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ABSTRACT

Non-i.i.d data distribution and Differential privacy(DP) protections are two open
problems in Federated Learning(FL). We address these two problems by propos-
ing the first noise intrinsic FL training algorithms. In our proposed algorithm,
we incorporate a stochastic gradient Langevin dynamices(SGLD) oracle in local
node’s parameter update phase. Our introduced SGLD oracle would lower gen-
eralization errors in local node’s parameter learning and provide local node DP
protections. We theoretically analyze our algorithm by formulating a min-max ob-
jective functions and connects its upper bound with global loss function in FL. The
convergence of our algorithm on non-convex function is also given as contraction
and coupling rate of two random process defined by stochastic differential equa-
tions(SDE) We would provide DP analysis for our proposed training algorithm
and provide more experiment results soon.

1 INTRODUCTION

Federated Learning (FL) as a marriage on cloud computing and deep learning are gaining popular-
ity on commercial deployment (Li et al., 2020). It follows a distributed protocol to allow multiple
parties to participate on training process on their local side while collaborating and coordinating
on the cloud site (Kone¢ny et al., 2015). As a result of an innovative corporation pattern, the con-
sumer node would participate their part of training locally without data publishing, while technical
product provider would provide professional service both on the tuning models in training process
and expertise inference solutions from their per-trained model warehouses (Li et al., 2020). Fed-
erated Learning is especially suitable in the area of medical applications (Sheller et al., 2020). In
one way local hospitals maintain and manage the slides of pathology documents such as images
and reports. In another way, they are the consumers of computer aided automatic diagnosis prod-
ucts which comes from training on the patterns of these data and documents. Coexists with these
promising parts, federated learning has its unique characteristics and challenges.

Firstly, the coordination and communication overheads between distributed nodes and centralized
server is significantly higher than that of localized training (Sattler et al., 2019). A direct conse-
quence is that a feasible FL algorithm consists F' steps of local SGD updates in parallel (Li et al.,
2019c) among than Federated Avgeraging (FedAvg) (McMahan et al., 2017) is the first perhaps the
most widely used FL algorithm.

Secondly, the distribution of data is statistically heterogeneous on different devices. The general-
ization error in each single device’s local training is huge. As a result, optimization direction would
towards overfit on local data. The shifts in training optimal solution among local devices would cause
the stabling point of FedAvg deviates be the non-optimal solution (Li et al., 2019c). One solution
for non iid problems would be introducing proximal objective (Li et al., 2018) and dual variables
(Zhang et al., 2020; Karimireddy et al., 2019). Xinwei (Zhang et al., 2020) provides an Augmented
Lagrange solution on FL learning with non iid data.

Thirdly, the data privacy concerns is frequently encountered issue in Federated learning. Due to the
vulnerability properties of internet environment. Information leaking is highly possible. Differential
privacy works to incorporating a randomized mechanism such as injecting gradient noise(Dwork
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etal., 2014; Abadi et al., 2016) and irregular data sampling(Dong et al., 2019) so that the distribution
of perturbed results are insensitive to single record change.

In an attempt to handle these challenges, we would bring a Stochastic Gradient MCMC (SG-MCMC)
solution into FL settings. SG-MCMC methods as a class of scalable Bayesian sampling algorithm
in machine learning has realized significant success recently. We use SG-MCMC in FL settings
for its lower generation error bounds (Smith & Le, 2017; Li et al., 2019b) and differential privacy
preserving properties (Li et al., 2019a) with appropriately chosen step sizes.

Several existing studies on the extention of SG-MCMC algorithms on improving the generalized
performance of parameter learning and preserving differential privacy in Federated learning. Bhard-
waj (Bhardwaj, 2019) showed that an adaptive stepsize of Stochastic Gradient Langevine Dynam-
ics(SGLD) could escape local extremes of high generalization error. Chaudhari et al. (Chaudhari
et al., 2019) propose a two nested SGD algorithm to perform SGLD in their local loop of optimiza-
tion. Li et al. (Li et al., 2019a) proved that a practical stepsize of sampling models is realizable to
preserve differential privacy. Wang et al. (Wang et al., 2019) gave an bound on empirical risk to mea-
sure the error of non-convex local loss under differential privacy. However their works are studying
on the case of local training on a single node case.

Motivated by their works, we propose an SGLD algorithm in FL. In our proposed algorithm, each
node use SGLD samplings as each node’s local gradient update phase. The whole updating follows
the protocol in FedPD algorithm (Zhang et al., 2020) except that we take expectations of SGLD
sampling on the Augmented Lagrange objective. Next, we analyze our propose algorithm by formu-
lating a joint min-max variational objective functions. The whole learning process in our algorithm
would be viewed as a min-max descent in our objective functions. We then prove that our constructed
min-max functions is a variational upper bound on the global loss functions where the introduced
dual variables closes the gap among local gradient zeros. Finally we study the convergence of our
algorithm by using a technique similar in (Eberle et al., 2019) to study the couplings and contraction
in Hamilton Monte-Carlo. We prove that the distributio of two process from independent random
initialization distributions converges in our designed Wasserstein metric. In this paper, our contribu-
tions are two folds.

e We propose an SGLD implementations of FL algorithm where the data distribution is non
iid on local nodes.

e We formulate our SGLD implementaion of FL as optimizing on a min-max points of a
joint learning objective function. And then we derive two types of variational upper bounds
of our learning objectives on global loss functions and connects it with optimal primal-
dual conditions in consensus problems. We also study our algorithm’s convergence to the
stabling point.

2 PRELIMINARIES

2.1 AUGMENTED LAGRANGE FOR FEDERATED LEARNING

In the framework of federated learning, N distributed nodes aim to learn a coherent network map-
ping model v(x, -) in R™ — R"™ parameterized by x by the loss function I(, -) in R”, R™ — R. The
data are distributed i.i.d cross [V distributed nodes. We use D; to denote the dataset on i’s distributed
node. We denote D; , as the gth data in Node i and ); 4 as the label for gth data in Node i. The
learning objective in 7’s node is defined as the expected loss from the network prediction on a data
distribution P; ~ p({D;.q, Viq} € D;)

Fi(x) = Eqp, 3. ,}erl(¥(x, Dig), Vig) 6]

For simplicity, we use &, = {D; 4, Viq} to denote the combination of gth data and label in 4’s
node. The loss on &; , is denoted as

Fi(X7 gi,q) £ l(l/(X7 Di,q)ayi,q) (2)
The federated learning is aimed as minimizing the averaged loss across all the distributed nodes
x* = arginln N Z F;(x) 3)
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The federated learning process consists of multiple rounds of local distributed training, global ag-
gregation. updating and broadcasts on parameters. In the start of round r, the central node first
broadcast its coordinated value of xg to each distributed node. Each distributed node keeps a copy
of xj as X ,. in their local side. Then at local distributed training phase, each local node optimize
their local objective function £;(x’, xg ;, A}) in their local optimization oracle. The local objective
is an augmented Lagrange £;(x’, X ;, A} ) defined as

Li(x' %0, \i) & Fi(x') + (A, x" —x¢) + %HX/ — xo]|2 4)

, where A7 is defined as the dual variable kept at distributed node ¢ that has the same dimension as the
parameters x. Then each node returns a x?’l from their local optimization oracle on L;(x’, g ;, A7)
Then each distributed node use xr+1 and xg; to update its dual variable from A} to )\Z”l. Then each

distributed node use its updated dual A} ** and parameters x; ™! for a new x{% and send x}7% to

centralized coordinate nodes. The centralized nodes aggregates th from all distributed node ¢ and
r+1

use Fedavg to update for a new x;™ .
And we define the minibatch loss function Fi(x, §iB,,) as

Fi(x,&i,q) & > 1w(x,Dip,), Vis,) )

|BZ t| b;eB; ¢

Finally, we define the gradient h(x;?,&; 5, ,) taken at global round r, local round ¢ and node i is
defined as

h(X?qvgi,Bi,q) v [’( XO 17 i gz B; q) (6)
:vXFZ( ) 75%qu)+7( 7q_XO7,)+)\T (7)

2.2  STOCHASTIC GRADIENT LANGEVINE DYNAMICS

Langevine Dynamics is a family of Gaussian noise diffusion on Force Field VF(F(x)). Its contin-
uous time Ito diffusion could be written as

dx; = —VxF(x)dt + B~ 2dB, (8)

,where B, € R, is a p-dimensional Brownian motion. Function F as F' : RP — R are assumed
to satisfy Lipschitz continuous condition. Stochastic Gradient Langevine dynamics could be a dis-
crete form of Langevine Dynamics as a Euler-Maruyama approximation of the stochastic ordinary
equation(SDE). The discretization has a form of Gaussian Noisy injected Gradient. We write their
dicretization in the following form

X1 = X — Vx F(x)At + N(0, At~'T) 9)

By written x™ as x;y1, At as 7,,, we could write the SGLD in the form of step-wise gradient descent
plus an Gaussian Noise term to perform Bayesian samplings

X" = X" — 0, Vo F(x) + N(0, 7,37 'T) (10)

By seeing the noise injected descending steps as a Markov chain, the stationary distribution would
reduce to the following form

p(x) oc e PEE) (1)

3 PROBLEM FORMULATION

3.1 AN JOINT MIN-MAX OBJECTIVE FOR FEDERATED STOCHASTIC GRADIENT MCMC

We formulate the problem of our federated stochastic gradient MCMC as optimizing the joint min-
max function

1

N
maxmlnF (x,\;) Z / exp[(—F;(x')— < A\, x' —x > —%Hx' —x|$))dx’ (12)
=1 !
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The gradient of the F'(x, A1,...\,) at X could be given by

oF 1 ,
x| ; § (BPi ey X'+ Ai = X0) (13)
where we denote
x;i =x;+ N\ (14)
Xi = Ep, (x/x0)X’ (15)

So we could rewrite the gradient calculation as

oF

0x

1
x07 — Xp) (16)

N

X=X 1 1

The gradient of the F'(x, A1, ...A\,,) at xq, A; could be written as

oF
O\

=X —X; 17

X=X0

where the distribution P;(x’|x) could be written as
P;(x'|x0) o< exp|—BL; (X', %0, \i)] (18)

where £;(x’, x¢) follows our previous definition as

Li(x',x0, ;) 2 F(x)4 < M\, x' —xo > —l—%”x’ — x0||% (19)

As a federated learning implementation, the computation of § F'/0x is distributed among local nodes.
In one round of learning, each local node i first use Monte-Carlo estimation of x; from the samples
along SGLD steps on function £;(x’, xg) using mini-batch update from its private data. Then each
local node i updates its private owned dual variable \; by equation by Equation 17. Next, each local
node i computes their contributing part of xg ; by Eq. 14 and sends it to the server node. Then the

server node averages its aggregated x ; from all local nodes for 6 F'//dx by Eq. 13 and uses gradient
descent to update parameter x. Fmally the server node broadcast its update global parameters x back
to each distributed nodes. The algorithm of dual descenton x , A1, ..., Ay is shown in Algorithm 1.

Algorithm 1: Our Federated Stochastic Gradient MCMC Algorithm

Input: : x°, 7, p, T
Initialize: x§ = 29,
forr=0,...,7—1do
for:=1,..., N in parallel do
Local Update:
Li(x x5 1. \) = —Fi(x) =~ < ML, — x> — 3% — x5,[12)
x[t! = SGLD-Oracle; (L;(x, x}; ;, A7)
)\’l‘+1 _ )\r + 77,}/< TJrl _ X&ﬁ)

Xg—t _ XT+1 + AT+1

Global Commumcate.
Aggregate:

1
T+ _NZzl

Broadcast

+1 +1 o
xgh =xp+nxpg " —xp),i=1,...,N

3.2 SGLD As LOCAL ORACLE STOCHASTIC GRADIENT MCMC

In the inner-loop of our federated learning algorithm, each local node computes Ep, (x/|x,) by taking
SG-MCMC steps in their SGLD-Oracle. In their local SGLD-Oracle, the distribution of P;(x’|xg) is
approximated by samplings along the markov chains of SGLD on the objective function of its local
augmented Lagarange in Eq. 19 . In our implementation of local SGLD-Oracle, we take several
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epochs of SGLD without taking sampling in the early burn in period. To have a quick burn in times,
we keep the step-size of SGLD fixed in our burn in period. After burn in, we give two SGLD
sampling algorithms for Ep, 4/ |x,) With fixed stepsize and decreasing stepsize in a rate of nr =

O(Tﬁl/ 3)(Teh et al., 2016; Chen et al., 2019) to obtain a optimal mean square error bound.

Algorithm 2: SGLD-Oracle

Input: :Local Dataset &, number of local iterations Q, clip norm length L, base step-size {1}
Initialize: x "0 = 2f 1! = mx] T =0,
forq=0,...,Q do
Sample a mini-batch &; g,
Calculate gradients h(x;?, & 5, ) = Vi Li(x79, -, &8,
Clip norm : h(-) = h(-)/max(1, M)
if ¢ > Qo(Decreasing Steps) then
[ me=(a—Qo)™*n
Noisy Gradient Descent: x}%™" = x7% — n,h(x}"7, &.8.,) +/meN(0,1)
if ¢ = Qg then
e
if ¢ > Qo then
L xi = oxi ™+ (1 - o)yt
r+1

i

Return: x

3.3 DIFFERENTIAL PRIVACY ANALYSIS

In each node’s local optimization oracle, () rounds of mini-batch gradient descents are taken. In
round ¢, node i samples a minibatch B; ; = {b1,bs,...,b, ,(|Vj,b; € {1,...|D;|}}. The subsam-
ple follows Poisson sampling method, which is defined as follows.

Definition 3.1. (PoissonS ample). Given a dataset X, the procedure PoissonSample outputs a subset
of the data {z; | o; = 1,4 € [n]} by sampling o; ~ Ber(p) independently fori = 1,...,n.

Definition 3.2. (Gradient Clipping). The clipping operation is defined as
g

CL(g;C) 2 m~

Hence,

gll<C.
4 A STUDY ON MIN-MAX VARIATIONAL BOUND

Theorem 4.1. F(x, \;) is an upper bound on —; Zivzl F;(x)
Proof. Using the second order Taylor approximation of F;(x’) around x, we have
F(x')~ Fj(x) + VFi(x) < x' —x > —|—%Hx/ —x||m, (20)
where H; = V3 F;(x) is the Hessian matrix. Using the above equation, we have
log/l exp(—F;(x')— < A\, x' —x > —%Hx’ —x||3)dx’ (21)
%log/l exp(—F;(x)— < =\, — VF(x),x —x' > —%Hx’ — x|y 41)dX (22)

1
SH=X = VE &)z, 4411

:log/ exp[—F;(x) + 5

(23)
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1
=5l =X+ [Hi + 7 = = VE ] || r]dx (24)
M 1
=— Fy(x) + ,||_ (X)H[Hﬁﬂ]fl—i—?logﬂ— §logdet|Hi+71|
/ N(X's5x — [H; + 1) VF(x) + N7, [Hy + A1) ax! (25)
M
=-F(x)+ *ll* Fi)ig40m-1+ logﬂfflogdetlH +1 (26)
M
> — Fi(x) + 710g77— §1ogdet|Hi + 1] (27)
= — F;(x) + const (28)
So we have
F(x, \;) 29)
Y1
:Z ¥ log/ exp(—Fi(x')— < X\i,x' —x > —%Hx’ — x|[3)dx’ (30)
i=1 x/

F;(x) + const GD

%
|
M-
=1

s
I
—

O

In the above theorem, we find that our federated learning algorithm’s joint min-max objective
F(x,\) is an upper bound on the averages of loss functions on all nodes. And the saddle point
x*, ¥ satisfies the condition that A\; + VF;(x) = 0. This condition is in accordance with the opti-
mal primal-dual conditions in augmented Lagrange where the gap between local gradient zeros and
global gradient zeros are closed by the dual parameters \;.

Theorem 4.2. IfZﬁV:l Ai = 0, F(x,\;) is an upper bound on log [, exp(4 Zivzl —F(x') —
31— x|[3)dx")

Proof. From Eq. 26, we have
F(X, /\1)
al 1 M 1
%N —FZ‘(X) + 5”)\1 +VFi<X)|‘[H,;+'yI]*1+710g7T_ ilogdet|Hi +’}/I| (32)
i=1
From Cauchy—-Schwarz inequality, we have

N N

1 1

N > 1A + VE ()1, 4411 > ”N > X + VE )| 411 (33)
i=1

N
where H = & >"." | H,
By substituting inequaliy 33 into Eq. 32, we have

F(X,)\Z‘)
1 N
ZNZ+Fi( *H*Z/\ )| qn-1+ logﬂ—flogdet\H +AI (34)
=1
1 & M
:ﬁ;*Fi( *H*ZVF ||[H+W1] 1+— logwfdet\H+~yI\
+ det|H + ~I|— det|H; + 7I| (35)

N
1 Y
~log [ ewp(y 3" ~Fx) - 2l ~ x|B)ax)
x/ i=1

(36)
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N
1
_deeﬂHi + 41|+ det|H + 1| (37)
i=1
zlog/ exp( l Z Fi(x Z||x’ — x||2)dx’) + const (38)
N 2 2

i=1

O

In the above theorem, we find that by introducing dual parameters \;, the averages of our local
FL objectives have an upper bound of the same function that the local loss is replace the global
loss - >, F;(x). The upper bound is achieved in either of two conditions. The Hessian matrix H;
of different nodes have the same value. Or the zeros gradient gap among V F;(x) is closed by the
duality parameters \;.

5 CONVERGENCE ANALYSIS

In this section, we study the convergence properties of our algorithm. In our analyse, we first see the
whole SG-MCMC Federated learning process as a homogenization of a stochastic differential equa-
tions(SDE) in the limit of step size variables ¢ — 0. Then we use a technique similar as(Eberle et al.,
2019) to analyze the couplings and contraction of two independent randomly initialized stochastic
process. And we derive a exponential bound of convergence of any two process on time in the metric
of our defined Wasserstein Distance.

5.1 HOMOGENIZATION OF SDE SYSTEMS

Theorem 5.1. Consider of the SDE system given by

do(®) = —[xo— =3 (s 4 Lat (39)
0 - 0 N . % ~y %
d)\l (t) = -7 (X() — Xl)dt (40)

It follows that in the limit of € — 0, the dynamics of dx(t) and d\;(t) converges to

1
dXo( ) XO - Z / dXZ,X()( )) + ;)\l)]dt (42)
d)\i(t) = -7 (Xo — / XZ‘Pi(dXi,XQ(t))dt (43)
(44)
Proof. The proof follows Sec. 4.1 in(Chaudhari et al., 2018) O

In above theorem, we would assume our SG-MCMC Federated learning process as a discretization
and homogenization of a stochastic differential equations(SDE).

5.2 CONTRACTION AND COUPLING RATE OF SDE

Let probability measures 1(x;(0),x0(0), A;(0)) and p'(x5(0),x((0), A;(0)) be any two probabil-
ity measures on the initial distribution of x;,xg, A\;. And we denote up; as the distribution of
w(x;(t),x0(t), Ai(t)) of the process defined in SDE(40, 41, 39) with its initial distribution as y.
And we have the following theorem on the exponential rate couplings and contractions of two pro-
cess



Under review as a conference paper at ICLR 2021

Theorem 5.2. There exists a contant ¢, and a metric p((x},x(, A,), (X, X0, A;)) such that for any
t > 0 and any probability measure

W, (upe, 0'pe) < =W, (1) (45)

W, is a Wassertein distance defined on the metric p((X;,Xq, \;), (Xi, X0, Ai))
Proof. The proof appears in our Appendix.7.1 O

6 EXPERIMENTS

In this section, we run simulations on Federated Learning Benchmark in (Shamir et al., 2014; Li
et al., 2018) to verify our algorithms. The data is heterogeneously distributed among devices. We
test our algorithm by comparing it with baseline in both low noise and high noise case. Our result is
shown in Fig.6. The performance of our methods is shown in red line while the baseline method is
in blue line. The high noise case is shown in the lower section. And the low noise case is shown in
the upper section.
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6.0.1 SYNTHETIC DATA

In particular, for each device k, we generate data with a generation distribution of y =
arg max (softmax(Wx + b)). We model Wy, ~ N (ug,1),bp ~ N(ug,1),ur € N(0,a),zp ~
(Uk:az)vvk ~ (035 + 1)

6.0.2 Low NOISE CASE

In this case, we inject a tiny noise of 3 = 10~ and compares our algorithm with the baseline
where no noise is injected in local FedPD optimizations. Our algorithms have a significantly lower
training loss error and with a much smoother training curve. Because local nodes run SGLD to infer
parameters with lower generalization error bounds.

6.1 HIGH NOISE CASE

In this case, we inject a significant amount of noise 8 = 0.5 and compares our algorithm with the
baseline where the same amount of noise is injected in local update without sampling in SGLD.
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7 APPENDIX

7.1 AN CONTRACTION AND COUPLING RATE ANALYSIS ON CONVERGENCE

The Fokker-Plank equation of the SDE. (39,41, 40) could be written as
ZA& - 72 VEF;(x;) +7(xi — X0) + \i] - Vx,
1 XN
—271 X0 —X;) -V, — [x NZ:XH- =Ai)] - Vi, (46)
We consider the following Lyapunov as
A B
V(x0, %4, Ai) ZF xi) + o [ 5 i o+ O +C|xO|2 (47)

Following the line of the work(Eberle et al., 2019), we make the following assumptions on functions
Fi(x)

Assumption Al.
Fi(x) >0 (48)
[VFi(x) = VFi(y)| < Lix —y| (49)
X - VF( )/2 > K(Fi(x) + 2|x|?/4) = F (50)
Fi(x)[< G (5D

Then we have the following lemma

Lemma 7.1. If the above assumption holds, then LV < 1(MB(A+ B+ L)+ DG + (A+ B)F
K(A+B+7)V)

Proof. By applying Fokker-Plank Eq. 46, we have

10
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,CFZ'(Xl) 5 yANYS F (Xl) HVF1(X2)|2+’}/VF1(XZ) “ X — ’}/VFl(Xl) - Xo + VFZ(Xl) . )\A

(52)
1 M 1
£§|Xz|2 = ?ﬂ - E[VFi(Xi) “Xq Y% P =% X0 + X+ A (53)
£ ol = oL S 0+ L) (54)
—Ix0l* = —[Ixo|*—= X; X0+ =)\ - X
2 0 0 N vt 1 0 v i 0
1 M 1
£§|xi + N2 = —B - f[VF (%) - Xi + x> =% - X0 + x40 N
+ CVFi(Xi) A+ G - Ai — Gy - X0 + (] (55)
*’YlC(XO'Xi - \Xi|2)*71C2(X0')\7:*X7: )\7) (56)

D Fi(xi) < L, |Fi(xi)|< G, xi- VF(x:)/2 > 6(Fy(xi) + 2[x;[*/4) = F (57)
Then we have
B C
ZF X;) |Xz|2+§|Xi+O\¢|2+*€|X0\2)) (58)

< %M((B +L)/B)+ DG+ (A+ B)F]

_Z%{w (A + B)y — Byelllxil 2+ B[P+ \x0| +(1+ D)VF(x;)?

C C
—[(A+ B)y — Byi(e+ N]Xi “Xo — [BCy + N Byie?xo - Ai

+[A+ B+ B¢y — ByiCPexi - A + VEi(x;) - [(1 + BON — %]} (59)
By choosing the proper values of A, B, C, D, (, z,1, we could let the following equality holds
LY < (Mﬁ(A+B+L)+DG—|—(A—|—B) —k(A+B+7)V) (60)

Here is one set of A, B, C, D, (, z, v satisfying the above inequality.

7 3 2
A=B=y, C=39'N, D= ry", (== (61)
v
where k, v, 71, zsatisfying the following constraints
<1l
nes= gy
k< TN
150

4 3
= > 2+ 6ry + Syt
ol 2

297 — 2v1€] (62)

7.1.1 COUPLINGS OF TWO PROCESS

Let X; = [xT'(#),x2(#)...x5 @), A = [N (), \T(¢) ... A\ (¢)]. We consider two coupling pro-
cess Xy, A, Xo(t) and X}, A}, x(,(t) with different initialization. We compose their brownian mo-
tions in the direction of synchronized drift and reflection drift which we would give conditions.

11
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Each is governed by the following SDE
1 .
dX; = —=[VF;(X;)dt + yXpdt — yxo(t)17 dt + Adt]
€
+ 5/267’C(Zt, Wt,n)ngc + 5/2680(Zt,Wt,th)dB;c
1. 1
dxo(t) = —[xo(t)dt — —1(X; + =\;)dt
xo(t) [xo0(t) N ( t+7 +)dt]
d\y = —[xo(t)1dt — X,dt]
1 .
dX) = —E[VFi(Xg)dt + X}t — yxo(t)1Tdt + N,dt]
B/ 2erc(Z;, Wy, Yi) (I — 2eel )dBI¢ + \/B/2esc(Zy, Wy, Y;)dB;®
1. 1
dx'o(t) = —[x(t)dt — Nl(X; + ;Ag)dt]
d\, = —[x{(t)1Tdt — X, dt]

,where 1 is defined as

LU meDMAl<n<mM
™0 else

(63)

(64)

(65)

The existence and uniqueness of decomposition holds by Levy’s characterization. Then we write the
differentiation of the two process as Z; = X; — X}, Wi = xo(t) — x((¢), Yz = A\: — A}. Moreover,
we define we define rc, sc : R — [0, 1] are Lipschitz continuous functions such that rc? + sc? = 1

as a function of Z;, W, and Y;

re=0 if |Wt|:O,|Yt|:O or |Zt|+a1|Wt‘+052D/t|2R1+§
re=1 if a|[Wi+aa|Y:|> € and | Zi|+oq |[Wi+az|Y:|< Ry

We also define e; as an unit length vector in the direction of Z; and e, shrinks at | Z;|= 0
et:Zt/|Zt| if Zt;éO and et:0 if Zt:()
The process of (Z;, Wy, Y;) could be written as

dZ; = =Y VFi(xi(t)) — Fi(X}(t)) + vZydt — yW, AT dt + Y,dt]
+\/28/erc(Zy, Wy, Yz)dB;¢
1. 1

dn - _[Wt - th_T]

The derivative of |W;| and |Y}| could be write in the form of

d W, 1. 1
LWy = —L W, — —1(Z, + -V,
dt‘ tl |Wt| [ t N ( t+,y t)]
d Y, -

Ly = o wiT -z

dt‘ t| |}/t| [ t t]

We set
re = r((Xe, xo(t), Ae), (X5, x0(t), A7) = [Ze]+0n [We 40|V
pr = p((Xe, x0(t), M), (X4, %4(8), A7) = f(re) G
Gy =14+ vV(x(, x5, \o) + vV(x5, X, \))

Then we have the following lemmas

Lemma 7.2. There exists a Ry if r > Ry such that

_K(A+B+9)

LY (x4, X5, A;) + LV (X0, X4, Ai) < 5
€

(2 K2

(V(x0, x5, Aj) 4+ V(x0,Xi, Ai))

12
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(67)

(68)

(69)
(70)

(71)

(72)

(73)

(74)
(75)
(76)
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, Where Ry is give by

12 21 oo 202 2ea?

5@ Ee T

Ry < | Y(MB(A+B+L)+ DG+ (A+B)F)/(k(A+ B +~))]"/?

(78)

Proof. We have

Ty = ‘Zt|+011|Wt‘+OéQD/t|
= [Xy — Xi|+an|xo(t) — xg(t)1[+0z]As — Ay
< \Xt|+a1IXO(t)Haz\AtIHX’|+a1IX6( )+ ||

S\Xt|+a1|><o()\+az< V(X[ +1X + CAe]) + [ X4 [xg(8) [+aa (= )(IX’|+|X’ oM)
<1+ )\th+ |Xt+<At||+a1|xO<)l+(1+ )\X’I+ |X’+<A’||+a1|x0(>| (79)

In Cauchy—Swartz 1nequa11ty, we have

Sl Db+ O RIS (1 + 2297+ 2 4 2
> [+ )IXtH 2[X s + el +aalxo (1)) (80)
So we have
7S 10 27 20 20 N Vi 0 A0) @D
So we have
V(xp, X}, A) + V(X0, Xi5 Ai))
Z%(Mﬂ(A+B+L)+DG+(A+B)F)/(I€(A+B+’Y)) (82)
And thus

k(A4 B+7)

ﬁV(XO,X /\/) +£V(X0,Xi,)\i) < - 6
€

[ K3

(V( ¢ zaAz) +V(X07Xi7)\i)) (83)
O

Lemma 7.3. Let ¢, v and suppose that | : [0, 00) — [0, 00) is continuous, non-decreasting, concave
and C? except for finitely many points. The we have

t
e py < po +/ e Kqds + M, (84)
0
where M, is a local continuous martingale , and K; could be written as

Ky =cf(ry)Gy + ( L\/> - *’Y + viag + T)|Zt|+( ’Y +'Yl\/ﬁ —ay)| Wy
+E §>|Yt|>f:<m>ct + Cre(Z, W YO ()G
+ %f(rt)(g(Mﬂ(B + L))+ DG + (A+ B)F — k(1 + )V — 5(1+71)V)))
+vB/emax(L + A+ B, B{/az)rif (ri)re(Z, Wy, Yt)2 (85)

Proof. We apply Ito’s formula on the process of | Z;|
|Ze|= |Zo|+AY + M (86)

13
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where (A?) and (M) is absolute continuous process and martingale given by

1 t
A9 = _Z/ el - O (VFi(xi) = VFi(x})) +vZ; = AWi + Y3) (87)
0 i
t
MP = \/25/6/ re(Zy, Wy, Y;)el dBLe (88)
0
Because 62 /2] |z]= 0, there is no Ito’s correlation. By the Lipschitz continuous on , we could have
1 t
AP <2 [ 37 Ll =il Zul Vil + W 59
0
1 t
— ¢ [ WVF =zl (90
0
And then we write the semimartingale decompostion of r;
e = |Qol+a1 |[Wi|+az|Yy] 91)
Similarly, we have the following bound on d|W;| and d|Y}|
Sl < Wi+ (1242 Y]] ©2)
dt t| = t \/N t v t
d
Sl < VNI Z]] 93)

Since by assumption, f is concave and C2, we can now apply Ito-Tanaka formula to f(r;). Let f’
and f” denote the left-sided first derivative and almost everywhere defined second order derivative.
We obtain the following semimartingale decompostion bound on e f (1)

e fre) = fro) + Ay + My (94)
with the martingale part
t
M, = \/253/e / e f! (ro)re(Zy, Wy, Yy)el dBre (95)
0

and a continuous finite-variation process (A;) is bounded by

~ 1 1 1
dA; < (cf (ro) + (CLVN = v+ moa + o) Zi+((07 + maaVN —an) Wi (96)

a1
VN
+ (% + 1)|Yt|)f/—(Tt))e“dt + gTC(Zt, Wi, Y,)? f (ry)e dt o7

€

Now we bound on the integration of the process’s evolution on time G; = 1 + vV(xg,X;, A;) +
vV(x(, x5, AL), by applying Ito’s formula we have
dGy = v(LV)(x0, Xi, \i)dt + v(LV) (x5, X5, N )dt
1/ B/26(Vi,V(X0, Xi5 Ai) — Vi V(x4 X, i) )eve] re(Ze, We, Y1) ?dB]*

U/ B/26(Vi VX0, Xi5 M) + Ve, V(x4, X5, M) (X — eref )re(Zy, Wy, V) ?dBy°

1/ B/26(Vx V(x0, X4, Ai) + Vi, V(XG, X5, X)) sc(Ze, Wy, Y3)*d B (98)
Hence by Ito’s formula, we obtain the following semi-martingale decomposition
e pr = e f(r) Gy = po + My + Ay (99)

where (M) is a continuous local martingale, and

dA, = Grd Ay + ve f(r) ((LV) (%0, X3, A )dt + (LV)(xh, x5, X;))dt

(2 7

+ et vBlef (ro)re(Ze, Wi, Yi)2(V(%0, Xi, Ai) — VV (X4, X5, \L))dt (100)

(2 (3

14
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Now recall that by Lemma 7.1, we have
LY < (5M(A+B+L)+DG+(A+B) —k(A+B+7)V) (101)

Furthermore, |VX¢V(XO, X}, A;)| is bounded by

Vi V(x0, X35 A5) = Ve (X0, %4, A )| = IZ (VFi(xi) = VFi(x;) + (A + B)(xi — x;) + B{(Ai = A})|
< (L+ A+ B)|Z|+B¢|W]
<max(L+ A+ B,B(/as)r: (102)

By combining , we finally obtain dA; < e“* K;dt, where

Ky =cf(r)Ge + ( SN *7 + oz + \/T)\ZtH'(( Y+ 7102V N — )| Wy

(2 VDL )G+ Erel 2, We Y0

n %f(rt)(2(Mﬁ(A Y B4 L)+ DG+ (A+B)F —k(A+B+7)V — k(A+ B +~)V)))
+vB/emax(L 4+ A+ B, B(/ax)ri f’ (ri)re(Zs, Wy, Y;)? (103)
O

Lemma 7.4. By choosing the following v and f(r), the continuous evolving process K vanishes
asé —0

rARy
f0)= [ eo)glis (104)
0
2
p(s) = exp(— Cls ), (105)
=1- Cg/ o(s )" ldr,  with  ¢(s) = /S p(x)dx (106)
0
C1 = vmax(L + A+ B, B(/as) + max(y 4+ y1a2V Ne — eay) /foy, (% +1)/Bas)
(107)
9ce
Ca= (108)
dce =v(MB(A+ B+ L)+ DG+ (A+ B)F) (109)
(110)
and we assume that 1 .
_ 1 _ L s
04_€L\/N €7+71a2+m<0 (111)

Proof. To bound K, we consider different region to achieve up to an error term which vanishes as
&E—0

(i) a1]|Z¢|+az|Wi|> Eand ry < Ry
Here we have rc(Zy, Wi, Y:) = 1. Therefore, since Gy > 1,|Wi|> 0,|Z]>
0 and |Y:|> 0. We have

1
Kt S gf/l(rt)Gt + Z(Vﬁ maX(L + A + 37 BC/OQ)
€ /
+ max(y + ’ylagx/ﬁe —eay)ay, (7 + Daa))r:Gefl (1) + 9cf (r+) Gy (112)
Then we have

ﬁ o (ry)+ %(uﬁ maX(L—i—A—l—B,BC/O&Q)—I—maX(’)/-F’YlOéQ\/NG—EOq)Oél, (%-‘1—1)0&2))7’}@(7}) =0
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Hense we have

Ko <96 [ 200)9(5Guds — [ (s)G0) (13
0 0
In order to ensure g(r) > 1/2 for r < Ry, we have to assume
Ry
c<28/(% [ o(s)p(s)"ds) (114)
0

(i) a1]Zi|+as|Wil< €and ry < Ry
With the same choise of f and g > %, similarly we derive a bound on K as

K; < (gf”(rt)Gt + gymax(L + A+ B, B/an))re(Zi, Wy, Yi)?
1 1 «
+ (EL\/N -V tmat Tlﬁ)'rtf/(rt) +9cf(re)Ge + C36f(re)Gy -~ (115)
where the constant C'5 is given by
1 oy ol vlag\/ﬁ LVvVN 1 a1 1
Cs = —y— -t -1 —y— — —_—
3 = max( +€7 QYD) \/JV+€0é1+ o A +€7 Y102 \F yaa e )
(116)
In order to ensure that the upper bound converges to 0 as & — 0, we assume
1 -1 1 ar o ()
< —(—LVN+—y-— - — f 117
C = 18( 6 f‘i‘ E’Y Y102 \/N)TE%S,RH ¢(T) ( )
(iii) r; > Ry. Here f' (ry) =
LetCs = (M(A+ B+ )+DG/ﬂ+(A+B F/B)
Hence we have
v
K =22 ~ 2G5+ *ﬂ = (K(A+ B +7) = ce/B)(V(x0, xi; Ai) + V(x0, %, A7) ] f (re)
15
[ Os — 16 (F(A + B +7) = ce/B)(V(xo. %5, Ai) + V(0,3 )] f (1)
< 0 (118)
provided we assume
A+ B
< BrA+B+1) (119)
16€
O
We finally introduce Wassertein distance on our defined metric p on the probability space of our two
distributions of 1(X¢, x¢(t), At) and p' (X}, x4(t), A})
Definition 7.1. For probability measures (X, xo(t), A¢) and p/ (X}, x{ (t), A;) on R we define
Wplp i) = inf )p((X, X0, A), (X', x0, )T (d(X, %0, A), d(X', x5, X)) (120)
eIl(p,p’
,where I is a coupling of 1 and 1/, our defined Wassertein distance is taking the infimum of p metrics
over all couplings.
Then we conclude on our final theorem
Theorem 7.5. For a positive constant ¢ such that
R
: ' . A+ B+7)
< 23/(9 14 L\F Qai T@(T)7 Br(
C> Hllrl( 5/( € 0 ¢(S) ( ) S) 18( + Py V12— W)TE%B{R]] (25(7") 16¢ )
(121)

Moreover; let f : [0,00,— [0,00) be defined above. Then for any t > 0 and for any probabilty
measure i, i’ on R*M

W, (pe, i'pe) < e Wy (1) (122)

16
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Proof. Let T" be a coupling of two probability measures ¢ and ' such that W, (upy, 1f'py) < oo.
We consider two coupling process (X, xg, A), (X, x{, \')satisfying the initial optimal couplings
(X, %0, ), (X',x(,A") € T in each of the cases conditions considered above, we obtain K; <
C5&G,. Therefore we apply lemma7.3 and taking expectations, we have

t
Elp:] < e"“E[po] + C3¢ / e“CIE[G,)ds (123)
0

Note that E[G] is finite. So at the limit of £ — 0, we have
Elp] < e “Epo] (124)

Since (X¢,Xo(t), M), (X}, x0(t), Ay) is a coupling of pp, and 11'py, we have W, (upy, ' pe) < Elpy].
As the initial optimal couplings conditions, we have

E[po] = /de =W,(u, 1) (125)

So we conclude
W, (upe, 1'pr) < €W, (1, p1') (126)
O
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