
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLEXDRIVE: TOWARD TRAJECTORY FLEXIBILITY IN
DRIVING SCENE RECONSTRUCTION AND RENDERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Driving scene reconstruction and rendering have advanced significantly using the
3D Gaussian Splatting. However, most prior research has focused on the ren-
dering quality along a pre-recorded vehicle path and struggles to generalize to
out-of-path viewpoints, which is caused by the lack of high-quality supervision
in those out-of-path views. To address this issue, we introduce an Inverse View
Warping technique to create compact and high-quality images as supervision for
the reconstruction of the out-of-path views, enabling high-quality rendering re-
sults for those views. For accurate and robust inverse view warping, a depth boot-
strap strategy is proposed to obtain on-the-fly dense depth maps during the opti-
mization process, overcoming the sparsity and incompleteness of LiDAR depth
data. Our method achieves superior in-path and out-of-path reconstruction and
rendering performance on the widely adopted Waymo Open dataset. In addition,
a simulator-based benchmark is proposed to obtain the out-of-path ground truth
and quantitatively evaluate the performance of out-of-path rendering, where our
method outperforms previous methods by a significant margin.

1 INTRODUCTION

3D reconstruction in driving scenes is a cornerstone of a high-quality driving visual simulator. Lever-
aging NeRF (Mildenhall et al., 2021) and the emerging 3D Gaussian Splatting (Kerbl et al., 2023b),
the community has made significant progresses (Zhou et al., 2024; Yang et al., 2023a; Guo et al.,
2023; Yan et al., 2024; Chen et al., 2023; Liu et al., 2023; Lu et al., 2023) in this area, possessing
impressive rendering quality in the pre-recorded driving trajectories.

However, a significant issue hinders the current methods from being used in a practical simulator: the
rendering quality declines significantly when the viewpoint deviates from the vehicle’s trajectories
for data collection. Fig. 1 demonstrates this issue. The essential cause for this issue is the unavail-
ability of ground-truth visual observations from out-of-path viewpoints in driving scenes (Sun et al.,
2020; Caesar et al., 2019; Geiger et al., 2013), where only pre-recorded images along a single-pass
driving trajectory are available.

To address this issue, UniSim (Yang et al., 2023b) first introduces the concept of “lane shift” in their
driving simulator, where they leverage GAN-generated supervision to refine the rendering quality of
out-of-trajectory viewpoints. LidaRF (Sun et al., 2024) proposed to warp colors from in-path views
to the target out-of-path views through the sparse LiDAR points, creating pseudo ground truth of the
out-of-path views. However, due to the sparsity of LiDAR points and occlusion in the target view,
the pseudo ground truth is usually broken and irregular, having quite different appearances from the
real images captured by cameras. These limitations raise a natural question: can we create a regular
and complete pseudo ground truth for reconstructing the out-of-path views?

We propose Inverse View Warping (IVW) to solve this challenge. Intuitively, IVW is the inverse
process of the aforementioned color warping method. Considering an in-path view A and an adjacent
out-of-path view B, all content of A can be captured at viewpoint B if we omit the slight color
change and occlusions caused by their different view direction. Inverse View Warping (IVW) tries
to render the complete content of A at the viewpoint B. In this circumstance, we can directly use
A as the ground truth to reconstruct the out-of-path view B. Specifically, to achieve this warping,
we first unproject the pixels of view A into 3D points and project those points into view B, forming
a warped ray map. We then perform occlusion-aware rasterization according to the warped ray

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Go straight
(GT)

Simulated cut-in
(PVG)

Simulated cut-in
(Ours)

Time

Figure 1: We simulate a cut-in case in a high-speed scenario, which is a typical functionality in
driving simulators. The representative method PVG (Chen et al., 2023) fails after the lane change.
We provide more video demonstrations in the attached supplementary materials.

map to obtain a warped rendering output. Finally, we rearrange the warped rendering results into
a regular image, which should have the same appearance as the in-path counterpart. Thus we can
supervise the rearranged rendering results using the in-path counterpart. Furthermore, this IVW
technique necessitates accurate depth for point unprojection. To this end, we propose a novel Depth
Bootstrap (DB) strategy to periodically refine the depth of the Gaussian field, leading to dense and
accurate depth maps to support the IVW technique. The combination of IVW and DB leads to our
overall framework FlexDrive.

Another hindrance to our goal is the lack of out-of-path ground truth for reliable evaluation. To
address this, we turn to driving simulators where free-viewpoint ground truth images can be easily
obtained. We build a benchmark based on the popular open-sourced CARLA simulator.

In summary, our contribution comes in four folds:

1. We propose Inverse View Warping, which creates high-quality supervision for out-of-path
viewpoints in street scenes, significantly improving reconstruction quality from these novel
viewpoints.

2. We propose a novel depth bootstrapping strategy to obtain a dense and accurate depth map,
enabling more robust Inverse View Warping.

3. We build a new novel view synthesis benchmark upon the CARLA simulator to evaluate
the out-of-path views.

4. In addition to competitive rendering quality in traditional in-path views, our method
achieves superior performance in the out-of-path views, validated by quantitative and qual-
itative results in Waymo dataset and our proposed benchmark.

2 RELATED WORK

3D Gaussian Splatting 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023a) have gained significant
progress in scene modeling and rendering. While the original 3DGS model focuses on representing
static scenes, several researchers have adapted it for dynamic objects and environments. (Yang
et al., 2024; Wu et al., 2024; Huang et al., 2024) establishes dynamic Gaussian fields by introducing
additional neural networks into the point clouds based on 3D Gaussian fields. Another group of
researchers (Zhou et al., 2024; Yan et al., 2024) approaches this problem by developing 3D Gaussian
fields which are naturally dynamic. However, the existing approaches are constrained as they can
model only the in-path views scenes. Our work extends the reconstruction from in-path views to
more flexible rendering locations which truly enables the simulation of autonomous driving tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Rendered Depth
(in-path view A)

SupervisionIn-path
view A

Rectified
Depth

3D Gaussians

Su
pe

rv
is

io
n

RearrangeOut-of-path
view sampling

3D Gaussians

Rectific-
ation

LiDAR Points

(a) Depth
Bootstrapping

(b) Inverse View Warping

Warped ray map
Unprojected

3D points

Out-of-path
view B

(w/o. GT)
Proj. Render

Warped image
of view B

Regular image
of view B

Figure 2: The main framework of FlexDrive, we provide high-quality supervision for out-of-path
views through Inverse View Warping technique (IVW). To facilitate IVW, we propose Depth Boot-
strapping (DB) to guarantee an accurate and dense depth map.

3DGS in Autonomous Driving Simulation Great efforts have been made to achieve higher recon-
structing quality for autonomous driving scenes. Such reconstruction is essential for creating an
autonomous driving environment. Although simulation environments such as CARLA (Dosovitskiy
et al., 2017), and AirSim (Shah et al., 2018) exist, they require significant manual effort to create
virtual environments and often lack realism in the generated data. A large number of studies have
been devoted to this area (Cheng et al., 2022; Liu et al., 2023; Lu et al., 2023; Ost et al., 2021;
Rematas et al., 2022; Tancik et al., 2022; Tonderski et al., 2024). These methods primarily concen-
trate on altering the autonomous driving scene along the data collection trajectory. For example,
they can modify the lanes of neighboring cars or remove specific objects. However, simulating an
autonomous driving scenario requires more than just these adjustments. The simulation environ-
ment must also accommodate maneuvers such as cut-ins, parallel parking, and turns. Achieving this
necessitates flexible rendering capabilities, which have not been thoroughly explored in previous
research.

3 METHOD

In this subsection, we first offer an overview of the proposed FlexDrive. Its overall architecture is
demonstrated in Fig. 2, which has two major components including Inverse View Warping (IVW,
Sec. 3.2) and Depth Bootstrapping (DB, Sec. 3.1). IVW creates high-quality visual supervision for
training and improving the rendering at out-of-path virtual viewpoints. Since IVW relies on depth
estimation, DB provides accurate and dense depth maps to enhance the IVW. Furthermore, we also
improve dynamic object modeling (Sec. 3.3) to make the FlexDrive better support the reconstruction
of dynamic scenes in out-of-path viewpoints. We summarize our optimization objectives in Sec. 3.4.

3.1 DEPTH BOOTSTRAPPING

Depth Bootstrapping leverages sparse LiDAR information to repeatedly rectify the dense depth map
rendered from current reconstructed 3D Gaussians. We have two steps in Depth Bootstrapping:
Sparse Depth Initialization and Dense Depth Rectification. The first step accumulates multi-frame
LiDAR points and projects them into a training view to initialize the sparse depth map. The second
step adopts an efficient linear optimization to minimize the gap between the rendered dense depth
map and the sparse depth map.

Sparse Depth Initialization We first transform the 3D sparse LiDAR points into the 2D pixel
plane of each in-path training view. For a view at time step t, we first accumulate the 3D LiDAR
points in multiple frames (30 frames in our experiments) [t, t + T] into frame t with the provided
LiDAR poses. For dynamic objects, we leverage their bounding boxes to move the in-box points
to the corresponding positions in frame t. Although this transformation process is straightforward,
there are two challenges: (1) Multiple points may be projected to the same image coordinates; (2)
The points of occluded objects could penetrate the occluder due to the sparsity of LiDAR points and
be mistakenly projected into the 2D pixel plane.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To address the two challenges, we propose several simple yet effective rules. Let pk denote the k-th
LiDAR point, and its corresponding image coordinates are denoted as ik. τ(k) and d(k) stands for
the timestamp and depth of the k-th point, respectively. We then use the following rules to select a
subset of these points to build the sparse depth map.

1. If the depth of point ik deviates from the current rendered depth from 3D Gaussians1 over
a given threshold (e.g., 5% current depth), the point is removed.

2. If point ik1 and point ik2 occupy the same pixel position with τ(k1) < τ(k2), we keep ik1

and remove ik2 .

3. If point ik1 and point ik2 occupy the same pixel position with depth d(k1) < d(k2), we
keep ik1 and remove ik2 .

Intuitively, rule (1) indicates we only utilize the relatively accurate sparse depth and rule out the
occluded points. Rule (2) and (3) indicate we prefer the “early appeared” points and closer points.

Dense Depth Rectification Although the sparse depth map is relatively accurate, it only occupies
a very small portion of the whole image plane, leading to several problems. (1) The supervision for
Gaussian depth is sparse and makes it hard for the Gaussian field to render a smooth and continuous
depth map. (2) Floaters, especially floaters in the regions that LiDAR cannot cover, cannot be
effectively removed. (3) More importantly, with a sparse depth map, we can only build sparse visual
supervision for the out-of-path viewpoint in the IVW (Sec. 3.2), making our method less effective.

To tackle these problems, we propose to densify the sparse depth map into a dense one. Our den-
sification process is inspired by the observation that the rendered depth map is highly linear to the
sparse depth map built from LiDAR, illustrated in Fig. 3. Thus, we rectify the rendered depth map
into a more accurate one by solving a linear optimization problem. Since the rendered depth is
naturally dense, in this sense, we “convert” the sparse depth map into a dense one.

Specifically, given the sparse depth Ds and the dense rendered depth
Dr, we find the best linear transform parameters that map Dr to Ds.

Figure 3: The strong linear prior be-
tween LiDAR depth and GS-rendered
depth.

Then the rectified rendered depth map can be obtained as

D′
r = aDr + b, (1)

where mapping parameters a, b minimize the optimiza-
tion objective

Lrect =
∑
i

∥∥∥∥aDi
s + b−Di

s

Di
s

∥∥∥∥ . (2)

Here i indexes the pixel location where sparse LiDAR
depth is available. The parameters a and b can be effi-
ciently solved with least squares method. Using the recti-
fied depth D′

r as supervision, we then optimize the Gaus-
sian field to make its depth more accurate. In this way, we
obtain increasingly accurate dense rendered depth maps
during the training process.

Discussion Compared with direct LiDAR depth supervision as in (Chen et al., 2023; Sun et al.,
2024), the superiority of our method stems from two aspects: (1) Only high-confident and reliable
sparse depth is leveraged in the sparse map initialization step; (2) We utilize the strong linear prior,
demonstrated by Fig. 3, to conduct depth bootstrapping and obtain dense and accurate depth maps.

3.2 INVERSE VIEW WARPING

With the accurate dense depth, we then conduct the proposed Inverse View Warping (IVW). The
IVW procedure can be decomposed into three steps as shown by Fig. 4. We use Vin to denote
the in-path view and Vout to denote a corresponding virtual out-of-path view, which is randomly
sampled nearby the Vin.

1The Gaussian field is warmed up for 5k iterations and has a relatively good initial depth.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Warped Ray Map Generation In this step, we first unproject the 2D pixel positions from the
in-path view Vin back into the 3D space, using the rendered depth map. The obtained 3D points
are then projected to the out-of-path view Vout, resulting in a warped ray map as shown by Fig. 4.
Since each ray corresponds to a pixel in Vin, a warped image can also be obtained. Afterward,
using the warped image to supervise the out-of-path view Vout seems a straightforward solution.
However, such a solution is suboptimal because it may contain wrong colors due to the neglect of
potential occlusion in Vout. To address this challenge, we propose the following Occlusion-aware
Rasterization technique.

Rearrange

Warped Image
(out-of-path)

Regular Image
(GT, in-path)

Rearranged Image
(out-of-path)

3D Space 2D pixels Unprojected points

Pr
oje

ct
to

3D

Valid
Gaussians

Ignored in occlusion-
aware rasterization

Figure 4: A demonstration for the Inverse Views Warping.

Occlusion-aware Rasterization
For each ray, we first sort the 3D
Gaussian primitives along the ray
according to their depth. We then
adopt an alpha-blending process
within a limited depth range, where
the original alpha-blending process
is modified to

C =

N∑
i=1

I(di > βd0)αi

i−1∏
j=1

(1−αj)ci,

(3)
where di is the depth of the i-th Gaus-
sian primitive and d0 is the depth of
the unprojected point. Eq. (3) indi-
cates that only primitives with a depth
larger than βd0 are involved in the alpha-blending process, illustrated by Fig. 4. Here we introduce
β, a coefficient slightly smaller than 1, to take the thickness of Gaussian primitives into account,
which avoids mistakenly neglecting the Gaussian primitives near the unprojected 3D points. In
this way, even if some regions in Vin are occluded from Vout, we can still provide accurate visual
supervision for Vout.

(a) GT

(c) Warped
rendering

(b) Warped
rendering

(d) Rearranged
rendering

Figure 5: Example of rearrangement. (a) is the
ground truth in-path view. (b) and (c) are the
warped rendering results in out-of-path views
(right and left shifted, respectively). Note we ig-
nore those rendered pixels out of image bound-
aries in this illustration. However, in practice,
we still keep the out-of-boundary pixels and re-
arrange them. (d) is the rearranged rendering
results in out-of-path views, which is almost the
same as the GT image (a).

Pixel Rearrangement The output of
occlusion-aware rasterization is a warped
image, which has a quite different appearance
from the regular image at the in-path view,
demonstrated by Fig. 5 (b-c). Thus, we cannot
employ the region-level perceptual loss such as
SSIM and LPIPS with the warped images. To ad-
dress this issue, we rearrange the rendered pixels
in Vout and recover their relative spatial orders
in Vin. In this way, the rendering result in Vout

is expected to be the same as the ground truth
image in Vin if the Gaussian field is sufficiently
optimized, demonstrated by Fig. 5 (d). We then
can use the ground truth image in Vin as the
supervision for Vout.

3.3 CONSTRAINED
DYNAMIC OBJECT MODELING

Dynamic objects are important components in
driving scenarios. Although previous research
(Huang et al., 2024; Yan et al., 2024) has made
notable success in modeling them at in-path vies,
we notice that these methods usually result in
tailed floaters around the dynamic objects. The
tailed floaters severely lower the rendering quality of out-of-path viewpoints. To alleviate this issue,
we propose to use a constrained modeling strategy for dynamic objects.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Following (Zhou et al., 2024; Yan et al., 2024), we represent each dynamic object with a separate 3D
Gaussian field. However, different from previous strategies, each dynamic object is constrained in a
bounding box in our framework. Let (xo, yo, zo) be the logistic coordinates of a Gaussian primitive,
we convert them into Euclidean coordinates following[

xt

yt
zt

]
=

[
l(σ(xo)− 0.5)
w(σ(yo)− 0.5)
h(σ(zo)− 0.5)

]
. (4)

The converted Euclidean coordinates are further transformed into the world coordinates by a train-
able bounding box pose (details can be found in the appendix).

3.4 LOSS FUNCTIONS

RGB Loss We employ the original RGB loss setting for both in-path views and out-of-path views.
They are both supervised by a mixture of L1 loss and SSIM loss. The overall loss of RGB part can
be formulated as

LRGB = Lin
1 + Lout

1 + α(Lin
SSIM + Lout

SSIM), (5)

where the superscript in and out stands for in-path views and out-of-path views.

Depth Loss We categorize depth supervision into the near and far regions according to the max-
imum LiDAR perception range. Let di and d̂i be the depth of i-th pixel in the rendered depth map
and the rectified depth map (Eq.(1)), respectively. Then the near-region depth supervision is defined
as

Lnear
depth =

1

Nnear

hw∑
i=1

I(di < dmax)∥
di − d̂i

d̂i + ϵ
∥1, (6)

where dmax is the maximum LiDAR perception range and Nnear is the number of near-region pixels
in the depth map. For the far-region depth loss Lfar

depth, we directly adopt the ranking loss in (Wang
et al., 2023).

The total loss function of FlexDrive can be formulated as

L = λ1LRGB + λ2L
near
depth + λ3L

far
depth. (7)

4 EXPERIMENTS

In this section, we evaluate our method on the real-world Waymo dataset and the proposed CARLA-
based dataset to accurately evaluate the performance of both in-path setting and out-of-path setting.

4.1 EXPERIMENT SETUP

Waymo-based in-path Benchmark We first follow the conventional practices (Chen et al., 2023;
Yan et al., 2024) to evaluate the performance of the proposed method in the widely used Waymo
Open Dataset (WOD). Similar to PVG (Chen et al., 2023), we conduct our experiments on both
dynamic and static split of the Waymo dataset and use the three front cameras. Since there are no
ground-truth images of out-of-path views, we mainly focus on the qualitative results for the out-of-
path views in the Waymo Open dataset. Additionally, we report FID scores of the out-of-path views
as an intuitive but potentially inaccurate quality indicator.

CARLA-based out-of-path Benchmark Since the distribution-based FID is a rough metric for
the rendering quality, we propose a new benchmark based on the CARLA simulator (Dosovitskiy
et al., 2017), where the ground-truth images of out-of-path views can be easily obtained. The
CARLA-based benchmark is set up with a sensor layout similar to the Waymo dataset. Specifi-
cally, we mount five cameras on the data-collection vehicle. Three of them are placed on the top of
the vehicle to record the in-path training data. The other two cameras are shifted horizontally three
meters away from the moving path to collect the out-of-path ground truth images for evaluation. A
150-meter range 128-channel LiDAR is mounted on top of the moving vehicle.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: The performance comparison on the Waymo static scenes. We report PSNR and SSIM
for the in-path setting and FID for the out-of-path setting. The results are obtained with the default
training iterations in the official code.

Model Setting PSNR ↑ SSIM ↑ FID@1 meters ↓ FID@2 meters↓
3D GS (Kerbl et al., 2023a) 29.40 0.892 85.22 120.34
EmerNeRF (Yang et al., 2023a) 30.15 0.828 65.05 82.42
PVG (Chen et al., 2023) 30.13 0.877 75.97 99.11
LidaRF (Sun et al., 2024) 29.72 0.889 69.28 95.46
StreetGaussian (Yan et al., 2024) 31.35 0.911 72.03 95.34
FlexDrive (ours) 30.00 0.878 62.03 86.05

Training Scheme Our training process can be divided into three stages: (1) the warm-up stage,
(2) the bootstrapping stage, and (3) the out-of-path training stage. During the warm-up stage, we
initialize the 3D Gaussian primitives using multi-frame LiDAR points and conduct training in the
in-path views without Gaussian densification. Single-frame sparse LiDAR supervision is directly
employed in the in-path views, following (Chen et al., 2023; Sun et al., 2024). In the second stage,
we enable the proposed depth bootstrapping and the densification strategy in the original 3DGS. The
parameters in the linear transformation (Eq. (1)) are solved by the least squares method. Finally, we
begin the out-of-path training stage. In this stage, we sample an in-path view and randomly generate
a nearby out-of-path view for each iteration, as Fig. 2 (b) shows. The rendering results in the in-path
view and out-of-path view are supervised by the in-path ground truth images and virtual ground
truth image created in Sec. 3.2. The three stages take 5k, 15k, and 10k, respectively. More detailed
hyperparameters can be found in the appendix.

Compared Methods In our experiments, we compare our method with both NeRF-based and
GS-based baselines. Specifically, we adopt five typical methods for comparison, including EmerN-
eRF (Yang et al., 2023a), LidaRF (Sun et al., 2024), 3DGS (Kerbl et al., 2023a), StreetGaussian (Yan
et al., 2024), and PVG (Chen et al., 2023). The NeRF-based LidaRF is the most recent state-of-the-
art method for out-of-path rendering. However, this method has not been open-sourced, thus we
re-implement LidaRF by ourselves. We further transfer the techniques in LidaRF to 3D Gaussian
Splatting, resulting in a LidaRF-GS.

4.2 RESULTS ON WAYMO DATASET

Quantitative Results We first report the quantitative results in both in-path and out-of-path set-
tings on the Waymo Open dataset. For in-path rendering, conventional metrics PSRN and SSIM are
reported. For the out-of-path rendering, we report FID scores as a rough quality indicator since the
ground truth images of out-of-path viewpoints are not available. The source distribution used in FID
is the in-path ground truth images, and the target distributions are sampled at poses laterally shifted
1 meters and 2 meters away from the vehicle path, respectively. As shown in Table 1 and Table 2, the
proposed FlexDrive achieves comparable performance with the compared methods on the in-path
rendering task. When the viewpoints shift away from the in-vehicle path, FlexDrive also achieves
relatively good FID scores. However, we emphasize that the distribution-based FID score is not a
reliable criterion for rendering quality evaluation because it only indicates the overall distribution
similarity instead of the detailed rendering quality.

Qualitative Results We further provide the qualitative results of out-of-path rendering as Fig. 6
shows, where FlexDrive demonstrates significant rendering quality in the out-of-path setting.

4.3 RESULTS ON CARLA-BASED DATASET

To accurately evaluate the performance on the out-of-path viewpoints, we further build a new bench-
mark upon the CARLA simulator where the ground truth images of out-of-path viewpoints are avail-
able. The detailed setting of this benchmark is presented in Sec. 4.1. In Table 3, our method largely
outperforms the previous street scene reconstruction method in the out-of-path rendering. Notably,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

w/o. shift Shift 2 meters

O
ur

s
PV

G
Em

er
N

eR
F

Li
da

R
F

Shift 2 metersw/o. shift

St
re

et
G

au
ss

ia
n

Figure 6: Qualitative comparison. We provide more video demonstrations in the attached supple-
mentary materials.

Table 2: Performance comparison on the Waymo dynamic scenes. We report PSNR and SSIM for
the in-path setting and FID for the out-of-path setting. The results are obtained with the default
training iterations in the official code.

Model Setting PSNR ↑ SSIM ↑ FID@1 meters ↓ FID@2 meters↓
3D GS (Kerbl et al., 2023a) 28.40 0.869 100.01 126.77
EmerNeRF (Yang et al., 2023a) 28.21 0.800 83.53 106.6
PVG (Chen et al., 2023) 29.77 0.872 52.54 81.76
LidaRF (Sun et al., 2024) 30.21 0.878 59.26 83.41
StreetGaussian (Yan et al., 2024) 30.73 0.883 78.23 110.6
FlexDrive (Ours) 29.92 0.886 58.12 85.06

Table 3: CARLA-based out-of-path evaluation. We report the results with the default training itera-
tions in their official code.

Model Setting PSNR ↑ SSIM ↑ LPIPS ↓
3D GS (Kerbl et al., 2023a) 18.90 0.701 0.565
EmerNeRF (Yang et al., 2023a) 21.18 0.788 0.463
PVG (Chen et al., 2023) 21.65 0.753 0.444
LidaRF (Sun et al., 2024) 24.84 0.852 0.402
StreetGaussian (Yan et al., 2024) 24.68 0.876 0.411
LidaRF-GS 24.79 0.842 0.410
FlexDrive (ours) 26.23 0.877 0.372

FlexDrive achieves a significant performance gain in terms of PSNR compared with the LidaRF,
which also focuses on the out-of-path setting.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: The overall ablation of our proposed techniques. All
models are evaluated in the CARLA-based out-of-path setting.
The LidaRF-GS is an adaption of LidaRF (Sun et al., 2024) to
3DGS, serving as our baseline.

Model Setting PSNR ↑ SSIM ↑ LPIPS ↓
LidaRF-GS 24.79 0.842 0.410
LidaRF-GS + DB 25.57 0.866 0.381
LidaRF-GS + IVW 25.71 0.876 0.380
LidaRF-GS + DB + IVW (full model) 26.23 0.877 0.372

Table 5: Effectiveness of the
occlusion-aware rasterization.
β = 0 means that we do not
handle the occlusion problem.

β PSNR (single scene)
0.95 32.23
0.8 30.90
0.5 29.65
0 20.12

𝜷 = 0.95 𝜷 = 0.8 𝜷 = 0.5 𝜷 = 0

Figure 8: The rearranged rendering results in out-of-path views with different β (Eq. (3)). Without
the occlusion mechanism (β = 0), we have incorrect supervision for the out-of-path views.

4.4 ABLATION STUDY

In this subsection, we study the impact of each of our proposed modules. We first conduct an overall
ablation for all the proposed modules and then delve into their detailed designs.

Overall Ablation We first adopt NeRF-based LidaRF (Sun et al., 2024) to 3D Gaussian Splatting
as our baseline named LidaRF-GS for a step-by-step ablation. We then add the proposed depth
bootstrapping and inverse view warping step-by-step to the LidaRF-GS baseline to reveal the per-
formance roadmap. All models are trained with the three stages introduced in Sec. 4.1. We use
400k initial points for all ablation settings. The maximum iteration number is set to 35k. The results
in Table 4 demonstrate that our proposed techniques are all effective and the depth bootstrapping
technique indeed enhances the inverse view warping.

w/. DBw/o. DB

Figure 7: Effectiveness of Depth Bootstrapping.

Depth Bootstrapping Depth noise and miss-
ing are inevitable in real-world datasets and it
may lead to significant errors in the Inverse View
Warping module. Fortunately, in FlexDrive, the
depth bootstrapping module largely alleviates this
issue. Here we use a scene in the real-world
Waymo dataset to reveal the efficacy of this mod-
ule. Fig. 7 illustrates the rearranged rendering re-
sults (similar to Fig. 5 (d)) at out-of-path views
with and without depth bootstrapping. As can be
seen, DB could effectively enhance the rendering quality, especially for those far regions uncovered
by LiDAR. This is because those far regions can also be rectified by Eq. (1).

Ccclusion-aware Rasterization in IVW Occlusion is a key challenge in our inverse view warping
strategy. We introduce β to employ a depth range limitation in the alpha-blending process in Eq. (3).
Here we study how this parameter impacts the inverse view warping strategy. As shown in Fig. 8,
without handling the occlusion (β = 0), the rearranged results in the out-of-path view are not
similar to the in-path ground truth, causing incorrect supervision signals. Such incorrect supervision
signals not only reduce the out-of-path rendering quality but also affect the in-path rendering quality
since the Gaussian primitives are shared. So we further provide the in-path quantitative results
corresponding to Fig. 8, shown in Table 5. The in-path performance has a dramatic drop without
depth bootstrapping.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSIONS

To summarize, the proposed FlexDrive introduces the Inverse View Warping and Depth Bootstrap
strategy for enhancing the reconstruction quality of street scenes, particularly from out-of-path view-
points. Furthermore, the development of a new benchmark using the CARLA simulator allows for
comprehensive evaluation of out-of-path views. The results demonstrate that not only does our
method maintain competitive rendering quality in traditional in-path scenarios, but it also excels in
out-of-path views. We provide both quantitative and qualitative analyses conducted on the Waymo
dataset and our CARLA-based benchmark. This advancement opens new avenues for flexible ren-
dering in reconstructed street scenes, in the future, we plan to combine our method with generative
methods to allow completely free camera movement.

REFERENCES

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. arXiv preprint arXiv:1903.11027, 2019. 1

Yurui Chen, Chun Gu, Junzhe Jiang, Xiatian Zhu, and Li Zhang. Periodic vibration gaussian:
Dynamic urban scene reconstruction and real-time rendering. arXiv preprint arXiv:2311.18561,
2023. 1, 2, 4, 6, 7, 8

Jie Cheng, Yingbing Chen, Qingwen Zhang, Lu Gan, Chengju Liu, and Ming Liu. Real-time trajec-
tory planning for autonomous driving with gaussian process and incremental refinement. In 2022
International Conference on Robotics and Automation (ICRA), pp. 8999–9005. IEEE, 2022. 3

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
open urban driving simulator. In Conference on robot learning, pp. 1–16. PMLR, 2017. 3, 6

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013. 1

Jianfei Guo, Nianchen Deng, Xinyang Li, Yeqi Bai, Botian Shi, Chiyu Wang, Chenjing Ding,
Dongliang Wang, and Yikang Li. Streetsurf: Extending multi-view implicit surface reconstruction
to street views. arXiv preprint arXiv:2306.04988, 2023. 1

Nan Huang, Xiaobao Wei, Wenzhao Zheng, Pengju An, Ming Lu, Wei Zhan, Masayoshi Tomizuka,
Kurt Keutzer, and Shanghang Zhang. S3 gaussian: Self-supervised street gaussians for au-
tonomous driving. arXiv preprint arXiv:2405.20323, 2024. 2, 5

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023a. 2,
7, 8

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023b.
URL https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/. 1

Jeffrey Yunfan Liu, Yun Chen, Ze Yang, Jingkang Wang, Sivabalan Manivasagam, and Raquel Ur-
tasun. Real-time neural rasterization for large scenes. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 8416–8427, 2023. 1, 3

Fan Lu, Yan Xu, Guang Chen, Hongsheng Li, Kwan-Yee Lin, and Changjun Jiang. Urban radiance
field representation with deformable neural mesh primitives. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 465–476, 2023. 1, 3

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021. 1

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural scene graphs for
dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2856–2865, 2021. 3

10

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Konstantinos Rematas, Andrew Liu, Pratul P Srinivasan, Jonathan T Barron, Andrea Tagliasacchi,
Thomas Funkhouser, and Vittorio Ferrari. Urban radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12932–12942, 2022. 3

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and
physical simulation for autonomous vehicles. In Field and Service Robotics: Results of the 11th
International Conference, pp. 621–635. Springer, 2018. 3

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan
Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi,
Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020. 1

Shanlin Sun, Bingbing Zhuang, Ziyu Jiang, Buyu Liu, Xiaohui Xie, and Manmohan Chandraker. Li-
darf: Delving into lidar for neural radiance field on street scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 19563–19572, 2024. 1, 4, 7, 8, 9

Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srini-
vasan, Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural
view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8248–8258, 2022. 3

Adam Tonderski, Carl Lindström, Georg Hess, William Ljungbergh, Lennart Svensson, and
Christoffer Petersson. Neurad: Neural rendering for autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14895–14904, 2024. 3

Guangcong Wang, Zhaoxi Chen, Chen Change Loy, and Ziwei Liu. Sparsenerf: Distilling depth
ranking for few-shot novel view synthesis. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 9065–9076, 2023. 6

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20310–20320,
2024. 2

Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng Lang,
Xiaowei Zhou, and Sida Peng. Street gaussians for modeling dynamic urban scenes. arXiv
preprint arXiv:2401.01339, 2024. 1, 2, 5, 6, 7, 8

Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng, Seung Wook Kim, Boyi Li, Tong Che,
Danfei Xu, Sanja Fidler, Marco Pavone, et al. Emernerf: Emergent spatial-temporal scene de-
composition via self-supervision. arXiv preprint arXiv:2311.02077, 2023a. 1, 7, 8

Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Manivasagam, Wei-Chiu Ma, Anqi Joyce Yang, and
Raquel Urtasun. Unisim: A neural closed-loop sensor simulator. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1389–1399, 2023b. 1

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic scene reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20331–20341, 2024. 2

Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang. Driv-
inggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
21634–21643, 2024. 1, 2, 6

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 FID SCORE IS NOT A RELIABLE CRITERIA FOR IMAGE SYNTHESIS

The Fréchet inception distance (FID) is a metric for measuring the distance between two distribu-
tions. With the normal distribution assumption, FID scores can be computed with the following
formula:

FID = ∥µ1 − µ2∥+Tr(σ1 + σ2 − 2
√
σ1 ∗ σ2) (8)

In our setting, we compute the FID scores between the in-vehicle path views (µ1, σ1) and the ren-
dered shifted views (µ2, σ2). Because the shifted views are different from the in-vehicle path views
by nature, thus µ1 ̸= µ2 and σ1 ̸= σ2. Now even if we simply shift the mean of µ2 to µ1, we can
reduce the FID scores lower than the GT views. For this reason, we claim that FID score is not a
good metric for the flexible rendering task.

A.2 DETAIL OF CONSTRAINED DYNAMIC OBJECT MODELING

Let (xo, yo, zo) be the logistic coordinates of a Gaussian primitive, and (l, w, h) be the length, width,
and height of the bounding box containing this Gaussian primitive. We convert the logistic coordi-
nates into Euclidean coordinates as following[

xt

yt
zt

]
=

[
l(σ(xo)− 0.5)
w(σ(yo)− 0.5)
h(σ(zo)− 0.5)

]
. (9)

Next, we transform these local Euclidean coordinates into the world coordinates system. We intro-
duce a sequence of trainable pose parameters Rt and Tt. Here Rt is a rotation matrix to transform
the local system to the world system at time frame t, Tt is the respective offset vector. Then, the
world coordinates (x̄t, ȳt, z̄t) can be computed as:[

x̄t

ȳt
z̄t

]
= Rt

[
xt

yt
zt

]
+ Tt. (10)

A.3 ALPHA BLENDED DEPTH

In our approach, depth prediction is crucial. To facilitate the original 3D Gaussian splatting field
with our depth prediction, we render depth views in a normalized alpha-blending manner follows

D =
1∑N

i=1 Tiαi

N∑
i=1

αiTidi with Ti =

i−1∏
j=1

(1− αj), (11)

Here di is the depth of the 3D Gaussian center with respect to the current camera location. The
blended depth can be directly viewed as a weighted average of Gaussian points’ depth based on
their importance.

A.4 DETAILED TRAINING SETTINGS

In our experiments, we employed the Adam optimizer with a base learning rate of 2.5e − 3. We
focused on two primary hyperparameters relevant to our methods: the bootstrap update interval
and the occlusion-aware Inverse View Warping. For the depth bootstrap strategy, we updated the
accumulated sparse LiDAR map every 2 epochs, integrating 30 frames of LiDAR data into a single
sparse depth map. In the Inverse View Warping module, we adopt β = 0.95.

12

	Introduction
	Related Work
	Method
	Depth Bootstrapping
	Inverse View Warping
	Constrained Dynamic Object Modeling
	Loss Functions

	Experiments
	Experiment Setup
	Results on Waymo Dataset
	Results on CARLA-based dataset
	Ablation Study

	Conclusions
	Appendix
	FID Score is not a Reliable Criteria for Image Synthesis
	Detail of Constrained Dynamic Object Modeling
	Alpha Blended Depth
	Detailed Training Settings

