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Abstract001

Improving training efficiency continues to be002
one of the primary challenges in large-scale Re-003
inforcement Learning (RL). In this paper, we in-004
vestigate how context length and the complex-005
ity of training data influence the scaling RL006
training process of R1-distilled small reasoning007
models, e.g., DeepSeek-R1-Distill-Qwen-1.5B.008
Our experimental results reveal that: (1) simply009
controlling the context length and curating the010
training data based on the input prompt length011
can effectively improve the training efficiency of012
scaling RL, achieving better performance with013
more concise CoT; (2) properly scaling the con-014
text length helps mitigate entropy collapse; and015
(3) choosing an optimal context length can im-016
prove the efficiency of model training and incen-017
tivize the model’s chain-of-thought reasoning018
capabilities. Inspired by these insights, we pro-019
pose FASTCURL, a curriculum RL framework020
with stage-wise context scaling to achieve effi-021
cient training and concise CoT reasoning. Ex-022
periment results demonstrate that FASTCURL-023
1.5B-V3 significantly outperforms state-of-the-024
art reasoning models on five competition-level025
benchmarks and achieves 49.6% accuracy on026
AIME 2024. Furthermore, FASTCURL-1.5B-027
Preview surpasses DeepScaleR-1.5B-Preview028
on five benchmarks while only using a single029
node with 8 GPUs and a total of 50% of train-030
ing steps. The code, training data, and models031
will be publicly released.032

1 Introduction033

Large Language Models (LLMs) have emerged as034

immensely potent AI instruments, showcasing ex-035

traordinary proficiency in comprehending natural036

language and executing downstream tasks (Zhao037

et al., 2023; Minaee et al., 2024; Chen et al., 2025).038

Lately, test-time scaling (Snell et al., 2024; Muen-039

nighoff et al., 2025) has demonstrated a robust cor-040

relation between extending the generation length041

of Chain-of-Thought (CoT) (Wei et al., 2023) and042

improving the reasoning capabilities of LLMs.043
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Figure 1: FastCuRL’s accuracy on AIME 2024 as train-
ing progresses across five training stages. Specifically,
S-5 indicates Stage 5 in the training process.

A primary finding from recent breakthroughs, ex- 044

emplified by DeepSeek-R1 (DeepSeek-AI, 2025), 045

reveals a scaling phenomenon in the training pro- 046

cess of Reinforcement Learning (RL). Inspired by 047

these findings, training LLMs through scaling RL 048

has recently emerged as a promising paradigm for 049

addressing complex reasoning tasks and many valu- 050

able research endeavours (Luo et al., 2025; Face, 051

2025; Hu et al., 2025; Zeng et al., 2025a; Liu et al., 052

2025) have emerged to explore and replicate rea- 053

soning models akin to DeepSeek-R1 (for example, 054

starting from R1-distilled or pre-trained models) 055

by extending the generation length of CoT. 056

However, generating excessively long CoT re- 057

sponses significantly increases computational over- 058

head during model training and deployment. More- 059

over, recent studies (Yeo et al., 2025; Wu et al., 060

2025; Team, 2025a; Luo et al., 2025) have identi- 061

fied an inherent overthinking phenomenon in rea- 062

soning models, which includes irrelevant details 063

and repetitive thinking patterns. This kind of infor- 064

mation leads to inefficient use of computational re- 065

sources and undermines reasoning accuracy, which 066

causes models to stray from valid logical pathways, 067

resulting in incorrect answers. 068

To this end, recent studies (Team, 2025a; Luo 069
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Figure 2: The training logs of DeepScaleR.

et al., 2025; Liu et al., 2025; Yu et al., 2025) fo-070

cus on efficient reasoning for optimizing the model071

to generate more concise solutions. Among them,072

DeepScaleR (Luo et al., 2025) propose to itera-073

tively increase the context length from 8K to 24K074

to train the DEEPSEEK-R1-DISTILL-QWEN-1.5B075

model toward more concise reasoning, outperform-076

ing OpenAI’s o1-preview (OpenAI, 2024). By ob-077

serving the training logs1 of DeepScaleR in Fig-078

ure 2, we find two issues:079

• When the context length is 8K, about 42%080

of the model’s outputs are clipped, which re-081

duces the model’s training efficiency.082

• When the context length is 24K, the model’s083

entropy collapses. Entropy reflects the explo-084

ration capability of an LLM during training. A085

rapid decrease in entropy might lead to prema-086

ture convergence, preventing the model from087

achieving the expected performance.088

The prior work and the aforementioned issues089

naturally motivate two research questions:090

• Question 1: Does simultaneously controlling091

the model’s context length and the complex-092

ity of the training dataset help the training093

process of R1-like reasoning models?094

• Question 2: What impact does setting differ-095

ent context lengths have on the RL training096

process of R1-like reasoning models?097

1https://github.com/agentica-project/rllm
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Figure 3: Prompt length distribution.

To this end, in this paper, we investigate how the 098

model’s context length and the complexity of the 099

training dataset influence the training process of 100

R1-like reasoning models. Motivated by our obser- 101

vations, we propose FASTCURL, a simple yet effi- 102

cient Curriculum Reinforcement Learning frame- 103

work with a stage-wise context scaling strategy to 104

improve the RL training efficiency and achieve con- 105

cise CoT reasoning for R1-like reasoning models. 106

Experimental results demonstrate that our model 107

FASTCURL-1.5B-V3 outperforms recent state-of- 108

the-art reasoning baselines across five competition- 109

level benchmarks, AIME 2024, AMC 2023, MATH 110

500, Minerva Math, and OlympiadBench. Fur- 111

thermore, our model FASTCURL-1.5B-Preview 112

surpasses DeepScaleR-1.5B-Preview on five bench- 113

marks and only uses 50% training steps on a single 114

node with 8 GPUs. We hope the findings presented 115

in this paper, the models we have released, and the 116

open-sourced code will benefit future research. 117

2 Methodology 118

In this section, we introduce our investigation into 119

how the model’s context length and the complexity 120

of training data influence the training process of 121

R1-like reasoning models. Specifically, our method 122

consists of two main components: (1) curating a 123

complexity-aware, mathematics-focused dataset, 124

and (2) implementing a resource-efficient reinforce- 125

ment learning algorithm. These two components 126

aim to balance a trade-off between achieving per- 127

formance improvements and addressing practical 128

limitations, such as reducing computational costs. 129

2.1 Complexity-Aware Data Curation 130

To ensure a fair comparison, we directly employ 131

the dataset from DeepScaleR as the training data. 132

The DeepScaleR dataset (Luo et al., 2025) consists 133
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Example Problem (Output Length=74706 characters): Ashley, Betty, Carlos, Dick, and Elgin went shopping. Each had a
whole number of dollars to spend, and together they had 56 dollars. The absolute difference between the amounts Ashley and
Betty had to spend was 19 dollars. The absolute difference between the amounts Betty and Carlos had was 7 dollars, between
Carlos and Dick was 5 dollars, between Dick and Elgin was 4 dollars, and between Elgin and Ashley was 11 dollars. How
many dollars did Elgin have?

Table 1: Example problem.

of 40,315 unique mathematics-specific problem-134

answer pairs collected from AIME (1984-2023),135

AMC (prior to 2023), Omni-MATH, and the Still136

dataset (Balunović et al., 2025; Gao et al., 2024;137

Min et al., 2024). The statistics of the DeepScaleR138

dataset are shown in Figure 3.139

As illustrated in Figure 2, over 42% of training140

samples are clipped at the beginning of the train-141

ing steps due to exceeding the maximum response142

length. By observing and analyzing the clipped re-143

sponses, we find that they mainly correspond to two144

types of problems. The first type pertains to chal-145

lenging problems requiring long CoT responses to146

solve. The second involves questions laden with nu-147

merous conditions, prompting the model to verify148

each condition repeatedly during problem-solving,149

e.g., the problem shown in Table 1. This repetitive150

verification may result in redundant thinking pat-151

terns, ultimately causing the reasoning responses152

to be unduly long. Both situations may impact the153

model’s training efficiency during the 8K context.154

After observing the above phenomenon, we uti-155

lize DEEPSEEK-R1-DISTILL-QWEN-1.5B to infer156

all the training data of DeepScaleR to obtain re-157

sponses and analyze the response lengths, as shown158

in Figure 4. Specifically, the given figure examines159

the relationship between input length and output160

length. Interestingly, we find a correlation between161

the two-that is, the longer the input, the longer the162

corresponding output. Based on this observation,163

we assume a hypothesis that for complex reasoning164

tasks, there exists a relationship between the com-165

plexity of the problem prompt and the length of the166

output response generated by the model when solv-167

ing it. Generally, the more complex the problem,168

the longer the output the model needs to produce to169

arrive at a solution. Based on this hypothesis, we di-170

rectly divide the original training dataset (referred171

to as L2) into two training data subsets based on172

the average input prompt length: one representing173

a short CoT reasoning dataset (designated as L1)174

and the other constituting a long CoT reasoning175

dataset (labeled as L3). Finally, the average input176

length of each dataset as shown in Table 2.177
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Figure 4: Relationship between input prompt length and
output length of the training data. The output results are
obtained from DEEPSEEK-R1-DISTILL-QWEN-1.5B.

Datasets Average Input Prompt Length

L1 148.65
L2 247.24
L3 407.78

Table 2: Statistics of L1, L2, L3 datasets.

Next, we conduct experiments and analyses on 178

these three datasets under different context lengths 179

to observe and investigate the two questions raised 180

in the prior section. It is important to note that this 181

paper focuses on low-resource scenarios. There- 182

fore, during training, when using different datasets 183

at each stage, we train for only one epoch and uti- 184

lize a single node with 8 GPUs. 185

2.2 Reinforcement Learning Algorithm 186

To train our model efficiently, we adopt the Group 187

Relative Policy Optimization (GRPO) (Shao et al., 188

2024), which is utilized in DeepSeek-AI (2025). 189

GRPO eliminates the necessity of maintaining a 190

critic model, which is usually comparable in size to 191

the policy model, by estimating baseline scores di- 192

rectly from group-level scores, significantly lower- 193

ing the computational overhead. For each problem 194

q, GRPO directly samples a group of G responses 195

{o1, o2, ..., oG} from the old policy πθold and op- 196

timizes the trained policy πθ by maximizing the 197
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Figure 5: The average output length clip ratio, output length, and reward during Stage 1 in RL training on L1, L2,
and L3 datasets. The curves shows the running average over a window size of 10.

following objective:198

JGRPO(θ) = E[q∼P (Q),{oi}Gi=1∼πθold
(·|q)]

1

G

G∑
i=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai,

clip

(
πθ(oi|q)
πθold(oi|q)

, 1− ε, 1 + ε

)
Ai

)

−βDKL[πθ||πref ] + αH(πθ(oi|q))

)
,

(1)199

where the advantage Ai is computed from a group200

of rewards {r1, r2, ..., rG}:201

Ai =
ri −mean({r1, r2, ..., rG})

std({r1, r2, ..., rG})
. (2)202

Similar to the prior work (DeepSeek-AI, 2025;203

Luo et al., 2025), we leverage a rule-based reward204

model composed of two distinct criteria designed to205

balance answer correctness and clarity of structure206

without relying on an LLM-based reward model.207

To evaluate correctness objectively, we require the208

trained model to present its final answer enclosed209

within a \boxed{} format, assigning a binary score210

of 1 for correct answers and 0 for incorrect ones.211

To encourage structural clarity, the model must ex-212

plicitly encapsulate its reasoning within tags, with213

compliance being rewarded positively.214

3 Experiments215

To investigate the research question described in216

Section 1—namely, how the model’s context length217

and the complexity of the training data influence218

the RL training process of R1-like reasoning mod-219

els—we designed a set of experiments under com-220

putational resource constraints. We aim to analyze221

the training behavior of small LLMs and find prac-222

tical insights. These experiments are intended not223

only to provide empirical evidence of performance 224

gains but also to offer clear and actionable guidance 225

for both future academic research and practical in- 226

dustry implementations. 227

3.1 Experimental Setup 228

In this work, we choose a 1.5B parameter model 229

DEEPSEEK-R1-DISTILL-QWEN-1.5B (DeepSeek- 230

AI, 2025) as the base model. We utilize the AdamW 231

optimizer with a constant learning rate of 1× 10−6 232

for optimization. For rollout, we set the temper- 233

ature to 0.6 and sample 16 responses per prompt. 234

We do not utilize a system prompt; instead, we add 235

"Let’s think step by step and output the final an- 236

swer within \boxed{}." at the end of each problem. 237

Detailed parameters are shown in Figure 3. 238

3.2 Benchmarks 239

To comprehensively evaluate the performance, we 240

select five competition-level benchmarks: MATH 241

500 (Hendrycks et al., 2021), AIME 20242, AMC 242

20233, Minerva Math (Lewkowycz et al., 2022), 243

and OlympiadBench (He et al., 2024). 244

3.3 Baselines 245

In this paper, we conduct evaluations against 1.5B 246

and 7B parameter language models, which includes 247

DEEPSEEK-R1-DISTILL-QWEN-1.5B (DeepSeek- 248

AI, 2025), QWEN2.5-MATH-7B-Instruct (Yang 249

et al., 2024), DeepScaleR-1.5B-Preview (Luo 250

et al., 2025), QWEN2.5-7B-SimpleRL (Zeng et al., 251

2025a), RSTAR-MATH-7B (Guan et al., 2025), 252

STILL-3-1.5B-Preview (Team, 2025b), and EURUS- 253

2-7B-PRIME (Cui et al., 2025). 254

2https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

3https://huggingface.co/datasets/AI-MO/
aimo-validation-amc
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EXPERIMENTS STAGES
CONTEXT LENGTH

TRAINING DATA BATCH SIZE ROLLOUT
α β

AVG.
INPUT OUTPUT (K) (FOR ENTROPY) (FOR KL)

EXP-1 3 1K 8, 16, 24 L1, L2, L3 128, 64, 64
8, 8, 8 0.001 0.001

0.550
EXP-2 3 1K 8, 16, 24 L1, L3, L2 128, 64, 64 0.540
EXP-3 3 1K 8, 16, 24 L1, L2, L2 128, 64, 64 0.552

EXP-4 4 1K 8, 16, 24, 32 L1, L2, L3, L2 128, 64, 64, 64
8, 8, 8, 16 0.001 0.001

0.566
EXP-5 4 1K 8, 16, 24, 24 L1, L2, L3, L2 128, 64, 64, 64 0.565
EXP-6 4 1K 8, 16, 24, 16 L1, L2, L3, L2 128, 64, 64, 64 0.575

EXP-7 5 1K 8, 16, 24, 16, 24 L1, L2, L3, L2, L2 128, 64, 64, 64, 64
8, 8, 8, 16, 16 0.001 0.001

0.556
EXP-8 5 1K 8, 16, 24, 16, 16 L1, L2, L3, L2, L2 128, 64, 64, 64, 64 0.567
EXP-9 5 1K 8, 16, 24, 16, 8 L1, L2, L3, L2, L2 128, 64, 64, 64, 64 0.535

EXP-10 5 1K 8, 16, 24, 16, 16 L1, L2, L3, L2, L2 128, 64, 64, 64, 64 8, 8, 8, 16, 16 0.000001 0.000 0.600
EXP-11 5 1K 8, 16, 24, 16, 16 L1, L2, L3, L2, L2 128, 64, 64, 64, 64 8, 8, 8, 16, 16 0.000 0.000 0.616

Table 3: Experimental setups combining different context lengths and data complexities.

3.4 Evaluation Metric255

Following the prior work (DeepSeek-AI, 2025), we256

set the maximum context length to 32,768 tokens257

and use PASS@1 as the evaluation metric. Specif-258

ically, we adopt a sampling temperature of 0.6259

and a top-p value of 1.0 to generate k responses260

for each question, typically k = 16. Specifically,261

PASS@1 is then calculated as:262

PASS@1 =
1

k

k∑
i=1

pi, (3)263

where pi is the correctness of the i-th response.264

3.5 Main Processes and Results265

In this section, we first validate the effectiveness of266

the complexity-aware data curation strategy. Then,267

we design a series of progressive experiments with268

varying context lengths and data complexities and269

analyze the experimental results.270

3.5.1 Dataset Complexity Verification271

To validate the effectiveness of complexity-aware272

data curation, we train three models with the same273

setting on L1, L2, and L3 under the 8K context274

length as seen from Figure 5, whether the exper-275

iment results meet expectations in clipping ratio,276

response length, and reward scores. These experi-277

mental results support our hypothesis that the more278

complex the problem, the longer the output the279

model needs to produce to arrive at a solution.280

3.5.2 Multi-Stage Experimental Results281

We conduct three sets of multi-stage experiments,282

with specific parameter settings shown in Table283

3. These experiments include ones with 3, 4, and284

5 training stages, respectively. The experimental285

results are presented in Table 3.286
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Figure 6: Entropy curves of FASTCURL-1.5B-Preview
as training progresses across four training stages. Specif-
ically, S-4 indicates Stage 4 in the training. The curve
shows the running average over a window size of 10.

For the first set of experiments, Exp-3 achieves 287

better performance compared to Exp-1, but it re- 288

quired more training steps (Exp-3 is trained based 289

on the L2 dataset twice). Therefore, by comparing 290

the differences in effectiveness and the computa- 291

tional cost in terms of training steps, we select 292

Exp-1 as the output of the first stage and adopt it 293

as the base model for the second stage. 294

In the first set of experiments, we observe that 295

the average response length in its final stage is 296

between 6,000 and 7,000 tokens. Therefore, we test 297

context lengths that are longer, shorter, and equal 298

to the 24K context length. As shown in Table 3, 299

setting the context length to 16K yielded the best 300

performance, rather than longer contexts of 24K or 301

32K tokens. Therefore, we select Exp-6 as the base 302

model for the third stage. 303

Inspired by the second set of experiments, we 304

conduct a third set in which we set the context 305

lengths to 24K, 16K, and 8 K. As shown in Table 3, 306

the 16K context still achieves the best performance, 307

5



Model MATH 500 AIME 2024 AMC 2023 Minerva Math OlympiadBench Avg.

QWEN2.5-MATH-7B-Instruct 79.8 13.3 50.6 34.6 40.7 43.8
RSTAR-MATH-7B 78.4 26.7 47.5 - 47.1 -
EURUS-2-7B-PRIME 79.2 26.7 57.8 38.6 42.1 48.9
QWEN2.5-7B-SimpleRL 82.4 26.7 62.5 39.7 43.3 50.9

DEEPSEEK-R1-DISTILL-QWEN-1.5B 82.8 28.8 62.9 26.5 43.3 48.9
STILL-3-1.5B-Preview 84.4 32.5 66.7 29.0 45.4 51.6
DEEPSCALER-1.5B-Preview 87.8 43.1 73.6 30.2 50.0 57.0

FASTCURL-1.5B-Preview 88.0 43.1 74.2 31.6 50.4 57.5
FASTCURL-1.5B-V2 89.3 47.5 77.0 32.8 53.3 60.0
FASTCURL-1.5B-V3 90.5 49.6 78.5 34.7 54.5 61.6

Table 4: PASS@1 accuracy is reported, averaged over 16 samples for each problem. † indicates results obtained by
re-evaluating using the checkpoints provided by the corresponding work.

Model Training Steps Training Stages Number of GPUs Used in Each Stage

DEEPSCALER-1.5B-Preview ∼ 1, 750 3 8, 16, 32
FASTCURL-1.5B-Preview (EXP-6) ∼ 860 4 8, 8, 8, 8
FASTCURL-1.5B-V2 (EXP-10) ∼ 1, 710 5 8, 8, 8, 8, 8
FASTCURL-1.5B-V3 (EXP-11) ∼ 2, 620 5 8, 8, 8, 8, 8

Table 5: Training Details. To ensure consistency in counting training steps, we standardized the batch size to 128.
This means that two steps with a batch size of 64 are considered equivalent to one step with a batch size of 128.

but there is virtually no difference compared to the308

fourth stage. Analyzing this phenomenon, we find309

that during progressive context extension training,310

the model’s output length is initially constrained by311

the short context in the first stage. This constraint312

compresses the length of the thoughts but improves313

their quality. As the context increases in the sec-314

ond and third stages, the model begins to explore315

problems that require longer thought. However,316

this extension also introduces repetitive thought317

patterns. These repetitive patterns do not enhance318

the model’s reasoning capabilities; on the contrary,319

they may decrease the model’s exploratory effi-320

ciency, especially when the context length becomes321

excessively long. Therefore, further compressing322

the context length (as in the fourth stage) is neces-323

sary to improve the quality of the chain-of-thought324

and enhance the model’s exploratory efficiency.325

In the third set of experiments, we find that nei-326

ther increasing nor decreasing the context length327

is as effective as maintaining the context length at328

16K. Does this phenomenon suggest that there is a329

"sweet spot" for context length in R1-like models,330

and that for the DEEPSEEK-R1-DISTILL-QWEN-331

1.5B, 16K is the optimal sweet spot? Or is it that332

16K is closer to the sweet spot compared to 24K333

and 8K? Based on this question, we conduct a se-334

ries of experiments where we train the model with335

different context lengths and set the entropy coeffi-336

Figure 7: Entropy curves of different context lengths.

cient equal to 1×10−6 to observe the changes in the 337

entropy. As shown in Figure 7, we find that when 338

the context lengths are 4K, 8K, and 12K, the en- 339

tropy rapidly decreases to a small value, indicating 340

that the model has lost its exploratory capability. In- 341

terestingly, when the context lengths are 16K, 20K, 342

and 24K, the entropy stabilizes at a fixed value and 343

does not decrease rapidly. 344

Inspired by the above findings, we continue to 345

train FASTCURL-1.5B-Preview under a 16K con- 346

text and adjust the coefficients of KL and Entropy 347

(Table 3). Results in Table 4 show that after being 348

incentivized in the prior stages, the performance of 349

FASTCURL-1.5B-V3 gradually increases in Stage 350

5 and achieves an accuracy of 49.6% on AIME 351

2024, supporting the above raised question. 352
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Figure 8: Performance comparison of training with and without KL penalty at 8k context length.

Figure 9: Performance comparison of training with and without Entropy loss at 8k context length.

3.5.3 Overall Comparison Results353

Table 4 present the overall PASS@1 performance354

of QWEN2.5-MATH-7B-Instruct, DEEPSEEK-R1-355

DISTILL-QWEN-1.5B, STILL-1.5B, QWEN2.5-356

7B-SimpleRL, RSTAR-MATH-7B, EURUS-2-7B-357

PRIME, and DEEPSCALER-1.5B-Preview. Specif-358

ically, our models achieve the best overall perfor-359

mance on five competition-level benchmarks.360

Meanwhile, FASTCURL-1.5B-Preview has bet-361

ter generalization on the AMC 2023 and Minerva362

Math test sets than the baseline DEEPSCALER-363

1.5B-Preview. Furthermore, as shown in Table 5,364

compared with the baseline DEEPSCALER-1.5B-365

Preview, we only use 50% of the training steps dur-366

ing training and only one node with 8 GPUs, saving367

more than half of the training resources. Moreover,368

our model can achieve better results when using369

the same or more training steps.370

3.5.4 The Effectiveness of KL and Entropy371

The KL penalty and entropy loss are very important372

in RL training. Therefore, we conduct simple ab-373

lation experiments on the KL penalty and entropy374

loss. As presented in Figure 8, we find that when375

training the DEEPSEEK-R1-DISTILL-QWEN-1.5B376

model without the KL penalty, even when the av-377

erage output length was compressed to between378

3500-4000 tokens, the model’s output length does379

not show a significant increasing trend. From the380

results in Figure 9, we can see that removing the 381

entropy loss caused the model’s output length to 382

decrease significantly around step 800. In Figure 8 383

and Figure 9, the blue lines represent the original 384

experimental setup, but these are results from two 385

different experiments. This paper primarily focuses 386

on exploring the impact of context length and data 387

complexity on the training process. Therefore, we 388

do not provide an extensive analysis of the effects 389

of the KL penalty and entropy loss. 390

3.5.5 Analyzing Generated Responses 391

Table 6 presents comparative statistics on the re- 392

sponse characteristics of DEEPSEEK-R1-DISTILL- 393

QWEN-1.5B and FASTCURL-1.5B-Preview. The 394

results focus on two key metrics: average output 395

length and frequency of the term "wait"/"Wait" in 396

responses. The DEEPSEEK-R1-DISTILL-QWEN- 397

1.5B produces significantly longer responses over- 398

all (50.5% longer than FASTCURL-1.5B-Preview. 399

Interestingly, both models show a pattern where 400

incorrect responses tend to be substantially longer 401

than correct ones. The frequency of "wait"/"Wait" 402

terms is indicative of reflection behaviors in the R1- 403

like reasoning models. DEEPSEEK-R1-DISTILL- 404

QWEN-1.5B uses these terms approximately 36% 405

more frequently than FASTCURL-1.5B-Preview 406

overall. Similarly, both models show significantly 407

higher usage of these terms in incorrect responses 408

compared to correct ones. 409
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Model
# Average Output Length # Average Frequency of "Wait" and "wait"

TOTAL CORRECT INCORRECT TOTAL CORRECT INCORRECT

DEEPSEEK-R1-DISTILL-QWEN-1.5B 43176 21859 52629 109 49 138
FASTCURL-1.5B-Preview 28681 18970 36044 80 48 104

Table 6: Statistics of the responses of DEEPSEEK-R1-DISTILL-QWEN-1.5B and FASTCURL-1.5B-Preview.
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Figure 10: Comparison of average response length (character-level) between correct and incorrect answers. Green
bars represent correct answers, while red bars represent incorrect answers. Each problem’s analysis is based on 16
samples. A few problems have no green bars, indicating no correct answers are provided for those problems.

Figure 10 compares DEEPSEEK-R1-DISTILL-410

QWEN-1.5B and FASTCURL-1.5B-Preview on the411

AIME 2024, measuring the average response length412

between correct and incorrect answers at the prob-413

lem level to observe and analyse whether the long414

incorrect response is related to the difficulty of the415

problem. Across both models, incorrect answers416

(red bars) almost universally have greater average417

response lengths than correct answers (green bars).418

This suggests that models tend to generate more419

verbose content when producing incorrect answers,420

potentially reflecting "over-explanation" or "ver-421

bose reasoning" when the model is uncertain.422

4 Related Work423

Advancements in RL methodologies have consider-424

ably enhanced the reasoning capabilities of LLMs.425

A pivotal development in this domain is OpenAI’s426

o1 (OpenAI, 2024), which employs RL training to427

promote the development of long CoT reasoning in428

LLMs. This approach has significantly enhanced429

performance on complex mathematical and pro-430

gramming benchmarks. Building upon this founda-431

tion, DeepSeek-R1 (DeepSeek-AI, 2025) demon-432

strates that pure RL post-training via Group Rein-433

forcement Policy Optimization (GRPO), without434

needing supervised pre-training, can directly per-435

form robust CoT reasoning capabilities. Notably, 436

this method not only achieves performance com- 437

petitive with o1 but also exhibits emergent behav- 438

iors such as self-verification and multi-step plan- 439

ning. Building on these advancements, the research 440

community has been collectively working to study 441

and apply DeepSeek-R1‘s methodology to enhance 442

the reasoning capabilities of various sizes of lan- 443

guage models, yielding remarkable progress, such 444

as (Face, 2025; Luo et al., 2025; Zeng et al., 2025b; 445

Liu et al., 2025; Yu et al., 2025). 446

5 Conclusion 447

We investigate how the model’s context length and 448

the complexity of the training dataset influence the 449

training process of R1-like reasoning models. Mo- 450

tivated by our findings, we propose FASTCURL, 451

a simple yet effective curriculum reinforcement 452

learning framework incorporating a stage-wise con- 453

text scaling strategy. This framework is designed to 454

accelerate the training efficiency and improve the 455

model’s long CoT reasoning capabilities. Experi- 456

mental results demonstrate that FASTCURL-1.5B- 457

Preview achieves better performance and reduces 458

computational resource consumption by more than 459

50%, with all training phases efficiently executed 460

using a single node with 8 GPUs. 461
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6 Limitations462

Due to limited resources, this paper verifies the463

effectiveness of the proposed method, FastCuRL,464

only on a 1.5B language model. Generally, validat-465

ing its effectiveness on models of varying sizes is a466

worthwhile direction for future research. Further-467

more, in this paper, we investigate the influence of468

using complexity-aware training data by employing469

the simplest separation method to validate the effi-470

cacy of separating the training data by complexity,471

and achieves significant results. If more sophisti-472

cated separation methods were adopted, achieving473

even more promising results might be possible.474

Training over multiple stages, rather than in a475

single training stage, involves more than changes476

in parameters like context length; it also fundamen-477

tally alters the reference policy. In a multi-stage478

training strategy, the KL penalty imposed by the479

reference policy on the model is gradually relaxed,480

which allows the trained model to explore a broader481

range of solutions. Delving into dynamic control482

of context lengths or implementing a dynamic KL483

penalty may be valuable directions.484
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