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Abstract

State-of-the-art performance has been achieved in re-
cent years on tasks such as search, recommendation
and classification using Visuo-Lingual Multi-Modal mod-
els. While the pretrained Vision-Language models like
Contrastive Language-Image Pre-training (CLIP) have
achieved promising zero-shot performance on several gen-
eralized tasks by learning vision-language concepts in a
common space, the natural hierarchical relationship be-
tween them remains unexplored. In this work we propose
HyperVLM: a hyperbolic Poincaré geometry based vision-
language model that learns joint text-image representation
considering the hierarchical relation between the two. We
compare the performance of HyperVLM with CLIP model
for zero-shot image classification and retrieval tasks to
demonstrate the efficacy of the proposed method. We also
demonstrate the effectiveness of proposed method for re-
trieval task when applied to BLIP architecture’s ITC loss
module. Proposed method holds immense value for recom-
mendation and search tasks.

1. Introduction
Vision Language Models Large vision-language models
like CLIP [30] and ALIGN [15] learn visual concepts from
their natural language description via multi-modal con-
trastive learning. In contrastive learning [16], an anchor
item representation is compared with a similar and a dis-
similar item with the aim of bringing similar item represen-
tation together and pushing different ones away. The ef-
fectiveness [35] of these models results from their pretrain-
ing over a diverse large-scale image-text dataset sources
from the web, allowing them to learn diverse concept from
real world resulting in their impressive generalizability over
a variety of tasks in zero-shot setting like classification
and retrieval. These models assume the geometry of the
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higher dimensional representation space as affine Euclidean
[12, 25], making it harder to capture the visual-text hi-
erarchical concepts. The entity containing more general
concepts should be located close to the root of the hierar-
chy tree than the entity encapsulating a more specific and
complex information. Hyperbolic spaces [3, 31] are nat-
ural candidate for capturing this hierarchical information
about data points as their volume grows exponentially away
from the origin, against polynomial growth in case of Eu-
clidean space. Hyperbolic space can be thought of as a con-
tinuous version of a tree with it’s root at the origin. Vi-
sion Language Hierarchy The saying ”A picture is worth
a thousand words” conveys the information difference be-
tween an image and words describing them. For exam-
ple, in Figure 1, the picture can be broken down into in-
dividual concepts consisting of ”kitty” and ”doggo”, which
might be transformed in different manner to generate cap-
tion, for e.g. ’my dog’s innocence brings smile to my face’,
’a dog and a cat having fun in field’, etc. Following equiv-
alence, a many words can be put together encapsulating
complex concept to build an informative image. Injecting
these inductive biases in the training of multi-modal mod-
els [30, 32] will allow them to learn a more generalizable
and interpretable representation. Hyperbolic Space Rep-
resentation with HyperVLM In this work we project the
image-text concepts onto a Poincaré ball model of hyper-
bolic space while following the state of the art contrastive
methodology, to help capture the hierarchical information
about the image-text pair, in addition to their semantic sim-
ilarity. The contribution of this work can be described as: i.
We introduce HyperVLM, a Poincaré ball based hyperbolic
representation model trained using ViTs and Transformer
encoder based contrastive loss using RedCap dataset con-
taining 12M image-text pairs. ii. We introduce an embed-
ding entropy based entailment loss to enforce the hierarchy
between image-text in the Poincaré space. We compare the
performance of the proposed method with strong baseline
CLIP and MERU to demonstrate it’s competitiveness.



cute lil' kitty young doggo

Chillin' in the grass with my furry pals, puppy and kitten!

my dog's innocence brings a smile to my faceJust a cat punching above it's weight in the field!

sweet creature!

  kitty vibing on the beach!a cat and dog playing in fielda smiling corgi pose!

happy doggo

a b

a very cool cat

Figure 1. A picture is worth a thousand words. Left: Given an in-
formative image it is possible to generate several textual concepts
leveraging the visuo-lingual hierarchy. Right: Likewise, begin-
ning from a simple text concept, it is possible to come up with
complex visuo-lingual concepts by leveraging their hierarchical
relation.

2. Related Work
The idea of hyperbolic space to better represent multi-
modal entities is very recent and there are few related work
in this field. MERU [9] attempts to capture the image-
text semantics using Lorentz hyperboloid space. However,
Lorentz manifold has less representation capacity compared
to Poincaré ball as described in [29]. [10] discusses appli-
cation of hyperbolic space based approach to learn hierar-
chical information between different image samples.

3. Hyperbolic Geometry
In this section, we will walk through some key concepts
of hyperbolic geometry which are relevant to our approach.
Hyperbolic geometry, also known as Lobachevskian geom-
etry is a non-Euclidean geometry where the Euclid’s fifth
postulate of parallels don’t hold true and the space has
a constant negative curvature. Hyperbolic spaces can be
thought of as a continuous versions of tree data structure
where the number of nodes until level h grow exponentially
with the value l as ((b + 1)bh − 2)/(b − 1) where b is the
branching factor. This tree grows from origin where h is
0 and it grows in terms of nodes exponentially away from
origin. Such a structural arrangement is not possible in R2

Euclidean space as the area and circumference of the hy-
percircle only grows quadratically and linearly respectively
against an exponential growth in case of hyperbolic space.
A brief introduction to the concept of Manifold, Curvature
and hyperbolic space is discussed in supplementary mate-
rial.

3.1. Poincaré Disk
A Poincaré disk is a hyperbolic geometric model in which
we represent a line as an arc of a circle whose ends are per-
pendicular to the disk’s diameter. It’s a useful model that
uses hyperbolic geometry to discover continuous hierarchi-
cal relations among data pairs by embedding them into n
dimensional Poincaré hypersphere. Mathematically, we can
define an n-dimensional Poincaré ball in constant negative
curvature value of K = −1 as: Pn

K=−1 = {x ∈ Rn :

||x||2 < 1} (1) where ||.|| represents the Euclidean norm of
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Figure 2. Overall Model Architecture. Left: Describes the base-
line CLIP architecture based on which we have defined Hyper-
VLM. Image and text are encoded by Vision and Text Transform-
ers respectively before being normalized and compared for con-
trastive loss calculation Right: Describes HyperVLM architec-
ture. It differs from CLIP in aspect that encoder output is scaled
and projected onto Poincaré space before computing contrastive
loss and entailment loss for optimization.

a data point. The metric tensor for a Poincaré ball is repre-
sented as gPK=−1

x = (γK=−1
x )2gEx where γK=−1

x = 1
1−||x||2

is the conformity factor and gEx is the metric tensor for Eu-
clidean space represented as gEx = diag([1, 1, ...1]). The
distance dh(p1, p2) between two samples p1 and p2 in the
Poincaré space Pn

K=−k is calculated as:

dh(p1, p2) =
2
√
k
tanh−1(

√
k∥(−p1)⊕k p2∥2) (2)

Where ||.|| represents the Euclidean norm of a data point.
We map Euclidean feature into hyperbolic Poincaré ball
manifold via hi = expK=−1

0 (xEuc
i ) where hi represents

the transformed xi value in the hyperbolic space. The ex-
ponential map value expkx for a vector p in a space having
curvature value K is calculated as:

expKx (p) = x⊕K

(
tanh

(√
−KγK

x ||p||
2

)
p

√
−K||p||

)
(3)

To reverse map a vector p from hyperbolic space of cur-
vature value K to Euclidean space, we apply logarithmic
mapping as following:

logKx (p) =
2

√
−KγK

x

arctanh
(√

−K||v||
) v

||v||
(4)

Where v is calculated as −x⊕K p and ⊕K represents the
Möbius addition defined as follow:

x⊕K y =

(
1− 2K⟨x, y⟩ −K||y||2

)
x+

(
1 +K||x||2

)
y

1− 2K⟨x, y⟩+K2||x||2||y||2
(5)

Where ⟨x, y⟩ represents the inner product between x and
y in hyperbolic space.

4. Methodology
In this section we discuss the learning objective and mod-
elling details of HyperVLM to learn the hierarchy aware
representations for input text and images. HyperVLM is
based on CLIP methodology consisting of a vision trans-
former based image encoder and a text transformer based
text encoder using byte pair encoding. Both encoders gen-
erate image and text representations for input image and text
respectively, which are then passed into a projection layer to
obtain embeddings of a fixed size n. Additionally, we:
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Figure 3. Entailment Cone (projection from Poincaré space on
Euclidean Space). Loss pushes ytime embedding inside an entail-
ment cone projected by embedding x and is defined as the dif-
ference between exterior angle ∠OXY , and half aperture of the
cone. Loss is zero if the ytime is already inside the cone. Indices
i and j in superscripts represent two different instances of image-
text pairs.

Transfer of embeddings onto the Poincaré Space
While training, the image and text samples are passed to
ViT and Text Transformer encoders respectively followed
by a projection layer as shown in Figure 2. This is fol-
lowed by transformation of the embeddings (νim, νtxt)
from Euclidean geometry to hyperbolic Poincaré geometry
as (him, htxt) following the eq. 3 w.r.t the origin.

Numerical Overflow Prevention Since transfer from
Euclidean space to hyperbolic space to calculate (him, htxt)
requires an exponential operation, the norm of embeddings
changes from order of

√
n to e

√
n, potentially causing nu-

merical overflow. To fix this, embedding scaling is applied
before exponential mapping via two learnable parameters
λim and λtxt initialized to 1/

√
n to prevent the norm of the

embedding from numerical overflow in the Poincaré space.

Training Objectives Our training objective is to enforce
semantic similarity and structural partial order relation be-
tween given image-text pairs to improve the generalization
capability of vision-language models. To this end, we op-
timize for image-text contrastive loss and entailment loss.

4.1. Contrastive Loss

We have implemented same multi-class N-pair version of
the contrastive loss as used in CLIP [30] with an important
difference that we calculate the similarity via distances in
Poincaré space from eq.3 instead of cosine similarity. For
a given batch size N we use the negative Poincaré space
distance to compute contrastive loss between 1 positive and
N − 1 negative pair per image and per text. The average of
image wise and text wise loss is used as overall contrastive
loss Lcont to enforce image-text semantic similarity.

4.2. Entailment Loss
We apply an additional entailment loss from [9] with modi-
fication to enforce partial order relationship between image-
text pairs. In [9], the assumption is that text always entails
the image within the entailment cone. In contrast, we adopt
an entropy based strategy to determine correct entailment
order between text and image per instance. In Physics, the
structure of space-time is knitted together by the causal con-
nections represented by the causal graph, the analog of en-
tailment cone. An entailment cone is essentially a structure
representing the “time evolution” from a particular initial
condition [37]. Keeping this view in perspective and given
that image-text embeddings from respective transformers
are learned in same latent space, we can determine the rel-
ative position in entailment cone comparing the entropy of
embeddings with the assumption that entropy increases with
evolution of time along the entailment cone. For a given
image-text pair, the simpler concept with lower entropy
should be entailing more complex concept with higher en-
tropy with time. We calculate the information entropy [33]
of embeddings as: H(xemb) = −

∑n
i=1 xi log2 xi where

H is the entropy of embedding xemb and xi represents the
content of size n embedding for ithdimension. We define
x = ximg , the image embedding if H(ximg) < H(xtxt)
else, x = xtxt. Similarly define y = xtxt, the image em-
bedding if H(ximg) < H(xtxt) else, x = xtxt. Please refer
supplementary material for more theoretical insights.
Figure 3 gives an overview of the entailment loss as pro-
jected in Euclidean space. Exterior angle ∠Oxy is defined
as:

ext(∠Oxy) = arcos

(
⟨x, y⟩

(
1 + ||x||2

)
− ||x||2(

(
1 + ||y||2

)
||x||.||x− y||

√
1 + ||x||2||y||2 − 2⟨x, y⟩

)
(6)

While the aperture of the entailment cone is defined as:

aper(x) = arcsin

(
K

1− ||x||2

||x||

)
(7)

We calculate the entailment loss as: Lentail(x, y) =
max(0, ext(∠Oxy) − aper(x)) − λregext(∠Oxy) (8)
where λreg is the regularization coefficient. Hence, the
overall loss to be optimized becomes L = Lcont+λLentail

where λ is entailment regularization factor.

5. Experiments
To establish the competitiveness of Poincaré hyperbolic rep-
resentations of HyperVLM compared to Euclidean repre-
sentations obtained from CLIP-style models, we compare
zero shot classification and retreival performances of Hy-
perVLM, MERU and CLIP. We train HyperVLM on pub-
lic RedCaps dataset [8] consisting of 12M image-text pairs
for 120k iterations 8xV100 GPUs. Model We use differ-
ent size versions of Vision Transformers (S/B/L) as vision
encoder using patch size of 16, freezing the positional en-
coding layer of the model. Text encoder is same as that of
CLIP with 12 layer 512 dimensional Transformer with 77
maximum length byte pair encoding. Poincaré ball of 512
dimensions and learnable curvature K is used for Poincaré
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ViT-S/16

CLIP 60.1 24.4 33.8 27.5 1.4 15.0 73.7 47.0 88.2 18.6 31.4 5.2 10.0 50.2 50.1
MERU 52.0 24.7 33.7 28.0 1.3 16.2 72.3 49.2 91.1 30.4 32.0 4.8 7.5 51.0 50.0
HyperVLM 53.6 27.7 35.1 27.6 1.6 17.6 71.9 47.9 90.9 30.8 32.1 5.1 10.4 53.8 50.8

ViT-B/16

CLIP 65.5 33.4 33.3 29.8 1.4 17.0 77.9 50.9 92.2 25.6 31.0 5.8 10.4 54.1 51.5
MERU 67.7 32.7 34.8 30.9 1.7 17.2 79.3 52.1 92.5 30.2 34.5 5.6 13.0 49.8 49.9

HyperVLM 70.4 35.4 34.9 31.3 2.1 17.9 78.5 51.3 91.9 31.7 33.5 5.5 12.1 49.6 50.0

ViT-L/16

CLIP 72.0 36.4 36.3 32.0 1.1 16.5 78.8 48.6 93.7 26.7 35.4 6.1 14.8 51.2 51.1
MERU 68.7 35.5 37.2 33.0 2.2 17.2 80.0 52.1 93.7 28.1 36.5 6.2 11.8 52.7 49.3

HyperVLM 74.3 38.8 37.5 33.3 2.6 18.5 80.1 51.3 93.8 27.9 37.2 6.5 12.0 55.7 50.0

Table 1. Comparison of Proposed Method HyperVLM vs Baseline Methods on different datasets. The metrics in color represent the best
performance metric for particular dataset. We observe that HyperVLM outperforms all methods in 13 out of 18 datasets.

text → image image → text
R5 R10 R5 R10

ViT-S/16

CLIP 29.9 40.1 37.5 48.1
MERU 30.5 40.9 39.0 50.5
HyperVLM 30.5 40.2 40.4 50.7

ViT-B/16

CLIP 32.9 43.3 41.4 52.7
MERU 33.2 44.0 41.8 52.9

HyperVLM 33.3 43.7 42.1 53.4

ViT-L/16

CLIP 31.7 42.2 40.6 51.3
MERU 32.6 43.0 41.9 53.3
HyperVLM 32.6 42.7 43.2 53.8

Table 2. Zero Shot Image and Text Retrieval on COCO Dataset.
Metric in color represent best performance for the task.

space transformation post embedding scaling. Optimizer
We use AdamW Optimizer [21] with weight decay of 0.2
and (β1, β2) = (0.9, 0.98). Weight decay is disabled for
all gains, biases, and learnable scalars. model is trained for
120K iterations with batch size 1024 (≈ 10 epochs). The
maximum learning rate is 5 × 10−4, which increases lin-
early for first 4K iterations, followed by cosine decay to
0 [20]. We evaluate the performance the HyperVLM with
CLIP and MERU on 18 datasets for zero shot classification
and on COCO dataset for retrieval task.

Additionally, we evaluate image-text and text-image re-
trieval accuracy using BLIP [19] architecture by implement-
ing the ITC loss calculation module in Poincarè hyperbolic
space with entropy based image-text entailment order and
we compare it with Euclidean space BLIP architecture for
COCO dataset in Table 5 in supplementary material.

5.1. Results
From Table 1, we compare HyperVLM’s performance for
zero shot classification and observe it performing better
than the Euclidean space CLIP for 14 out of 18 datasets and
than Lorentz model based MERU for 15 out of 18 datasets
and on 13 out of 18 datasets overall. Comparing Top N

retrieval recall for COCO dataset in Table 2 we see that
HyperVLM performs better than CLIP on 4 out of 4 tasks
while it performs better than MERU on 3 out of 4 tasks.
Overall, HyperVLM performs better than all methods on
3 out of 4 tasks demonstrating the competitveness of the
proposed method. Ablation results for regularization terms
λreg and λ will be shared in supplementary material. In
Table 5 we observe that the proposed method outperforms
the euclidean space representation in BLIP architecture for
image-text and text-image retrieval task.

6. Discussion
We obtain better performance for HyperVLM over Eu-
clidean space CLIP owing to hyperbolic nature of Poincaré
geometry which allows the capture of partial order relation
between image and text, in addition to the semantic relation
for learning representation. The incremental benefit over
MERU can be attributed to 2 reasons: 1. Use of Poincaré
space over Lorentz space: As per the work done in [24]
Poincare geometry has a relatively larger capacity than the
Lorentz model for correctly representing points 2. Entail-
ment loss based on entropy derived relative hierarchy be-
tween image and text at instance level.

7. Conclusion
In this work we discussed Poincaré geometry based large
scale image-text model that learns image-text partial order
hierarchical relation, in order to capturing their semantic
similarity. The main contribution of this work can be sum-
marised as: 1.Poincaré Hyperbolic Geometry based Image-
Text model capturing image-text semantics along with their
hierarchical-relation. 2. Embedding entropy based method
to decide the entailment order of image-text when enforcing
partial order relationship. We demonstrate the efficacy of
the proposed method via experiments comparing accuracy
for zero shot classification and recall for zero shot retrieval.
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[23] Jiřı́ Matoušek. Geometric discrepancy: An illustrated guide.
Algorithms and Combinatorics, 18, 1999. 2

[24] Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang.
The numerical stability of hyperbolic representation learn-
ing, 2023. 4, 1

[25] Kevin P Murphy. Machine learning: a probabilistic perspec-
tive. MIT press, 2012. 1

[26] Maximillian Nickel and Douwe Kiela. Poincaré embeddings
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A. Hyperbolic Geometry
A.1. Manifold
A manifold is a topological space that locally resembles Eu-
clidean space. A precise definition from topology is that an
n-dimensional manifold M is a topological Hausdorff space
with a countable base which is locally homeomorphic to
Rn. For every point p in M , there exists an open neigh-
bourhood U and a homeomorphism h: U → V which maps
the set U onto an open set V ⊂Rn. Thus the point is either
an isolated point (when n = 0), or it has a neighborhood
which is homeomorphic to the open ball

Dn = {(x1, x2, ..., xn) ∈ Rn : x2
1 + x2

2 + ...+ x2
n < 1}

Riemannian manifold refers to real and smooth manifold
with Riemannian tensor, which is metric tensor and can be
defined by a family a inner products as follow:
Suppose p is a point on the curve of manifold M with p ∈
M and denote the tangent space by Tp(M) ∈ Rn, for any
two tangent vectors X(p) and Y (p), q : TpM × TpM →
R defines a smooth function for the point p ∈ M

A.2. Curvature
In simple terms, curvature of a curve is its measure of devia-
tion from a straight line and that of a surface is the measure
of its deviation from a plane. In terms of space, a curved
space refers to spatial geometry which shows some finite
curvature w.r.t a plane surface.

A.3. Hyperbolic Space
Hyperbolic n-space, denoted Hn, is the unique simply
connected, n-dimensional Riemannian manifold which has
constantly negative sectional curvature. Let (H, d) denote
a metric space, it is said to be a hyperbolic metric space
if the following conditions are satisfied: 1) for any points
p, q ∈ H that are the endpoints of a unique metric segment
is isometric to the interval of real line [0, d(p, q)) 2) let the
unique point t = αp ⊕ (1 − α)q where α ∈ [0, 1], it satis-
fies dpt = 1 − αdpq, dtq = αdpq 3) for all x, y, p, y ∈ H
and β ∈ [0, 1] we have dβx ⊕ 1 − βp, βy ⊕ 1 − βq ≤
βdxy + 1− βdpq

B. Ablation Study
In Table 3 and 4, we observe the difference between the pro-
posed Poincaré embedding with the entropy inferred text-
image order entailment loss compared with Poincaré em-
bedding without entropy inferred text-image order entail-
ment where text always entails image in entailment loss.

The zero shot classification and retrieval experiments have
been conducted for ViT S/16 model for 120000 iterations
using RedCaps dataset, same optimizer and learning rate as
the proposed method. As can be observed, the addition of
entailment leads to improvement in 14 out of 18 datasets
in zero shot classification setting while improving perfor-
mance in all 4 zero shot retrieval tasks for COCO dataset.

In Table 5 we run the ablation study for λreg and λ by
training ViT-S/16 HyperVLM model for 1 epoch (6k itera-
tions) and compare the average zero shot retrieval accuracy
for COCO dataset. We find that λreg = 0.1 and λ = 0.1
provides the best performance and was chosen as the value
for our experiments. The entailment loss described in eq. 9
depends on λreg and λ for calculation of the overall entail-
ment loss.

C. Advantages of Poincaré Ball over Lorentz
Hyperboloid

The choice of Poincaré ball model over Lorentz hyperboloid
for vision-language representation offers several theoreti-
cal and practical advantages [29]. In the Poincaré ball
model, the representation capacity scales more effectively
with dimension compared to the Lorentz model Ln = {x ∈
Rn+1 : ⟨x, x⟩L = −1, x0 > 0} [31]. This superior scaling
property emerges from three key aspects:
Geometric Properties The Poincaré ball model provides
conformal mapping that preserves angles, leading to more
stable optimization. The metric tensor at point x is given
by gDx = ( 2

1−∥x∥2 )
2gE where gEx is the metric tensor

for euclidean space represented as gEx = diag([1, 1, ...1]),
which naturally adapts to the hierarchical structure of the
data [26]. In contrast, the Lorentz model’s metric tensor
gLx = diag(−1, 1, ..., 1) remains constant, potentially limit-
ing its adaptability to complex hierarchical relationships.
Numerical Stability The bounded nature of the Poincaré
ball (∥x∥ < 1) provides inherent numerical stability dur-
ing optimization [24]. The gradients in Poincaré space
are naturally scaled by the conformal factor, prevent-
ing exponential explosion or vanishing issues common in
Lorentz space where coordinates can grow unboundedly.
This leads to more stable training dynamics:∥∇Df(x)∥ ≤

2
1−∥x∥2 ∥∇Ef(x)∥
Representation Efficiency For hierarchical structures of
depth d and branching factor b, the Poincaré ball achieves
distortion O(log(d)) compared to O(

√
d) in Lorentz space

[31]. This leads to more efficient embedding of hi-



erarchical structures, particularly for deep hierarchies:
DistortionD(T ) < c log(d) << c

√
d < DistortionL(T )

where T represents a tree structure and c is a constant. This
efficiency translates to 1. Better preservation of hierarchi-
cal relationships, 2. More accurate representation of fine-
grained semantic differences and 3. Improved gradient flow
during optimization

These advantages make the Poincaré ball particularly
suitable for vision-language modeling where preserving
both hierarchical structure and semantic similarity is cru-
cial.

D. Theoretical Insight
Motivation Vision-language representation learning inher-
ently involves hierarchical structures in both modalities. For
instance, visual concepts form natural hierarchies (e.g., an-
imal → mammal → dog → breed), and textual descriptions
similarly exhibit hierarchical relationships. Traditional Eu-
clidean spaces, with their polynomial volume growth [23],
are suboptimal for representing such hierarchical structures.
In contrast, hyperbolic geometry, characterized by exponen-
tial volume growth [13], naturally accommodates tree-like
hierarchical structures.

Information-Theoretic Hierarchy and Composi-
tional Entailment
Information Content and Hierarchical Structure in
Shared Space The fundamental connection between em-
bedding complexity and hierarchical relationships can be
established through Shannon’s information theory [34]. For
embeddings of different modalities projected into a com-
mon space through encoders fθimg

and fθtxt
, the shared rep-

resentation ensures that information content comparison is
meaningful. This is because:
1. The encoders map inputs to a common manifold where

geometric and information-theoretic properties are pre-
served

2. The contrastive learning objective ensures semantic
alignment in this shared space

3. The hyperbolic nature of the space maintains consistent
hierarchical relationships across modalities
For an embedding vector x in this shared space, the in-

formation entropy:

H(x) = −
n∑

i=1

pi log pi, pi =
|xi|∑n
j=1 |xj |

represents the evolved information content of the con-
cept in the common space [7]. This measure provides theo-
retical justification for hierarchical relationships because:
1. Common Information Currency: The shared space

acts as a ”common currency” for information across
modalities, making entropy comparisons meaningful [1]

2. Information Evolution: The embedding entropy re-
flects how information evolves from general to specific
concepts in the shared manifold:

Hshared(x) = Hmodal(x) + Ialignment(x)

where Ialignment represents the additional information
gained through cross-modal alignment

3. Information Content Principle: More specific con-
cepts require additional information to be fully specified
beyond their parent concepts, leading to higher entropy
values:

∆H = H(child)−H(parent) ≥ 0

text → image image → text
R5 R10 R5 R10

ViT-S/16
Poincaré 30.1 40.2 39.0 50.2
HyperVLM 30.5 40.2 40.4 50.7

Table 3. Zero Shot Image and Text Retrieval on COCO Dataset.
Metric in color represent best performance for the task. Row corre-
sponding to Poincaré represents the case where no entropy derived
entailment order is enforced in the entailment loss and we assume
that text always entail the image as assumed in MERU. The row
corresponding to HyperVLM represent the case where embedding
entropy derived image-text entailment order is applied in entail-
ment loss.

λ
0 0.01 0.1 0.5 1

λreg

0 20.2 17.5 18.6 16.5 18.7
0.01 20.2 15.4 22.1 16.7 16.0
0.1 20.2 21.1 22.3 18.9 19.0
0.5 20.2 19.2 18.6 16.8 15.7
1 20.2 18.6 18.1 15.4 19.5

Table 4. To select proper values of λ and λreg we run a grid search
for different values and compare the average of average zero shot
retrieval accuracy for different retrieval tasks for COCO dataset
and zero shot classification accuracy for CIFAR 100 dataset by
training ViT-S/16 model for 1 epoch (6K iterations). We find the
best performance at λ = 0.1 and λreg = 0.1. The best perfor-
mance metric in color



Model Text Image

R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean

BLIP 77.60 94.10 97.20 89.63 61.00 84.50 90.70 78.73

HyperVLM(BLIP) 80.24 94.52 97.32 90.69 62.32 85.12 91.32 79.58

Table 5. Comparison of HyperVLM(BLIP) and BLIP Models for COCO Text-Image and Image-Text Retrieval
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ViT-S/16

Poincaré 74.9 55.3 27.5 34.1 28.3 1.5 16.4 72.9 60.0 48.4 90.7 28.3 30.6 4.9 8.3 14.4 48.9 50.2

HyperVLM 75.1 53.6 27.7 35.1 27.6 1.6 17.6 71.9 62.1 47.9 90.9 30.8 32.1 5.1 10.4 14.8 53.8 50.8

Table 6. Comparison of proposed method HyperVLM implementing entropy inferred image-text entailment order, with HyperVLM without
entropy inferred image-text entailment order where text always entail image on different datasets. The metrics in color represent best
performance metric for particular dataset. We observe that HyperVLM outperforms the Poincaré method where we always assume text to
be entailing image, in 14 out of 18 datasets.
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