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Abstract

Compressing Large Language Models (LLMs)001
into task-specific Small Language Models002
(SLMs) encounters two significant challenges:003
safeguarding domain-specific knowledge pri-004
vacy and managing limited resources. To005
tackle these challenges, we propose PPC-GPT,006
a novel unified framework that systematically007
addresses both privacy preservation and model008
compression in federated settings. PPC-GPT009
works on a server-client federated architec-010
ture, where the client sends differentially pri-011
vate (DP) perturbed task-specific data to the012
server’s LLM. The LLM then generates syn-013
thetic data along with their corresponding ra-014
tionales. This synthetic data is subsequently015
used for both LLM pruning and retraining pro-016
cesses. Our framework’s key innovation lies017
in its holistic integration of privacy-preserving018
mechanisms, synthetic data generation, and019
task-specific compression techniques, creating020
unique benefits through component interaction.021
Our experiments across diverse text generation022
tasks demonstrate that PPC-GPT successfully023
achieves dual objectives: maintaining com-024
petitive performance comparable to full-sized025
LLMs while ensuring robust privacy protection026
through its federated architecture.027

1 Introduction028

Large Language Models (LLMs), such as GPT-029

4 (OpenAI, 2023a) and LLaMA3-70B (Dubey030

et al., 2024), boasting billions of parameters031

and remarkable text generation capabilities, have032

emerged as a transformative force in the realm of033

artificial intelligence. However, their training de-034

mands substantial computational resources (Ope-035

nAI, 2023b), and their colossal size poses signif-036

icant hurdles for practical deployment, especially037

in resource-limited environments. Conversely,038

Small Language Models (SLMs), such as OPT-039

1.3B (Zhang et al., 2022) and Pythia-1.4B (Bider-040

man et al., 2023), frequently demonstrate superior041

computational efficiency and accelerated response 042

rates, making them ideally suited for real-time ap- 043

plications with constrained resources. Enterprises 044

with constrained resources typically prefer deploy- 045

ing SLMs, as they can do so without the concern of 046

potential data leaks, a risk that is heightened when 047

utilizing remote LLMs. Yet, training an SLM from 048

scratch, even the smallest billion-parameter models, 049

entails considerable computational expenses that 050

are financially prohibitive for most enterprises. Fur- 051

thermore, SLMs exhibit inherent limitations that 052

stem from their performance constraints. 053

In this work, we aim to tackle the following ques- 054

tion: Is it feasible to develop a task-specific and 055

competitive SLM by harnessing an existing pre- 056

trained LLM for enterprises with limited resources, 057

while ensuring compliance with privacy require- 058

ments? To achieve this objective, we delve into 059

structured pruning (Xia et al., 2024; Men et al., 060

2024; Kim et al., 2024), as a viable approach. Prun- 061

ing is generally regarded as a strategy for com- 062

pressing task-specific models by eliminating redun- 063

dant parameters and expediting inference, all while 064

maintaining task performance. 065

We identify two crucial technical challenges as- 066

sociated with this problem: Firstly, how can we 067

ensure the privacy of task-specific data when enter- 068

prises with limited resources are unable to prune 069

an LLM into an SLM independently? In such 070

cases, the need to transmit task-specific data to 071

a remote server equipped with powerful comput- 072

ing resources arises, a practice that is frequently 073

unacceptable to most enterprises due to privacy con- 074

cerns. Secondly, how can we ensure that the per- 075

formance of the SLM remains comparable to that 076

of the LLM? Structured pruning inevitably leads to 077

some degree of performance degradation. To over- 078

come these challenges, we introduce PPC-GPT, a 079

privacy-preserving federated framework designed 080

for compressing LLMs into task-specific SLMs via 081

pruning and Chain-of-Thought (CoT) distillation. 082
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As depicted in Figure 1, the envisioned architec-083

ture of PPC-GPT comprises a high-performance084

server adept at deploying LLMs and facilitating085

their pruning into SLMs, coupled with a client en-086

dowed with more constrained computational capa-087

bilities for running SLMs. Within the confines088

of our framework, the workflow unfolds as de-089

tailed below. Initially, the client sends task-specific090

data, perturbed to ensure privacy, to the server.091

These data are protected by the Exponential Mech-092

anism of Differential Privacy (Dwork, 2006; McSh-093

erry and Talwar, 2007; Tong et al., 2025), thereby094

guaranteeing privacy protection. Subsequently,095

the server-side auxiliary LLMsyn generates syn-096

thetic data along with their corresponding ratio-097

nales, based on these perturbed inputs. The server-098

side LLMo, which represents the original model,099

undergoes pruning by PPC-GPT to yield the tar-100

get SLM. This pruning process is informed by both101

the synthetic data and their associated rationales.102

Following the pruning of the LLMo, the server re-103

trains the target SLMt through CoT (Wei et al.,104

2022; Hsieh et al., 2023; Li et al., 2023) knowledge105

distillation, leveraging the same synthetic data and106

rationales. Lastly, the server dispatches the refined107

target SLM to the client, who then proceeds to re-108

train the target SLM utilizing its locally private109

data.110

Our contributions can be summarized as follows:111

• Framework-Level Innovation in Federated112

LLM Compression. We propose PPC-GPT,113

a unified framework that systematically ad-114

dresses privacy preservation and model com-115

pression in federated settings. The frame-116

work’s novelty lies in its holistic integration117

of components (exponential mechanism, CoT-118

guided synthetic data generation, rationale-119

aware structured pruning, CoT distillation)120

that can be upgraded with improved methods,121

ensuring adaptability to future advances.122

• Component Interaction Benefits. The in-123

tegration creates unique advantages through124

component interaction. For example, com-125

bining DP-perturbed data with CoT-guided126

synthetic data generation enables both privacy127

protection and effective knowledge transfer,128

while the rationale-aware structured pruning129

leverages this enhanced data quality for better130

compression decisions.131

• Empirical Assessment of LLM Compress-132

ing to Task-Specific SLM. Through exten- 133

sive experiments across various text genera- 134

tion tasks using LLaMA and OPT models, we 135

demonstrate how PPC-GPT’s component in- 136

teractions lead to effective task-specific com- 137

pression while maintaining privacy, achieving 138

results competitive with full-sized LLMs. 139

2 Related Work 140

2.1 Differential Privacy 141

In this section, We briefly revisit two important 142

definitions of differential privacy: ϵ-Differential 143

Privacy and Exponential Mechanism (EM). 144

ϵ-Differential Privacy (DP). The Definition 145

of ϵ-Differential Privacy (DP) (Dwork, 2006). 146

A randomized algorithm M : D → S is ϵ- 147

Differential Privacy if for any two neighboring 148

datasets D1, D2 ∈ D that differ exactly in a single 149

data sample, and for any output O ⊆ S: 150

Pr[M(D1) ∈ O] ≤ eϵPr[M(D2) ∈ O] (1) 151

where ϵ is a privacy parameter. Smaller values of ϵ 152

imply stronger privacy guarantees. 153

Exponential Mechanism. The Definition of 154

Exponential Mechanism (McSherry and Talwar, 155

2007; Tong et al., 2025). For a given scoring func- 156

tion u : X × Y → R, a randomized mechanism 157

M(X,u, Y ) is ϵ-DP compliant if it satisfies: 158

Pr[y|x] ∝ exp(
ϵ · u(x, y)
2△ u

) (2) 159

where the sensitivity △u is defined as: 160

△u = max
x,x′∈X,y∈Y

|u(x, y)− u(x
′
, y)| (3) 161

2.2 Differential Privacy Synthetic Data 162

A practical approach to generating private synthetic 163

data involves training a language model, such as 164

LLaMa2-7B (Touvron et al., 2023), on private data 165

using DP through DP-SGD (Song et al., 2013; Bass- 166

ily et al., 2014; Abadi et al., 2016). Subsequently, 167

the DP model is sampled repeatedly to produce 168

synthetic data (Mattern et al., 2022; Yue et al., 169

2023; Kurakin et al., 2023). Research conducted 170

by (Mattern et al., 2022; Yue et al., 2023; Kurakin 171

et al., 2023) demonstrates that training downstream 172

models on DP synthetic data achieves performance 173

comparable to training directly on real data with 174
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Figure 1: The overview of our proposed PPC-GPT. The PPC-GPT comprises four key components: (1) The
Exponential Mechanism-based Data Perturbation, which perturbs the client’s data to ensure privacy; (2) The
CoT-Guided Synthetic Data Generation, responsible for creating new synthetic data and rationales based on the
perturbed data; (3) The Rationale-Aware Structured Pruning, a process that prunes original LLMo to obtain the
target smaller SLM ; (4) The Retraining SLM, where the target SLM is retrained using both synthetic and original
private data to restore accuracy.

DP, thereby underscoring the high quality of the175

synthetic data.176

However, a significant challenge arises because177

cutting-edge LLMs, like GPT-4, do not offer178

model weights, making DP fine-tuning impracti-179

cal. Even for open-source LLMs, such as LLaMa3-180

70B (Dubey et al., 2024), the process is resource-181

intensive. Meanwhile, these DP fine-tuning meth-182

ods inherently rely on a trusted server to gather183

data from data owners for model training (Chen184

et al., 2023), significantly limiting their applicabil-185

ity in scenarios where such trusted servers are not186

available, as is the case in our research context. In187

the context of this work, we operate within a client-188

server architecture where fine-tuning the LLM on189

the server is not an option.190

2.3 Model Pruning191

Model pruning, initially proposed by (LeCun et al.,192

1989) and subsequently enhanced by (Han et al.,193

2015), stands as a resilient and efficient strategy for194

mitigating model redundancy and attaining com-195

pression. This methodology branches into two pri-196

mary techniques: unstructured pruning and struc-197

tured pruning.198

Unstructured pruning (Dong et al., 2017; Lee199

et al., 2019; Wang et al., 2020; Sun et al., 2024;200

Frantar and Alistarh, 2023) can obtain highly com-201

pressed models by directly pruning neurons, dis-202

regarding the model’s internal architecture, which 203

also causes unstructured sparsity and hard deploy- 204

ment. A more pragmatic and structured option 205

is structured pruning. Structured pruning targets 206

organized patterns for removal, encompassing en- 207

tire layers (Jha et al., 2023), attention heads within 208

Multi-Head Attention (MHA) mechanisms (Michel 209

et al., 2019), hidden sizes in Feedforward Neural 210

Networks (FFN) (Nova et al., 2023), as well as hy- 211

brid configurations (Kurtić et al., 2024). In recent 212

times, there has been a surge in structured pruning 213

research tailored specifically for LLMs. For ex- 214

ample, ShortGPT (Men et al., 2024), LaCo (Yang 215

et al., 2024), and Shortened LLaMa (Kim et al., 216

2024) concentrate solely on pruning depth (i.e., 217

layer-wise). LLM-Pruner (Ma et al., 2023) elim- 218

inates coupled structures in relation to network 219

width while preserving the layer count. Sheared- 220

LLaMA (Xia et al., 2024) introduces a mask learn- 221

ing phase that is designed to pinpoint prunable 222

components in both network width and depth. Our 223

work falls in the category of structured pruning of 224

LLMs. 225

3 Problem Formulation 226

Given an LLM fθ with parameters θ, which repre- 227

sents the original LLM that requires pruning, and 228

a task-specific dataset D containing private data, 229
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our objective is to develop a target smaller, task-230

specific compressed SLM fϕ parameterized by ϕ.231

To acheive this, we seek to find the optimal prun-232

ing strategy P and retraining approach R. The233

objective can be formulated as follows:234

min
P,R

L(ϕ; θ,D)

s.t. |ϕ| ≪ |θ| and Lp(D) < δ
(4)235

where L(ϕ; θ,D) is the loss function measuring the236

performance of the compressed SLM on the task-237

specific dataset. |ϕ| and |θ| denote the number of238

parameters in the compressed and original models,239

respectively. Lp(D) is the privacy loss incurred due240

to the perturbation of the data to ensure differential241

privacy.242

Our goal is to find the optimal pruning strategy243

P and retraining approach R that minimizes the244

overall loss, taking into account both the perfor-245

mance of the compressed SLM and the privacy246

protection of the task-specific data in the client.247

We assume the server to be semi-honest, meaning248

it may attempt to extract the client’s private data249

from the information it receives.250

4 The Proposed PPC-GPT Framework251

In this section, we introduce PPC-GPT, a unified252

privacy-preserving federated framework for com-253

pressing LLMs into task-specific SLMs. We illus-254

trate the PPC-GPT architecture in Figure 1. As255

detailed in Algorithm 1, our framework comprises256

four key modules that work in concert:257

• Exponential Mechanism-based Data Pertur-258

bation: Ensures privacy protection through259

exponential mechanism.260

• CoT-guided Synthetic Data Generation: Cre-261

ates high-quality synthetic data and rationales.262

• Rationale-Aware Structured Pruning: Lever-263

ages synthetic data and rationales for model264

compression.265

• Retraining SLM: Optimizes the compressed266

model through two-stage knowledge distilla-267

tion.268

We elaborate on these modules in Section 4.1,269

4.2, 4.3 and 4.4, respectively. Through this inte-270

grated approach, PPC-GPT effectively addresses271

the challenges of privacy-preserving LLM compres-272

sion while maintaining task-specific performance.273

4.1 Exponential Mechanism-based Data 274

Perturbation 275

We utilize an exponential mechanism (McSherry 276

and Talwar, 2007; Yue et al., 2021; Chen et al., 277

2023) to perturb the local private data D = 278

{(xi, yi)}Ni=1, which satisfies the criteria for the 279

ϵ-DP. For detailed information about the exponen- 280

tial mechanism, please refer to Section 2.1. We 281

denote the perturbed dataset as Dp = {(xpi )}
N
i=1, 282

where xpi signifies an perturbed input based on the 283

original local private dataset D . 284

The Exponential Mechanism M is defined as a 285

randomized algorithm that, given the original local 286

private dataset D, outputs the perturbed dataset Dp 287

with probability proportional to the exponential 288

of the utility score (in this work, we use cosine 289

similarity as the utility function): 290

M(D) = Dp with prob ∝ exp(
ϵ · u(D,Dp)

2△ u
)

(5) 291

4.2 CoT-guided Synthetic Data Generation 292

When the server-side LLMsyn receives the per- 293

turbed data Dp, the server initiates a procedure 294

where LLMsyn generates fresh synthetic data 295

along with their corresponding rationales based 296

on these perturbed data. We denote the synthetic 297

dataset as Ds = {(xsi , (ysi , rsi ))}
Ns

i=1, where xsi sig- 298

nifies an input, ysi signifies the corresponding ex- 299

pected output label, rsi signifies the desired ratio- 300

nale, and Ns represents the sample size of synthetic 301

data. 302

We introduce a simple and efficient method for 303

generating synthetic data, utilizing prompt engi- 304

neering techniques and CoT technology: 305

1. Question Generation. We prompt LLMsyn 306

to create a new question, starting from a 307

perturbed question. To enhance the valid- 308

ity of these new created questions, we en- 309

force three guidelines within the prompt: (1) 310

the new question needs to conform to com- 311

mon knowledge, (2) it must be solvable on 312

its own, independent of the original question, 313

and (3) it should not contain any answer re- 314

sponses. Furthermore, we establish specific 315

formatting standards for both questions and 316

answers, customized to suit the needs of vari- 317

ous datasets (Li et al., 2024). 318

2. Answer Generation. We instruct LLMsyn to 319

generate a CoT response for every newly cre- 320
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ated question. For consistency, we request321

LLMsyn to generate answers to the same322

question three times and check for agreement.323

If the answers differ, we reject the synthetic324

data.325

3. Rationale Generation. We request LLMsyn326

to generate rationales for each synthetic data327

using the CoT prompting technique.328

Detailed prompt designs are presented in Ap-329

pendix D. The generated synthetic data and their330

rationales are then employed for model pruning331

and retraining on the server-side.332

4.3 Rationale-Aware Structured Pruning333

LLMs exhibit layer-wise redundancy, with deeper334

layers often showing higher levels of functional335

overlap. To identify and remove redundant layers336

effectively, we need a quantitative metric that can337

assess each layer’s contribution to the model’s per-338

formance. This intrinsic metric should evaluate339

both the layer’s individual importance and its inter-340

action with other layers in maintaining the model’s341

overall functionality.342

To quantify the impact of each layer, we use a343

novel metric termed "Block Influence" (BI), which344

is proposed in the ShortGPT (Men et al., 2024).345

This metric is grounded in the hypothesis that a346

transformer block’s significance is directly propor-347

tional to the extent it modifies the hidden states.348

Mathematically, the BI score for the ith block is349

computed as:350

BIi = 1− EX,t

[
XT

i,tXi+1,t

||Xi,t||2||Xi+1,t||2

]
, (6)351

where Xi denotes the input to the ith layer, and352

Xi,t represents the tth row of Xi.353

On the server, we utilize the synthetic dataset354

Ds, as described in Section 4.2, to compute the BI355

score for each layer of the LLMo model, denoted356

as fθo . This model represents the original LLM357

that requires pruning.358

The original BI method (Men et al., 2024) re-359

lies solely on input and task label information, pro-360

cessed through a single forward pass: fθ(xsi ) → ysi .361

We further extend the BI computation to encom-362

pass two distinct facets of influence: fθ(xsi ) → ysi363

and fθ(x
s
i ) → rsi . This enhancement not only facil-364

itates the prediction of task labels but also enables365

the generation of corresponding rationales based366

on the inputs. Our novel BI score is determined as 367

follows: 368

BIi = BILabel,i + BIRationale,i (7) 369

where BILabel,i and BIRationale,i signify the influ- 370

ences pertaining to label predictions and rationale 371

generation, respectively. 372

A higher BI score indicates greater layer impor- 373

tance in the model architecture. As illustrated in 374

Figure 2, we leverage these BI scores to guide our 375

pruning strategy: layers are arranged in ascend- 376

ing order based on their BI scores, and those with 377

lower scores are systematically removed to obtain 378

the pruned model structure SLM fϕ. 379

4.4 Retraining 380

We employ the term "retraining" to designate the 381

process of performance recovery subsequent to 382

pruning. In this section, retraining is divided into 383

two stages: (1) Server-side Retraining, and (2) 384

Client-side Retraining. 385

Server-side Retraining. On the server side, we 386

utilize the synthetic dataset Ds, as described in 387

Section 4.2, to retrain the pruned model SLM fϕ. 388

We propose CoT knowledge distillation, guided by 389

rationales generated by LLMsyn, to enhance the 390

performance of SLM fϕ. Formally, we conceptual- 391

ize the learning process with rationales as a multi- 392

task learning problem (Zhang and Yang, 2021; Wei 393

et al., 2022; Hsieh et al., 2023). Specifically, we 394

train the model fϕ(xsi ) → (ysi , r
s
i ) to achieve not 395

only the prediction of task labels but also the gen- 396

eration of corresponding rationales based on tex- 397

tual inputs. This multi-task training ensures that 398

our model produces not only accurate predictions 399

but also insightful justifications for its decisions, 400

thereby enhancing the model’s transparency and 401

explainability. The multi-task learning objective 402

can be formulated as follows: 403

L = LLabel + LRationale (8) 404

where LLabel represents the label prediction loss: 405

LLabel(ϕ;Ds) = E(xs,ys)∼Ds
ℓCE(fϕ(x

s), ys) (9) 406

and LRationale represents the rationale generation 407

loss: 408

LRationale(ϕ;Ds) = E(xs,rs)∼Ds
ℓCE(fϕ(x

s), rs)
(10) 409

where ℓCE denotes the cross-entropy loss. 410
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Client-side Retraining. On the client side, we411

utilize local private data D to further retrain the412

pruned model, SLM fϕ, once it has been received413

from the server. Our work encompasses conven-414

tional training, leveraging ground truth labels to415

further enhance the performance of SLM fϕ. For-416

mally, the label prediction loss for this dataset D is417

formulated as follows:418

LLabel(ϕ;D) = E(x,y)∼DℓCE(fϕ(x), y) (11)419

5 Experiments420

5.1 Setup421

We have devised a scenario to assess the perfor-422

mance of the PPC-GPT framework across various423

text generation tasks. This setup employs a client-424

server architecture, where the server hosts an auxil-425

iary LLM for synthetic data generation, denoted as426

LLMsyn. Specifically, we have selected LLaMa3-427

70B (Dubey et al., 2024) for this purpose. For428

model pruning, we utilize LLaMA2-7B (Touvron429

et al., 2023) and OPT-6.7B (Zhang et al., 2022)430

as the source models, denoted as LLMo. In the431

default setting, the privacy budget ϵ = 3, and the432

synthetic data ratio is 8.433

Datasets and Evaluation Metrics. We con-434

duct a comparative evaluation of PPC-GPT on435

QA datasets. Specifically, we include Common-436

senseQA (CQA) (Talmor et al., 2019), Open-437

BookQA (OBQA) (Mihaylov et al., 2018), ARC-438

C (Clark et al., 2018), ARC-E (Clark et al., 2018),439

FiQA-SA (Maia et al., 2018). For these datasets,440

we primarily use Accuracy as the evaluation metric.441

It’s worth noting that in our experiments, all meth-442

ods undergo zero-shot evaluation and we use the443

lm-evaluation-harness package (Gao et al., 2023).444

Baselines. To evaluate the performance of our445

PPC-GPT framework, we conducted a comparative446

analysis against the following baselines:447

• DenseSFT, where the client independently448

fine-tunes LLMo using its private dataset.449

• Plain-C, where the client independently450

prunes LLMo using its private dataset (sup-451

pose the client can deploy LLMo) and subse-452

quently fine-tunes the pruned model.453

• DP-Instruct-C (Yu et al., 2024), where the454

client finetunes generator (e.g., LLaMa2-455

1.3B) with DP-SGD and using synthetic456

datasets generated from generator to prune457

LLMo and subsequently fine-tunes the458

pruned model with the private dataset.459

5.2 Main Results 460

In our experiments, we extensively evaluated the 461

performance of the proposed PPC-GPT framework 462

across various text generation tasks. Notably, given 463

that current structured pruning methods typically 464

reduce parameters by no more than 30%, we con- 465

ducted experiments with approximately 30% of the 466

parameters pruned. Additional experiments explor- 467

ing different parameter reduction proportions will 468

be discussed in Section 5.3.5. 469

As shown in Table 1, the results highlight the 470

effectiveness of PPC-GPT in compressing LLMs 471

into task-specific SLMs while prioritizing data pri- 472

vacy protection, when compared to other base- 473

line approaches. PPC-GPT outperforms the DP- 474

Instruct-C method, which utilizes DP-SGD for pri- 475

vacy protection during model compression. Fur- 476

thermore, PPC-GPT even surpasses the Plain-C 477

method, which directly compresses the model us- 478

ing private data. Additionally, when compared 479

to DenseSFT, the compressed model in PPC-GPT 480

even outperforms the raw model on some datasets. 481

Specifically, taking LLaMa2-7B for an example, 482

in the LLaMa2-7B model, PPC-GPT outperforms 483

the DP-Instruct-C method by 0.4%, 5.2%, 5%, 484

15.1%, and 1.8% on the CQA, OBQA, ARC-E, 485

ARC-C, and FiQA-SA datasets, respectively. Sim- 486

ilarly, PPC-GPT exceeds the Plain-C method by 487

0.7%, 2%, 4.5%, 8.2%, and 1.6% on the respective 488

datasets. 489

5.3 Ablation Study 490

5.3.1 Impact of Different Privacy Budgets 491

In this section, we explore the impact of privacy 492

budgets on the performance of PPC-GPT. Table 2 493

presents PPC-GPT’s performance across a range 494

of privacy budgets (ϵ = 1, 3, 5, 10). Notably, when 495

juxtaposed with Table 1, it becomes apparent that 496

even with a privacy budget of ϵ = 1, PPC-GPT 497

outperforms the Plain-C method by 1.7% and 3.4% 498

on the OBQA and ARC-E datasets, respectively, 499

within the LLaMa2-7B model. Similarly, PPC- 500

GPT exceeds it by 14% and 14.4% in the OPT- 501

6.7B model. As the privacy budget ϵ increases, 502

PPC-GPT’s performance demonstrates a signifi- 503

cant improvement, highlighting its proficiency and 504

adaptability in achieving a balance between privacy 505

and utility. 506

5.3.2 Impact of Different Synthetic Data 507

In this section, we explore the impact of synthetic 508

data on PPC-GPT’s performance, considering two 509
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DataSets

Model Method Ratio (%) CQA OBQA ARC-E ARC-C FiQA-SA

LLaMa2-7B

DenseSFT 0 81.6±0.54 80.3±0.50 82.9±0.18 60.0±0.42 68.9±1.66

Plain-C 30 77.6±0.14 77.9±0.16 79.7±0.29 54.0±0.82 71.1±1.37

DP-Instruct-C 30 77.9±0.62 74.7±1.32 79.2±0.33 47.1±4.10 70.9±0.83

PPC-GPT 30 78.3±0.41 79.9±0.57 84.2±0.33 62.2±0.61 72.7±0.54

OPT-6.7B

DenseSFT 0 75.4±0.64 60.0±0.99 65.8±0.70 31.4±0.86 70.0±1.09

Plain-C 30 47.4±1.12 36.5±1.48 40.2±0.89 27.6±0.37 52.4±1.37

DP-Instruct-C 30 58.7±2.04 39.7±1.04 44.5±2.53 28.6±1.72 54.5±1.67

PPC-GPT 30 65.6±0.95 52.1±0.96 57.3±0.16 36.0±0.59 64.9±1.26

Table 1: Performance Comparison of Compression Methods on LLMs.

Privacy Budget(ϵ)

Model Datasets Stage 1 3 5 10

LLaMa2
OBQA S 65.4 67.1 67.9 69.4

C 79.6 79.9 80.1 79.8

ARC-E S 78.8 80.4 79.9 79.5

C 83.1 84.2 84.4 83.4

OPT
OBQA S 35.7 36.3 36.1 38.8

C 50.5 52.1 52.4 53.5

ARC-E S 49.1 50.4 49.3 50.5

C 54.6 57.3 55.5 55.3

Table 2: Comparison of PPC-GPT’s performance across
different privacy budgets ϵ. S denotes the performance
of target SLM on the server-side, while C represents the
performance of target SLM on the client-side.

dimensions: the synthetic data ratio and the inclu-510

sion of rationales in synthetic data.511

Synthetic Data Ratio. Table 3 presents the per-512

formance of PPC-GPT across various synthetic513

data ratios (ratio = 1, 2, 4, 8). As the ratio of514

synthetic data increases, PPC-GPT’s performance515

exhibits a substantial improvement, highlighting516

the crucial role of the synthetic data ratio and indi-517

cating that a higher amount of synthetic data results518

in further improvements. Specifically, PPC-GPT519

with the synthetic data ratio of 8 outperforms the520

ratio of 1 by 1.7% and 4.1% on the OBQA and521

ARC-E datasets, respectively, within the LLaMa2-522

7B model. Similarly, with the OPT-6.7B model, it523

exceeds the ratio of 1 by 4.2% and 7.6%.524

Synthetic Data Rationales. We undertake an525

analysis to investigate the effects of rationales on526

PPC-GPT’s performance. Table 4 compares PPC-527

GPT’s performance between synthetic data with528

and without rationales (PPC-GPT w/ rationales and529

PPC-GPT w/o rationales). The findings demon- 530

strate that PPC-GPT exhibits superior performance 531

when the rationales of synthetic data is utilized, 532

as compared to when it is absent. Specifically, 533

PPC-GPT w/ rationales outperforms PPC-GPT w/o 534

rationales by 0.8% and 0.9% on the OBQA and 535

ARC-E datasets, respectively, within the LLaMa2- 536

7B model. Similarly, with the OPT-6.7B model, 537

PPC-GPT w/ rationales exceeds PPC-GPT w/o ra- 538

tionales by 7% and 9.1%. 539

Synthetic Data Ratio

Model Datasets Stage 1 2 4 8

LLaMa2
OBQA S 62.3 64.6 64.6 67.1

C 78.2 78.3 78.5 79.9

ARC-E S 73.5 75.5 77.9 80.4

C 80.1 80.8 82.3 84.2

OPT
OBQA S 32.9 34.7 36.9 36.3

C 47.9 50.2 51.5 52.1

ARC-E S 40.4 43.9 47.5 50.4

C 49.7 52.3 54.9 57.3

Table 3: Comparison of PPC-GPT’s performance across
different synthetic data ratio.

5.3.3 Impact of Server-Side Retraining 540

In this section, we explore the impact of server-side 541

retraining on the performance of PPC-GPT. Table 5 542

presents a comparison of PPC-GPT’s performance 543

with and without server-side retraining. The find- 544

ings demonstrate that PPC-GPT exhibits superior 545

performance when server-side retraining is utilized, 546

as compared to when it is absent. Specifically, 547

PPC-GPT w/ server-side retraining outperforms 548

PPC-GPT w/o server-side retraining by 2% and 549

4.5% on the OBQA and ARC-E datasets, respec- 550

7



Rationales

Model Datasets Stage w/ w/o

LLaMa2
OBQA S 67.1 65.9

C 79.9 79.1

ARC-E S 80.4 77.9

C 84.2 83.3

OPT
OBQA S 36.3 31.1

C 52.1 45.1

ARC-E S 50.4 43.2

C 57.3 48.2

Table 4: Comparison of PPC-GPT’s performance: with
vs. without rationales.

tively, within the LLaMa2-7B model. Similarly,551

with the OPT-6.7B model, PPC-GPT w/ server-552

side retraining exceeds PPC-GPT w/o server-side553

retraining by 15.1% and 15.7%.554

Server:Retraining

Model Dataset w/ w/o

LLaMa2 OBQA 79.9 77.9

ARC-E 84.2 79.7

OPT OBQA 52.1 37.0

ARC-E 57.3 41.6

Table 5: Comparison of PPC-GPT’s performance: with
vs. without server-side retraining.

5.3.4 Impact of Different Importance Metric555

In this section, we explore the impact of different556

important metrics on PPC-GPT’s performance:557

Seq: The importance is directly correlated with558

the sequence order, where the shallower layers hold559

greater importance.560

BI: BI mentioned in previous section 4.3.561

Table 6 presents PPC-GPT’s performance across562

different important metrics. The findings demon-563

strate that PPC-GPT with BI exhibits superior per-564

formance than PPC-GPT with Seq.565

5.3.5 Impact of Different Model Pruning566

Ratio567

In this section, we explore the impact of different568

model pruning ratio on PPC-GPT’s performance.569

Table 7 presents the performance of PPC-GPT570

across different model pruning ratios (namely, 0%,571

30%, 50%, and 70%). As the pruning ratio in-572

creases, the performance of PPC-GPT exhibits a573

decline.574

Important

Model Datasets Stage BI Seq

LLaMa2
OBQA S 67.1 66.5

C 79.9 79.9

ARC-E S 80.4 80.0

C 84.2 83.9

OPT
OBQA S 36.3 34.7

C 52.1 48.3

ARC-E S 50.4 43.7

C 57.3 51.7

Table 6: Comparison of PPC-GPT’s performance across
different importance metrics.

DataSets

Model Ratio (%) OBQA ARC-E

LLaMa2

0 80.3 82.9

30 79.9 84.2

50 74.4 76.8

70 35.3 37.4

OPT

0 60.0 65.8

30 52.1 57.3

50 36.1 38.3

70 30.9 33.2

Table 7: Comparison of PPC-GPT’s performance across
different pruning ratios.

6 Conclusions 575

In this paper, we introduced PPC-GPT, a novel 576

federated framework for compressing LLMs into 577

task-specific SLMs while preserving privacy. Our 578

framework integrates four key components: expo- 579

nential mechanism-based data perturbation, CoT- 580

guided synthetic data generation, rationale-aware 581

structured pruning, and two-stage knowledge dis- 582

tillation. Experiments demonstrate that PPC-GPT 583

effectively compresses LLMs while maintaining 584

comparable performance and ensuring privacy pro- 585

tection. This work provides a practical solution for 586

deploying LLMs in resource-constrained, privacy- 587

sensitive scenarios. 588

Limitations 589

While PPC-GPT shows promising results in com- 590

pressing LLMs into task-specific SLMs while 591

ensuring data privacy, it has several limitations. 592

Firstly, PPC-GPT relies on an auxiliary LLM with 593

8



robust CoT capabilities to generate high-quality594

synthetic data and rationales. These synthetic data595

are crucial for guiding the structured pruning and596

retraining processes of both the source LLM (the597

model slated for compression) and the target SLM598

(the compressed model). If the auxiliary LLM lacks599

sophisticated CoT reasoning abilities, the quality600

and diversity of the generated synthetic data may be601

compromised, which in turn could adversely affect602

the performance of the compressed SLMs. This603

limitation underscores the importance of selecting604

or pre-training an auxiliary LLM with strong CoT605

capabilities when deploying PPC-GPT. However,606

it’s important to note that the source LLM (the607

model slated for compression) does not necessarily608

require CoT capabilities. Furthermore, as observed609

in our experiments, the performance of PPC-GPT610

tends to degrade with higher pruning ratios. This611

indicates that optimizing the pruning strategy to612

strike a better balance between model size and per-613

formance remains an open challenge.614
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A Algorithm WorkFlow850

The PPC-GPT framework orchestrates a system-851

atic workflow through four interconnected phases,852

each meticulously designed to preserve data pri-853

vacy while achieving optimal model compression854

efficiency, as elaborated in Algorithm 1.855

B Privacy Analysis of PPC-GPT856

Our privacy protection strategy in PPC-GPT is857

grounded in rigorous theoretical foundations and858

validated through comprehensive empirical studies.859

The framework implements a theoretically-sound860

differential privacy (DP) mechanism that operates861

at the token-level feature space, completely elimi-862

nating the need for raw data transmission. Specifi-863

cally, we adopt the exponential mechanism, which864

Algorithm 1 PPC-GPT

Require: Private dataset D = {(xi, yi)}Ni=1,
LLMsyn for synthetic data generation, Orig-
inal LLMo fθ that requires pruning, Privacy
budget ϵ

Ensure: Task-specific SLM fϕ with privacy guar-
antees

1: Phase 1: Exponential Mechanism-based
Data Perturbation

2: Apply Exponential Mechanism M to D with
budget ϵ

3: Generate Dp = {(xpi )}Ni=1 according to Eq.(5)
4: Phase 2: CoT-guided Synthetic Data Gener-

ation
5: Server’s LLMsyn processes Dp to generate

synthetic data
6: Generate Ds = {(xsi , (ysi , rsi ))}

Ns
i=1

7: Phase 3: Rationale-Aware Structured Prun-
ing

8: Calculate Block Influence scores using Ds ac-
cording to Eq.(7)

9: Identify redundant layers based on BI values
10: Obtain pruned model structure fϕ where |ϕ| ≪

|θ|
11: Phase 4: Retraining SLM via Two-Stage

Knowledge Distillation
12: Server performs CoT distillation using Ds ac-

cording to Eq.(8), (9), (10)
13: Client fine-tunes with private data D according

to Eq.(11)
14: return Compressed task-specific SLM fϕ

provides formal ϵ-DP guarantees and has been ex- 865

tensively analyzed in privacy-preserving NLP lit- 866

erature (Yue et al., 2021; Chen et al., 2023; Tong 867

et al., 2025). The theoretical privacy guarantees of 868

this mechanism are well-established, allowing us 869

to focus on its practical implementation and perfor- 870

mance optimization rather than re-establishing its 871

privacy properties. 872

C Implementation Details 873

C.1 Hyperparameter Settings 874

During the training process, we specifically config- 875

ured the parameters. Specifically, we set the batch 876

size to 32 and utilized the AdamW optimizer. The 877

maximum number of training steps varied between 878

300 and 6400. Additionally, we established a learn- 879

ing rate of 5e-5. For the input and target lengths, 880

we set the maximum question length to 64 and the 881
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Figure 2: Layer Importance Example: The significance
of each layer, as indicated by the BI (Block Influence)
value of LLaMa2-7B on the OBQA dataset, based on
the PPC-GPT framework.

maximum target length to 128. For the LoRA con-882

figuration of LLaMa2, we set the LoRA alpha to 32883

and the LoRA rank to 8. In contrast, for the OPT884

model, we configured the LoRA alpha to 64 and885

the LoRA rank to 32. The Lora dropout for both886

models was set to 0.1.887

C.2 Data Splitting888

For the datasets, all splits (training, validation, and889

test) were downloaded from HuggingFace (Lhoest890

et al., 2021).891

C.3 Dataset Licenses892

All the datasets were downloaded from Hugging-893

Face(Lhoest et al., 2021) and under Apache Li-894

cense, Version 2.0.895

C.4 Machine Configuration896

The experiments were conducted on machines897

equipped with 4 and 8 Nvidia V100 32G.898

D Synthetic Prompt Templates899

Table 8 and 9 provide prompt templates for ques-900

tion generation, answer generation, and rationale901

generation.902
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Tasks Prompts

Question
Generation Please act as a professional teacher.

Your goal is to promote research in advanced question-answering, probing a deeper under-
standing of both the topic (with salient facts summarized as an open book, also provided
with the dataset) and the language it is expressed in.
You will be given a multiple-choice question. Please create a new question and multiple
choices based on the Given Question And Multiple Choices and following instructions.
To achieve the goal, you have two jobs.
# Please generate a similar but new question and multiple choices according to the Given
Question And Multiple Choices.
# Check the question and multiple choices by solving it step-by-step to find out if it adheres
to all principles.
You have eight principles to do this.
# Ensure the new question only asks for one thing, be reasonable, be based on the Given
Question And Multiple Choices, and can be answered with only one right choice.
# Ensure the new questions requires multi-step reasoning, use of additional common and
commonsense knowledge.
# Ensure the new question is in line with common sense of life.
# Ensure your student can answer the new question without the given question. If you want
to use some numbers, conditions or background in the given question, please restate them to
ensure no information is omitted in your new question.
# Please DO NOT include solution in your question.
# Make sure the choices in CREATED QUESTION AND CHOICES are list format, starts
with [ and ends with ].
# Ensure only one choice in CREATED QUESTION AND CHOICES is right.
# Ensure your output only has three lines, the first line is "CREATED QUESTION AND
CHOICES:", the second line starts with "Question:", and the third line starts with "Choices".
Given Question and Multiple Choices: {question}, {choices}
Your output should be in the following format:
CREATED QUESTION AND CHOICES:
Question: <your created question>
Choices: <your created choices>

Answer
Generation Please act as a professional teacher.

Your goal is to accurately solve a multiple-choice question.
To achieve the goal, you have two jobs.
# Write detailed solution to a Given Question.
# Write the final choice to this question.
You have three principles to do this.
# Ensure the solution is step-by-step.
# Ensure the final answer is just a letter.
# Use of additional common and commonsense knowledge.
Given Question and Choices: {question}, {choices}
Your output should be in the following format:
SOLUTION: <your detailed solution to the given question>
FINAL ANSWER: <your final choice to the question with only an uppercase letter>

Table 8: The prompt templates are used for generating questions and answers.
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Tasks Prompts

Rationale
Generation You are given the right Answer from Choices, please explain it in "Rationale" with few

words. Please refer to the example to write the rationale.
Try to generate logically clear and correct rationale. Reply in english only and use ’<end>’
to finish your rationale. Your reply format must strictly follow the provided example and
reply rationale contents only!
Example(s):
Question: The sun is responsible for
Choices: [’puppies learning new tricks’, ’children growing up and getting old’, ’flowers
wilting in a vase’, ’plants sprouting, blooming and wilting’]
Answer: ’plants sprouting, blooming and wilting’.
Rationale: The sun provides light and warmth, essential for the process of photosynthesis in
plants, which enables them to grow, bloom, and eventually wilt due to natural life cycles.
Please explain:
Question: {question}
Choices: {choices.text}
Answer: {choices.text[choices.label.index(answerKey)]}
Rationale:

Table 9: The prompt templates are used for generating rationale.
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