels of Gaussian noise. As
expected, as the noise level increases, the values reported by the log-prior also increases, reflecting
that noisier images are less likely according to the data distribution of real images.

The lower likelihood upon perturbations of the samples is general. We depict examples
with image blur in Appendix G.2, and also present a study that depicts the non-convexity

(a) Sparse-view tomographic reconstruction.

(b) Compressed sensing (compression rate = 1/16).

Figure 4: Results on the Mayo-CT dataset (details in text).

of the log-prior in Figure 3b: we eval-
uate the learned prior at the convex
combination of two samples, λx +
(1 − λ)x′ of two testing images x
and x′, with λ ∈ [0, 1]. As de-
picted in Figure 3b, as λ goes from
0 to 1, the learned prior first in-
creases and then decreases, exhibit-
ing a nonconvex shape. This is nat-
ural, since the convex combination
of two images no longer resembles a
natural image, demonstrating that the
true prior should indeed be noncon-
vex. As we see, LPN can correctly
learn this qualitative property in the
prior, while existing approaches us-
ing convex priors, either hand-crafted
(Tikhonov & Arsenin, 1977; Rudin
et al., 1992; Mallat, 1999; Beck &
Teboulle, 2009; Elad & Aharon, 2006; Chambolle & Pock, 2011) or data-driven (Mukherjee et al.,
2021; Cohen et al., 2021a), are suboptimal by not faithfully capturing such nonconvexity. All these
results collectively show that LPN can learn a good approximation of the prior of images from data
samples, and the learned prior either recovers the correct log-prior when it is known (in the Lapla-
cian example), or provides a prior that coincides with human preference of natural, realistic images.
With this at hand, we now move to address more challenging inverse problems.

5.2 SOLVING INVERSE PROBLEMS WITH LPN

CelebA We now showcase the capability of LPN for solving realistic inverse problems. We begin
by training an LPN on the CelebA dataset, and employ the PnP-ADMM methodology for deblur-
ring. We compare with state-of-the-art PnP approaches: PnP-BM3D (Venkatakrishnan et al., 2013),
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which uses the BM3D denoiser (Dabov et al., 2007), PnP-DnCNN, which uses DnCNN as the
denoiser (Zhang et al., 2017a) , and PnP-GS using the gradient step proximal denoiser called Prox-
DRUNet (Hurault et al., 2022b). Both DnCNN and Prox-DRUNet have been trained on CelebA.
As shown in Table 1, LPN achieves state-of-the-art result across multiple blur degrees, noise levels
and metrics considered. As visualized in Figure 5, LPN significantly improves the quality of the
blurred image, demonstrating the effectiveness of the learned prior for solving inverse problems.

Table 2: Numerical results for inverse problems
on Mayo-CT, computed over 128 test images.

METHOD PSNR (↑) SSIM (↑)

Tomographic reconstruction
FBP 21.29 .203

Operator-agnostic
AR (Lunz et al., 2018) 33.48 .890
Ours 34.14 .891
Operator-specific
UAR (Mukherjee et al., 2021) 34.76 .897

Compressed sensing (compression rate = 1/16)
Sparsity (Wavelet) 26.54 .666
AR (Lunz et al., 2018) 29.71 .712
Ours 38.03 .919

Compressed sensing (compression rate = 1/4)
Sparsity (Wavelet) 36.80 .921
AR (Lunz et al., 2018) 37.94 .920
Ours 44.05 .973

Compared to the state-of-the-art methods, LPN
can produce sharp images with comparable vi-
sual quality, while allowing for the evaluation
of the obtained prior—which is impossible with
any of the other methods.

Mayo-CT We train LPN on the public Mayo-
CT dataset (McCollough, 2016) of Computed
Tomography (CT) images, and evaluate it for
two inverse tasks: sparse-view CT reconstruc-
tion and compressed sensing. For sparse-view
CT reconstruction, we compare with filtered
back-projection (FBP) (Willemink & Noël,
2019), the adversarial regularizer (AR) method
of (Lunz et al., 2018) with an explicit regu-
larizer, and its improved and subsequent ver-
sion using unrolling (UAR) (Mukherjee et al.,
2021). UAR is trained to solve the inverse
problem for a specific measurement operator
(i.e., task-specific), while both AR and LPN
are generic regularizers that are applicable to
any measurement model (i.e., task-agnostic). In
other words, the comparison with UAR is not completely fair, but we still include it here for a broader
comparison.

Following Lunz et al. (2018), we simulate CT sinograms using a parallel-beam geometry with 200
angles and 400 detectors, with an undersampling rate of 200×400

5122 ≈ 30%. See Appendix E.4 for
experimental details. As visualized in Figure 4a, compared to the baseline FBP, LPN can signif-
icantly reduce noise in the reconstruction. Compared to AR, LPN result is slightly sharper, with
higher PNSR. The numerical results in Table 2 show that our method significantly improves over
the baseline FBP, outperforms the unsupervised counterpart AR, and performs just slightly worse
than the supervised approach UAR—without even having had access to the used forward operator.
Figure 4b and Table 2 show compressed sensing results with compression rates of 1

4 and 1
16 . LPN

significantly outperforms the baseline and AR, demonstrating better generalizability to different for-
ward operators and inverse problems.

6 CONCLUSION

The learned proximal networks presented in this paper are guaranteed to parameterize proximal
operators. We showed how the prox-primitive, regularizer function of the resulting proximal (pa-
rameterized by an LPN) can be recovered, allowing explicit characterization of the prior learned
from data. Furthermore, via proximal matching, LPN can approximately learn the correct prox (i.e.
that of the log-prior) of an unknown distribution from only i.i.d. samples. When used to solve gen-
eral inverse problems, LPN achieves state-of-the-art results while providing more interpretability by
explicit characterization of the (nonconvex) prior, with convergence guarantees. The ability to not
only provide unsupervised models for general inverse problems but, chiefly, to characterize the priors
learned from data open exciting new research questions of uncertainty quantification (Angelopoulos
et al., 2022; Teneggi et al., 2023; Sun & Bouman, 2021), sampling (Kadkhodaie & Simoncelli, 2021;
Kawar et al., 2021; Chung et al., 2022; Kawar et al., 2022; Feng et al., 2023), equivariant learning
(Chen et al., 2023a; 2021; 2022a), learning without ground-truth (Tachella et al., 2023; 2022; Gao
et al., 2023), and robustness (Jalal et al., 2021a; Darestani et al., 2021), all of which constitute matter
of ongoing work.
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Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

Morteza Mardani, Qingyun Sun, David Donoho, Vardan Papyan, Hatef Monajemi, Shreyas
Vasanawala, and John Pauly. Neural proximal gradient descent for compressive imaging. Ad-
vances in Neural Information Processing Systems, 31, 2018.

Michael T McCann, Kyong Hwan Jin, and Michael Unser. Convolutional neural networks for inverse
problems in imaging: A review. IEEE Signal Processing Magazine, 34(6):85–95, 2017.

C McCollough. Tu-fg-207a-04: overview of the low dose ct grand challenge. Medical physics, 43
(6Part35):3759–3760, 2016.

14

https://proceedings.mlr.press/v80/lehtinen18a.html
https://doi.org/10.1007/s10107-015-0963-5
https://doi.org/10.1007/s10107-015-0963-5
https://openreview.net/forum?id=B1lnzn0ctQ
https://projecteuclid.org/ebooks/proceedings-of-the-centre-for-mathematics-and-its-applications/The-Japanese-Australian-Workshop-on-Real-and-Complex-Singularities/chapter/Lecture-1-O-minimal-Structures/pcma/1416320994
https://projecteuclid.org/ebooks/proceedings-of-the-centre-for-mathematics-and-its-applications/The-Japanese-Australian-Workshop-on-Real-and-Complex-Singularities/chapter/Lecture-1-O-minimal-Structures/pcma/1416320994
https://projecteuclid.org/ebooks/proceedings-of-the-centre-for-mathematics-and-its-applications/The-Japanese-Australian-Workshop-on-Real-and-Complex-Singularities/chapter/Lecture-1-O-minimal-Structures/pcma/1416320994
https://projecteuclid.org/ebooks/proceedings-of-the-centre-for-mathematics-and-its-applications/The-Japanese-Australian-Workshop-on-Real-and-Complex-Singularities/chapter/Lecture-1-O-minimal-Structures/pcma/1416320994


Published as a conference paper at ICLR 2024

Tim Meinhardt, Michael Moller, Caner Hazirbas, and Daniel Cremers. Learning proximal operators:
Using denoising networks for regularizing inverse imaging problems. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 1781–1790, 2017.

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, March
2021. ISSN 1558-0792. doi: 10.1109/MSP.2020.3016905. URL http://dx.doi.org/10.
1109/MSP.2020.3016905.
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A RELATED WORKS

Deep Unrolling In addition to Plug-and-Play, deep unrolling is another approach using deep neu-
ral networks to replace proximal operators for solving inverse problems. Similar to PnP, the deep
unrolling model is parameterized by an unrolled iterative algorithm, with certain (proximal) steps
replaced by deep neural nets. In contrast to PnP, the unrolling model is trained in an end-to-end
fashion by paired data of ground truth and corresponding measurements from specific forward op-
erators. Truncated deep unrolling methods unfold the algorithm for a fixed number of steps (Gregor
& LeCun, 2010; Adler et al., 2010; Liu et al., 2019; Aggarwal et al., 2018; Adler & Öktem, 2018;
Zhang et al., 2020; Monga et al., 2021; Gilton et al., 2019; Tolooshams et al., 2023; Kobler et al.,
2017; Chen et al., 2022b; Mardani et al., 2018; Sulam et al., 2019), while infinite-step models have
been recently developed based on deep equilibrium learning (Gilton et al., 2021; Liu et al., 2022;
Zou et al., 2023). In future work, LPN can improve the performance and interpretability of deep un-
rolling methods in e.g., medical applications (Lai et al., 2020; Fang et al., 2023; Shenoy et al., 2023)
or in cases that demand the analysis of robustness (Sulam et al., 2020). The end-to-end supervision
in unrolling can also help increase the performance of LPN-based methods for inverse problems in
general.

Explicit Regularizer A series of works have been dedicated to designing explicit data-driven
regularizer for inverse problems, such as RED (Romano et al., 2017), AR (Lunz et al., 2018), ACR
(Mukherjee et al., 2020), UAR (Mukherjee et al., 2021) and others (Li et al., 2020; Kobler et al.,
2020; Cohen et al., 2021a; Zou et al., 2023; Goujon et al., 2023). Our work contributes a new angle
to this field, by learning a proximal operator for the log-prior and then recovering the regularizer
from the learned proximal.

Gradient Denoiser Gradient step (GS) denoisers (Cohen et al., 2021a; Hurault et al., 2022a;b)
are a cluster of recent approaches that parameterize a denoiser as a gradient descent step using the
gradient map of a neural network. Although these works share similarities to our LPN, there are a
few key differences.

1. Parameterization. In GS denoisers, the denoiser is defined as a gradient descent step:
f = Id−∇g, where Id represents the identity operator, and g is a scalar-valued function
that is either directly parameterized by a neural network (Cohen et al., 2021a), or implicitly
defined by a network N : Rn → Rn as g(x) = 1

2∥x − N(x)∥22 (Hurault et al., 2022a;b).
Cohen et al. (2021a) also experiment with a denoiser architecture analogous to our LPN
architecture, but find its denoising performance to be inferior to the GS denoiser (we will
discuss this further in the final bullet below). In order to have accompanying convergence
guarantees when used in PnP schemes, these GS parameterizations demand special struc-
tures on the learned denoiser—in particular, Lipschitz constraints on ∇g—which can be
challenging to enforce in practice.

2. Proximal operator guarantee. The GS denoisers in Cohen et al. (2021a); Hurault et al.
(2022a) are not a priori guaranteed to be proximal operators. Hurault et al. (2022b) pro-
posed to constrain the GS denoiser to be a proximal operator by limiting the Lipschitz
constant of∇g, also exploiting the characterization of Gribonval & Nikolova (2020). How-
ever, as a result, their denoiser necessarily has a bounded Lipschitz constant. Furthermore,
in practice, such a constraint is not strictly enforced, but instead realized by adding a regu-
larization term on the spectral norm of the network during training. Such a regularization
only penalizes large Lipschitz constants, but does not guarantee that the Lipschitz constant
will be lower than the required threshold. Additionally, the regularization is only com-
puted at training data points, thus either not regularizing the network’s behavior globally
or resulting in loose upper-bounds for it. In other words, such proximal GS denoiser is
only “encouraged” to resemble a proximal, but it is not guaranteed. On the other hand, our
LPN provides the guarantee that the learned network will always parameterize a proximal
operator.

3. Training. All GS denoiser methods used the conventional ℓ2 loss for training. We propose
the proximal matching loss and show that it is essential for the network to learn the correct
proximal operator of the log-prior of data distribution. Indeed, we attribute the inferior
performance of the ICNN-based architecture that Cohen et al. (2021a) experiment with,
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which is analogous to our LPN, to the fact that their experiments train this architecture
on MMSE-based denoising, where “regression to the mean” on multimodal and nonlin-
ear natural image data hinders performance (see, e.g., Delbracio & Milanfar (2023) in this
connection). The key insight that powers our successful application of LPNs in experi-
ments is the proximal matching training framework, which allows us to make full use of
the constrained capacity of the LPN in representing highly expressive proximal operators
(corresponding to (nearly) maximum a-posteriori estimators for data distributions).

Comparisons to Diffusion Models Recently, score-based diffusion models have proven very effi-
cient for unconditional and conditional image generation. There are several key differences between
our work and diffusion models. First, conditional diffusion models do not minimize a variational
problem as we do in this paper (as in (2.1)), but instead provide samples from the posterior distribu-
tion. Moreover, the diffusion models rely on inverting a diffusion process which requires an MMSE
denoiser, and—just as in the case of regular denoisers—they do not approximate any MAP estimate,
whereas we are concerned with networks that compute a MAP estimate for a learned prior. In terms
of strict advantages, one should again note that our approach solves (provides a MAP estimate) for
a denoising problem with a single forward-pass, whereas sampling with diffusion models requires a
large sequence of forward passes of a denoising network. Lastly, but also importantly, our method
provides an exact proximal operator for a learned prior distribution. Diffusion models have no such
guarantee: all these results provide samples from an approximate posterior distribution, which relies
on the approximation qualities of the MMSE denoiser that do not exist for general cases (Chen et al.,
2023b).

Proximal Matching Loss and Mode-Seeking Regression Objectives In the literature on both
deep learning-based denoising and statistical methodology, prior works have explored training
schemes that promote learning the mode of a distribution (or, in our denoising setting, the con-
ditional mode/MAP estimate of the prior). On the methodological side, it is noted that training with
respect to a single objective function cannot lead to the optimal denoiser being the mode uniformly
over sufficiently-expressive classes of denoisers and priors, a concept formalized as inelicitability of
the mode functional (Gneiting, 2011; Heinrich, 2014). In contrast, our nonparametric result on the
proximal matching loss, Theorem 3.2, characterizes the minimizer of a limit of a sequence of losses.
This is both outside the framework of the preceding references, and distinct from what occurrs in
practice, where we attempt to minimize the proximal matching loss with a sufficiently small param-
eter γ > 0. We expect this latter setting to coincide with correct learning of the mode/MAP estimate
of the prior in practical settings of interest, when γ is much smaller than the ‘characteristic scale’ of
the prior. Prior work has also considered modal regression in an abstract statistical learning setting
(Feng et al., 2020), where in contrast to our proximal matching-based objective, an approach based
on kernel density estimation was advanced.

In the literature on learning deep denoisers, we note that a previous work (Lehtinen et al., 2018)
used an annealed version of an “ℓ0 loss” for mode approximation, with motivation similar to that
of proximal matching. Their loss takes a different form,

∑
i(|f(y) − x|i + ϵ)γ , where ϵ is a small

constant and γ ∈ [0, 2] is the annealing parameter. Their loss is designed for learning from corrupted
targets with random impulse noise, and does not recover the mode of the posterior (as in the case of
proximal matching), but rather the zero-crossing of the Hilbert transform of the probability density
function.

B ADDITIONAL THEOREMS

B.1 LEARNING VIA PROXIMAL MATCHING (DISCRETE CASE)

Theorem B.1 (Learning via Proximal Matching (Discrete Case)). Consider a signal x ∼ P (x),
with P (x) a discrete distribution, and a noisy observation y = x + σε, where ε ∼ N (0, I) and

σ > 0. Let mγ(x) : R → R be defined by mγ(x) = 1 − exp
(
−x

2

γ2

)
7. Consider the optimization

7This definition of mγ differs slightly from the one in (3.4), but they are equivalent in terms of minimization
objective as they only differ by a scaling constant.
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problem
f∗ = argmin

f measurable
lim
γ↘0

Ex,y [mγ (∥f(y)− x∥2)] .

Then, almost surely (i.e., for almost all y), f∗(y) = argmaxc P (x = c | y).

The proof is deferred to Appendix C.3.

B.2 CONVERGENCE OF PNP-PGD USING LPN

Theorem B.2 (Convergence guarantee for running PnP-PGD with LPNs). Consider the sequence
of iterates xk, k ∈ {0, 1, . . . }, defined by Algorithm 4 run with a linear measurement operator A
and an LPN fθ with softplus activations, trained with 0 < α < 1. Assume that the step size satisfies
0 < η < 1/∥ATA∥. Then, the iterates xk converge to a fixed point x∗ of Algorithm 4: that is, there
exists x∗ ∈ Rn such that limk→∞ xk = x∗, and

fθ (x
∗ − η∇h(x∗)) = x∗. (B.1)

The proof is deferred to Appendix C.4.1.

C PROOFS

In this section, we include the proofs for the results presented in this paper.

C.1 PROOF OF PROPOSITION 3.1

Proof. By Amos et al. (2017, Proposition 1), ψθ is convex. Since the activation g is differentiable,
ψθ is also differentiable. Hence, fθ = ∇ψθ is the gradient of a convex function. Thus, by Proposi-
tion 2.1, fθ is a proximal operator of a function.

C.2 PROOF OF THEOREM 3.2

Proof. First, note by linearity of the expectation that for any measurable f , one has

lim
γ↘0

Ex,y [mγ (∥f(y)− x∥2)] = 1− lim
γ↘0

Ex,y

[
φγ2/2(f(y)− x)

]
, (C.1)

where φγ2/2 denotes the density of an isotropic Gaussian random variable with mean zero and
variance γ2/2. Because p(x) is a continuous density with respect to the Lebesgue measure dx, by
Gaussian conditioning, we have that the conditional distribution of x given y admits a density px|y
with respect to dx as well. Taking conditional expectations, we have

lim
γ↘0

Ex,y

[
φγ2/2(f(y)− x)

]
= lim
γ↘0

EyEx|y
[
φγ2/2(f(y)− x)

]
. (C.2)

From here, we can state the intuition for the remaining portion of the proof. Intuitively, because the
Gaussian densityφσ2/2 concentrates more and more at zero as γ ↘ 0, and meanwhile is nevertheless
a probability density for every γ > 0,8 the inner expectation over x | y leads to simply replacing the
integrand with its value at x = f(y); the integrand is of course the conditional density of x given
y, and from here it is straightforward to argue that this leads the optimal f to be (almost surely) the
conditional maximum a posteriori (MAP) estimate, under our regularity assumptions on p(x).

To make this intuitive argument rigorous, we need to translate our regularity assumptions on p(x)
into regularity of px|y, interchange the γ limit in (C.2) with the expectation over y, and instantiate
a rigorous analogue of the heuristic “concentration” argument. First, we have by Bayes’ rule and
Gaussian conditioning

px|y(x) =
φσ2(y − x)p(x)

(φσ2 ∗ p)(y),
8For readers familiar with signal processing or Schwartz’s theory of distributions, this could be alternately

stated as “the small-variance limit of the Gaussian density behaves like a Dirac delta distribution”.
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where ∗ denotes convolution of densities; the denominator is the density of y, and it satisfies φσ2 ∗
p > 0 since φσ2 > 0. In particular, this implies that px|y is a continuous function of (x,y), because
p(x) is continuous by assumption. We can then write, by the definition of convolution,

Ex|y
[
φγ2/2(f(y)− x)

]
= φγ2/2 ∗ px|y(f(y)),

so following (C.2), we have

lim
γ↘0

Ex,y

[
φγ2/2(f(y)− x)

]
= lim
γ↘0

Ey

[
φγ2/2 ∗ px|y(f(y))

]
. (C.3)

We are going to argue that the limit can be moved inside the expectation in (C.3) momentarily; for
the moment, we consider the quantity that results after moving the limit inside the expectation. To
treat this term, we apply a standard approximation to the identity argument to evaluate the limit of
the preceding expression. (Stein & Shakarchi, 2005, Ch. 3, Example 3) implies that the densities
φγ2/2 constitute an approximation to the identity as γ → 0, and because px|y is continuous, we can
then apply (Stein & Shakarchi, 2005, Ch. 3, Theorem 2.1) to obtain that

lim
γ↘0

φγ2/2 ∗ px|y(f(y)) = px|y(f(y)).

In particular, after justifying the interchange of limit and expectation in (C.3), we will have shown,
by following our manipulations from (C.1), that

lim
γ↘0

Ex,y [mγ (∥f(y)− x∥2)] = 1− Ey

[
px|y(f(y))

]
. (C.4)

We will proceed to conclude the proof from this expression, and justify the limit-expectation inter-
change at the end of the proof. The problem at hand is equivalent to the problem

argmax
f measurable

Ey

[
px|y(f(y))

]
.

Writing the expectation as an integral, we have by Bayes’ rule as above

Ey

[
px|y(f(y))

]
=

∫
Rn

φσ2(y − f(y))p(f(y))dy.

Let us define an auxiliary function g : Rn × Rn → R by g(x,y) = φσ2(y − x)p(x). Then

Ey

[
px|y(f(y))

]
=

∫
Rn

g(f(y),y)dy,

and moreover, for every y, g( · ,y) is continuous and compactly supported, by continuity and bound-
edness of the Gaussian density and the assumption that p(x) is continuous and the random variable
x ∼ p(x) is bounded. We have for any measurable f

g(f(y),y) ≤ max
x∈Rn

g(x,y). (C.5)

Our aim is thus to argue that there is a choice of measurable f such that the preceding bound can be
made tight; this will imply that any measurable f maximizing the objective Ey[px|y(f(y))] satisfies
g(f(y),y) = maxx∈Rn g(x,y) almost surely, or equivalently that f(y) ∈ argmaxx∈Rn g(x,y)
almost surely. The claim will then follow, because argmaxx∈Rn g(x,y) = argmaxx∈Rn px|y(x).

To this end, define h(y) = maxx∈Rn g(x,y). Then by the Weierstrass theorem, h is finite-valued,
and for every y there exists some c ∈ Rn such that h(y) = g(c,y). Because g is continuous, it
then follows from Rockafellar & Wets (1998, Theorem 1.17(c)) that h is continuous. Moreover,
because g is continuous and for every y, g( · ,y) is compactly supported, g is in particular level-
bounded in x locally uniformly in y in the sense of Rockafellar & Wets (1998, Definition 1.16),
and it follows that the set-valued mapping y 7→ argmaxx g(x,y) : Rn ⇒ Rn is compact-valued,
by the Weierstrass theorem, and outer semicontinuous relative to Rn, by Rockafellar & Wets (1998,
Example 5.22). Applying Rockafellar & Wets (1998, Exercise 14.9, Corollary 14.6), we conclude
that the set-valued mapping y 7→ argmaxx g(x,y) is measurable, and that in particular there exists
a measurable function f∗ : Rn → Rn such that f∗(y) ∈ argmaxx g(x,y) for every y ∈ Rn. Thus,
there is a measurable f attaining the bound in (C.5), and the claim follows after we can justify the
preceding interchange of limit and expectation.
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To justify the interchange of limit and expectation, we will apply the dominated convergence theo-
rem, which requires us to show an integrable (with respect to the density of y) upper bound for the
function y 7→ Ex|y[φγ2/2(f(y)− x)]. For this, we calculate

Ex|y
[
φγ2/2(f(y)− x)

]
=

1

(φσ2 ∗ p)(y)

∫
Rn

φσ2(y − x)p(x)φγ2/2(f(y)− x)dx

≤ 1

(φσ2 ∗ p)(y)

[
sup
x

φσ2(y − x)p(x)

] ∫
Rn

φγ2/2(f(y)− x)dx

=
1

(φσ2 ∗ p)(y)

[
sup
x

φσ2(y − x)p(x)

]
,

by Hölder’s inequality and the fact that φγ2/2 is a probability density. Because the random variable
x ∼ p(x) is assumed bounded, the density p(x) has compact support, and the density p(x) is
assumed continuous, so there exists R > 0 such that if ∥x∥2 > R then p(x) = 0, and M > 0 such
that p(x) ≤M . We then have

sup
x

φσ2(y − x)p(x) ≤M sup
x

φσ2(y − x)1∥x∥2≤R.

This means that the supremum can attain a nonzero value only on points where ∥x∥2 ≤ R. On
the other hand, for every y with ∥y∥2 ≥ 2R, whenever ∥x∥2 ≤ R the triangle inequality implies
∥y − x∥2 ≥ ∥y∥2 − ∥x∥2 ≥ 1

2∥y∥2. Because the Gaussian density φσ2 is a radial function, we
conclude that if ∥y∥2 ≥ 2R, one has

sup
x

φσ2(y − x)p(x) ≤Mφσ2(y/2) = CMφ4σ2(y),

where C > 0 depends only on n. At the same time, we always have

sup
x

φσ2(y − x)p(x) ≤ M

(2πσ2)n/2
.

Consequently, we have the composite upper bound

sup
x

φσ2(y − x)p(x) ≤

{
M

(2πσ2)n/2 ∥y∥2 < 2R

2Mφ4σ2(y) ∥y∥2 ≥ 2R,

and by our work above

Ex|y
[
φγ2/2(f(y)− x)

]
≤ 1

(φσ2 ∗ p)(y)
×

{
M

(2πσ2)n/2 ∥y∥2 < 2R

2Mφ4σ2(y) ∥y∥2 ≥ 2R.

Because φσ2∗p is the density of y, this upper bound is sufficient to apply the dominated convergence
theorem to obtain

lim
γ↘0

Ex,y

[
φγ2/2(f(y)− x)

]
= Ey lim

γ↘0
Ex|y

[
φγ2/2(f(y)− x)

]
.

Combining this assertion with the argument surrounding (C.4), we conclude the proof.

Remark (Other loss choices). Theorem 3.2 also holds for any mγ such that mγ is uniformly (in γ)
bounded above, for each γ > 0 uniquely minimized at 0, and supx∈Rmγ(x) − mγ(∥x∥2) is an
approximation to the identity as γ ↘ 0 (see (Stein & Shakarchi, 2005, Ch. 3, §2)).

C.3 PROOF OF THEOREM B.1

Proof. For brevity, we denote argmaxc P (x = c | y) by MAP[x | y], i.e., the maximum a posteri-
ori estimate of x given y.

First, we show that MAP[x | y] is unique for almost all y.
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Consider y such that MAP[x | y] is not unique. There exists i ̸= j, such that
P (xi | y) = P (xj | y)

⇐⇒ p(y | xi)P (xi) = p(y | xj)P (xj)

⇐⇒ − 1

2
∥y − xi∥2 + σ2 logP (xi) = −

1

2
∥y − xj∥2 + σ2 logP (xj)

⇐⇒ ⟨y, xi − xj
2
⟩ = 1

2
∥xi∥2 −

1

2
∥xj∥2 − σ2 logP (xi) + σ2 logP (xj).

i.e., y lies in a hyperplane defined by xi,xj (note that xi ̸= xj). Denote the hyperplane by

Hi,j :=
{
y | ⟨y, xi − xj

2
⟩ = 1

2
∥xi∥2 −

1

2
∥xj∥2 − σ2 logP (xi) + σ2 logP (xj)

}
.

Consider
U := ∪i ̸=jHi,j .

We have that ∀y with non-unique MAP[x | y],
∃i ̸= j,y ∈ Hi,j

⇐⇒ y ∈ U .
Note that U has zero measure as a countable union of zero-measure sets, hence the measure of all y
with non-unique MAP[x | y] is zero. Hence, for almost all y, MAP[x | y] is unique.

Next, we show that for almost all y,
f∗(y) = argmin

c
Ex|y[1c ̸=x].

Note that
lim
γ↘0

Ex,y [mγ (∥f(y)− x∥2)]

=Ex,y

[
lim
γ↘0

mγ (∥f(y)− x∥2)
]

=Ex,y

[
1∥f(y)−x∥2 ̸=0

]
=Ex,y

[
1f(y) ̸=x

]
.

Above, the first equality uses the monotone convergence theorem. Use the law of iterated expecta-
tions,

Ex,y

[
1f(y)̸=x

]
= EyEx|y

[
1f(y)̸=x

]
.

We will use this expression to study the global minimizers of the objective. By conditioning,
Ex|y

[
1f(y) ̸=x

]
≥ min

c
Ex|y[1c̸=x],

and so
Ey

[
Ex|y

[
1f(y) ̸=x

]
−min

c
Ex|y[1c̸=x]

]
≥ 0.

Because p(y) > 0, it follows that every global minimizer of the objective f∗ satisfies
Ex|y

[
1f∗(y)̸=x

]
= min

c
Ex|y[1c̸=x] a.s.

Hence, for almost all y,
f∗(y) ∈ argmin

c
Ex|y[1c̸=x].

Finally, we show that argminc Ex|y[1c̸=x] = MAP[x | y]. The claim then follows from our
preceding work showing that MAP[x | y] is almost surely unique. Consider

Ex|y[1c̸=x] =
∑
i

P (xi | y)1c̸=xi

=
∑
i

P (xi | y)(1− 1c=xi)

=
∑
i

P (xi | y)−
∑
xi=c

P (xi | y)

= 1− P (x = c | y).
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Hence,

argmin
c

Ex|y[1c̸=x] = argmax
c

P (x = c | y)

= MAP[x | y].

C.4 PROOFS OF PNP OPTIMIZATION RESULTS

In this section, we restate and provide proofs of Theorem B.2 and Theorem 4.1. We prove Theo-
rem B.2 under slightly more general assumptions, and state the conclusions of both Theorems 4.1
and B.2 with more precision. The restated results are given below, as Theorem C.1 and Theorem C.4.

Before proceeding to proofs, let us briefly describe the common high-level ‘recipe’ underlying each
plug-and-play algorithm’s proof. The recipe separates into two distinct steps:

1. Leverage general, black-box convergence analyses from the optimization literature.
A plug-and-play algorithm is derived from a ‘baseline’ optimization algorithm; we there-
fore appeal to convergence analyses from the literature of the relevant baseline algorithm.
Because the regularization function associated to a LPN is implicitly defined by the LPN
architecture and need not be convex, it is necessary to appeal to general, ‘black-box’ con-
vergence analyses which do not leverage special properties of the regularization function.
We make use of convergence results on nonconvex proximal gradient descent of Boţ et al.
(2016),9 and on nonconvex ADMM of Themelis & Patrinos (2020). To make the presen-
tation self-contained, we reproduce key results from these works in context. The principal
technical activity is therefore to translate the iterate sequence generated by the relevant PnP
algorithm into a form that allows these convergence analyses to be applied to it. Echoes of
the same approach appear in prior work on convergent plug-and-play, for example work of
Hurault et al. (2022b).

2. Establish general regularity properties of the regularization function associated to
LPNs. To appeal to the aforementioned convergence analyses, it is necessary to ascertain
a minimum level of regularity of the regularization function associated to an LPN, in order
to establish that it possesses the Kurdyka-Łojasiewicz (KL) property (and, say, coerciv-
ity). We give a self-contained overview of the KL property and how we establish it in
Appendix C.4.4 for clarity of presentation. We provide in Appendix C.4.3 technical lem-
mas that establish that LPNs of the architecture specified in Proposition 3.1 satisfy these
properties, regardless of the exact values of their parameters. These results are essentially
consequences of differentiability and surjectivity of the LPN when 0 < α < 1 is used as
the strong convexity weight, and they enable us to assert convergence guarantees for LPNs
without any extra assumptions about the trained network.

We anticipate that this recipe will be applicable to virtually any PnP scheme for which there exists a
convergence analysis under the KL property of the corresponding baseline optimization algorithm.
Because our technical work in Appendix C.4.3 establishes the KL property and coercivity for the
regularization function associated to LPNs with the architecture of Proposition 3.1, obtaining a
convergence analysis for such a PnP scheme with LPNs of this architecture only requires the first
step of the above recipe. We expect our approach in Appendix C.4.3 to extend straightforwardly
to LPNs with novel architectures—for instance, different computational graphs or weight-sharing
schemes—as long as the nonlinear activation functions do not grow too rapidly (see the proofs for
more precise statements).

C.4.1 PROOF OF THEOREM B.2 (PNP-PGD)

Theorem C.1 (Convergence guarantee for running PnP-PGD with LPNs). Consider the sequence
of iterates xk, k ∈ {0, 1, . . . }, defined by Algorithm 4 run with a continuously differentiable mea-
surement operator A and an LPN fθ with softplus activations, trained with 0 < α < 1. Assume

9The form these results are stated in makes them most convenient for purposes of our presentation, although
the result we need is originally due to (Attouch et al., 2013).
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further that the data fidelity term h(x) = 1
2∥y − A(x)∥22 is definable in the o-minimal structure

of Proposition C.11, Property 210 and has L-Lipschitz gradient11, and that the step size satisfies
0 < η < 1/L. Then, the iterates xk converge to a fixed point x∗ of Algorithm 4: that is, there exist
x∗ ∈ Rn such that

fθ (x
∗ − η∇h(x∗)) = x∗, (C.6)

and limk→∞ xk = x∗. Furthermore, x∗ is a critical point12 of h + 1
ηRθ, where Rθ is the regular-

ization function associated to the LPN fθ (i.e., fθ = proxRθ
).

Before proceeding to the proof, we state a few settings and results from Boţ et al. (2016) that are
useful for proving Theorem C.1, for better readability.

Problem 1 ((Boţ et al., 2016, Problem 1)). Let f : Rm → (−∞,+∞] be a proper, lower semicon-
tinuous function which is bounded below and let h : Rm → R be a Fréchet differentiable function
with Lipschitz continuous gradient, i.e. there exists L∇h ≥ 0 such that ∥∇h(x) − ∇h(x′)∥ ≤
L∇h∥x− x′∥ for all x,x′ ∈ Rm. Consider the optimization problem

(P ) inf
x∈Rm

[f(x) + h(x)].

Algorithm C.1 ((Boţ et al., 2016, Algorithm 1)). Choose x0,x1 ∈ Rm, α, α > 0, β ≥ 0 and the
sequences (αn)n≥1, (βn)n≥1 fulfilling

0 < α ≤ αn ≤ α ∀n ≥ 1

and
0 ≤ βn ≤ β ∀n ≥ 1.

Consider the iterative scheme

(∀n ≥ 1) xn+1 ∈ argmin
U∈Rm

{DF (U,xn)+αn⟨U,∇h(xn)⟩+βn⟨U,xn−1−xn⟩+αnf(U)}. (C.7)

Here, F : Rm → R is σ-strongly convex, Fréchet differentiable and ∇F is L∇F -Lipschitz continu-
ous, with σ, L∇F > 0; DF is the Bregman distance to F .

Theorem C.2 ((Boţ et al., 2016, Theorem 13)). In the setting of Problem 1, choose α, α, β satisfying

σ > αL∇h
+ 2β

α

α
. (C.8)

Assume that f + h is coercive and that

H : Rm × Rm → (−∞,+∞], H(x,x′) = (f + h)(x) +
β

2α
∥x− x′∥2, ∀(x,x′) ∈ Rm × Rm

is a KL function13. Let (xn)n∈N be a sequence generated by Algorithm C.1. Then the following
statements are true:

1.
∑
n∈N ∥xn+1 − xn∥ < +∞

2. there exists x ∈ crit(f + h) such that limn→+∞ xn = x.

Now, we prove Theorem C.1.

10This mild technical assumption is satisfied by an extremely broad array of nonlinear operators A: for
example, any A which is a polynomial in the input x (in particular, linear A) is definable, and compositions
and inverses of definable functions are definable, so that definability of A implies definability of h. See an
extensive overview of these ideas in Appendix C.4.4

11This is a very mild assumption. For example, when A is linear, the gradient of the data fidelity term ∇h
has a Lipschitz constant no larger than ∥A∗A∥, where ∥ · ∥ denotes the operator norm of a linear operator and
A∗ is the adjoint of A.

12In this work, the set of critical points of a function f is defined by crit(f) := {x : 0 ∈ ∂f(x)}, where ∂f
is the limiting (Mordukhovich) Fréchet subdifferential mapping of f (see definition in (Boţ et al., 2016, Section
2)).

13In this work, a function being KL means it satisfies the Kurdyka-Łojasiewicz property (Lojasiewicz, 1963),
see Appendix C.4.4, Definition C.1.
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Proof of Theorem C.1. By Lemma C.7, there is a coercive functionRθ : Rn → R∪{+∞} such that
fθ = proxRθ

. The idea of the proof is to apply Theorem C.2 to our setting; this requires us to check
that Algorithm 4 maps onto Algorithm C.1, and that our (implicitly-defined) objective function and
parameter choices satisfy the requirements of this theorem. To this end, note that the application of
fθ in Algorithm 4 can be written as

xk+1 = fθ (xk − η∇h(xk))

= argmin
x′∈Rn

1

2
∥x′ − (xk − η∇h(xk))∥

2
2 +Rθ(x

′)

= argmin
x′∈Rn

1

2
∥x′ − xk∥

2
2 + ⟨x

′ − xk, η∇h(xk)⟩+Rθ(x
′)

= argmin
x′∈Rn

1

2
∥x′ − xk∥

2
2 + η⟨x′,∇h(xk)⟩+ η · 1

η
Rθ(x

′)

showing that Algorithm 4 corresponds to Algorithm C.1 with the Bregman distance DF (x,y) =
1
2∥x − y∥22 (and correspondingly F (x) = 1

2∥x∥
2
2, which satisfies σ = L∇F = 1), the momentum

parameter β = βn = 0, the step size αn = α = α = η, and f = 1
ηRθ. In the framework of Boţ

et al. (2016), Algorithm 4 minimizes the implicitly-defined objective h + η−1Rθ. Moreover, one
checks that our choice of constant step size 0 < η < 1/L verifies the necessary condition (C.8),
and because h ≥ 0, coercivity of Rθ implies that h + η−1Rθ is coercive. Using Lemma C.13,
we obtain that Rθ is definable, and by assumption, h is also definable, so that by Proposition C.11,
Properties 2 and 5, it follows that the objective h+η−1Rθ is definable. Thus h+η−1Rθ is definable,
continuously differentiable (by Lemma C.7), and proper (as a sum of real-valued functions, again by
Lemma C.7), and therefore has the KL property, by Proposition C.11, Property 1. We can therefore
apply Theorem C.2 to conclude convergence to a critical point of h+η−1Rθ. Finally, by Lemma C.3
and the continuity of fθ and ∇h, we conclude convergence to a fixed point, x = fθ(x − η∇h(x)),
which is identical to (C.6).

Lemma C.3 (Convergence Implies Fixed Point Convergence). Suppose F : Rn → Rn is a contin-
uous map that defines an iterative process, xk+1 = F(xk). Assume xk converges, i.e., ∃ x∗ such
that limk→∞ xk = x∗. Then, x∗ is a fixed point of F , i.e., x∗ = F(x∗).

Proof.

x∗ = lim
k→∞

xk = lim
k→∞

xk+1 = lim
k→∞

F(xk) = F
(

lim
k→∞

xk

)
= F(x∗).

The fourth equality follows from continuity of F .

C.4.2 PROOF OF THEOREM 4.1 (PNP-ADMM)

We present in this section a proof of convergence for PnP-ADMM schemes which incorporate an
LPN for the regularizer (Algorithm 1), following the recipe we have described in Appendix C.4.
These guarantees are analogous to those we have proved in Theorem C.1 for the PnP-PGD scheme
Algorithm 4 with LPNs. For simplicity, we will assume in this section (in contrast to the more
general setting of Theorem C.1, and in agreement with the result stated in Theorem 4.1) that the
measurement operator A in the underlying inverse problem (2.1) is linear and acts in the standard
basis, and accordingly we identify it with its matrix representation A. This means (among other
things) that the data fidelity term x 7→ 1

2∥y −Ax∥22 is convex.

Before proceeding to the proof, we note that Algorithm 1 adopts an update ordering which is non-
standard in the signal processing literature (c.f. (Venkatakrishnan et al., 2013; Kamilov et al., 2023a))
for technical reasons. We employ this update order due to its prevalence in the optimization liter-
ature, notably in the analysis of Themelis & Patrinos (2020), and we emphasize that all of our
experiments are done following Algorithm 1. Although both the typical PnP-ADMM update order
and the update order in Algorithm 1 correspond to an ADMM algorithm for the same objective
function, the analysis of these two iterative optimization procedures is different, and seems to re-
quire different technical assumptions (c.f. (Themelis & Patrinos, 2020; Yan & Yin, 2016)). Prior
work on convergent PnP seems to have also run into this barrier, suggesting it is not an artifact of
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our analysis: for example, Hurault et al. (2022b) study a PnP variant of Douglas-Rachford splitting
rather than ADMM, which is roughly analogous to the reversed-order of updates in Algorithm 1 by
a reduction of Themelis & Patrinos (2020), and Sun et al. (2021) prove convergence of a sequence of
associated residuals in the standard-order PnP-ADMM rather than of the sequence of iterates itself.

Our proof will be based on the work of Themelis & Patrinos (2020), which provides guarantees for
ADMM in the nonconvex setting. We restate some of their results for convenience after stating our
convergence result, then proceed to the proof.

Theorem C.4 (Convergence guarantee for running PnP-ADMM with LPNs). Consider the sequence
of iterates (xk,uk, zk), k ∈ {0, 1, . . . }, defined by Algorithm 1 run with a linear measurement
operator A and a LPN fθ with softplus activations, trained with 0 < α < 1. Assume further that
the penalty parameter ρ satisfies ρ > ∥ATA∥. Then the sequence of iterates (xk,uk, zk) converges
to a limit point (x∗,u∗, z∗) which satisfies the KKT conditions (of the augmented problem):

x∗ = z∗,

u∗ = −1

ρ
AT (Ax∗ − y),

u∗ = ∇Rθ(z∗),

(C.9)

where Rθ is the regularization function associated to the LPN fθ (i.e., fθ = proxRθ
), which is

continuously differentiable. In particular, the primal limit x∗ is a critical point of the regularized
reconstruction cost x 7→ 1

2∥y − Ax∥22 + ρRθ(x), and the full limit iterate (x∗,u∗, z∗) is a fixed
point of the PnP-ADMM iteration (Algorithm 1).

We restate convergence results of Themelis & Patrinos (2020) in lesser generality, given the addi-
tional regularity properties present in our setting of interest.

Problem 2. Let h1 : Rn → R and h2 : Rn → R be continuously differentiable. We consider the
minimization problem

min
x∈Rn

h1(x) + h2(x). (C.10)

Algorithm C.2 (Themelis & Patrinos (2020, Eqns. (1.2), (ADMM), (1.3))). Perform variable split-
ting in (C.10) to obtain an equivalent problem

min
x∈Rn,z∈Rn

h1(x) + h2(z) s.t. x− z = 0. (C.11)

Fix ρ > 0. Form the augmented Lagrangian for (C.11) at level ρ, that is, the function

Lρ(x, z,y) = h1(x) + h2(z) + ⟨y,x− z⟩+ ρ

2
∥x− z∥22, (C.12)

and consider the following iteration,14:

x+ ∈ argmin Lρ( · , z,y),
y+ = y + ρ(x+ − z),

z+ ∈ argmin Lρ(x+, · ,y+).

(C.13)

This iteration induces a set-valued map Tρ : Rn × Rn ⇒ Rn × Rn × Rn. Given an initializa-
tion (y0, z0), a sequence of ADMM iterates (xk,yk, zk) is defined inductively by (xk,yk, zk) ∈
Tρ(yk−1, zk−1), for k ∈ N.15

Themelis & Patrinos (2020) provide the following convergence guarantee for Algorithm C.2 relative
to the objective (C.10), under weak assumptions on h1 and h2:

14This corresponds to setting the “relaxation parameter” λ in Themelis & Patrinos (2020, Eqn. (ADMM)) to
1.

15The variable y defined here follows the notation of Themelis & Patrinos (2020), and in particular should
not be confused with the measurements in the inverse problems framework. We hope the reader will forgive
this conflict of notation.
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Theorem C.5 (Themelis & Patrinos (2020, Theorem 5.6, Theorem 4.1, Theorem 5.8)16). Sup-
pose the objective h1 + h2 is coercive;17 that h1 is continuously differentiable, its gradient
∇h1 is L-Lipschitz, and there exists σ ∈ R such that h1 + σ

2 ∥ · ∥
2
2 is convex;18 and h2 is

proper and lower semicontinuous. Moreover, suppose the penalty parameter ρ is chosen so that
ρ > max{2max{−σ, 0}, L}, and that the augmented Lagrangian (C.12) is a KL function (see Ap-
pendix C.4.4, Definition C.1).19 Then the sequence (xk,yk, zk)k∈{0,1,... } converges to a limit point
(x∗,y∗, z∗) which satisfies the KKT conditions

−y∗ = ∇h1(x∗)

y∗ ∈ ∂h2(z∗)
x∗ − z∗ = 0.

Here, ∂h2 is the (limiting) subdifferential mapping of h2.20 More concisely, the limit satisfies 0 ∈
∇h1(x∗) + ∂h2(x

∗), and in particular x∗ is a critical point for the objective (C.10).

It is standard to argue that Algorithm 1 corresponds to Algorithm C.2 up to a simple reparameteri-
zation (i.e., relabeling of variables), given that the LPN fθ in Algorithm 1 is a proximal operator.

Lemma C.6. An ADMM sequence (xk,yk, zk) generated by the update (C.13) is linearly isomor-
phic to a sequence generated by the update rule

x+ ∈ prox 1
ρh1

(z− u)

u+ = u+ (x+ − z)

z+ ∈ prox 1
ρh2

(
x+ + u+

)
,

(C.14)

in the sense that if (x′
k,u

′
k, z

′
k) is the corresponding sequence of iterates generated by this update

rule with initialization z0 = z′0 and u0 = 1
ρy0, then we have xk = x′

k, zk = z′k, and uk = 1
ρyk for

every k ∈ N0.

Proof. Notice that we can write in (C.12) by completing the square

Lρ(x, z,y) = h1(x) + h2(z) +
ρ

2

∥∥∥∥1ρy + (x− z)

∥∥∥∥2
2

− ρ

2

∥∥∥∥1ρy
∥∥∥∥2
2

, (C.15)

16In obtaining the result stated here from Themelis & Patrinos (2020, Theorem 5.6), we simplify the “image
function” expressions (Themelis & Patrinos, 2020, Definition 5.1) using the simple constraint structure of the
ADMM problem (C.11): in particular, in checking (Themelis & Patrinos, 2020, Assumption II), we have that
φ1(s) = infx∈Rn{h1(x) | x = s} = h1(s) and similarly φ2(s) = infz∈Rn{h2(z) | −z = s} = h2(−s). In
particular φ1 = h1 and φ2 = h2 ◦ − Id, so that (Themelis & Patrinos, 2020, Assumption II.A4) is implied by
(Themelis & Patrinos, 2020, Assumption II.A1). This also allows us to translate the convergence guarantees
of Themelis & Patrinos (2020, Theorems 5.6, 5.8) from applying to the sequence of iterate images under the
constraint maps to the sequence of iterates themselves.

17This implies that the objective function of the equivalent penalized version of (C.11) is level bounded and
admits a solution (recall that the latter is a consequence of the Weierstrass theorem, e.g. (Bertsekas, 2016,
Proposition A.8(2))).

18Such a σ always exists, and satisfies |σ| ≤ L. Roughly speaking, the smaller a value of σ can be chosen,
the better—this is possible when h1 is ‘more convex’.

19Although Themelis & Patrinos (2020) state their global convergence result, Theorem 5.8, only in the
semialgebraic setting, inspection of their arguments (notably (Themelis & Patrinos, 2020, p. 163 top), and the
connecting discussion in (Li & Pong, 2016, Theorem 2, Remark 2(ii)), together with the equivalence between
DRS and ADMM in (Themelis & Patrinos, 2020, Theorem 5.5)) reveals that it is only necessary that the
augmented Lagrangian Lρ is a KL function.

20This is the same notion of subdifferential introduced in Appendix C.4.1 in order to state the results of
Boţ et al. (2016). We use the fact that the limiting subdifferential coincides (up to converting a single-valued
set-valued map into a function) with the gradient for a C1 function (Rockafellar & Wets, 1998, Theorem 9.18,
Corollary 9.19).

28



Published as a conference paper at ICLR 2024

in order to simplify the minimization operations in (C.13). Indeed, the iteration (C.13) then becomes
equivalent to, with (C.15), the iteration

x+ ∈ prox 1
ρh1

(
z− 1

ρy
)

y+ = y + ρ(x+ − z)

z+ ∈ prox 1
ρh2

(
x+ + 1

ρy
+
)
.

(C.16)

Introducing now the “scaled dual variable” u = 1
ρy, we have the equivalent update

x+ ∈ prox 1
ρh1

(z− u)

u+ = u+ (x+ − z)

z+ ∈ prox 1
ρh2

(
x+ + u+

)
.

(C.17)

The equivalence claims in the statement of the lemma follow from this chain of reasoning.

With this preparation completed, we are now ready to give the proof of Theorem C.4.

Proof of Theorem C.4. Below, to avoid a notational conflict with the dual variables in Algo-
rithm C.2, we will write ymeas for the measurements that define the data fidelity term in the inverse
problem cost.

We have by assumption and Proposition 3.1 and Lemma C.7 that there exists a coercive C1 function
Rθ : Rn → R such that fθ = proxRθ

. Given the initialization u0 = 0 in Algorithm 1, applying
Lemma C.6 implies that Algorithm 1 corresponds to a sequence of ADMM iterates (xk,yk, zk)
generated via Algorithm C.2 with the initialization y0 = 0, the objectives h1(x) = 1

2∥ymeas−Ax∥22
and h2(z) = ρRθ(z), and the correspondence yk = ρuk. In addition, we observe that h1 is smooth,
nonnegative, convex, and satisfies ∥∇2h1∥ = ∥ATA∥, where ∥ · ∥ denotes the operator norm.
In turn, we know that z 7→ h2(z) +

ρ
2∥z∥

2
2 is (strongly) convex: Lemma C.10 implies that fθ is

Lipschitz, and (Gribonval & Nikolova, 2020, Proposition 2(1)) implies that an L-Lipschitz proximal
operator’s associated prox-primitive is (1−1/L)-weakly convex, from which it follows that the sum
z 7→ h2(z) +

ρ
2∥z∥

2
2 is strongly convex. As a result of these facts, every minimization operation

in Algorithm C.2 has a unique minimizer, and we can interchange set inclusion operations with
equalities when describing the ADMM sequence corresponding to Algorithm 1 without any concern
in the sequel.

Now, these instantiations of h1 and h2 verify the elementary hypotheses of Theorem C.5:

1. Nonnegativity of h1 and coercivity of h2 imply that h1 + h2 is coercive;

2. h1 is smooth and we can take L = ∥ATA∥ and σ = 0, and therefore the hypothesis that
ρ > ∥ATA∥ verifies the conditions on the penalty parameter;

3. By Lemma C.7, h2 is real-valued and C1, as above.

Finally, to check the KL property of the augmented Lagrangian Lρ defined by (C.12), we will
follow Appendix C.4.4 and verify that Lρ is definable in an o-minimal structure, then apply Propo-
sition C.11, Property 1, since Lρ is C1 as a sum of C1 functions (both h1 and h2 are so). To this
end, note by Corollary C.12 that Lρ is definable in the o-minimal structure asserted by Property 2 if
both h1 and h2 are definable in that o-minimal structure. Proposition C.11, Property 2 implies that
h1 is definable, since it is a degree two polynomial. Then Lemma C.13 implies that h2 is definable
in the same o-minimal structure, and it thus follows from the preceding reasoning that Lρ has the
KL property.
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We can therefore apply Theorem C.5 to obtain that the sequence of iterates of Algorithm 1 converges,
and its limit point (x∗,u∗, z∗) satisfies the KKT conditions (C.9)

u∗ = − 1
ρA

T (Ax∗ − ymeas),

u∗ = ∇Rθ(z∗),
x∗ − z∗ = 0,

where we have used fact that the limiting subdifferential coincides (up to converting a single-valued
set-valued map into a function) with the gradient for a C1 function (Rockafellar & Wets, 1998,
Theorem 9.18, Corollary 9.19). In particular, simplifying gives

AT (Ax∗ − ymeas) = −ρ∇Rθ(x∗), (C.18)

which is equivalent to the claimed critical point property. To see that this is also equivalent to
being a fixed point of Algorithm 1, it is convenient to use the expression (C.17) for the ADMM
update expression, which appeared in the proof of Lemma C.6. The KKT conditions (C.9) imply
that ∇h1(x∗) = −∇h2(x∗), and since both 1

ρh1 and 1
ρh2 are differentiable and yield a strongly

convex function when summed with a quadratic 1
2∥ · ∥

2
2, we can express the action of their proximal

operators as
prox 1

ρhi
= (Id+ 1

ρ∇hi)
−1, i = 1, 2. (C.19)

From (C.17), we get that x+ = (Id+ 1
ρ∇h1)

−1(z∗ − u∗). The KKT conditions (C.9) imply that
u∗ = − 1

ρ∇h1(x
∗) and z∗ = x∗, so that z∗ − u∗ = (Id+ 1

ρ∇h1)(x
∗), and therefore indeed

x+ = x∗. Proceeding, we then have that u+ = u∗ − z∗ + x∗, which gives that u+ = u∗, since
x∗ = z∗. Finally, we obtain from the previous two steps and the definition of h2 that

z+ = (Id+∇Rθ)−1(z∗ + u∗), (C.20)

and the final KKT condition (C.9) implies that u∗ = ∇Rθ(z∗). Hence

z+ = (Id+∇Rθ)−1(Id+∇Rθ)(z∗) = z∗, (C.21)

and we indeed conclude that (x∗,u∗, z∗) is a fixed point of Algorithm 1.

C.4.3 REGULARITY OF THE REGULARIZATION FUNCTION OF LPNS

As discussed in the “recipe” of Appendix C.4, in this section we prove basic regularity properties of
the regularization function associated to any LPN with the architecture of Proposition 3.1.

Lemma C.7 (Regularity Properties of LPNs). Suppose fθ is an LPN constructed following the
recipe in Proposition 3.1, with softplus activations σ(x) = (1/β) log(1 + exp(βx)), where β > 0
is an arbitrary constant, and with strong convexity weight 0 < α < 1. Let fθ(y) = ∇ψθ(y) + αy
be the defining equation of the LPN. Then there is a real-valued function Rθ : Rn → R such that
fθ = proxRθ

. Moreover, we have the following regularity properties:

1. Rθ is coercive, i.e., we have Rθ(x)→ +∞ as ∥x∥2 → +∞.

2. fθ : Rn → Rn is surjective and invertible, with an inverse mapping f−1
θ : Rn → Rn which

is continuous.

3. Rθ is continuously differentiable. In particular, it holds

Rθ(x) = (1− α)⟨f−1
θ (x),∇ψθ(f−1

θ (x))⟩

+
α(1− α)

2
∥f−1
θ (x)∥22 − 1

2∥∇ψθ(f
−1
θ (x))∥22 − ψθ(f−1

θ (x)).
(C.22)

Remark. Lemma C.7 does not, strictly speaking, require the softplus activation: the proof shows
that any Lipschitz activation function with enough differentiability and slow growth at infinity, such
as another smoothed verison of the ReLU activation, the GeLU, or the Swish activation, would also
work.
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Proof of Lemma C.7. The main technical challenge will be to establish coercivity of Rθ, which
always exists as necessary, by Propositions 2.1 and 3.1. We will therefore pursue this estimate as the
main line of the proof, establishing the remaining assertions in the result statement along the way.

By Proposition 3.1, there exists Rθ such that fθ = proxRθ
. Now, using (Gribonval & Nikolova,

2020, Theorem 4(a)), for every y ∈ Rn,

Rθ(fθ(y)) = ⟨y, fθ(y)⟩ − 1
2∥fθ(y)∥

2
2 −

(
ψθ(y) +

α
2 ∥y∥

2
2

)
.

Using the definition of fθ and minor algebra, we rewrite this as

Rθ(fθ(y)) = ⟨y,∇ψθ(y) + αy⟩ − 1
2∥∇ψθ(y) + αy∥22 −

(
ψθ(y) +

α
2 ∥y∥

2
2

)
= (1− α)⟨y,∇ψθ(y)⟩+

α(1− α)
2

∥y∥22 − 1
2∥∇ψθ(y)∥

2
2 − ψθ(y). (C.23)

At this point, we observe that by Lemma C.8, the map fθ : Rn → Rn is invertible and surjective,
with a continuous inverse mapping. This establishes the second assertion that we have claimed.
In addition, taking inverses in (C.23) implies (C.22) and as a consequence the fact that Rθ is real-
valued, and the fact that it is continuously differentiable on Rn is then an immediate consequence
of (Gribonval & Nikolova, 2020, Corollary 6(b)). To conclude, it only remains to show that Rθ is
coercive, which we will accomplish by lower bounding the RHS of (C.23). By Lemma C.9, ψθ is
L-Lipschitz for a constant L > 0. Thus, we have for every y (by the triangle inequality)

|ψθ(y)| ≤ L∥y∥2 +K

for a (finite) constant K ∈ R, depending only on θ. Now, the Cauchy-Schwarz inequality implies
from the previous two statements (and ∥∇ψθ∥2 ≤ L by the Lipschitz property of ψθ)

Rθ(fθ(y)) ≥ −(1− α)∥y∥2∥∇ψθ(y)∥2 +
α(1− α)

2
∥y∥22 − 1

2∥∇ψθ(y)∥
2
2 − L∥y∥2 −K,

≥ −L(1− α)∥y∥2 +
α(1− α)

2
∥y∥22 −

L2

2
− L∥y∥2 −K.

We rewrite this estimate with some algebra as

Rθ(fθ(y)) ≥ ∥y∥2
(
α(1− α)

2
∥y∥2 − L(1− α)− L

)
− L2

2
−K.

Next, we notice that when 0 < α < 1, the coefficient α(1 − α) > 0; hence there is a constant
M > 0 depending only on α and L such that for every y with ∥y∥2 ≥M , one has

α(1− α)
2

∥y∥2 − L(1− α)− L ≥
α(1− α)

4
∥y∥2.

In turn, iterating this exact argument implies that there is another constant M ′ > 0 (depending only
on α, L, and K) such that whenever ∥y∥2 ≥M ′, one has

Rθ(fθ(y)) ≥
α(1− α)

8
∥y∥22.

We can therefore rewrite the previous inequality as

Rθ(x) ≥
α(1− α)

8
∥f−1
θ (x)∥22, (C.24)

for every x such that ∥f−1(x)∥2 ≥ M ′. To conclude, we will show that whenever ∥x∥2 → +∞,
we also have ∥f−1

θ (x)∥2 → +∞, which together with (C.24) will imply coercivity of Rθ. To this
end, write ∥ · ∥Lip for the Lipschitz seminorm:

∥f∥Lip = sup
y ̸=y′

∥f(y)− f(y′)∥2
∥y − y′∥2

,

and note that ∥fθ∥Lip ≤ ∥∇ψθ∥Lip +α. By Lemma C.10,∇ψθ is L∇ψθ
-Lipschitz continuous, thus

fθ is (L∇ψθ
+ α)-Lipschitz continuous,

∥fθ(y)− fθ(y′)∥2 ≤ (L∇ψθ
+ α)∥y − y′∥2.
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Thus, taking inverses, we have

∥f−1
θ (x)− f−1

θ (0)∥2 ≥
1

L∇ψθ
+ α
∥x∥2,

and it then follows from the triangle inequality that whenever x is such that ∥x∥2 ≥ 2(L∇ψθ
+

α)∥f−1
θ (0)∥2, we have in fact

∥f−1
θ (x)∥2 ≥

1

2(L∇ψθ
+ α)

∥x∥2.

Combining this estimate with (C.24), we obtain that for every x such that ∥x∥2 ≥ 2(L∇ψθ
+

α)∥f−1
θ (0)∥2 and ∥x∥2 ≥ 2M ′(L∇ψθ

+ α), it holds

Rθ(x) ≥
α(1− α)

32(L∇ψθ
+ α)2

∥x∥22.

Taking limits in this last bound yields coercivity of Rθ, and hence the claim.

Lemma C.8 (Invertibility of fθ and Continuity of f−1
θ ). Suppose fθ is an LPN constructed following

the recipe in Proposition 3.1, with softplus activations σ(x) = (1/β) log(1 + exp(βx)), where
β > 0 is an arbitrary constant, and with strong convexity weight 0 < α < 1. Then fθ : Rn → Rn
is invertible and surjective, and f−1

θ : Rn → Rn is C0.

Proof. The proof uses the invertibility construction that we describe informally in Section 3. By
construction, we have fθ = ∇ψθ+α Id, where Id denotes the identity operator on Rn (i.e., Id(x) =
x for every x ∈ Rn).

For a fixed x ∈ Rn, consider the strongly convex minimization problem miny ψθ(y) +
α
2 ∥y∥

2
2 −

⟨x,y⟩. By first-order optimality condition, the minimizers are exactly {y | ∇ψθ(y) + αy = x}.
Furthermore, since the problem is strongly convex, it has a unique minimizer for each x ∈ Rn
(Boyd & Vandenberghe, 2004). Therefore, for each x ∈ Rn, there exists a unique y such that
x = ∇ψθ(y) + αy = fθ(y).

The argument above establishes that fθ : Rn → Rn is injective and surjective; hence there exists
an inverse f−1

θ : Rn → Rn. To conclude the proof, we will argue that f−1
θ is continuous. To

this end, we use the characterization of continuity which states that a function g : Rn → Rn
is continuous if and only if for every open set U ⊂ Rn, we have that g−1(U) is open, where
g−1(U) = {x ∈ Rn | g(x) ∈ U} (e.g., (Rudin, 1976, Theorem 4.8)). To show that f−1

θ is
continuous, it is therefore equivalent to show that for every open set U ⊂ Rn, one has that fθ(U)
is open. But this follows from invariance of domain, a standard result in algebraic topology (e.g.,
(Dold, 2012, Proposition 7.4)), since fθ is injective and continuous. We have thus shown that fθ is
invertible, and that its inverse is continuous, as claimed.

Lemma C.9 (Lipschitzness of ψθ). Suppose fθ is an LPN constructed following the recipe in Propo-
sition 3.1, with softplus activations σ(x) = (1/β) log(1 + exp(βx)), where β > 0 is an arbitrary
constant, and let ψθ denote the convex potential function for the LPN. Then ψθ is Lψθ

-Lipschitz
continuous for a constant Lψθ

> 0, i.e., |ψθ(y)− ψθ(y′)| ≤ Lψθ
∥y − y′∥2, for all y,y′ ∈ Rn.

Proof. Note that the derivative σ′ of the softplus activation satisfies σ′(x) = 1/(1 + exp(−βx)),
which is no larger than 1, since exp(x) > 0 for x ∈ R. If F is a map between Euclidean spaces we
will write DF for its differential (a map from the domain of F to the space of linear operators from
the domain of F to the range of F ). Hence the activation function g in Proposition 3.1 is 1-Lipschitz
with respect to the ℓ2 norm, since the induced (by elementwise application) map g : Rn → Rn
defined by g(y) = [σ(x1), . . . , σ(xn)]

T satisfies

Dg(y) =

σ
′(x1)

. . .
σ′(xn)

 ,
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which is bounded in operator norm by supx |σ′(x)| ≤ 1. First, notice that

∥ψθ(y)− ψθ(y′)∥2 = ∥wT (zK(y)− zK(y′))∥2
≤ ∥w∥2∥zK(y)− zK(y′)∥2

by Cauchy-Schwarz. Meanwhile, we have similarly

∥z1(y)− z1(y
′)∥2 ≤ ∥H1∥∥y − y′∥2,

where ∥ · ∥ denotes the operator norm of a matrix, and for integer 0 < k < K + 1

∥zk(y)− zk(y
′)∥2 ≤ ∥Wk∥∥zk−1(y)− zk−1(y

′)∥2 + ∥Hk∥∥y − y′∥2.

By a straightforward induction, it follows that ψθ is L-Lipschitz for a constant L > 0 (depending
only on θ).

Lemma C.10 (Lipschitzness of∇ψθ and LPNs fθ). Suppose fθ is an LPN constructed following the
recipe in Proposition 3.1, with softplus activations σ(x) = (1/β) log(1+exp(βx)), where β > 0 is
an arbitrary constant, and with strong convexity weight 0 < α < 1. Let fθ(y) = ∇ψθ(y) + αy be
the defining equation of the LPN. Then∇ψθ isL∇ψθ

-Lipschitz continuous, for a constantL∇ψθ
> 0.

In particular, fθ is (α+ L∇ψθ
)-Lipschitz continuous.

Proof. The claimed expression for Lipschitzness of fθ follows from the claimed expression for
Lipschitzness of ∇ψθ, by differentiating and using the triangle inequality. We recall basic notions
of Lipschitz continuity of differentiable mappings at the beginning of the proof of Lemma C.9, which
we will make use of below. We will upper bound ∥∇ψθ∥Lip by deriving an explicit expression for
the gradient. By the defining formulas in Proposition 3.1, we have

ψθ(y) = wT zK(y) + b.

The chain rule gives
∇ψθ(y) = DzK(y)Tw,

where T denotes the adjoint of a linear operator, so for any y,y′ we have

∥∇ψθ(y)−∇ψθ(y′)∥2 =
∥∥∥(DzK(y)−DzK(y′))

T
w
∥∥∥
2

≤
∥∥∥(DzK(y)−DzK(y′))

T
∥∥∥ ∥w∥2

= ∥DzK(y)−DzK(y′)∥ ∥w∥2
≤ ∥DzK(y)−DzK(y′)∥F ∥w∥2,

where the first inequality uses Cauchy-Schwarz, the third line uses that the operator norm of a linear
operator is equal to that of its adjoint, and the third line uses that the operator norm is upper-bounded
by the Frobenius norm. This shows that we obtain a Lipschitz property in ℓ2 for ∇ψθ by obtaining
one for the differential DzK of the LPN’s last-layer features. To this end, we can use the chain rule
to compute for any integer 1 < k < K + 1 and any δ ∈ Rn

Dzk(y)(δ) = g′ (Wkzk−1(y) +Hky + bk)⊙ [WkDzk−1(y)(δ) +Hkδ] ,

where g′ is the derivative of the softplus activation function g, applied elementwise, and ⊙ denotes
elementwise multiplication, and similarly

Dz1(y)(δ) = g′ (H1y + b1)⊙ [H1δ] .

Now notice that for any vectors v and y and any matrix A such that the sizes are compatible, we
have v ⊙ (Ay) = diag(v)Ay. Hence we can rewrite the above recursion in matrix form as

Dzk(y) = diag (g′ (Wkzk−1(y) +Hky + bk))︸ ︷︷ ︸
Dk(y)

[WkDzk−1(y) +Hk] ,

and similarly
Dz1(y) = diag (g′ (H1y + b1))︸ ︷︷ ︸

D1(y)

H1.
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We will proceed with an inductive argument. First, by the submultiplicative property of the Frobe-
nius norm and the triangle inequality for the Frobenius norm, note that we have if 1 < k < K + 1

∥Dzk(y)−Dzk(y
′)∥F ≤ ∥Dk(y)−Dk(y

′)∥F
+ ∥Dk(y)WkDzk−1(y)−Dk(y

′)WkDzk−1(y
′)∥F

≤ ∥Dk(y)−Dk(y
′)∥F

+ ∥Dk(y)WkDzk−1(y)−Dk(y)WkDzk−1(y
′)∥F

+ ∥Dk(y)WkDzk−1(y
′)−Dk(y

′)WkDzk−1(y
′)∥F

≤ ∥Dk(y)−Dk(y
′)∥F

+ ∥Dk(y)Wk∥F∥Dzk−1(y)−Dzk−1(y
′)∥F

+ ∥Dzk−1(y
′)∥F∥Dk(y)Wk −Dk(y

′)Wk∥F
≤ (1 + ∥Wk∥F) ∥Dk(y)−Dk(y

′)∥F
+ ∥Dk(y)∥F∥Wk∥F∥Dzk−1(y)−Dzk−1(y

′)∥F.

Now, as we have shown above, g′(x) = (1 + exp(−βx))−1 ≤ 1 for every x ∈ R. This implies

∥Dk(y)∥F ≤
√
nk,

where nk is the output dimension of k-th layer. Moreover, we calculate with the chain rule

g′′(x) =
βe−βx

(1 + e−βx)2
,

and by L’Hôpital’s rule, we have that limx→+∞
x

(1+x)2 = 0, so that by continuity, g′′ is bounded for
x ∈ R. It follows that g′ is Lipschitz. Notice now that

∥Dk(y)−Dk(y
′)∥F = ∥g′ (Wkzk−1(y) +Hky + bk)− g′ (Wkzk−1(y

′) +Hky
′ + bk)∥2

≤ ∥g′∥Lip (∥Wk∥F∥zk−1(y)− zk−1(y
′)∥2 + ∥Hk∥F∥y − y′∥2, )

where in the second line we used the fact that the derivative of an elementwise function is a diagonal
matrix together with the triangle inequality and Cauchy-Schwarz. However, we have already argued
previously by induction that ψθ is Lipschitz, and in particular each of its feature maps zk is Lipschitz.
We conclude that Dk is Lipschitz, and the Lipschitz constant depends only on θ. This means that
there are constants Lk, L′

k depending only on n and θ such that

∥Dzk(y)−Dzk(y
′)∥F ≤ Lk∥y − y′∥2 + L′

k∥Dzk−1(y)−Dzk−1(y
′)∥F.

Meanwhile, following the same arguments as above, but in a slightly simplified setting, we obtain

∥Dz1(y)−Dz1(y
′)∥F = ∥D1(y)H1 −D1(y

′)H1∥F
≤ ∥H1∥F∥D1(y)−D1(y

′)∥F
≤ ∥g′∥Lip∥H1∥2F∥y − y′∥2,

which demonstrates that Dz1 is also Lipschitz, with the Lipschitz constant depending only on θ. By
induction, we therefore conclude that there is L∇ψθ

> 0 such that

∥∇ψθ(y)−∇ψθ(y′)∥2 ≤ L∇ψθ
∥y − y′∥2,

with L∇ψθ
depending only on θ and nk.

C.4.4 NONDEGENERACY OF THE PRIOR

For our convergence results for PnP with LPNs, we make use of general convergence analyses for
nonsmooth nonconvex optimization from the literature. To invoke these results, we need to show
that the regularizer Rθ associated to the LPN fθ satisfies a certain nondegeneracy property called
the Kurdyka-Łojaciewicz (KL) inequality. We provide a self-contained proof of this fact in this sec-
tion. We will instantiate various concepts from the literature in our specific setting (i.e., sacrificing
generality for clarity), and include appropriate references to the literature for more technical aspects
that are not essential to our setting.
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Definition C.1 (KL property; (Attouch et al., 2010, Definition 3.1), (Boţ et al., 2016, Definition 1)).
A C1 function f : Rn → R is said to have the KL property (or to be a KL function) at a point
x̄ ∈ Rn if there exists 0 < η ≤ +∞, a neighborhood U ⊂ Rn of x̄, and a continuous concave
function φ : [0, η)→ R such that

1. φ(0) = 0;

2. φ ≥ 0;

3. φ is C1 on (0, η);

4. for all s ∈ (0, η), φ′(s) > 0;

5. for all x ∈ U ∩{x | f(x̄) < f(x) < f(x̄)+η}, the Kurdyka-Łojaciewicz inequality holds:

∥∇f(x)∥2 ≥
1

φ′(f(x)− f(x̄))
. (C.25)

It can be shown that any f ∈ C1(Rn) has the KL property at every point x̄ that is not a critical
point of f (Attouch et al., 2010, Remark 3.2(b)). At critical points x̄ of such a function f , the
KL inequality is a kind of nondegeneracy condition on f . This can be intuited from the (common)
example of functions f witnessing the KL property via the function φ(s) = cs1/2, where c > 0 is
a constant: in this case, (C.25) gives a lower bound on the squared magnitude of the gradient near
to a critical point in terms of the values of the function f . Every Morse function satisfies such an
instantiation of the KL property: see (Attouch et al., 2010, beginning of §4). In general, the KL
property need not require excessive regularity of f ; we only state it as such because of the special
structure in our setting (c.f. Lemma C.7).

The KL property is useful in spite of the unwieldy Definition C.1 because broad classes of functions
can be shown to have the KL property, and these classes of functions satisfy a convenient calculus
that allows one to construct new KL functions from simpler primitives (somewhat analogous to the
situation with convex functions in convex analysis). The class of such functions we will use in this
work are functions definable in an o-minimal structure. We refer to (Attouch et al., 2010, Definition
4.1) for the precise definition of this concept from model theory—for our purposes, it will suffice
to understand that an o-minimal structure is a collection of subsets of Rn, for each n ∈ N, which
satisfy certain algebraic properties and are called definable sets, or definable for short, and that a
definable function is one whose graph is contained in this collection (i.e., its graph is a definable
set)21—and instead state several useful properties of functions definable in an o-minimal structure
that will suffice to complete our proof. We note that Attouch et al. (2010, §4) give an excellent
readable optimization-motivated overview of these properties in greater generality and depth, as do
Ji & Telgarsky (2020), the latter moreover in a deep learning context.

Proposition C.11. The following properties of o-minimal structures and functions definable in an
o-minimal structure hold.

1. (Attouch et al., 2010, Theorem 4.1) If f : Rn → R is continuously differentiable and
definable in an o-minimal structure, then it has the KL property (Definition C.1) at every
x ∈ Rn.

2. (Wilkie) There is an o-minimal structure in which the following functions are definable: the
exponential function x 7→ exp(x) (for x ∈ R), and polynomials of arbitrary degree in n
real variables x1, . . . , xn (van den Dries & Miller, 1994), (Van den Dries, 1998, Corollary
2.11).

3. (van den Dries & Miller, 1996, §B, B.7(3)) If f : Rn → R is C1 and definable in an
o-minimal structure, then its gradient x 7→ ∇f(x) is definable.

21Here and below, the use of the article “an” is intentional—there may be multiple o-minimal structures
in which a function is definable, and in some applications it is important to distinguish between them. For
our purposes in this work, this distinction is immaterial: we will be content to simply work in a ‘maximal’
o-minimal structure that contains all functions we will need.

35



Published as a conference paper at ICLR 2024

4. ((van den Dries & Miller, 1996, §B, B.4)) A function f : Rn → Rm with f = (f1, . . . , fm)
is definable in an o-minimal structure if and only if each fi is definable (in the same struc-
ture).

5. (Loi, 2010, Theorem 2.3(iii)) The composition of functions definable in an o-minimal struc-
ture is definable.

6. (Loi, 2010, Theorem 2.3(ii)) If f : Rn → Rn is definable in an o-minimal structure, then
its image im(f) is definable; if moreover f is invertible on its image, then its inverse f−1

(defined on im(f)) is definable.22

These properties represent a rather minimal set that are sufficient for our purposes. To illustrate how
to use them to deduce slightly more accessible (and useful) corollaries, we provide the following
result on definable functions that will be used repeatedly in our proofs.

Corollary C.12. If functions f1 : Rn → R and f2 : Rn → R are definable in the o-minimal
structure asserted by Proposition C.11, Property 2, then f1 + f2 is definable in the same structure.

Proof. By Proposition C.11, Property 2, the function g = x1+x2, for x1, x2 ∈ R, is definable since
it is a polynomial. By Proposition C.11, Property 4, (f1, f2) is definable. So, by Proposition C.11,
Property 5, f1 + f2 is definable since it is the composition of (f1, f2) and g.

Using these properties, we prove that the regularizer associated to an LPN with 0 < α < 1 is a KL
function. For concision, we call a function f “definable” if it is definable in the o-minimal structure
whose existence is asserted by Proposition C.11, Property 2.

Lemma C.13 (Definability and KL property of the prior Rθ). Suppose fθ is an LPN constructed
following the recipe in Proposition 3.1, with softplus activations σ(x) = (1/β) log(1 + exp(βx)),
where β > 0 is an arbitrary constant, and with strong convexity weight 0 < α < 1. Then there
is a function Rθ : Rn → R such that fθ = proxRθ

, and Rθ is definable and has the KL property
(Definition C.1) at every point of Rn. Moreover, this Rθ can be chosen to simultaneously satisfy the
conclusions of Lemma C.7.

Proof. We appeal to Lemma C.7, given that 0 < α < 1, to obtain that a functionRθ : Rn → R such
that fθ = proxRθ

exists, and moreover that this function Rθ is C1 and satisfies the relation (C.22).
The idea of the proof is to use (C.22) to show that Rθ is definable in an o-minimal structure, then
appeal to Proposition C.11, Property 1 to obtain that Rθ has the KL property at every point of Rn.
By Corollary C.12, to show that Rθ is definable, it suffices to show that four functions appearing
in the representation (C.22) are definable: x 7→ ⟨f−1

θ (x),∇ψθ(f−1
θ (x))⟩, x 7→ ∥f−1

θ (x)∥22, x 7→
∥∇ψθ(f−1

θ (x))∥22, and x 7→ ψθ(f
−1
θ (x)). We can reduce further. By Proposition C.11, Property

2, the squared norm x 7→ ∥x∥22 is definable, and Proposition C.11, Property 5, namely that finite
compositions of definable functions are definable, it suffices to show that the arguments of the norms
appearing amongst these four functions are definable. Similarly, by Proposition C.11, Properties 2,
4, and 5, for the inner product term appearing amongst these four functions, it suffices to show that
the two individual arguments of the inner product are definable. It then follows by one additional
application of Proposition C.11, Property 5 that we need only argue that the following three functions
are definable: x 7→ ψθ(x), x 7→ f−1

θ (x), and x 7→ ∇ψθ(x). Finally, by Proposition C.11, Property
6 and Lemma C.7, which asserts that fθ is invertible on Rn with range equal to Rn, it suffices merely
to show that x 7→ fθ(x) is definable to obtain that its inverse is definable.

To complete the proof, we argue in sequence below that each of these three functions are definable.

ICNN ψθ. The ICNN ψθ is defined inductively in Proposition 3.1, and by our hypotheses, the
activation function g(x) is an elementwise application of the softplus activation with parameter
β > 0: with a minor abuse of notation, this function is

g(x) = (1/β) log(1 + exp(βx)). (C.26)

22The proof of this property follows readily from the cited result and the preceding properties by noticing
that if one defines a map F : Rn×Rn → Rn×Rn by F (x, y) = (f(y), f(x)), then gr(f−1) = F−1(gr(f)),
which expresses the graph of f−1 as the inverse image of a definable set by a definable function.
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This (scalar) activation function is definable. To see this, by Proposition C.11, Property 2, we have
that x 7→ expx is definable, and by Proposition C.11, Property 6, we have that x 7→ log x is
definable. It then follows from Proposition C.11, Properties 2 & 5 that g is definable, as a finite
composition of definable functions. We then conclude from Proposition C.11, Property 4 that the
elementwise activation x 7→ g(x) is definable. Now, by the definition of ψθ in Proposition 3.1,
we have that z1 is definable as a composition of definable functions (Proposition C.11, Properties
2 and 5), and arguing inductively, we have by the same reasoning that zk is definable for each
k = 2, . . . ,K. Because ψθ = wT zK + b is an affine function of zK , one additional application of
Proposition C.11, Properties 2 and 5 establishes that ψθ is definable.

ICNN gradient ∇ψθ. We conclude this immediately from Proposition C.11, Property 3 and the
definability of ψθ, since ψθ is C2 (because ψθ is composed of affine maps and C2 activations).

LPN fθ. Recall that fθ(x) = ∇ψθ(x)+αx. Because we have shown above that∇ψθ is definable,
using Proposition C.11, Properties 2 and 5 once more, we conclude that fθ is definable.

Concluding. By our preceding reductions, we have shown thatRθ is definable. We conclude from
Proposition C.11, Property 1 that Rθ has the KL property at every point of Rn.

Remark. Note that a byproduct of the proof of Lemma C.13 is that all constituent functions of the
LPN are also definable in an o-minimal structure. This fact may be of interest for future work
extending Lemma C.13 to priors associated with novel LPN architectures.

D ALGORITHMS

D.1 ALGORITHM FOR LOG-PRIOR EVALUATION

Algorithm 2 Log-prior evaluation for LPN

Input: Learned proximal network fθ(·), ψθ(·) that satisfies fθ = ∇ψθ, query point x
1: Find y such that fθ(y) = x, by solving miny ψθ(y;α)− ⟨x,y⟩ or miny ∥fθ(y)− x∥22
2: R← ⟨y,x⟩ − 1

2∥x∥
2 − ψθ(y)

Output: R ▷ The learned log-prior (i.e., regularizer function) at x

D.2 ALGORITHM FOR LPN TRAINING

Algorithm 3 Training the LPN with proximal matching loss

Input: Training dataset D, initial LPN parameter θ, loss schedule γ(·), noise standard deviation σ,
number of iterations K, network optimizer Optm(·, ·)

1: k ← 0
2: repeat
3: Sample x ∼ D, ε ∼ N (0, I)
4: y← x+ σε
5: LPM ← mγ(k)(∥fθ(y)− x∥2)
6: θ ← Optm(θ,∇θLPM ) ▷ Update network parameters
7: k ← k + 1
8: until k = K

Output: θ ▷ Trained LPN
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D.3 ALGORITHM FOR USING LPN WITH PNP-PGD TO SOLVE INVERSE PROBLEMS

Algorithm 4 Solving inverse problems with LPN and PnP-PGD

Input: Trained LPN fθ, measurement operator A, measurement y, data fidelity function h(x) =
1
2∥y −A(x)∥

2
2, initial estimation x0, step size η, number of iterations K

1: for k = 0 to K − 1 do
2: xk+1 ← fθ (xk − η∇h(xk))
3: end for

Output: xK

E EXPERIMENTAL DETAILS

E.1 DETAILS OF LAPLACIAN EXPERIMENT

The LPN architecture contains four linear layers and 50 hidden neurons at each layer, with β = 10
in softplus activation. The LPN is trained by Gaussian noise with σ = 1, Adam optimizer (Kingma
& Ba, 2014) and batch size of 2000. For either ℓ2 or ℓ1 loss, the model is trained for a total of 20k
iterations, including 10k iterations with learning rate lr = 1e−3, and another 10k with lr = 1e−4.
For the proximal matching loss, we initialize the model from the ℓ1 checkpoint and train according
to the schedule in Table 3. To enforce nonnegative weights of LPN, weight clipping is applied during
training, projecting the negative weights to zero at each iteration.

Number of
iterations γ in LPM Learning rate

2k 0.5 1e− 3
2k 0.5 1e− 4
4k 0.4 1e− 4
4k 0.3 1e− 4
4k 0.2 1e− 5
4k 0.1 1e− 5
4k 0.1 1e− 6

Table 3: The schedule for proximal matching training of LPN in the Laplacian experiment.

E.2 DETAILS OF MNIST EXPERIMENT

The LPN architecture is implemented with four convolution layers and 64 hidden neurons at each
layer, with α = 0.01 and softplus β = 10. The model is trained on the MNIST training set contain-
ing 50k images, with Gaussian noise with standard deviation σ = 0.1 and batch size of 200. The
LPN is first trained by ℓ1 loss for 20k iterations; and then by the proximal matching loss for 20k
iterations, with γ initialized at 0.64 ∗ 28 = 17.92 and halved every 5k iterations. The learned prior
is evaluated on 100 MNIST test images. Conjugate gradient is used to solve the convex inversion
problem: miny ψθ(y)− ⟨x,y⟩ in prior evaluation.

E.3 DETAILS OF CELEBA EXPERIMENT

We center-crop CelebA images from 178 × 218 to 128 × 128, and normalized the intensities to
[0, 1]. Since CelebA images are larger and more complex than MNIST, we use a deeper and wider
network. The LPN architecture includes 7 convolution layers and 256 hidden neurons per layer,
with α = 1e − 6 and β = 100. For LPN training, we train two separate models with two levels
of training noise: σ = 0.05 and 0.1. When applied for deblurring, the best model is selected for
each blurring degree (σblur) and measurement noise level (σnoise). We pretrain the network with
ℓ1 loss for 20k iterations with lr = 1e − 3. Then, we train the LPN with proximal matching loss
LPM for 20k iterations using lr = 1e − 4, with the schedule of γ similar to MNIST: initialized
at 0.64 ×

√
128× 128× 3 ≈ 142, and multiplied by 0.5 every 5k iterations. A batch size of 64
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is used during training. We observed that initializing the respective weights to be nonnegative, by
initializing them according to a Gaussian distribution and then taking the exponential, helped the
training converge faster. Therefore, we applied such initialization in the experiments on CelebA
and Mayo-CT. The same weight clipping as in Appendix E.1 is applied to ensure the weights stay
nonnegative throughout training. The training time of LPN on the CelebA dataset is about 6 hours
on a NVIDIA RTX A5000 GPU.

PnP algorithm and comparison methods We use PnP-ADMM to perform deblurring on CelebA
for BM3D, DnCNN, and our LPN (see Algorithm 1). We implement the PnP-ADMM algorithm
using the SCICO package (Balke et al., 2022). We implement DnCNN (Zhang et al., 2017a) using
their public code 23. We implement the GS denoiser, Prox-DRUNet (Hurault et al., 2022b), using
their public code24 and follow their paper to use the Douglas–Rachford splitting (DRS) algorithm
when solving inverse problem, which performs the best with Prox-DRUNet based on their paper.
Both DnCNN and Prox-DRUNet are trained on CelebA.

E.4 DETAILS OF MAYO-CT EXPERIMENT

We use the public dataset from Mayo-Clinic for the low-dose CT grand challenge (Mayo-CT) (Mc-
Collough, 2016), which contains abdominal CT scans from 10 patients and a total of 2378 images
of size 512 × 512. Following (Lunz et al., 2018), we use 128 images for testing and leave the rest
for training. The LPN architecture contains 7 convolution layers with 256 hidden neurons per layer,
with α = 1e − 6 and β = 100. During training, we randomly crop the images to patches of size
128 × 128. At test time, LPN is applied to the whole image by sliding windows of the patch size
with stride size of 64. The training procedure of LPN is the same as in CelebA, except that γ in
proximal matching loss is initialized to 0.64×

√
128× 128 ≈ 82. As in the CelebA experiment, we

use LPN with PnP-ADMM for solving inverse problems.

Sparse-view CT Following Lunz et al. (2018), we simulate CT sinograms using a parallel-beam
geometry with 200 angles and 400 detectors. The angles are uniformly spaced between −90◦ and
90◦. White Gaussian noise with standard deviation σ = 2.0 is added to the sinogram data to simulate
noise in measurement. We implement AR in PyTroch based on its public TensorFlow code25; for
UAR, we use the publicly available code and model weights 26.

Compressed sensing For compressed sensing, we implement the random Gaussian sampling ma-
trix following Jalal et al. (2021b), and add noise of σ = 0.001 to the measurements. The Wavelet-
based sparse recovery method for compressed sensing minimizes the object 1

2∥y−Ax∥
2
2+λ∥Wx∥1,

where A is the sensing matrix and W is a suitable Wavelet transform. We select the “db4” Wavelet
and λ = 0.01. To solve the minimization problem in Wavelet-based approach, we use proximal
gradient descent with a step size of 0.5, stopping criterion ∥xk+1 − xk∥1 < 1e− 4, and maximum
number of iterations = 1000.

F DISCUSSIONS

F.1 OTHER WAYS TO PARAMETERIZE GRADIENTS OF CONVEX FUNCTIONS VIA NEURAL
NETWORKS

Input convex gradient networks (ICGN) (Richter-Powell et al., 2021) provide another way to param-
eterize gradients of convex functions. The model performs line integral over Positive Semi-Definite
(PSD) Hessian matrices, where the Hessians are implicitly parameterized by the Gram product of
Jacobians of neural networks, hence guaranteed to be PSD. However, this approach only permits
single-layer networks in order to satisfy a crucial PDE condition in its formulation (Richter-Powell
et al., 2021), significantly limiting the representation capacity. Furthermore, the evaluation of the

23https://github.com/cszn/KAIR
24https://github.com/samuro95/Prox-PnP
25https://github.com/lunz-s/DeepAdverserialRegulariser.
26https://github.com/Subhadip-1/unrolling_meets_data_driven_

regularization.
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convex function is less straightforward than ICNN, which is an essential step in prior evaluation for
LPN (see Section 3). We therefore adopt the differentiation-based parameterization in this work and
leave the exploration of other possibilities to future research.

G ADDITIONAL RESULTS

G.1 LEARNING SOFT-THRESHOLDING FROM LAPLACIAN DISTRIBUTION
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Figure 6: The proximal operator fθ, convex potential ψθ, and log-prior Rθ learned by LPN via
different losses: the square ℓ2 loss, ℓ1 loss, and the proposed proximal matching loss LPM with dif-
ferent γ ∈ {0.5, 0.3, 0.1}. The ground-truth data distribution is the Laplacian p(x) = 1

2 exp(−|x|),
with log-prior − log p(x) = |x| − log( 12 ). With proximal matching loss, the learned proximal fθ
and log-priorRθ progressively approach their ground-truth, prox|·| and | · | respectively, as γ shrinks
from 0.5 to 0.1.

G.2 LEARNING A PRIOR FOR MNIST - IMAGE BLUR
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Figure 7: The log-prior Rθ learned by LPN on MNIST, evaluated at images blurred by Gaussian
kernel with increasing standard deviation σ. Left: the prior over 100 test images. Right: the prior at
individual examples.
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Besides perturbing the images by Gaussian noise and convex combination in Section 5.1, we also
evaluate the prior of LPN at blurry images, with results shown in Figure 7. Again, the prior increases
as the image becomes blurrier, coinciding with the distribution of the hand-written digits in MNIST.

G.3 SOLVING INVERSE PROBLEMS USING LPN WITH PNP-PGD

Besides PnP-ADMM, we also test LPN’s performance for solving inverse problems using PnP-PGD
(proximal gradient descent). Table 4 shows the numerical results for deblurring CelebA images:
PGD is slightly less performant than ADMM in terms of PSNR.

Table 4: Numerical results for CelebA deblurring using LPN with PnP-PGD and PnP-ADMM,
averaged over 20 test images.

METHOD σblur = 1, σnoise = .02 σblur = 1, σnoise = .04

PSNR(↑) SSIM(↑) PSNR SSIM

LPN with PnP-PGD 32.7 ± 2.9 .92 ± .03 31.2 ± 2.5 .89 ± .04
LPN with PnP-ADMM 33.0 ± 2.9 .92 ± .03 31.3 ± 2.3 .89 ± .03
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