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Abstract

The scarcity of data in many of the world’s lan-
guages necessitates the transfer of knowledge
from other, resource-rich languages. However,
the level of scarcity varies significantly across
multiple dimensions, including: i) the amount
of task-specific data available in the source and
target languages; ii) the amount of monolin-
gual and parallel data available for both lan-
guages; and iii) the extent to which they are
supported by pretrained multilingual and trans-
lation models. Prior work has largely treated
these dimensions and the various techniques
for dealing with them separately; in this paper,
we offer a more integrated view by exploring
how to deploy the arsenal of cross-lingual trans-
fer tools across a range of scenarios, especially
the most challenging, low-resource ones. To
this end, we run experiments on the Americas-
NLI and NusaX benchmarks over 20 languages,
simulating a range of few-shot settings. The
best configuration in our experiments employed
parameter-efficient language and task adapta-
tion of massively multilingual Transformers,
trained simultaneously on source language data
and both machine-translated and natural data
for multiple target languages. In addition, we
show that pre-trained translation models can
be easily adapted to unseen languages, thus
extending the range of our hybrid technique
and translation-based transfer more broadly.
Beyond new insights into the mechanisms of
cross-lingual transfer, we hope our work will
provide practitioners with a toolbox to integrate
multiple techniques for different real-world
scenarios. Our code is available at https:
//github.com/parovicm/unified-xlt.

1 Introduction

While training data is available for a wide range
of NLP tasks in a handful of high-resource lan-
guages, the vast majority of the world’s languages
with their billions of speakers do not fit into this
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category (Joshi et al., 2020; Blasi et al., 2022).
The lack of labelled data makes it difficult or im-
possible to directly train effective NLP systems
for these languages. For this reason, researchers
have looked for ways to harness data from one or
more high-resource “source” languages to compen-
sate for a shortage of data in low-resource “target”
languages in a process known as “cross-lingual
transfer” (XLT). Different techniques have been
developed to deal with the various dimensions of
resource scarcity, which encompass not just data
availability, but also the degree of support by pre-
trained models. These research threads have gener-
ally been investigated somewhat independently. In
this paper, we attempt to unify several of the most
prominent threads of XLT research into a single
framework. Specifically, we synthesise findings
from zero-shot (ZS) XLT with massively multi-
lingual transformers (MMTs), few-shot (FS) XLT,
XLT for low-resource languages and XLT through
machine translation (MT) to formulate a practical,
general-purpose approach to cross-lingual transfer,
with a focus on low-resource scenarios.

Massively multilingual Transformers (MMTs),
Transformer-based architectures (Vaswani et al.,
2017) pretrained with an unsupervised objective
such as masked language modelling (MLM) on
text from a large number of languages, are per-
haps the most fundamental tool for contempo-
rary XLT. Prominent examples of MMTs include
mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020a) and mDeBERTa (He et al., 2023).
In addition to providing broad language cover-
age, MMTs have been shown to learn represen-
tations which have a degree of cross-lingual align-
ment, even though they do not receive any explicit
cross-lingual signal during training (Conneau et al.,
2020b; Muller et al., 2021). This allows an MMT
fine-tuned for a specific task in a given “source”
language to perform the same task in another “tar-
get” language with a level of performance generally
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much better than random chance (Pires et al., 2019;
Wu and Dredze, 2019), despite never having seen a
single example of the task in the target language;
this is known as “zero-shot” cross-lingual transfer.

While MMTs typically cover around 100 lan-
guages, this is still only a small fraction of the
world’s estimated 7,000 languages. Pfeiffer et al.
(2020) and Ansell et al. (2022) have shown that an
effective strategy for ZS-XLT for target languages
not covered by the MMT is to learn a parameter-
efficient fine-tuning (PEFT) to specialise the MMT
to that “unseen” language. The resulting language
module can be composed with a task module, typ-
ically yielding much better performance than the
MMT could achieve without language adaptation.

In contrast to ZS-XLT, often more realistic is the
few-shot case (FS-XLT), where a small number of
gold-standard target language examples are avail-
able during training. Though it may be expensive
to annotate target language data, especially for low-
resource languages where native speakers are hard
to access, prior work has shown that using even a
small amount during training can yield significant
gains in performance (Zhao et al., 2021). While
early approaches to FS-XLT involved fine-tuning
first on the source language data, then separately
on the few target language shots (Lauscher et al.,
2020), recent work has shown that it is more effec-
tive to jointly train on both at once (Xu and Murray,
2022; Schmidt et al., 2022).

Another tool often employed for cross-lingual
transfer is machine translation (MT). MT ap-
proaches can generally be categorised as translate-
train or translate-test (Hu et al., 2020). To con-
fine the scope of our work, we consider only the
translate-train approach, which has so far been pre-
dominant, although Artetxe et al. (2023) have made
a strong case for considering translate-test further
in future work. We consider two translate-train vari-
ants: TTRAIN-SINGLE, where a model is trained for
each target language using only its own translated
data; and TTRAIN-ALL, where one model covering
all target languages is trained on their translated
data and the source language data simultaneously.

In this work, we consider how best to employ the
above techniques in response to cross-lingual trans-
fer scenarios with varying levels of data scarcity.
We thus explore several promising directions of
integrating the zero-shot, few-shot and translate-
train techniques across a range of resource levels in
order to delve deeper into: (i) to what extent these

techniques and the different data sources that they
exploit are complementary, (ii) what is the most
effective way of combining different data sources
in order to maximise the performance, and (iii)
how much each of the available sources of data
contributes to the overall performance. We aim to
equip practitioners with a recipe for how to use the
available data resources in the most effective way.

We experiment on the AmericasNLI natural lan-
guage inference (NLI) dataset for American lan-
guages (Ebrahimi et al., 2022), and the NusaX sen-
timent analysis (SA) dataset for Indonesian lan-
guages (Winata et al., 2023). We find that com-
bining language adaptation, few-shot learning and
translation can be highly effective, yielding aver-
age performance gains of 14-24 points over the
zero-shot baseline without language adaptation.

2 Methodology

2.1 Background

Because MMTs divide their capacity among many
languages, they may often perform sub-optimally
with respect to a single source or target language.
Furthermore, we are sometimes interested in a tar-
get language not covered by the MMT. A naive
solution to these problems is to prepare the MMT
with continued pretraining on the target language
before proceeding to task fine-tuning. While this
can improve performance, Pfeiffer et al. (2020) and
Ansell et al. (2022) show that a more effective ap-
proach is to apply a form of composable, parameter-
efficient fine-tuning during continued pretraining:
Pfeiffer et al. (2020) employ adapters (Rebuffi
et al., 2017; Houlsby et al., 2019), while Ansell
et al. (2022) propose sparse fine-tunings (SFTs)
learned through an algorithm they call “Lottery
Ticket Sparse Fine-Tuning” (LT-SFT). The result-
ing language-specific module (“language module”)
can be composed with a similar module trained
for the task of interest (“task module”) to perform
zero-shot transfer. This approach is not only more
efficient than sequential full fine-tuning in terms
of model size and training time; keeping the MMT
weights frozen while training the language modules
helps prevent the model from forgetting important
knowledge learned during pretraining.

While SFT composition generally exhibits some-
what better zero-shot cross-lingual transfer perfor-
mance across a range of tasks than adapter compo-
sition (Ansell et al., 2022; Alabi et al., 2022), and
avoids the overhead incurred during inference by



adapters, adapters are more efficient to train and
leave the base MMT fully unmodified. In this work,
we consider both methods. However, we note that
other modular, parameter-efficient methods exist
and could be used with our tools in future work
(Pfeiffer et al., 2023).

Multi-Source Training. Multi-source training is
an extension to parameter-efficient language adap-
tation, where a task adapter is trained using data
from several source languages simultaneously, of-
ten yielding large gains in cross-lingual transfer
performance as a result of the task adapter learn-
ing more language-agnostic representations (Ansell
et al., 2021, 2022). Multi-source training requires
that each training batch consists of examples from
the same language so that the module for the rele-
vant language can be applied during each step.

2.2 Recipe
We propose a recipe for cross-lingual transfer
which is flexible and effective across scenarios of
resource scarcity. It can be summarised as:
1. Select a base MMT and train language modules

for the source language and all target languages
for which monolingual data is available.

2. Using a multilingual NMT model, translate the
task data into every target language it supports; if
there are target languages the MT model does not
support but for which parallel data is available,
adapt it using this parallel data.

3. Learn a task module through joint multi-source
training on all available data (i.e. source data,
translated data and any gold-standard target lan-
guage (“few-shot”) data available).

We propose two methodological novelties to en-
hance this recipe.

Few-shot upsampling. When gold-standard target
language data is available during training, it is gen-
erally present in a much smaller quantity than the
source language data (in our case, the difference is
in orders of magnitude, but it can vary). Further-
more, it is typically higher in quality than machine-
translated target language data. For this reason,
we suggest upsampling this few-shot data relative
to the source and machine-translated data during
multi-source training. We show in our experiments
that this can improve downstream performance.

NMT model adaptation. While recent multilin-
gual NMT models such as NLLB (NLLB Team
et al., 2022) provide impressive language cover-
age, there are still many languages they do not

support. We therefore adapt NLLB to unseen tar-
get languages by initialising a new language token
and embedding for the target language and then
performing continued pretraining with parallel data
for the relevant language pair.1

3 Experimental Setup

3.1 Evaluation Tasks and Languages

We evaluate our models on two classification tasks:
natural language inference (NLI) and sentiment
analysis (SA). For NLI, we use the AmericasNLI
dataset (Ebrahimi et al., 2022), which covers 10
low-resource languages from the Americas. For
SA, we opt for the NusaX dataset (Winata et al.,
2023), spanning 10 low-resource Indonesian lan-
guages. In the NLI task, the source language is
English, while for SA it is Indonesian. We pro-
vide the list of all datasets and languages used in
Table 1. These tasks are particularly amenable
to the translate-train approach since the labels are
preserved even after data has been translated into
another language. The complete overview of the
languages and their codes is given in Appendix A.

3.2 Models and Training Details

MMT. In this work, we use the base version of
XLM-R (Conneau et al., 2020a), an MMT with
270M parameters pretrained on 100 languages.2

NMT model. As our primary MT model for ob-
taining translated data, we choose the NLLB model
with 3.3B parameters (NLLB Team et al., 2022),
trained to translate between any pair of 200+ lan-
guages, including many low-resource languages.
We also experiment with two additional NLLB vari-
ants: distilled models with 600M and 1.3B parame-
ters, enabling us to understand the effect of model
size on the “quality” of the obtained data. Despite
the broad language coverage, half of our target lan-
guages are unsupported by the NLLB models (7

1In fact, it is not necessary for the source language in
the parallel corpus to match the intended source language
for cross-lingual transfer, since multilingual NMT models
can, in theory, support unseen transfer directions provided the
source and target languages have been seen as part of other
pairs during training; this is the case in NMT adaptation for
AmericasNLI, where the parallel data is Spanish-to-X but the
transfer direction is English-to-X.

2While more powerful MMTs are available, such as XLM-
R-large or mDeBERTa (He et al., 2023), our primary purpose
is not the maximisation of raw performance, nor a comparison
of different MMTs, so we opt for a smaller model to stretch
our computational budget over a broad range of scenarios and
languages.



Task Target Dataset(s) Source Dataset(s) MMT Target Languages

Natural Lan-
guage Infer-
ence (NLI)

AmericasNLI (Ebrahimi
et al., 2022) (sh: 743 / tst:
750)

MultiNLI (tr: 393K / dev:
10K) (Williams et al.,
2018)

XLM-R
Base

Aymara∗, Asháninka∗†, Bribri∗†,
Guarani∗, Náhuatl∗†, Otomí∗†,
Quechua∗, Rarámuri∗†, Shipibo-
Konibo∗†, Wixarika∗†

Sentiment
Analysis
(SA)

NusaX (Winata et al.,
2023) (sh: 600, tst: 400)

SMSA (tr: 11K, dev:
1.3K) (Purwarianti and
Crisdayanti, 2019; Wilie
et al., 2020)

XLM-R
Base

Acehnese∗, Balinese∗, Banjarese∗,
Buginese∗, Javanese, Madurese∗†,
Minangkabau∗, Ngaju∗†‡, Sundanese,
Toba Batak∗†

Table 1: Details of tasks, datasets, MMTs and languages involved in our experiments. sh = # of few-shot examples
available per target language; tst = # of test set examples; tr = # of train set examples; dev = # of development set
examples; ∗ denotes languages unseen during MMT pretraining; † denotes languages not supported by the NLLB
MT model; ‡ denotes languages for which no satisfactory monolingual corpus was available and hence no language
module was trained. Further details of all the language and data sources used are provided in Appendix A. Note that
since the NusaX dataset is created through human translation of a subset of the SMSA dataset, we carefully remove
every example from SMSA which appears in its original or modified form in the NusaX test set to avoid a data leak.

languages from the AmericasNLI and 3 languages
from NusaX dataset).

We adapt the 3.3B parameter NLLB model to
unseen languages through continued pretraining
on the parallel corpora listed in Appendix A. We
perform full fine-tuning for 5 epochs with a batch
size of 8 and an initial learning rate of 2 · 10−5

which is linearly decreased to zero during training.

Language Modules. In general, we use the same
algorithms and hyperparameters as the original
papers (Pfeiffer et al., 2020; Ansell et al., 2022)
when training language modules. However, we
use the variant of MAD-X proposed by Pfeiffer
et al. (2021), where the last adapter layers are
dropped for an increase in cross-lingual transfer
performance. We provide a list of resources for
the monolingual corpora in Appendix A. Language
modules are trained for a minimum of 100 epochs
and 100,000 steps with a batch size of 8, a learning
rate of 5 · 10−5 and a maximum sequence length
of 256. We evaluate the language modules every
1,000 steps with low-resource languages, and every
5,000 steps with high-resource languages. Finally,
we choose the module that has obtained the lowest
perplexity on the validation set, which is created by
taking 5% of the unlabelled data for low-resource
languages or 1% for high-resource languages.

Task Modules. We again follow Pfeiffer et al.
(2020) and Ansell et al. (2022) except where stated
otherwise. We train task adapters with a reduction
factor of 16 (i.e. the ratio between the dimension
of the MMT hidden state and the dimension of
the adapter hidden state is 16) and task SFTs with
8% density. When jointly training on data from

more than one language, the training examples are
batched such that each batch consists of examples
from a single language, and the batches are ordered
randomly. For the configurations which employ
language adaptation, the language module for the
relevant language is activated at the beginning of
the training step and deactivated at the end of the
step, following Ansell et al. (2021).

AmericasNLI task modules are trained for 5
epochs with a batch size of 32 and an initial learn-
ing rate of 2 · 10−5. Evaluation is carried out every
625 steps and the checkpoint with the best eval-
uation accuracy is selected at the end of training.
NusaX task modules are trained for 10 epochs (or 3
during the full fine-tuning phase of LT-SFT), with
a batch size of 16 and an initial learning rate of
2 · 10−5. They are evaluated after every 250 steps
and the final module is the one with the best eval-
uation F1 score. For both tasks, the learning rate
is linearly decreased to zero over the course of
training.

3.3 Configurations and Ablations

ZS-XLT. We include zero-shot transfer results with
language adaptation, equivalent to MAD-X (Pfeif-
fer et al., 2020) in the case of adapters. We also
have a variant where language adaptation is not
employed, thus only the task module is used for
training and inference. These variants are denoted
by ZS and ZS – LA, respectively.

FS-XLT. In our default FS-XLT setup, “FS-
SINGLE” we add K = 100 target shots to the
source language task data, training a separate task
module for each target language. We also consider
“FS-ALL”, where a single task module is trained



on the source language data plus K = 100 shots
from each target language. We investigate the ef-
fect of different numbers of shots by also carrying
out FS-SINGLE experiments with K ∈ {20, 500}.3

We employ language adaptation in all these setups,
but as an ablation, we also test K = 100 without
language adaptation (denoted as FS – LA).

In all FS experiments, the model is jointly
trained on source and target data, as per Xu and
Murray (2022). We upsample the data in the target
language(s) by a factor of 10 to increase its pres-
ence during training, since K is still rather small
compared to the number of examples available in
the source language. During training, we only eval-
uate on the source language data following Xu and
Murray (2022), who point out that the presence
of large evaluation sets in truly low-resource lan-
guages is unrealistic4, and show that while evalu-
ating on the target language is still beneficial for
the joint training procedure, the gap becomes much
smaller. They stress that such data would be better
used for training, in line with Kann et al. (2019).

Translate-Train. In our main translate-train vari-
ant, named TTRAIN-ALL, we create a single task
module covering all the target languages, which is
trained and evaluated on the translated data of all
target languages together with the source language
data. We also consider TTRAIN-SINGLE, where a
separate task module is trained on the data of each
target language alone.

FS-XLT meets Translate-Train. In a final set of
experiments, we investigate to what extent the ben-
efits gained from the few-shot and translate-train
methods add up when they are combined. To test
this, we introduce the FS + TTRAIN-ALL configu-
ration, where we train a single task module on the
union of the source language data and translated
and few-shot data (with K = 100) for every target
language. This module is evaluated on the source
language data and the translated data in all target
languages.

4 Results and Discussion

Main Results. The results of our primary config-
urations on NLI and SA are presented in Table 2,

3For the AmericasNLI target languages NAH and OTO
we actually use 223 and 377 shots respectively under the
K = 500 setting since this is the maximum available.

4The requirement for evaluation data in the target language
originated from two-step methods, where such data is needed
to prevent the model from overfitting to the small number of
examples in the target language used during the second stage.

with ablations shown in Table 3.5 We find that
the various cross-lingual transfer techniques we
consider can be combined very effectively to im-
prove performance. For instance, the average SA
performance can be improved from the most basic
ZS – LA setting by 14-17 points (depending on the
PEFT method) through the use of language adapta-
tion, translate-train and few-shot techniques with
K = 100 shots (FS + TTRAIN-ALL). In the case
of the NLI task, the gains under the same condi-
tions are 19-24 points. Each of these components
individually adds several points of performance,
and although the gain from using FS and TTRAIN

together is much smaller than the sum of their indi-
vidual gains, it is still 1-2 points better than using
either technique on its own. Although we did not
consider FS + TTRAIN-ALL with K = 500 shots,
the strength of FS-SINGLE with K = 500 as shown
in Figure 1 suggests that this gap would be larger
with larger K. The finding that high-quality ma-
chine translation of the entire source dataset cannot
eliminate the utility of human-crafted examples
contains a potentially useful lesson – we would
encourage designers of datasets for cross-lingual
transfer to provide at least two splits for target lan-
guages, even if the training/validation split con-
tains only 100 examples. The relative value of
few-shot and machine-translated data appears to be
task-dependent. Whereas for AmericasNLI we see
TTRAIN outperforming FS by 4-6 points, neither
approach has a clear advantage on the NusaX task.

MT Model Size. In Table 4, we see the effect of
translation model quality on TTRAIN-ALL perfor-
mance, with gains of 0.5-2 points from upscaling
the NLLB model from 600 million to 3.3 billion pa-
rameters. This upscaling comes at a relatively small
cost in the translate-train setup, since the training
data only needs to be translated once for each tar-
get language. Translate-test setups, on the other
hand, incur the cost of translating each example
encountered at inference time, which is potentially
much more costly for large-scale deployments.

MT adaptation. The adaptation of the NMT
model to new languages appears to be highly effec-
tive, with these languages generally enjoying large
gains from the use of TTRAIN despite the small size
of the parallel corpora available: the AmericasNLI

5For Nusa-X, our main results exclude NIJ for which no
monolingual data is available and thus no language module
was trained; results without language adaptation are available
in Appendix B.



Method AYM BZD ∗ CNI ∗ GN HCH ∗ NAH ∗ OTO ∗ QUY SHP ∗ TAR ∗ avg
A

D
A

P
T

E
R

ZS 53.0 42.8 44.8 59.6 40.3 50.8 41.2 55.2 50.0 40.0 47.77
FS-SINGLE 55.2 47.1 47.7 58.3 40.7 55.8 45.9 59.7 52.9 47.5 51.08
FS-ALL 57.1 47.9 49.3 59.1 44.1 54.5 48.4 59.6 52.3 47.5 51.98
TTRAIN-SINGLE 58.7 56.5 53.9 64.4 48.7 56.4 40.1 61.5 57.5 51.5 54.92
TTRAIN-ALL 63.3 60.5 56.1 66.1 52.1 60.4 42.4 64.9 63.3 55.3 58.44
FS + TTRAIN-ALL 63.6 59.1 57.7 67.3 52.1 59.6 48.3 64.5 64.4 56.7 59.33

S
F

T

ZS 58.4 44.7 47.6 62.2 44.4 50.8 46.4 60.4 49.5 43.1 50.75
FS-SINGLE 59.2 58.7 53.2 63.9 45.9 54.6 49.1 61.2 53.1 51.2 55.01
FS-ALL 60.8 58.1 52.3 63.3 47.3 56.5 53.3 61.3 54.9 51.3 55.91
TTRAIN-SINGLE 64.5 58.7 54.9 69.2 53.2 61.5 43.4 65.1 59.5 56.1 58.61
TTRAIN-ALL 65.5 61.9 56.7 70.5 55.5 62.2 42.6 68.5 66.0 58.7 60.81
FS + TTRAIN-ALL 65.1 62.1 58.5 70.0 54.8 61.8 51.2 68.8 67.6 60.3 62.02

(a) AmericasNLI: accuracy

Method ACE BAN BBC ∗ BJN BUG JAV MAD ∗ MIN SUN avg

A
D

A
P

T
E

R

ZS 74.9 78.0 72.3 77.6 57.6 82.9 68.5 79.9 80.5 74.69
FS-SINGLE 79.1 80.5 77.2 86.0 72.0 85.0 77.5 84.8 83.7 80.64
FS-ALL 79.5 80.0 75.3 86.2 70.4 86.2 76.8 84.4 82.4 80.13
TTRAIN-SINGLE 74.0 77.7 73.8 82.0 66.6 83.6 70.8 78.0 79.7 76.24
TTRAIN-ALL 79.6 82.3 81.0 85.0 68.1 86.2 78.8 83.3 85.7 81.11
FS + TTRAIN-ALL 82.3 82.9 82.8 84.9 72.2 85.3 80.5 85.7 85.0 82.40

S
F

T

ZS 80.0 81.3 65.8 82.0 63.8 84.3 73.5 86.6 84.4 77.97
FS-SINGLE 82.2 84.1 80.6 88.3 77.7 88.0 78.6 89.2 85.1 83.76
FS-ALL 83.7 87.2 79.6 87.9 75.9 87.3 77.2 86.7 84.0 83.30
TTRAIN-SINGLE 82.4 82.0 83.5 85.4 68.1 85.6 80.9 87.0 83.0 81.93
TTRAIN-ALL 83.4 82.4 82.7 84.6 76.8 86.4 81.6 87.4 85.2 83.39
FS + TTRAIN-ALL 85.0 85.8 82.7 87.4 78.7 87.4 81.0 88.8 86.5 84.81

(b) NusaX: F1

Table 2: Results of ZS, FS and TTRAIN methods on AmericasNLI and NusaX with adapters and SFTs. For the FS
methods, K = 100, and for the TTRAIN methods, the MT model is NLLB with 3.3B parameters. The last column
is the average score over all languages. Bold: the best approach within Adapter/SFT. Underline: overall best score.
∗: NLLB MT model adaptation required to support this language.

ADAPTER SFT

Method NLI SA NLI SA

ZS 47.77 74.69 50.75 77.97
ZS – LA 40.57 65.38 38.21 70.43

FS 51.08 80.64 55.01 83.76
FS – LA 44.82 74.03 49.51 78.32
FS – UPSAMPLE 48.27 76.78 52.60 83.18

TTRAIN-ALL 58.44 81.11 60.81 83.39
TTRAIN-ALL – LA 55.50 77.83 57.88 79.39

Table 3: Ablation experiments: – LA denotes the cor-
responding method without language adaptation (i.e.
only task module is present); – UPSAMPLE indicates
no upsampling of the gold-standard target shots is per-
formed. FS refers to the -SINGLE variant. The scores
are averages over all target languages.

languages have parallel corpora containing 5,000-
17,000 sentences, while the NusaX parallel corpora
have fewer than 1,000 sentences. It is interesting
to note that for AmericasNLI, the language pairs
used in MT model adaptation are different from

those used during cross-lingual transfer: the source
language in the parallel corpora is Spanish, so the
English-to-X direction required during translation
of the MultiNLI dataset is completely unseen. The
success of the TTRAIN configurations on this task
is thus a testament to the strength and flexibility of
multilingual NMT.

Number of Shots. We observe a rather large im-
pact on performance from increasing the amount of
few-shot data. While even 20 shots are enough to
bring about a 3-5 point average gain on the NusaX
task, we do not see a plateau in performance on
either task even with the increase from 100 to 500
shots. Upsampling the few shots seems beneficial,
yielding a 0.5-4 point gain in performance when
K = 100. A finer-grained and wider exploration
of this finding is warranted in future work.

Language Resourcefulness. As suggested by prior
work (Pfeiffer et al., 2020; Ansell et al., 2021) and
by Table 3, language adaptation has a very large
impact on all configurations. In the case of the



NLI SA

A
D

A
P

T
E

R Model AYM GN QUY avg ACE BAN BJN BUG JAV MIN SUN avg

NLLB 600M 62.9 65.1 63.2 63.73 76.6 79.0 83.7 66.0 80.9 81.5 81.1 78.40
NLLB 1.3B 62.3 67.9 63.2 64.47 73.4 80.2 85.3 64.8 83.4 80.6 83.0 78.67
NLLB 3.3B 62.4 67.6 65.2 65.07 79.6 82.4 84.6 66.4 84.8 81.9 84.6 80.61

S
F

T NLLB 600M 67.3 69.7 68.7 68.57 83.8 81.2 84.6 72.8 85.7 84.2 82.1 82.06
NLLB 1.3B 66.4 72.0 69.2 69.20 81.3 81.9 84.2 68.5 84.5 84.2 83.1 81.10
NLLB 3.3B 65.7 70.9 70.5 69.03 83.2 83.7 85.1 76.8 88.1 87.6 83.7 84.03

Table 4: Results of TTRAIN-ALL method on the target languages supported by the NLLB model(s) on AmericasNLI
(accuracy) and NusaX (F1 score) with adapters and SFTs. The models are labelled by the number of parameters.

0 20 100 500
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Figure 1: Performance when the number of gold-
standard target shots K varies, taking values 0, 20, 100,
and 500. We show the average across all target lan-
guages; the shaded area is the standard deviation (full
results available in Appendix C).
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Figure 2: Gains from language adaptation against the
size of monolingual corpora for NLI target languages.
We show the difference in the accuracy of ZS (i.e. ZS
- ZS – LA), FS and TTRAIN-ALL with adapters. Larger
monolingual corpus size leads to larger gains when the
language adaptation is present; the effect is more pro-
nounced with ZS and FS than with TTRAIN-ALL.

TTRAIN-ALL configuration, language adaptation
incurs gains of 3-4 points, while for ZS and FS they
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Figure 3: The scores of ZS - LA and FS + TTRAIN-
ALL methods with SFTs against the monolingual cor-
pus sizes. All target languages (from NLI and SA) are
shown and they are grouped based on the coverage by
the NLLB and MMT models. Relative scores are dis-
played (a fraction of the source language performance).

vary between 6-13 points. Figure 2 further illus-
trates this effect on all three methods with adapters,
showing the gains from language adaptation on
NLI languages against the size of their monolin-
gual corpora: languages with larger corpora gen-
erally exhibit larger gains. The effect is visibly
less pronounced for the TTRAIN-ALL where a rela-
tively large amount of the target data (albeit trans-
lated) lessens the significance of language modules
and monolingual corpora size. Finally, Figure 3
illustrates that the performance of our strongest
configuration (FS + TTRAIN-ALL) with SFTs is
the highest for languages that are seen by either
the NLLB or MMT model – these are (inciden-
tally) the languages with the largest corpora size
too. Conversely, this pattern is absent with the ZS –
LA configuration.

Language families for our target languages are
given in Appendix A. While they could have an
impact on the performance, it is difficult to disen-
tangle the effect of the language family from the



amount of data available without having a much
larger set of evaluation languages.

PEFT Method. The relative performances of the
various configurations are very similar regardless
of PEFT method, and in accordance with previous
work (Ansell et al., 2022; Alabi et al., 2022), SFTs
consistently outperform adapters by 2-3 points.
However, we estimate that training adapters is gen-
erally around 3 times faster than training SFTs.

5 Related Work

Parameter-Efficient Fine-Tuning Methods.
Parameter-efficient fine-tuning methods have
emerged from a necessity to reduce compute and
memory requirements of fine-tuning when dealing
with large models. These methods can generally
be grouped into those that modify the subset of
parameters of the pretrained LLM (Ben Zaken
et al., 2022; Guo et al., 2021; Sung et al., 2021)
and those that introduce a completely fresh set of
parameters to be updated (Li and Liang, 2021;
Lester et al., 2021; Houlsby et al., 2019; Hu et al.,
2022) allowing for different interactions with
the pretrained model. They have been adopted
for cross-lingual transfer as they are preferable
when dozens of different fine-tunings for different
languages and tasks need to be learned, stored
and combined (Pfeiffer et al., 2020; Ansell et al.,
2022; Parović et al., 2022). For a comprehensive
overview of parameter-efficient fine-tuning, we
refer the reader to Pfeiffer et al. (2023).

Few-Shot Cross-Lingual Transfer. Lauscher et al.
(2020) and later Zhao et al. (2021) demonstrate
the effectiveness of few-shot over the zero-shot
cross-lingual transfer, showing that continued train-
ing of a source-trained model on a small number
of labelled examples in the target language sig-
nificantly increases performance (target-adapting).
Schmidt et al. (2022) trade-off efficiency for per-
formance by replacing the sequential fine-tuning
procedure of Lauscher et al. (2020) with joint train-
ing on source and target language, showing it also
improves training stability and robustness. They
additionally show that first fine-tuning on multiple
target languages provides extra performance gains.
We adopt their joint training procedure, combin-
ing it further with parameter-efficient fine-tuning
methods and language adaptation. Xu and Murray
(2022) also exploit a joint source-and-target train-
ing procedure, further extending it to all target lan-
guages simultaneously instead of having language-

specific models, which becomes particularly attrac-
tive when dealing with a large number of target
languages. They also introduce stochastic gradi-
ent surgery to circumvent the issue of conflicting
gradients among languages.

Jundi and Lapesa (2022) compare few-shot and
translation-based approaches, trying to gain an in-
sight into which approach is better and under which
circumstances. We consider these approaches in
combination rather than in competition and find
that the use of few-shot data can enhance perfor-
mance even when a machine translation of the full
source language dataset is available. However, their
work complements ours by proposing a way to iden-
tify the examples which may be most profitable for
humans to translate into target language “shots.”

Winata et al. (2022) study few-shot cross-lingual
transfer on languages unseen by MMTs using the
NusaX dataset. They analyse the effectiveness of
several few-shot strategies focusing on selecting
languages for transfer and different learning dy-
namics exhibited by different types of MMTs.

Machine Translation for Cross-Lingual Trans-
fer. The translate-train and translate-test ap-
proaches are common baselines for cross-lingual
transfer (Conneau et al., 2020a; Hu et al., 2020).
A number of enhancements have been proposed.
Artetxe et al. (2020) showed that translate-test per-
formance could be improved by training on back-
translated rather than the original source language
data to better model translation artefacts encoun-
tered at inference time. Ponti et al. (2021) note that
translation-based approaches suffer from an error
accumulation over the phases of the pipeline. They
re-interpret this pipeline as a single model with
an intermediate “latent translation” between the
target text and its classification label, permitting
the translation model to be fine-tuned according
to a feedback signal from the task loss. Oh et al.
(2022) show that the translate-train and translate-
test approaches can be combined synergistically.
Artetxe et al. (2023) show that translate-test is more
favourable relative to translate-train than previously
thought when better translation and monolingual
models are used, and when measures are taken to
correct the MT-induced mismatch between the data
encountered at train and inference time. While
we only consider applying translation-based cross-
lingual transfer to classification tasks, prior work
has considered its application to sequence labelling
tasks as well (Jain et al., 2019; Fei et al., 2020;



García-Ferrero et al., 2022; García-Ferrero et al.,
2022). For simplicity, we employ only continued
pretraining on the standard MT task when adapting
NLLB to unseen languages. Ko et al. (2021) en-
hance NMT model adaptation with additional tasks:
denoising autoencoding, which exploits monolin-
gual target language data; back-translation; and
adversarial training which encourages the encoder
to output language-agnostic features.

6 Conclusions and Future Work

We have investigated how to combine several cross-
lingual transfer techniques which are applicable
across several dimensions of resource scarcity
into a single framework. We find that parameter-
efficient language adaptation, few-shot learning
and translate-train are complementary when em-
ployed in a multi-source training setup with few-
shot upsampling. However, our training setup sup-
ports the use of any subset of these techniques
depending on the availability of the necessary data
and models. We remark on the significance of the
finding that gold-standard few-shot target data can
improve performance even when the entirety of
the training data is translated into the target lan-
guage by a high-quality NMT model. We also
observe that languages not natively supported by
an NMT model can benefit from translate-train
through a simple adaptation procedure even with a
small amount of parallel data.

Limitations

Our experiments are based on two parameter-
efficient fine-tuning methods: adapters and SFTs.
This choice facilitates comparisons with the prior
work in the area of cross-lingual transfer since these
two methods have been studied extensively. How-
ever, we note that other modular and parameter-
efficient fine-tuning methods are available and
could be used in combination with our framework
(Pfeiffer et al., 2023).

Our evaluation relies solely on classification
tasks, as the data labels in these tasks are preserved
upon translation into another language. This is not
the case with sequence-labelling tasks, where an
additional challenge lies in projecting the labels
after obtaining the translation. Restricting our ex-
periments to the classification tasks enables us to
have a more controlled environment for studying
only the effects of different data sources which is
the main focus of this work. Studying other task

families could be done as part of future work.
During the adaptation of the MT model to un-

supported languages, we only consider continued
training with parallel data. While further perfor-
mance increases could be achieved with the usage
of monolingual data sources and backtranslation
following Ko et al. (2021), we opt for simplic-
ity, exploiting the monolingual data only with the
language modules. Furthermore, this aligns with
our goal which is not to maximize the raw perfor-
mance but rather to study the effects of different
data sources and their mutual interactions.

Due to a large number of experiments across
many methods and ablations, we report all our re-
sults based on a single run. However, the large
number of target languages we average over and
the replication of the core findings across the two
PEFT methods adds confidence that they are cor-
rect.

Finally, training language modules is typically
computationally expensive. However, the modular
design of cross-lingual transfer methods that we
consider, enables us to train language modules only
once and reuse them across all of our experiments.
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.
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A Languages

The complete overview of languages, their codes
and families, together with the monolingual data
sizes and resources is provided in Table 5. The
sizes and resources for the parallel corpora used in
the MT model adaptation are given in Table 6.

B Ablation Experiments

We present per language results of our ablation
experiments in Table 7. The summarised results
are given in Table 3.

C Full Results with Different Number of
Shots K

We give full results with the different number
of gold-standard target shots K, where K ∈
{0, 20, 100, 500}. The setting K = 0 resembles
the ZS approach, while the rest of the values fall
within FS. The results are shown in Table 8, with
their summary given in Figure 1.



Task Language Code Family Corpus size (MB) Corpus source(s)

Source English en Indo-European, Germanic 300,800 WikipediaIndonesian id Austronesian, Malayo-Sumbawan 148,300

NLI

Aymara aym Aymaran 2.3 Tiedemann (2012); Wikipedia

Asháninka cni Arawakan 1.4 Ortega et al. (2020); Cushimariano Romano and Sebastián Q. (2008);
Mihas (2011); Bustamante et al. (2020)

Bribri bzd Chibchan, Talamanca 0.3 Feldman and Coto-Solano (2020)
Guarani gn Tupian, Tupi-Guarani 6.9 Chiruzzo et al. (2020); Wikipedia
Náhuatl nah Uto-Aztecan, Aztecan 8.1 Gutierrez-Vasques et al. (2016); Wikipedia
Otomí oto Oto-Manguean, Otomian 0.4 Hñähñu Online Corpus
Quechua quy Quechuan 17 Agić and Vulić (2019); Wikipedia
Rarámuri tar Uto-Aztecan, Tarahumaran 0.6 Brambila (1976)
Shipibo-Konibo shp Panoan 2.1 Galarreta et al. (2017); Bustamante et al. (2020)
Wixarika hch Uto-Aztecan, Corachol 0.5 Mager et al. (2018)

SA

Acehnese ace Austronesian, Malayo-Sumbawan 90 KoPI-NLLB (Cahyawijaya et al., 2022); LibriVox-Indonesia (Wirawan,
2022); NLLB-Seed (NLLB Team et al., 2022); Wikipedia

Balinese ban Austronesian, Malayo-Sumbawan 42
INDspeech_NEWS_EthnicSR (Sakti and Nakamura, 2013), KoPI-NLLB
(Cahyawijaya et al., 2022); LibriVox-Indonesia (Wirawan, 2022); NLLB-
Seed (NLLB Team et al., 2022); Wikipedia

Banjarese bjn Austronesian, Malayo-Sumbawan 28 KoPI-NLLB (Cahyawijaya et al., 2022); Korpus Nusantara (Sujaini, 2020);
NLLB-Seed (NLLB Team et al., 2022); Wikipedia

Buginese bug Austronesian, South Sulawesi 4.3 Korpus Nusantara (Sujaini, 2020); LibriVox-Indonesia (Wirawan, 2022);
NLLB-Seed (NLLB Team et al., 2022); Wikipedia

Javanese jav Austronesian, Javanese 200 Wikipedia
Madurese mad Austronesian, Malayo-Sumbawan 0.8 Korpus Nusantara (Sujaini, 2020); Wikipedia

Minangkabau min Austronesian, Malayo-Sumbawan 93

Indo Wiki Parallel Corpora (Trisedya and Inastra, 2014); KoPI-NLLB
(Cahyawijaya et al., 2022); Korpus Nusantara (Sujaini, 2020); LibriVox-
Indonesia (Wirawan, 2022); MinangNLP MT (Koto and Koto, 2020);
Wikipedia

Ngaju nij Austronesian, Barito - -
Sundanese sun Austronesian, Malayo-Sumbawan 100 Wikipedia

Toba Batak bbc Austronesian, Northwest Sumatra-
Barrier Islands 0.4 Korpus Nusantara (Sujaini, 2020)

Table 5: Details of the languages and monolingual data used for training and evaluation of SFTs and adapters. The
corpora of Bustamante et al. (2020) are available at https://github.com/iapucp/multilingual-data-peru;
all other NLI corpora mentioned are available at https://github.com/AmericasNLP/americasnlp2021; all the
SA corpora (Cahyawijaya et al., 2022) are available through https://indonlp.github.io/nusa-catalogue/.

Target Language Source Language Corpus size (#sent) Corpus source(s)

Bribri Spanish 8,502 Feldman and Coto-Solano (2020)
Náhuatl Spanish 16,733 Gutierrez-Vasques et al. (2016)
Otomí Spanish 5,488 Hñähñu Online Corpus
Rarámuri Spanish 15,714 Brambila (1976)
Shipibo-Konibo Spanish 15,586 Galarreta et al. (2017); Bustamante et al. (2020)
Wixarika Spanish 9,960 Mager et al. (2018)

Madurese Indonesian 629
Winata et al. (2023)Ngaju Indonesian 629

Toba Batak Indonesian 629

Table 6: Details of the parallel corpora used for NLLB MT model adaptation. #sent = number of sentences in train +
dev set.

https://tsunkua.elotl.mx/about/
https://github.com/iapucp/multilingual-data-peru
https://github.com/AmericasNLP/americasnlp2021
https://indonlp.github.io/nusa-catalogue/
https://tsunkua.elotl.mx/about/


Method AYM BZD CNI GN HCH NAH OTO QUY SHP TAR avg

A
D

A
P

T
E

R
ZS 53.0 42.8 44.8 59.6 40.3 50.8 41.2 55.2 50.0 40.0 47.77
ZS – LA 40.1 36.9 42.0 42.9 39.6 42.7 41.8 40.8 43.2 35.7 40.57
FS 55.2 47.1 47.7 58.3 40.7 55.8 45.9 59.7 52.9 47.5 51.08
FS – LA 43.3 42.8 45.7 48.5 42.3 46.3 43.7 46.4 47.2 42.0 44.82
FS – UPSAMPLE 50.3 45.5 46.8 58.3 40.3 48.9 46.4 56.3 46.0 43.9 48.27
TTRAIN-ALL 63.3 60.5 56.1 66.1 52.1 60.4 42.4 64.9 63.3 55.3 58.44
TTRAIN-ALL – LA 60.1 58.3 50.3 60.7 50.7 55.6 44.7 60.8 57.1 56.7 55.50

S
F

T

ZS 58.4 44.7 47.6 62.2 44.4 50.8 46.4 60.4 49.5 43.1 50.75
ZS – LA 35.7 38.7 37.3 39.1 38.3 41.3 37.7 36.3 40.9 36.8 38.21
FS 59.2 58.7 53.2 63.9 45.9 54.6 49.1 61.2 53.1 51.2 55.01
FS – LA 53.3 54.9 47.6 48.9 42.9 53.8 45.5 53.3 46.5 48.4 49.51
FS – UPSAMPLE 59.1 51.2 50.3 63.9 42.9 52.7 48.1 62.8 50.1 44.9 52.60
TTRAIN-ALL 65.5 61.9 56.7 70.5 55.5 62.2 42.6 68.5 66.0 58.7 60.81
TTRAIN-ALL – LA 63.6 60.7 48.0 65.6 54.7 57.3 46.9 63.6 62.7 55.7 57.88

(a) AmericasNLI: accuracy

Method ACE BAN BBC BJN BUG JAV MAD MIN NIJ SUN avg

A
D

A
P

T
E

R

ZS 74.9 78.0 72.3 77.6 57.6 82.9 68.5 79.9 – 80.5 74.69
ZS – LA 68.0 70.8 37.6 78.3 31.9 80.9 63.5 77.9 66.9 78.0 65.38
FS 79.1 80.5 77.2 86.0 72.0 85.0 77.5 84.8 – 83.7 80.64
FS – LA 74.7 73.5 64.3 79.6 61.7 82.3 74.0 81.5 70.9 77.8 74.03
FS – UPSAMPLE 76.5 78.4 71.9 80.6 64.5 82.5 74.6 80.1 – 81.9 76.78
TTRAIN-ALL 79.6 82.3 81.0 85.0 68.1 86.2 78.8 83.3 – 85.7 81.11
TTRAIN-ALL – LA 78.5 76.5 73.1 83.2 67.6 82.7 77.8 82.0 77.4 79.5 77.83

S
F

T

ZS 80.0 81.3 65.8 82.0 63.8 84.3 73.5 86.6 – 84.4 77.97
ZS – LA 72.8 72.3 47.3 79.3 47.7 82.2 71.9 81.4 70.3 79.1 70.43
FS 82.2 84.1 80.6 88.3 77.7 88.0 78.6 89.2 – 85.1 83.76
FS – LA 78.9 76.2 68.6 81.1 71.0 86.3 78.2 84.0 76.0 82.9 78.32
FS – UPSAMPLE 82.7 84.5 79.5 87.9 74.7 86.5 78.0 87.8 – 87.0 83.18
TTRAIN-ALL 83.4 82.4 82.7 84.6 76.8 86.4 81.6 87.4 – 85.2 83.39
TTRAIN-ALL – LA 78.9 81.0 75.1 83.0 67.1 86.2 79.7 82.8 77.6 82.5 79.39

(b) NusaX: F1

Table 7: Per-language results of ablation experiments with ZS, FS, and TTRAIN-ALL methods on NLI and SA
with adapters and SFTs: – LA denotes the absence of language adaptation (i.e. only the task module is present),
while – UPSAMPLE indicates there is no upsampling of the gold-standard target shots.

Method AYM BZD CNI GN HCH NAH OTO QUY SHP TAR avg

A
D

A
P

T
E

R ZS (K = 0) 53.0 42.8 44.8 59.6 40.3 50.8 41.2 55.2 50.0 40.0 47.77
FS (K = 20) 50.4 43.3 46.0 56.9 39.9 50.4 43.2 58.3 50.5 44.0 48.29
FS (K = 100) 55.2 47.1 47.7 58.3 40.7 55.8 45.9 59.7 52.9 47.5 51.08
FS (K = 500) 57.2 54.0 53.7 61.6 45.1 55.1 48.0 59.1 54.7 50.5 53.90

S
F

T

ZS (K = 0) 58.4 44.7 47.6 62.2 44.4 50.8 46.4 60.4 49.5 43.1 50.75
FS (K = 20) 57.9 48.7 46.4 59.9 44.3 51.5 48.7 61.2 51.1 43.7 51.34
FS (K = 100) 59.2 58.7 53.2 63.9 45.9 54.6 49.1 61.2 53.1 51.2 55.01
FS (K = 500) 61.1 59.5 55.7 65.6 48.7 58.9 52.5 64.4 61.5 54.1 58.20

(a) AmericasNLI: accuracy

Method ACE BAN BBC BJN BUG JAV MAD MIN SUN avg

A
D

A
P

T
E

R ZS (K = 0) 74.9 78.0 72.3 77.6 57.6 82.9 68.5 79.9 80.5 74.69
FS (K = 20) 74.6 78.9 73.6 81.0 66.1 84.3 78.3 81.3 82.4 77.83
FS (K = 100) 79.1 80.5 77.2 86.0 72.0 85.0 77.5 84.8 83.7 80.64
FS (K = 500) 81.1 84.2 78.5 88.0 74.8 87.9 79.4 88.0 88.1 83.33

S
F

T

ZS (K = 0) 80.0 81.3 65.8 82.0 63.8 84.3 73.5 86.6 84.4 77.97
FS (K = 20) 81.9 83.1 79.0 87.9 73.4 86.3 76.0 87.0 87.2 82.42
FS (K = 100) 82.2 84.1 80.6 88.3 77.7 88.0 78.6 89.2 85.1 83.76
FS (K = 500) 86.5 89.3 83.1 87.9 79.7 91.3 80.6 90.5 87.5 86.27

(b) NusaX: F1

Table 8: Per-language results on NLI and SA with the different number of gold-standard target shots K. We consider
ZS (K = 0) and FS with K ∈ {20, 100, 500} with adapters and SFTs.


