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Abstract

Cross-lingual word embeddings can be applied001
to several natural language processing applica-002
tions across multiple languages. Unlike prior003
works that use word embeddings based on the004
Euclidean space, this short paper presents a005
simple and effective cross-lingual Word2Vec006
model that adapts to the Poincaré ball model of007
hyperbolic space to learn unsupervised cross-008
lingual word representations from a German-009
English parallel corpus. It has been shown010
that hyperbolic embeddings can capture and011
preserve hierarchical relationships. We evalu-012
ate the model on both hypernymy and analogy013
tasks. The proposed model achieves compa-014
rable performance with the vanilla Word2Vec015
model on the cross-lingual analogy task, the016
hypernymy task shows that the cross-lingual017
Poincaré Word2Vec model can capture latent018
hierarchical structure from free text across lan-019
guages, which are absent from the Euclidean-020
based Word2Vec representations. Our results021
show that by preserving the latent hierarchical022
information, hyperbolic spaces can offer better023
representations for cross-lingual embeddings.024

1 Introduction025

In Natural Language Processing (NLP), cross-026

lingual word embeddings refer to the represen-027

tations of words from two or more languages in028

a joint feature space. Prior works have demon-029

strated the use of these continuous representations030

in a variety of NLP tasks such as information re-031

trieval (Zoph et al., 2016), semantic textual similar-032

ity (Cer et al., 2017), knowledge transfer (Gu et al.,033

2018), lexical analysis (Dong and De Melo, 2018),034

plagiarism detection (Alzahrani and Aljuaid, 2020),035

etc. across different languages.036

Natural language data possesses latent tree-like037

hierarchies in linguistic ontologies (e.g., hyper-038

nyms, hyponyms) (Dhingra et al., 2018; Aste-039

fanoaei and Collignon, 2020) such as the taxonomy040

of WordNet (Miller, 1998) for a language. From041

the statistics of word co-occurrence in training text, 042

word embeddings models in Euclidean space can 043

capture associations of words and their semantic 044

relatedness. However, they fail to capture asymmet- 045

ric word relations, including the latent hierarchical 046

structure of words such as specificity (Dhingra et al., 047

2018). For example, ‘bulldog’ is more specific than 048

‘dog.’ The use of non-Euclidean spaces has recently 049

been advocated as alternatives to the conventional 050

Euclidean space to infer latent hierarchy from the 051

language data (Nickel and Kiela, 2017, 2018; Dhin- 052

gra et al., 2018; Tifrea et al., 2018). Learning cross- 053

lingual hierarchies such as cross-lingual types-sub 054

types and hypernyms-hyponyms, is useful for tasks 055

like cross-lingual lexical entailment, textual entail- 056

ment, machine translation, etc. (Vulić et al., 2019). 057

This paper builds upon previous work in mono- 058

lingual hyperbolic Word2Vec1 modeling from Tif- 059

rea et al. (2018) by learning cross-lingual hyper- 060

bolic embeddings from a parallel corpus, As a first 061

step, we adopt the German-English parallel corpus 062

from Wołk and Marasek (2014). We summarize the 063

main contributions as follows: (1) To the best of 064

our knowledge, we are the first to attempt at learn- 065

ing cross-lingual embeddings of natural language 066

data using non-Euclidean geometry; (2) we eval- 067

uate the hyperbolic embeddings on cross-lingual 068

HyperLex hypernym task to evaluate its perfor- 069

mance in learning latent hierarchies from free text 070

and how a word’s specificity correlates to its em- 071

bedding’s norm. We also compare the hyperbolic 072

Word2Vec embeddings with the vanilla Word2Vec 073

embeddings in the cross lingual analogy task. 074

2 Related Work 075

2.1 Cross-lingual Word Embeddings 076

Cross-lingual word representations have been a sub- 077

ject of extensive research (Upadhyay et al., 2016; 078

1The hyperbolic Word2Vec model is not described in Tif-
rea et al. (2018)’s paper, but available in the corresponding
codebase
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Ruder et al., 2019). Recent advances in the field can079

be grouped into unsupervised, supervised, and joint080

learning algorithms. Unsupervised models (Lam-081

ple et al., 2017; Artetxe and Schwenk, 2019; Chen082

et al., 2018) exploit existing monolingual word em-083

beddings, followed by various cross-lingual align-084

ment procedures. Supervised models (Mikolov085

et al., 2013; Smith et al., 2017; Grave et al., 2018)086

learn a mapping function from a source embed-087

ding space to the target embedding space based088

on different objective criteria. Joint learning mod-089

els (Coulmance et al., 2015; Josifoski et al., 2019;090

Sabet et al., 2019; Lachraf et al., 2019) use par-091

allel corpora to train bilingual embeddings in the092

same space jointly. This work adopts the settings093

similar to the joint learning model for embedding094

alignments by Lachraf et al. (2019).095

2.2 Hyperbolic Word Embeddings096

Hyperbolic spaces offer a continuous representa-097

tion for embedding tree-like structures with arbi-098

trarily low distortion (Sala et al., 2018; Chami et al.,099

2020). Word embeddings in hyperbolic spaces have100

been applied to diverse NLP applications such as101

text classification (Zhu et al., 2020), learning taxon-102

omy (Astefanoaei and Collignon, 2020), and con-103

cept hierarchy (Le et al., 2019). By using hyper-104

bolic space these applications were able to outper-105

form their euclidean counterparts by exploiting the106

benefits of hierarchical structure of the text data107

with high quality embedding which capture simi-108

larity and generality of concept together enforce109

transitivity of the is-a-relations in a smaller embed-110

ding space (Le et al., 2019). Some recent work111

use supervised models (Nickel and Kiela, 2017,112

2018; Ganea et al., 2018) that require external in-113

formation on word relations such as WordNet or114

ConceptNet in addition to free text corpora to learn115

word and sentence embeddings in the hyperbolic116

space. Nickel and Kiela (2017) consider a non-117

parametric method to learn hierarchical representa-118

tion from a lookup table for symbolic data. Ganea119

et al. (2018) propose a supervised method to learn120

embeddings for an acyclic graph structure of words.121

Unsupervised word embedding models (Leimeis-122

ter and Wilson, 2018; Dhingra et al., 2018; Tifrea123

et al., 2018) which can directly learn from text124

corpora have been recently applied in the hyper-125

bolic spaces. Leimeister and Wilson (2018) employ126

the skip-gram with negative sampling architecture127

of the Word2Vec model for learning word embed-128

dings from free text. Dhingra et al. (2018) present 129

a two-step model to embed a co-occurrence graph 130

of words and map the output of the encoder to 131

the Poincaré ball using the algorithm from Nickel 132

and Kiela (2017). Tifrea et al. (2018) remodel the 133

GloVe algorithm to learn unsupervised word repre- 134

sentation in hyperbolic spaces. 135

3 Methodology 136

3.1 Hyperbolic Space 137

Hyperbolic space in Riemannian geometry is a 138

homogeneous space of constant negative curva- 139

ture with special geometric properties. Hyperbolic 140

space can endow infinite trees to have nearly iso- 141

metric embeddings. We embed words using the 142

Poincaré ball model of the hyperbolic space. 143

The Poincaré Ball. The Poincaré ball model Bn of 144

n-dimensional hyperbolic geometry is a manifold 145

equipped with a Riemannian metric gB . Formally, 146

an n-dimensional Poincaré unit ball is defined as 147

(Bn, gB) and the metric gB is conformal to the 148

Euclidean metric gE as gB = λx
2.gE . Where 149

λx = 2
1−||x||2 , x ∈ Bn, and ||.|| stands for the Eu- 150

clidean norm. Notably, the hyperbolic distance dBn 151

between n-dimensional points (x, y) ∈ Bn in the 152

Poincaré ball is defined as: 153

dBn(x, y) = arcosh

(
1 + 2

||x− y||2

(1− ||x||2)(1− ||y||2)

)
(1) 154

where arcosh(w) = ln(w +
√
w2 − 1) is the in- 155

verse of hyperbolic cosine function. Using ambient 156

Euclidean geometry, the geodesic distance between 157

points (x, y) can be induced using Equation (1) 158

as dBn(x, y) = arcosh
(
1 + 1

2λxλy||x− y||2
)
. 159

This indicates that the distance changes evenly 160

w.r.t. ||x|| and ||y||, which is a key point to 161

learning continuous representation for hierarchical 162

structures (Chen et al., 2020). 163

164

3.2 Hyperbolic Cross-lingual Word 165

Embedding 166

We first adopt the mono-lingual hyperbolic word 167

embedding from a model defined in the work 168

by Tifrea et al. (2018). We extend it to cross- 169

lingual hyperbolic word embedding by using par- 170

allel text corpora input to capture word relations- 171

ships through bilingual word co-occurrence statis- 172

tics. Tifrea et al. (2018) added a hyperparameter 173

function h on the distance between word and con- 174

text pairs in the hyperbolic Word2Vec’s objective 175
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function. Hence, the effective distance function in176

the objective function becomes h(dBn(x, y)).177

Hyperbolic word embeddings have shown to178

embed general words near the origin and specific179

words towards the edges – we attempt to exploit180

this property to identify latent hierarchies and in181

hypernym evaluation task by using the Poincaré182

norms of the words to determine their hierarchy as183

words with higher norm will be more specific, i.e.,184

lower in hierarchy (Nickel and Kiela, 2017; Dhin-185

gra et al., 2018; Linzhuo et al., 2020). We evaluate186

the hyperbolic model on the cross-lingual analogy187

task to compare it with its Euclidean counterpart.188

3.3 Cross-lingual Alignment189

To train the cross-lingual Word2Vec model in the190

hyperbolic space, we perform a pre-processing step191

of word-to-word alignment as defined by Lachraf192

et al. (2019) using parallel sentences from a bilin-193

gual parallel corpus. We generate word-to-word194

alignment by matching the indices of tokens from195

both languages in parallel sentences.196

3.4 Evaluation Methodology197

Hypernymy Evaluation. We perform hypernymy198

evaluation to assess performance of the proposed199

model based on learning the latent hierarchical200

structure from free text. In the hypernymy eval-201

uation task, given a word pair (u, v), we evaluate202

is-a(u, v) i.e., to what degree u is of type v.203

For English, German and cross-lingual German-204

English hypernymy evaluation, we use the Hyper-205

Lex benchmark Vulić et al. (2017, 2019), which206

contains word pairs (u, v) and a corresponding207

degree to which u is of type v i.e. the is-208

a score. This score has been obtained by hu-209

man annotators, scored by the degree of typi-210

cality and semantic category membership (Vulić211

et al., 2017). For example, in the HyperLex212

dataset, is-a(chemistry, science) = 6.00 and is-213

a(chemistry, knife) = 0.50 as chemistry is a214

type of science but not a type of knife.215

To generate the is-a score we follow the same216

approach as used by Nickel and Kiela (2017):217

is-a(u, v) = −(1+α(||v||−||u||))dBn(u, v) (2)218

The evaluation is performed by calculating the219

Spearman correlation between the ground-truth220

score and the predicted score. Note that our model221

is not trained on any hypernymy detection task but222

tries to learn latent hierarchy from free text.223

Word Closest Children

Species arten, gattung, subspecies, unterfamilie
Physics astrophysik, astrophysics, mechanik

Molekülen atomen, protonen, elektronen, ionen
Orchestra symphony, philharmonic, concerto
Regierung governments, regierungen, bundesregierung

Table 1: For a given word in the left column, this table
shows the top closest children using a 100Dim with bias
hyperbolic Word2Vec model. Note that the children
consist of both English and German words.

HyperLex
Hyperbolic Model English

en
German

de
Cross
de-en

100D 0.166 0.130 0.150
100D w/ bias 0.175 0.104 0.162
120D w/ bias 0.192 0.120 0.179
300D w/ bias 0.183 0.125 0.155

Table 2: Spearman correlations from different hyper-
bolic Word2Vec models on the English, German and
German-English HyperLex dataset for hypernymy eval-
uation. Best results are in bold.

Cross-lingual Analogy Evaluation. The anal- 224

ogy evaluation task is one of the standard intrinsic 225

evaluations for word embeddings. In cross-lingual 226

analogy evaluation task, given a word pair (w1, w2) 227

in one language, and a word w3 in the other lan- 228

guage, the goal is to predict the word w∗
4 such 229

that w∗
4 is related to w3 same way w2 is related 230

to w1. For example, as prince (w1) is to princess 231

(w2), prinz (w3; German equivalent for prince) is 232

to prinzessin (w∗
4; German equivalent for princess). 233

For evaluating cross-lingual analogy for the Ger- 234

man and English language, we use the cross-lingual 235

analogy dataset provided by Brychcín et al. (2018). 236

4 Experiments & Results 237

4.1 Dataset 238

This paper uses the Wikipedia corpus of parallel 239

sentences extracted by Wołk and Marasek (2014) 240

to train the model. The dataset is accessed through 241

OPUS (Tiedemann, 2012). The corpus consists 242

of ~2.5 million parallel aligned German-English 243

sentence pairs with 43.5 million German tokens 244

and 58.4 million English tokens. 245
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“music” “art” “film” “chemistry”

Word Count Norm Word Count Norm Word Count Norm Word Count Norm

music 33167 0.607 art 28551 0.606 film 61682 0.606 chemistry 3165 0.628
musik 10637 0.608 arts 13888 0.623 films 7185 0.607 chemie 2530 0.629
musical 6585 0.612 design 11558 0.624 drama 4948 0.617 chemiker 908 0.620
musicians 1955 0.628 skulptur 480 0.632 comedy 3937 0.630 chemischen 628 0.647
filmmusik 278 0.640 kunstgalerie102 0.665 stummfilm 179 0.648 organischen 344 0.651

Table 3: Words in order of increasing hyperbolic norm which are related to the word indicated in the top row along
with their counts in the corpus. General words have a lower norm and specific words have a higher norm.

Model Type Dim Bias term Accuracy

Vanilla 20D ✗ 16.8
Poincaré 20D ✗ 20.5
Vanilla 40D ✗ 25.4
Poincaré 40D ✗ 26.5
Vanilla 80D ✗ 30.8
Poincaré 80D ✗ 28.7
Vanilla 180D ✓ 36.1
Poincaré 180D ✓ 29.3

Table 4: Accuracy on the cross-lingual analogy task.

4.2 Experimental Settings246

We reference Tifrea et al. (2018)’s Poincaré247

Word2Vec implementation2 and extended it to learn248

cross-lingual word embeddings. We set the min-249

imum frequency of words in the vocabulary to250

100, and a window size of 5. The models use251

Negative-Log-Likelihood loss. The non-hyperbolic252

vanilla Word2Vec uses Stochastic Gradient De-253

scent optimizer, whereas hyperbolic Word2Vec254

uses Weighted Full Riemannian Stochastic Gra-255

dient Descent optimizer (Bonnabel, 2013). For hy-256

perbolic embeddings, the hyperparameter h is set to257

cosh2(x). During the analogy evaluation, we use258

the cosine distance instead of Poincaré distance for259

hyperbolic models. We use the hypernymysuite3260

for hypernymy evaluation (Roller et al., 2018).261

4.3 Evaluation Results262

Hypernymy Evaluation. We present the top clos-263

est children of selected words in Table 1. As de-264

scribed in Section 3.2, the closest children are265

calculated by finding the target word’s (t) near-266

est neighbours (N) and extracting the neighbour267

n ∈ N such that ||n||p > ||t||p, where ||.||p is268

the Poincaré norm. We observe that the model is269

able to find the hyponyms of the words using the270

2https://github.com/alex-tifrea/poincare_glove
3https://github.com/facebookresearch/hypernymysuite

closest children across languages. For example, 271

the children of ‘Physics’ are its subtypes – ‘astro- 272

physik’ (astrophysics), ‘astrophysics’, ‘mechanik’ 273

(mechanics), and ‘biophysics’. 274

Table 2 reports the results on the hypernymy 275

evaluation task. Although the models were not 276

trained on hypernymy tasks, we observe that they 277

could still learn some latent hierarchies from the 278

free text across languages. Word pairs with out-of- 279

vocabulary words were ignored during evaluation. 280

Table 3 shows lists of related words in order of 281

increasing hyperbolic norm and specificity, simi- 282

lar to Dhingra et al. (2018)’s evaluation. We show 283

counts of these words in the corpus. Higher the 284

count, more generic the word, and has a smaller 285

hyperbolic norm. The Spearman correlation be- 286

tween 1/f , where f is the frequency of a word in 287

the corpus, and its embedding’s hyperbolic norm is 288

0.747 using a 300D w/bias Poincaré model. 289

Cross-lingual Analogy Evaluation. Table 4 re- 290

ports the results on the cross-lingual analogy task. 291

We observe that for 20D models, hyperbolic model 292

outperformed the vanilla model. For higher di- 293

mension models, hyperbolic Word2Vec performed 294

on par with its Euclidean counterpart. Similar to 295

hypernymy evaluation, analogy pairs with out-of- 296

vocabulary words were ignored during evaluation. 297

5 Conclusion and Future Work 298

This work adapts a monolingual hyperbolic 299

Word2Vec model and extend to cross-lingual 300

embeddings. We observe that the hyperbolic 301

Word2Vec embeddings are competent on cross- 302

lingual analogy task. The hypernymy evaluation 303

show that it also captures some latent hierarchies 304

across languages without being trained on a hy- 305

pernymy task. Future work will include extrinsic 306

evaluation of hyperbolic cross-lingual word em- 307

beddings on downstream tasks such as machine 308

translation, cross-lingual textual entailment detec- 309

tion, cross-lingual taxonomy learning, etc. 310
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