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ABSTRACT

Large Language Models (LLMs) have demonstrated impressive inferential capa-
bilities, with numerous research endeavors devoted to enhancing this capacity
through prompting. Despite these efforts, a unified epistemological foundation
is still conspicuously absent. Drawing inspiration from Kant’s a priori philoso-
phy, we propose the UPAR prompting framework, designed to emulate the struc-
ture of human cognition within LLMs. The UPAR framework is delineated into
four phases: “Understand”, “Plan”, “Act”, and “Reflect”, enabling the extrac-
tion of structured information from complex contexts, prior planning of solutions,
execution according to plan, and self-reflection. This structure significantly aug-
ments the explainability and accuracy of LLM inference, producing a human-
understandable and inspectable inferential trajectory. Furthermore, our work of-
fers an epistemological foundation for existing prompting techniques, allowing
for a possible systematic integration of these methods. With GPT-4, our approach
elevates the accuracy from COT baseline of 22.92% to 58.33% in a challeng-
ing subset of GSM8K, and from 67.91% to 75.40% in the causal judgment task.
Without using few-shot examples or external tools, UPAR significantly outper-
forms existing prompting methods on SCIBENCH, a challenging dataset contain-
ing collegiate-level mathematics, chemistry, and physics scientific problems.

1 INTRODUCTION

Figure 1: Comparison of UPAR to Chain-of-
Thought. UPAR includes four parts: Understand,
Plan, Act, and Reflect, allowing LLMs to simulate
the mental structure of human.

Large Language Models (LLMs) have show-
cased capabilities parallel to human perfor-
mance across diverse tasks encompassing pro-
gramming, academic evaluations, common
sense reasoning, and professional undertakings
(OpenAI, 2023; Bubeck et al., 2023; Zhao
et al., 2023b). The emergent in-context learn-
ing ability (Brown et al., 2020; Wei et al., 2022)
of LLMs has catalyzed the evolution of prompt
engineering, aiming to further amplify their po-
tential (Liu et al., 2021; Dong et al., 2022; Qiao
et al., 2023; Dong et al., 2023; Mialon et al.,
2023). Despite this advancement, a significant
portion of current research on prompting re-
mains largely heuristic and intuitive, frequently
devoid of a profound epistemological founda-
tion. To address this concern, this paper in-
troduces the UPAR framework, inspired by the
transcendental philosophy of Immanuel Kant.
The proposed framework aspires not only to
enhance the reasoning competencies of LLMs
but also to offer a consolidated, epistemology-
based structure for existing prompt techniques.
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Prompt Engineering emerges as an efficacious approach to augment the performance of LLMs with-
out the necessity for model retraining. This enhancement is achieved by the construction of special-
ized instructive prompts, such as chain-of-thought (Wei et al., 2023), self-consistency (Wang et al.,
2023b), and knowledge generation (Liu et al., 2022), among others. These strategies hold the po-
tential to mitigate various shortcomings inherent in contemporary large language models, such as
inexplicability (Zhao et al., 2023a), hallucinations (Bang et al., 2023; Liang et al., 2022; McKenna
et al., 2023; Li et al., 2023; Ji et al., 2023; Rawte et al., 2023), complex causal reasoning (Hobbhahn
et al., 2022; Willig et al., 2022; Zečević et al., 2023; Kıcıman et al., 2023), and limited mathematical
ability (Lu et al., 2023b; Dziri et al., 2023). Nevertheless, the majority of existing prompt method-
ologies encounter three significant challenges: 1. Their primary focus on addressing local reasoning,
overlooking the intricate underlying cognitive structures of human mind. 2. Numerous prompts are
custom-designed for specific structured reasoning processes, neglecting the complexities inherent in
real-world natural language tasks. 3. The foundational basis for most prompt designs predominantly
relies on intuition, lacking a consolidated epistemological perspective. To address these problems,
we turn to epistemology in philosophy.

In the seminal work “Critique of Pure Reason” (Kant et al., 1934), Immanuel Kant delineated an
epistemological hierarchy within the human mind: sensibility, understanding, and reason, as de-
picted in Figure 2. Sensibility constitutes the initial phase, wherein perceptions are amassed as raw
sensory impressions, devoid of structured meaning. Subsequently, the stage of understanding inter-
prets these impressions, bestowing structure and significance upon them. Reason stands as the zenith
of cognitive capabilities, striving to unearth truths transcending empirical experience. Notably, Kant
emphasized that reason must remain rooted in experience to avert “illusions,” signifying logical but
unrealistic knowledge. Although Kant’s philosophy has cast a profound influence across various
academic disciplines (Allison, 2004; Bird, 2013; Strawson & Allais, 2018), discussions regarding
its application within LLMs are notably scant.

Inspired by Kant’s transcendental philosophy (Kant et al., 1934), we propose a prompt framework
to augment the performance of LLMs, as illustrated in Figure 1. Our methodology unfolds in four
sequential stages: Understand, Plan, Act, and Reflect. Succinctly, the “Understand” stage extracts
crucial information from the input text, utilizing a priori human cognitive categories. The “Plan”
stage devises an action plan meticulously tailored to the specific task at hand. The “Act” stage em-
bodies the direct problem-solving process of the LLM. Lastly, the “Reflect” phase enables the LLMs
to provide feedback and refine its output based on the information above. This framework allows
LLMs to generate a multi-level reasoning process and improve its reasoning accuracy by simulat-
ing the cognitive ability of the human mind. In addition, such a reasoning process allows humans
to correct and provide feedback by checking the output of LLMs at different stages. Finally, the
UPAR framework is compatible with various existing prompting techniques, providing possibilities
for future systematic prompting engineering.

Figure 2: The structure of human mind in Kant’s transcendental philosophy
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2 RELATED WORKS

Our prompting framework draws inspiration from Kant’s transcendental philosophy. Therefore in
this section, we provide a succinct review of the existing research on prompts and introduce the
transcendental principles posited by Kant, elucidating potential linkages between them.

2.1 CURRENT PROMPT RESEARCH

2.1.1 INDEPENDENT OF EXTERNAL TOOLS

Numerous studies on prompts have augmented the capabilities of LLMs by delving into single or
multi-step thought processes. The Chain-of-Thought (COT) series obliges LLMs to expound the un-
derlying rational processes (Wei et al., 2023; Kojima et al., 2023; Zhang et al., 2022; Fu et al., 2023).
Wang et al. (2023b) introduces Self-Consistency, a strategy wherein the LLM iteratively answers the
same query, employing majority voting to diminish answer uncertainties. Zhou et al. (2023a) un-
veils LEAST-TO-MOST, deconstructing intricate problems into sequential sub-tasks. Building upon
these foundations, subsequent research has expanded the paradigm to encompass multi-path infer-
ential frameworks (Dohan et al., 2022). Significant advancements include the Tree of Thoughts (Yao
et al., 2023a), Graph of Thoughts (Besta et al., 2023), and Algorithm of Thoughts (Sel et al., 2023).
These works conceptualize individual LLM computations as fundamental nodes within potential
cognitive trajectories, exploring a more extensive spectrum of cognitive pathways.

Another direction involves utilizing the internal knowledge of LLMs to assist decision-making or
facilitate automatic optimization. Works by Shwartz et al. (2020); Paranjape et al. (2021); Liu et al.
(2022) leverage LLMs to autonomously generate problem-related insights that aid in problem res-
olution. Jung et al. (2022) proposes the MAIEUTIC, constructing a recursive explanation tree and
confining inference within the bounds of a satisfiability problem. Creswell et al. (2022) puts forth
the Selection-Inference model, delineating each reasoning step into selection and inference. Madaan
et al. (2023) permits LLMs to operate iteratively, alternating between outputting answers and evalu-
ations, and refining. Xie et al. (2023) empowers LLMs to conduct fine-grained self-assessments to
enhance multi-step reasoning. Additionally, Yang et al. (2023a); Zhou et al. (2023b) delve into the
potential of employing LLMs for the automatic generation and optimization of prompts.

These methods typically yield substantial advancements for LLMs dealing with zero-shot or low-
shot prompts. However, several limitations persist. Primarily, these studies often concentrate exclu-
sively on local and specific reasoning processes, neglecting the intrinsic human cognitive structures
underpinning language. Concurrently, these manually constructed methods often rely more on intu-
ition than established principles, posing challenges to systematic knowledge in prompt engineering.

2.1.2 USING EXTERNAL TOOLS

Another exploration involves combining LLMs with external tool using. As an intermediary, LLMs
have the potential to meld the flexibility of natural language systems with the precision of symbolic
language systems, translating natural language problems into the language of external tools. Works
in this direction include SEQZERO (Yang et al., 2022), Rational Meaning Construction (Wong
et al., 2023), Faithful Chain-of-Thought (Lyu et al., 2023), Program of Thoughts (Chen et al., 2022),
Program-aided Language Models (Gao et al., 2023a). The broader concept of tools includes search
engines and knowledge databases and even other neural networks, as demonstrated by the tool li-
brary (Paranjape et al., 2023), React (Yao et al., 2023b; Yang et al., 2023b), LATM (Cai et al., 2023),
Toolformer (Schick et al., 2023), HuggingGPT (Shen et al., 2023), Chameleon (Lu et al., 2023a),
FACTOOL (Chern et al., 2023).

These methods integrate LLMs with external tools to augment their capabilities, achieving state-of-
the-art results across various tasks. However, they overlook the fact that these tools are products
of human thought, not the foundation of thinking. For instance, the human brain, as a large and
highly complex network, does not rely on programming languages to solve basic computational
problems, nor does it exhibit signs of internal formal reasoning systems. These tools are the creations
of human intellect rather than the basis of human reliable thinking. Therefore, in this paper, we
exclusively focus on prompting techniques without external tools. As we observe, tool utilization is
not a precondition for the proper functioning of the human mind, but merely a supplementary aid.
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2.2 VIEW FROM PHILOSOPHY

2.2.1 RATIONALISM

Rationalism in epistemology posits that knowledge fundamentally emanates from logical reasoning
(Markie & Folescu, 2004; Gottlieb & Russell, 2013), frequently neglecting the depth and richness of
experiential knowledge. This unwavering perspective subsequently led to the emergence of dogma-
tism, asserting human rationality as infallible and dismissing the indispensable need for experiential
insights. This stance obstructs a more holistic comprehension of the evolution of knowledge. Anal-
ogously, early AI models, such as Symbolic AI and Expert Systems (Nilsson, 1982; Luger, 2005),
anchored in this rationalistic framework, encountered significant challenges with real-world com-
plexities. Gradually, AI has transitioned from this rigid approach to a more adaptive, data-driven
paradigm, exemplified by the rise of deep learning (LeCun et al., 2015).

2.2.2 EMPIRICISM

Empiricism posits that all human knowledge originates from sensory experience (Sellars et al., 1956;
Markie & Folescu, 2004), asserting that knowledge hinges on external observations rather than in-
trinsic principles. This perspective, however, can inadvertently steer us towards skepticism, where
fundamental notions such as cause and effect might merely represent mental association rather than
objective reality, which nullifies the essential possibility of humans discerning the truth and con-
tradicts the scientific system.Empiricism is manifested in machine learning and deep learning, dis-
ciplines that prioritize data-driven learning over established rules. Despite the success of these
models, their unpredictability and susceptibility to incomprehensible errors, such as adversarial vul-
nerability (Madry et al., 2017) and LLMs’ hallucinations (Rawte et al., 2023; Ji et al., 2023), remain
prominent. We have also observed that large language models, rooted in empiricism, suffer from
difficulties similar to Hume’s problem (Hume, 1875): the lack of genuine understanding regarding
the inner laws of the world. LLMs’ reasoning rests upon patterns and statistical relationships, de-
void of true causality (Hobbhahn et al., 2022; Willig et al., 2022; Zečević et al., 2023; Kıcıman et al.,
2023). This observation compels us to explore a more comprehensive epistemological framework to
alleviate the prevailing issues faced by current LLMs.

2.2.3 KANT’S TRANSCENDENTAL PHILOSOPHY

Kant’s transcendental philosophy is dedicated to resolving the contradiction between rationalism
and empiricism. In “Critique of Pure Reason” (Kant et al., 1934), Kant constructs an intricate
epistemological framework that has fundamentally shaped modern philosophy as we have shown in
Fig. 2. Sensibility lies as the first layer of cognitive capacity. Kant advances that sensibility is the
initial stage in acquiring perceptions, acting as the fundamental channel between the external world
and our cognitive faculties. This perception initially appears as unprocessed sensory data, lacking
intrinsic structure or meaning. Kant’s delineation of two pure forms of sensibility, space and time,
summarizes the transcendental structures we superimpose on experience.

Understanding, as the second layer, epitomizes our capacity to interpret and ascertain meaning from
the raw sensory information. It imparts structure and meaning to our experiences. Kant contends
that there exist fundamental concepts or “categories” that are intrinsically pure, not emerging from
experiential contexts, but rather forming the structural framework we impose upon our experiences.
These a priori categories encompass fundamental relationships as is shown in Table 1, forming the
bedrock for our interpretation and comprehension of the external realm.

Reason transcends sensibility and understanding, representing the apex of cognitive capabilities. It is
devoted to elucidating truths that surpass sensibility and understanding. Kant postulates that reason,
grounded on insights furnished by understanding, continuously aspires for systematic, holistic, and
ultimate elucidations of existential entities.

Kant’s critique also highlights the need for caution and self-reflection in the practice of reason.
Despite reason’s intrinsic drive to unravel ultimate truths, Kant warns against its venture beyond
the boundaries of empirical experience. Kant points out that using reason beyond the confines
of experience could produce “illusions”, knowledge that seems reasonable but is unrealistic, and
advocated rigorous critical examination of our cognitive processes.
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Table 1: Transcendental Categories. In Kant’s philosophy, the Transcendental Categories are funda-
mental concepts or pure categories of understanding that structure human cognition and experience.
These categories do not derive from acquired experience, but rather serve as an a priori ability to
construct possible understanding.

Category Subcategories
Sensibility Time Space -
Quantity Unity Plurality Totality
Quality Reality Negation Limitation
Relation Inherence-Subsistence Causality-Dependence Community
Modality Possibility Existence Necessity

3 METHOD

Based on the analysis above, we generally follow the cognitive structure proposed by Kant’s philos-
ophy to build the UPAR (Understand, Plan, Act, Reflect) prompt framework. In the following, we
denote a pre-trained LLM with parameters as pθ and a sentence as x where x = (x[1], . . . , x[n]),
where each x[i] stands for a token. The probabilistic language model can be described as

pθ(x) =

n∏
i=1

pθ(x[i] | x[1, . . . , i− 1]) (1)

We further denote the prompting: pθ(output | prompt(input)) as pprompt
θ (output | input), where

prompt(input) is the input wrapped with prompt instructions.

3.1 UNDERSTAND

In Kant’s epistemological framework, the a priori categories of understanding serve the process
of human understanding of the world, and are the nodes on the web of knowledge that help us
understand natural phenomena (Hegel, 2010). It is these categories that empower us to organize
and interpret this raw sensory data. From this perspective, we designate the initial phase of LLM’s
problem processing as “understanding”—a restoration of a real-world model through the linguistic
representation. Specifically, drawing upon Table 1, we prompt LLMs to first address these four
questions within the context of time and space:

Quantity: What entities/events and their quantitative relationships are related to
the question?

Quality: What intrinsic properties and external constraints of these entities/events
are related to the question?

Relation: What is the relationship between these entities/events?

Modality: Is possibility/impossibility, inevitable/accidental involved in the enti-
ties/events related to the question?

We aim to assist the model better understand entities and their relationships by these questions,
especially in the context of time and space. Consider reading a detective fiction: it is crucial to dis-
cern characters, objects, events, their attributes, and spatio-temporal coordinates, and comprehend
their interactions and relationships. These hidden understandings do not always take the form of
language, but allow for more informed conclusions rather than intuitive judgments. Moreover, Shi
et al. (2023) affirmed that even slight irrelevant information in queries can notably detract LLMs’
performance, highlighting the necessity for information sifting. Hence, we set the first step of the
LLM’s work as constructing a world model using language. Denoting u as the understanding, this
process can be formally written as

u ∼ pUnderstand
θ (u | x) (2)
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3.2 PLAN

In Kant’s epistemological framework, reason is situated at the zenith. Reason’s capacity lies in
processing knowledge that the intellect has already refined, and subsequently integrating this into a
systematic comprehension. In this context, we define “reason” as the ability to devise a high-level
plan for a target task, grounded on the original context and the structured knowledge extracted by
the intellect. We also observe that Bubeck et al. (2023) highlights the limitation imposed by the
autoregressive nature of transformer models, as LLMs are constrained in their foresight to “plan
ahead” for complex tasks. This notion resonates with the delineation between System 1 and System
2 models in psychology (Kahneman, 2011), where LLMs, functioning as unidirectional word-by-
word generative models, inherently lack the “slow thinking” component essential for overseeing the
thought process. Consequently, we design the planning stage to compel the model to generate a
high-level plan l before embarking on problem-solving, which is prompted and formalized as:

l ∼ pPlan
θ (r | x, u), Plan: Let’s make a briefly plan to solve this question step by step. (3)

3.3 ACT

In the action phase, we prompt LLMs to perform specific calculations or reasoning in accordance
with the plan. Ensuring that large language models reason correctly has been a focal point of ex-
tensive research in recent years. As previously introduced, numerous works have been dedicated to
this area such as Chain-of-Thought (COT) (Wei et al., 2023), Self-Consistency (Wang et al., 2023b),
Self-Refine (Madaan et al., 2023). Concurrently, certain studies focus on constructing sufficiently
complex LLM thinking paths to fully explore the possible solution space of the problem such as
the Tree of Thoughts (Yao et al., 2023a), Graph of Thoughts (Besta et al., 2023), and Algorithm of
Thoughts (Sel et al., 2023). We posit that these methodologies can be seamlessly integrated into the
action phase of our framework to solve specific problems. Denoting a as the action process, we have

a ∼ pAct
θ (a | x, u, l) , Act: Now, let’s execute the plan step by step. (4)

3.4 REFLECT

In Kant’s critical philosophy, an important aspect is the examination of reason within its own con-
fines: the application of reason must not deviate from experience. Exceeding these bounds may lead
reason astray, giving rise to erroneous “illusions”. This notion resonates with observations made
in LLMs’ hallucinations (Kadavath et al., 2022; Liang et al., 2022; McKenna et al., 2023; Li et al.,
2023; Ji et al., 2023; Rawte et al., 2023). Therefore, we propose the final step as reflection, re-
quiring LLMs to comprehensively review the content they generate, point out possible errors, and
correct them. Many recent methods employ similar self-checking concepts to mitigate the LLMs’
hallucinations, such as Self-Consistency (Wang et al., 2023b), Self-Refine (Madaan et al., 2023),
DOLA (Chuang et al., 2023), citation generation (Gao et al., 2023b), Retrieval Augmentation (Ren
et al., 2023). Essentially, these techniques can be used to enhance the “reflect” stage in our UPAR
framework. Denoting r as the reflection, “reflect” is prompted and formalized as:

r ∼ pReflect
θ (r | x, u, l, a), Reflect: Check your answers and correct possible errors. (5)

3.5 UPAR FRAMEWORK

(u, l, a, r) ∼ pUnderstand
θ (u | x)︸ ︷︷ ︸

Understand

· pPlan
θ (l | x, u)︸ ︷︷ ︸

Plan

· pAct
θ (a | x, u, l)︸ ︷︷ ︸

Act

· pReflect
θ (r | x, u, l, a)︸ ︷︷ ︸

Reflect

(6)

Based on the aforementioned discussion, we hereby formalize the entire UPAR framework as out-
lined in Eq 6. For the scalability of our approach, we provide all these prompts as system-level inputs
to the model in a single instance, which means we do not provide any few-shot samples, do not man-
ually split any sub-problems, and do not connect or modify the model output. Specifically, we force
the model to do all understanding, planning, execution, and reflection in a single output to verify to
a certain extent whether the large language model has human-like system thinking capabilities. An
example from GSM8K is shown in Figure 3.
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Figure 3: An UPAR framework example from GSM8K, created by GPT4.

4 RESULTS

4.1 EXPERIMENT SETTING

We choose SCIBENCH (Wang et al., 2023a), GSM8K (Cobbe et al., 2021), AQUA-RAT (Ling et al.,
2017), CommonsenseQA (Talmor et al., 2019), StrategyQA (Geva et al., 2021), and the Causal-
Judgement task in BIG-Bench Hard (BBH) (Suzgun et al., 2022) as the test datasets. SCIBENCH is
a recent challenging dataset contains collegiate-level scientific mathematics, chemistry, and physics
problems. Further, we manually selected questions from GSM8K that could not be answered cor-
rectly by zero-shot Chain-of-Thought (COT) method (Kojima et al., 2022) on GPT4. After manual
inspection and removal of incorrectly labeled data, 48 items were retained to form the GSM8K-
Hard (GSM8K-H) dataset. Both SCIBENCH and GSM8K-H require significantly more complex
reasoning and understanding processes. We evaluated our method using the GPT4 (OpenAI, 2023)
models; all temperatures were set to 0 and top p to 1. For UPAR, we test without any external tools,
using it as only the one-time zero-shot system-level prompt, which means we do not provide manu-
ally constructed few-shot samples; do not perform multiple Q&A iterations; do not manually divide
sub-questions, and only use the entire contents of model’s single output as the final answer.

4.2 MAIN RESULTS

Table 2: GPT4 model accuracy (%) on SCIBENCH textbook dataset. We take baseline methods and
data from (Wang et al., 2023a): zero-shot learning without the system prompt (Zero−S), zero-shot
learning with the system prompt (Zero), few-shot learning (Few), CoT prompting under zero-shot
(Zero+CoT) and few-shot learning (Few+CoT) scenarios, few-shot learning that prompts to use
Python (Few+Py), and Wolfram Language (Few+Wol) as external tools. The best performing score
is highlighted in bold and second-best is underlined.

Setting
Chemistry Physics Math

Avg.
atkins chemmc quan matter fund class thermo diff stat calc

Zero−S 14.95 25.64 8.82 18.37 21.92 12.77 7.46 8.00 28.00 19.05 16.81
Zero 27.10 23.08 14.71 22.45 15.07 8.51 11.94 18.00 56.00 42.86 25.09

Zero+CoT 28.04 43.59 14.71 20.41 21.92 19.15 17.91 22.00 50.67 42.86 28.52

Few 15.87 30.77 17.65 12.24 26.03 12.77 5.97 8.00 49.33 33.33 21.46
Few+CoT 21.05 46.15 17.65 26.53 27.40 14.00 13.43 18.00 61.33 35.71 28.35
Few+Py 21.05 41.03 38.24 28.57 38.36 17.02 29.85 34.00 69.33 42.86 35.80

Few+Wol 3.74 0.00 17.65 26.53 27.30 17.02 17.91 32.00 7.69 14.29 15.56

UPAR 55.28 62.5 35.71 42.37 66.26 18.52 34.52 38.18 70.53 61.54 50.65

Results of SCIBENCH in Table2 demonstrate that UPAR shows consistent superiority and stability
over existing prompting methods on complex reasoning task. In particular, it can be noted that on
this dataset: 1. Few-shot learning has only a weak performance improvement compared to zero; 2.
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The use of Python and Wolfram ensures that LLM has reliable numerical and symbolic calculation
tools, but it also does not significantly improve the reasoning ability. In contrast, the UPAR method
consistently achieved the best results without relying on any few-shot examples or using external
tools. For such scientific problems that require complex reasoning processes, we argue that the a
priori category context and multi-level cognitive framework in UPAR, instead of linear thinking
process, can significantly increase the reasoning capabilities of LLMs.

Method GSM8K AQuA CSQA Strategy GSM8K-H Causal-Judgement
Zero 39.12 43.70 84.6 67.78 16.67 70.05

Zero+CoT 93.10 74.41 81.16 72.76 22.92 67.91
UPAR-S 94.26 75.98 84.03 73.63 58.33 72.73
UPAR 93.10 75.98 83.13 68.90 47.92 75.40

Table 3: Performance of models on arithmetic and commonsense data with GPT4

We also show experiment results on GSM8K, AQUA, CommonsenseQA, and StrategyQA and
Causal-Judgement task in Table 3. Since most of the questions in these dataset are relatively simple
and do not involve complex cognitive processes, we further designed UPAR-Simple, a simplified
version of the UPAR. The only difference is the level of detail asked in the understanding step: in
UPAR-S , we only asked “the entities and relationships” to avoid introducing irrelevant content.

As anticipated, the UPAR-Simple (UPAR-S) model consistently outperforms other models in the
majority of the tasks. It notably achieves a score of 58.33% on the GSM8K-H task, a significant
margin higher compared to the COT baseline of 22.92%. This evidence underscores the robustness
and superior efficacy of UPAR-S in tackling various tasks. In the Causal-Judgment task, problems
typically have complex backgrounds involving multiple tasks and the judgment of causal relation-
ships across various times. As expected, UPAR showcases exceptional performance in the Causal-
Judgment task, attaining the highest score of 75.40%, surpassing the COT baseline of 67.91%.
This result highlights the significant capability improvement of UPAR in complex reasoning tasks,
demonstrating the rationality of our proposed multi-level cognitive architecture.

4.3 ABLATION STUDY ON UPAR

Figure 4: GPT4 performance of zero-
shot, COT and UPAR-S on GSM8K-
Hard versus temperature.

In the ablation study presented in Table 4, we remove
different parts of UPAR-S and test their performance
differences using GPT-4 on the GSM8K-Hard dataset.
The complete UPAR-S model achieves an accuracy of
58.33%. When the understanding component is removed,
the accuracy slightly decreases to 54.17%. Furthermore,
the model without the planning component has an accu-
racy of 56.25%, lower than the full model but still show-
ing some competence. After removing the action com-
ponent, the model’s performance drastically drops to an
accuracy of only 16.67%. Lastly, without the reflection
component, the accuracy is 43.75%, representing a sub-
stantial decline compared to that of the complete model.
These data underscore the critical role of each component
in the UPAR model. We further tested the stability of the
UPAR method at different temperatures, as demonstrated
in Figure 4. Experimental results show that UPAR sta-
bly outperforms COT at various temperatures in terms of
inference performance.

Table 4: Ablation study on GSM8K-Hard, with GPT4, UPAR-S method.

Method Accuracy Method Accuracy Method Accuracy
Zero-shot 16.67% w/o understand 54.17% w/o action 16.67%
UPAR-S 58.33% w/o plan 56.25% w/o reflect 43.75%
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4.4 ERROR ANALYSIS

Figure 5: GPT4 UPAR-
S method’s error source on
GSM8K-Hard.

According to our experiments, LLMs under UPAR may make er-
rors in the following situations: 1.Understand: LLMs may mis-
understand the ambiguous semantic content and generate a de-
terministic attitude answer rather than seek clarification. 2.Plan:
LLMs may produce illogical plans for solving problems, even under
the premise of correctly understanding. 3.Execution: LLMs can-
not accurately perform computational problems such as floating-
point multiplication, matrix operations, calculus, complex algebraic
equations, etc. Without relying on external tools, LLMs often out-
put unreliable results or refuse to calculate. 4.Reflection: LLMs
may not be able to effectively correct their own errors without exter-
nal suggestion, such as modifying the original correct answer into
an incorrect one, or being unable to effectively identify it’s own
erroneous calculations and reasoning processes. We manually ana-
lyzed all incorrect answers on the GSM8K-Hard dataset and classi-
fied the reasons, as shown in Figure 5. we anticipate the incorpora-
tion of other methods into UPAR can further minimize these errors.
Such methods may include using external knowledge to ensure correct understanding (Lyu et al.,
2023), utilizing mathematical tools (Wong et al., 2023) to ensure accurate calculations, introducing
multiple rounds of self-refinement (Madaan et al., 2023) to enhance reflection effectiveness.

4.5 COMPATIBILITY WITH SELF-REFINE METHOD

In order to assess UPAR’s compatibility with existing methods, we further attempted to integrate
UPAR with the self-consistency (SC) method (Wang et al., 2023b). The experimental results are
shown in Table 5. The self-consistency method improves the responses accuracy by letting LLMs
answer the same question multiple times and using a majority vote to determine the final result.
Each experiment was conducted five times to conduct SC. It can be observed that the UPAR method
is highly compatible with the SC method, achieving significant performance improvement. For
instance, on GSM8K-Hard, the combination of UPAR and SC improves the accuracy from 47.92%
to 60.42%, while the combination of COT and SC does not significantly improve the performance.
This is usually because the question involves some non-linear reasoning process that cannot be
effectively captured by linear thinking processes, while UPAR alleviates this significantly.

Table 5: Combinations of different methods with Self-Consistency.

Method GSM8K-H GSM8K-H (SC) C-J C-J (SC)
Zero-Shot 16.67% 18.75% 70.05% 72.19%

CoT(Zero-Shot) 22.92% 18.75% 67.91% 72.72%
UPAR-S 58.33% 64.58% 72.73% 73.26%
UPAR 47.92% 60.42% 75.40% 76.47%

5 CONCLUSION AND DISCUSSION

This paper aims to fill the existing gap in the epistemological foundation in the field of prompting
techniques for Large Language Models (LLMs). Inspired by Kant’s philosophy of a priori knowl-
edge, we introduce the UPAR prompting framework, emulating human cognition structures within
LLMs. The UPAR framework is divided into four phases: “Understand”, “Plan”, “Act” and “Re-
flect”, enabling the extraction of structured information from complex contexts, plan solutions in
advance, execute according to the plan, and self-reflect. This structure significantly enhances the
explainability and accuracy of LLM inference, producing a human-understandable and inspectable
inferential trajectory. Furthermore, Kant’s a priori philosophical epistemological framework brings
a new perspective to the LLMs community, which is currently dominated by empiricism. We believe
that integrating these a priori epistemic structures as additional constraints into LLMs training is a
valuable topic.
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APPENDIX

In the appendix we show the complete prompt words and some examples to help readers understand
our UPAR method.

A FULL SETS OF PROMPTS

A.1 UPAR-S

You are an assistant with a multi-level thinking structure. When you receive the problem,
don’t solve it immediately. Follow the structured instructions:

First, let’s briefly understand this question step by step.: [Your understanding here.]

Let’s make a briefly plan to solve this question step by step: [Your plan here.]

Now, let’s execute the plan step by step: [Your solution here.]

Check your answers and correct possible errors.: [Your reflect here.]

A.2 UPAR

You are an assistant operating under a Kantian-inspired multilevel thinking structure. When
receiving a problem, do not solve it immediately. Instead, follow these structured instructions:

First, briefly understand this question in the context of time and space step by step.

Quantity: What entitie/events and their quantitative relationships are related to the ques-
tion? [Your answer here]

Quality: What intrinsic properties and external constraints of these entities/events are related
to the question? [Your answer here]

Relation: What is the relationship between these entities/events? [Your answer here]

Modality: Is possibility/impossibility, inevitable/accidental involved in the entities/events
related to the question? [Your answer here]

Let’s make a briefly plan to solve this question step by step: [Your plan here.]

Now, let’s execute the plan step by step: [Your solution here.]

Check your answers and correct possible errors.: [Your reflect here.]

These multi-step thinking processes can be provided to LLMs at once using the [“role”:“system”]
part of OpenAI’s API reference here, or can be asked step by step in multiple rounds of dialogue.
We expect the latter to have better results, but for efficiency reasons, we use the former in our
experiments. In all experiments, we use the zero-shot approach, i.e., no samples are manually
constructed.
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B EXAMPLES

B.1 GSM8K

Correct example 1

Question: Bill is ordering a new truck. He has decided to purchase a two-ton truck with
several added features: a king cab upgrade, a towing package, leather seats, running boards,
and the upgraded exterior light package. The base price of the truck is $30,000, and the other
features are at extra cost. The king cab is an extra $7,500, leather seats are one-third the cost
of the king cab upgrade, running boards are $500 less than the leather seats, and the upgraded
exterior light package is $1500. What is the total cost of Bill’s new truck, in dollars?

Answer:

Understand

Quantity: The entities related to the question are the base price of the truck ($30,000), the cost
of the king cab upgrade ($7,500), the cost of the leather seats (one-third the cost of the king
cab upgrade), the cost of the running boards ($500 less than the leather seats), and the cost of
the upgraded exterior light package ($1500).

Quality: The intrinsic properties related to the question are the costs of the truck and its fea-
tures. The external constraint is that these costs need to be added together to find the total cost
of the truck.

Relation: The relationship between these entities is that they are all costs that need to be added
together to find the total cost of the truck.

Modality: The total cost of the truck is inevitably the sum of the costs of the truck and its
features.

Plan

First, calculate the cost of the leather seats by dividing the cost of the king cab upgrade by
three.
Then, calculate the cost of the running boards by subtracting $500 from the cost of the leather
seats.
Finally, add the costs of the truck, the king cab upgrade, the leather seats, the running boards,
and the upgraded exterior light package to find the total cost of the truck.

Act

The cost of the leather seats is $7,500 / 3 = $2,500.
The cost of the running boards is $2,500 - $500 = $2,000.
The total cost of the truck is $30,000 + $7,500 + $2,500 + $2,000 + $1,500 = $43,500.

Reflect

The calculations appear to be correct, and the total cost of the truck is reasonable given the
costs of the truck and its features. Therefore, I believe the answer is correct.

Answer: 43500, GroundTruth: 43500
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Correct example 2

Question: At the trip to the county-level scavenger hunt competition, 90 people were required
to split into groups for the competition to begin. To break people up into smaller groups with
different leaders, 9-person groups were formed. If 3/5 of the number of groups each had
members bring back 2 seashells each, how many seashells did they bring?

Answer:

Understand

Quantity: The entities related to the question are the 90 people, the 9-person groups, the 3/5 of
the groups, and the 2 seashells each person brought back.

Quality: The intrinsic properties related to the question are the number of people in each group,
the fraction of groups that brought back seashells, and the number of seashells each person
brought back.

Relation: The relationship between these entities is that the 90 people are divided into 9-person
groups, and 3/5 of these groups each brought back 2 seashells.

Modality: The events described in the question are inevitable as they are stated as facts.

Plan

First, calculate the total number of groups by dividing the total number of people by the number
of people in each group.

Then, calculate the number of groups that brought back seashells by multiplying the total num-
ber of groups by 3/5.

Finally, calculate the total number of seashells brought back by multiplying the number of
groups that brought back seashells by the number of seashells each person brought back and
the number of people in each group.

Act

First, calculate the total number of groups: 90 people / 9 people/group = 10 groups.

Then, calculate the number of groups that brought back seashells: 10 groups * 3/5 = 6 groups.

Finally, calculate the total number of seashells brought back: 6 groups * 9 people/group * 2
seashells/person = 108 seashells.

Reflect

The calculations appear to be correct, and the total cost of the truck is reasonable given the
costs of the truck and its features. Therefore, I believe the answer is correct.

Answer: 108, GroundTruth: 108
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Wrong example 1: wrong reflection

Question: A company pays each of its employees $600 in a month. The company has
a policy of increasing the salaries of each of its employees by 10% of the initial salary
every year for those who’ve stayed in the company for five years. If Sylvie just clocked 5
years in the company last December, what’s her annual salary after three more years of service?

Answer:

Understand

The question is asking for the annual salary of an employee named Sylvie after three more years
of service, given that she has already worked for the company for five years. The company pays
each of its employees $600 per month and increases the salaries by 10% every year for those
who’ve stayed in the company for five years.

Plan

1. Calculate Sylvie’s current annual salary.

2. Calculate the annual salary increase.

3. Apply the increase for the next three years.

Act

1. Sylvie’s current annual salary is $600 * 12 = $7200

2. The annual salary increase is 10% of $7200 = $720.

3. After three more years, her salary will be increased by $720 * 3 = $2160.

4. So, Sylvie’s annual salary after three more years of service will be $7200 + $2160 = $9360.

Reflect

The calculation seems correct, but upon reflection, I realized that the 10% increase is com-
pounded annually, not added up linearly. This means that each year, the increase is calculated
based on the new salary, not the original one. So, the correct calculation should be:

1. After the first year, Sylvie’s salary will be $7200 + 10% of $7200 = $7920.

2. After the second year, her salary will be $7920 + 10% of $7920 = $8712.

3. After the third year, her salary will be $8712 + 10% of $8712 = $9583.2.

So, Sylvie’s annual salary after three more years of service will be $9583.2.

Answer: 9583.2, GroundTruth: 9350
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Wrong example 2: wrong action

Question:Twenty dozen cups cost $1200 less than the total cost of half a dozen plates sold at
$6000 each. Calculate the total cost of buying each cup.

Answer:

Understand

The problem is asking us to find the cost of each cup. We know that twenty dozen cups cost
$1200 less than the total cost of half a dozen plates sold at $6000 each.

Plan

1. Calculate the total cost of half a dozen plates.

2. Subtract $1200 from the total cost of the plates to find the total cost of the cups.

3. Since we know that twenty dozen cups were bought, we can find the cost of each cup by
dividing the total cost of the cups by the total number of cups.

Act

1. The total cost of half a dozen plates is 6/2 * $6000 = $18000.

2. The total cost of the cups is $18000 - $1200 = $16800.

3. Twenty dozen cups is 20 * 12 = 240 cups.

4. Therefore, the cost of each cup is $16800 / 240 = $70.

Reflect

The cost of each cup is $70. This answer makes sense given the information provided in the
problem.

1. After the first year, Sylvie’s salary will be $7200 + 10% of $7200 = $7920.

2. After the second year, her salary will be $7920 + 10% of $7920 = $8712.

3. After the third year, her salary will be $8712 + 10% of $8712 = $9583.2.

So, Sylvie’s annual salary after three more years of service will be $9583.2.

Answer: 9583.2, GroundTruth: 9350
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B.2 CAUSAL-JUDGMENT

Correct example 1

Question:How would a typical person answer each of the following questions about causa-
tion? A machine is set up in such a way that it will short circuit if both the black wire and
the red wire touch the battery at the same time. The machine will not short circuit if just one
of these wires touches the battery. The black wire is designated as the one that is supposed to
touch the battery, while the red wire is supposed to remain in some other part of the machine.
One day, the black wire and the red wire both end up touching the battery at the same time.
There is a short circuit. Did the black wire cause the short circuit?

Answer:

Understand

Quantity: The entities involved in this question are a machine, a black wire, a red wire, a
battery, and a short circuit. The event is the simultaneous touching of the battery by both wires,
leading to a short circuit.

Quality: The machine is designed in such a way that it will short circuit if both wires touch the
battery simultaneously. The black wire is supposed to touch the battery, while the red wire is
not. The short circuit is a result of both wires touching the battery at the same time.

Relation: The relationship between these entities is that the black wire and the red wire are part
of the machine and their interaction with the battery can cause a short circuit.

Modality: The short circuit is inevitable if both wires touch the battery at the same time. It is
accidental that the red wire also touched the battery, leading to the short circuit.

Plan

The plan is to analyze the causation of the short circuit based on the information provided.

Act

A typical person might answer that the black wire did not cause the short circuit. The short
circuit was caused by both the black and red wires touching the battery at the same time. The
black wire was supposed to touch the battery as part of its normal operation, so it did not cause
the short circuit. The red wire, which was not supposed to touch the battery, did so, and this
unexpected event, in combination with the black wire touching the battery, caused the short
circuit.

Reflect

The analysis seems correct based on the information provided. The short circuit was caused by
both wires touching the battery simultaneously, not just the black wire.

Answer: No, GroundTruth: No
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Correct example 2

Question:How would a typical person answer each of the following questions about cau-
sation? Claire’s parents bought her an old computer. Claire uses it for schoolwork, but her
brother Daniel sometimes logs on to play games. Claire has told Daniel, “Please don’t log on
to my computer. If we are both logged on at the same time, it will crash”. One day, Claire
and Daniel logged on to the computer at the same time. The computer crashed. Later that day,
Claire’s mother is talking with the computer repairman. The repairman says, “I see that Daniel
was logged on, but this computer will only crash if two people are logged on at the same time.
So, I still don’t see quite why the computer crashed.” Did Daniel cause the computer crash?

Answer:

Understand

Quantity: The entities involved in this question are Claire, Daniel, the old computer, and the
computer repairman. The event is the computer crashing. The quantitative relationship is the
number of people logged on to the computer at the same time.

Quality: The intrinsic properties related to the question include the old computer’s limited
capacity to handle multiple users at the same time, and Daniel’s disregard for Claire’s warning.
The external constraints include the computer repairman’s understanding of the situation.

Relation: The relationship between these entities is that Claire and Daniel are siblings who
use the same computer, and the computer repairman is trying to understand why the computer
crashed.

Modality: The possibility of the computer crashing is related to the number of people logged
on at the same time. The crash is inevitable if two people are logged on at the same time, and
accidental if only one person is logged on.

Plan

To answer the question, we need to consider the information provided and apply a logical
analysis. We know that the computer crashes when two people are logged on at the same time,
and that both Claire and Daniel were logged on when the computer crashed. Therefore, we can
infer that Daniel’s action of logging on to the computer contributed to the crash.

Act

Yes, Daniel did cause the computer to crash. Although he was not the only one logged on at the
time, his action of logging on despite Claire’s warning contributed to the situation that caused
the computer to crash.

Reflect

The answer seems logical and consistent with the information provided in the question. How-
ever, it’s important to note that causation is often complex and can involve multiple factors. In
this case, both Claire and Daniel’s actions contributed to the computer crash.

Answer: Yes, GroundTruth: Yes

B.3 UPAR AS AN EMERGENT ABILITY

We further tested UPAR on GPT-3.5, as shown in Table 6, and plotted the difference in accuracy be-
tween UPAR and COT in Figure 6(a)(b). Different from GPT-4, experimental data on GPT-3.5 show
that UPAR obtains slightly weaker results than COT in most cases. Consistent with our intuition,
this implies that UPAR, as a more complex higher-level thinking framework, is an emergent ability
(Wei et al., 2022). Essentially, autoregressive transformer-based LLMs are suitable for generating
continuous sequences of text, especially when such linguistic associations occur repeatedly in the
training data. Meanwhile, UPAR, aiming to mimic the structure of human thinking, compels Large
Language Models (LLMs) to undergo multi-level, non-linear thinking processes. These potential
cognitive processes, typically unrepresented in natural language, are speculated to be burdensome
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for weaker models. However, for GPT-4, experiments demonstrate its effective utilization of inter-
mediate results generated at each level of thinking, leading to more accurate answers.

Method GSM8K AQuA CSQA Strategy GSM8K-H Causal-Judgement
Zero-Shot 15.85% 29.53% 74.12% 65.37% 6.25% 57.22%

CoT(Zero-Shot) 75.74% 55.51% 70.60% 63.19% 37.5% 61.50%
UPAR-S 77.18% 50.79% 68.63% 62.23% 39.58% 60.96%
UPAR 71.04% 51.18% 69.04% 49.23% 20.83% 59.36%

Table 6: Performance of models on arithmetic and commonsense data with GPT3.5

(a) Acc diff on GPT-3.5 (b) Acc diff on GPT-4

Figure 6: (a) GPT3.5 performance on the GSM8K-Hard, UPAR accuracy minus COT accuracy. (b)
GPT4 performance on the GSM8K-Hard, UPAR accuracy minus COT accuracy.
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