20

25

30

35

40

Planning Domain Simulation: An Interactive System for Plan Visualisation

Primary Keywords: Applications; Knowledge Representation/Engineering

Abstract

Representing and manipulating domain knowledge is essen-
tial for developing systems that can visualize plans. This pa-
per presents a novel plan visualisation system called Planning
Domain Simulation (PDSim) that employs knowledge rep-
resentation and manipulation techniques to support the plan
visualization process. PDSim can use PDDL or the Unified
Planning Library Python representation as the underlying lan-
guage for modelling planning problems and provides an inter-
face for users to manipulate this representation through inter-
action with the Unity game engine and a set of planners. The
system’s features include visualising plan components, and
their relationships, identifying plan conflicts, and examples
applied to real-world problems. A user evaluation has been
conducted to compare PDSim against the standard way using
text editors and planners and to evaluate the perceived use-
fulness and ease of use of PDSim as an additional tool used
by students for knowledge representation modelling and au-
tomated planning. The benefits and limitations of PDSim are
also discussed, highlighting future research directions in the
area.

Introduction

Modelling planning domains that are both correct and ro-
bust can be a challenging problem, especially in real-world
domains. For instance, consider the following robot plan-
ning task: a set of robots are deployed in a factory to help
with warehouse logistics. The robots can navigate on a pre-
defined grid map with simple 4-way movements, pick up
and drop boxes, and deliver objects to a van parked in the
warehouse. The problem also imposes certain limitations:
the robots cannot cross each other and the vans can only ac-
cept a specific box. The above problem could be viewed as a
slightly modified version of the sequential Floor Tile domain
from the 2011 International Planning Competition (IPC):! a
decision-making problem inspired by a real-world scenario
that can be modelled using a representation language such
as PDDL (McDermott et al. 1998). For instance, from a rep-
resentation point of view, the grid could be modelled as a set
of interconnected nodes denoting locations in the warehouse
for objects and agents (e.g., vans, boxes, and robots), as il-
lustrated in Figure 1. A trivial example of a goal might be to

"https://github.com/potassco/pddl-instances/tree/master/ipc-
2011/domains/floor-tile-sequential-satisficing

vani van2

van-at van-at

robot-at

robot-at

Figure 1: Warehouse planning environment.

LEFT (R1,C2-1,C2-0) LEFT (R1,C2-1,C2-0)
UP (R1,C2-0,C1-0) UP (R1,C2-0,Cl-0)
PICKUP (R1,B1,C1-0) UP (R1,C1-0,C0-0)
UP (R1,C1-0,C0-0) PICKUP (R1,B1,C1-0)
LOAD (R1,B1,C0-0,V1) | LOAD (R1,B1l,C0-0,V1)

Figure 2: Example plan outputs for the Warehouse problem.

ensure that particular objects are in specific locations (e.g.,
boxl is in vanl).

Using the above model, we can quickly find a valid solu-
tion to the problem using classical automated planning tech-
niques. For instance, Figure 2 (left) shows a plan generated
by the FastDownward planner (Helmert 2006) for the prob-
lem in Figure 1, where a robot moves to grid cell (7,0) to
pick up the box before delivering it to the van at (0,0).

Figure 2 (right) shows an alternative action sequence, gen-
erated using an incorrect version of the domain. Although
the plan is similar to the one on the left, it is incorrect: the
robot executes the pickup action when in grid cell (0,0) be-

45

50

55

60

65

70

75

80

85

90

95

100

105

110

fore loading the van. (This plan is the result of a missing
precondition on the pickup action which normally ensures
that the robot and object are in the same cell). While this
kind of error can be trivial to debug and correct by an expert
knowledge engineer, this isn’t always the case for novices in
languages such as PDDL. Catching modelling errors, such
as incorrect logic in action preconditions and effects or miss-
ing properties in the initial state, can still be difficult due to
the complexity of the knowledge that needs to be specified
and the level of abstraction that is often required for ensuring
the generation of tractable solutions.

In this paper, we present the Planning Domain Simula-
tion (PDSim) (Anonymous 2020, 2021, 2022, 2023) sys-
tem, a framework for visualising and simulating a range of
planning problems such as classical, numerical and tempo-
ral using the Unified Planning (UP) Library (Micheli and
Bit-Monnot 2022) and the Unity game engine (Unity Tech-
nologies 2022). Using the UP library of PDDL the user can
define the domain knowledge and the problem formulation
(e.g., planner requirements, types and objects, plus standard
definitions of the domain and problem). A planner then uses
this information to check that a solution exists and to gen-
erate a plan that satisfies the goal. Using the generated plan,
PDSim interprets the action effects as 3D animations and
graphics effects in Unity to deliver a visual representation of
the world and its actions during plan execution, which can
aid the user in assessing the validity of the plan during exe-
cution.

While several tools already exist to aid in the process of
validating planning models—notably plan validation tools
like VAL (Howey and Long 2003) and formal plan verifi-
cation methods such as (Bensalem, Havelund, and Orlan-
dini 2014; Cimatti, Micheli, and Roveri 2017; Hill, Komen-
dantskaya, and Petrick 2020)—approaches based on visual
simulation and visual feedback can also play an important
role in addressing the problem of correctly modelling plan-
ning domains: visual tools can serve as powerful environ-
ments for displaying, inspecting, and simulating the plan-
ning process, which can aid in plan explainability for human
users (Fox, Long, and Magazzeni 2017).

In this paper, we describe the structure, components, and
features of PDSim that are responsible for providing visual-
isations, and illustrate how PDSim can be used to simulate
planning problems. PDSim is built by extending the Unity
game engine editor (Unity Technologies 2022) and can use
the components offered by the engine such as a path planner,
scene management, and visual scripting, among others. The
system uses a backend server that is responsible for defin-
ing planning problems either using the Python UP library
or PDDL managing plan generation, and problem compila-
tion, and providing support for a wide range of modelling
features, such as typing, temporal actions, and action costs.

The rest of the paper is organised as follows. First, we
review work related to plan visualisation and verification.
We then describe how knowledge is represented in PDSim
and outline the structure of the main components of PDSim,
providing examples of their use by illustrating a number of
planning domains. Finally, we conclude with future work
and planned additions to PDSim.

Background and Related Work
Automated Planning with PDDL

Automated planning is a decision-making task that in-
volves reasoning about the sequence of actions (a plan) that
achieves a set of goals (Ghallab, Nau, and Traverso 2004;
Haslum et al. 2019). A planning problem II can be thought
ofasatuple Il = (P, A, I, G), where P is a set of properties
that define a state space (including possibly a set of objects),
A is a set of actions, [is a set of initial state properties, and
G is the set of goal conditions to be achieved. It is useful
to think of a planning problem as a state transition system,
where a state captures all the properties that are true at some
point in time, and actions transition states to new states. A
solution to the planning problem is a sequence of actions,
called a plan, that when applied transitions the initial state 1
to a state in which the goal conditions G are true.

Automated planning has been used in a variety of appli-
cations such as robotics, video games, logistics, and natu-
ral language processing. Intuitively, planning can be thought
of as a search process that enables an autonomous agent (a
robot or software agent) to generate a plan to achieve its
goals. In this view, plan generation may typically involve
the following steps:

1. Problem Definition: Specifying the planning model II
(properties, actions, initial state, and goals) that captures
the operating environment of the agent.

2. Search Space Generation: Creating a representation of
the possible states that can be achieved by applying ac-
tions from the initial state to the goal state.

3. Search: Applying a search algorithm that explores the
state space and selects an appropriate plan that satisfies
the goal.

Planning problems are composed of two parts: the domain
definition which specifies the state properties and actions,
and the problem definition which specifies the initial state
and the goal. State properties are specified using (parameter-
ized) predicates that can be true or false in a given state, and
can capture attributes of the environment, objects, or agents.
For instance, (clear cell_0_1) might denote that loca-
tion (0,1) is empty, (at boxl cell_1_1) might capture
the fact that box1 is at location (1,1), and (robot—-empty
robot1l) might represent the idea that robotl isn’t carry-
ing anything. Predicates specify the initial state of the plan-
ning problem and the goal conditions and are also used to
describe the preconditions and effects of actions.

Actions are formalised using a schema that specifies the
parameters, preconditions, and effects of each action, as in
Figure 3 using the PDDL language or Figure 4 using the
UP library and python. The preconditions capture the condi-
tions that must be true in a state to perform the action, while
the effects describe the state changes after an action is per-
formed. For instance, the 1load—truck action in Figure 3
and 4 has three parameters: a package (?p), a truck (?t),
and a location (?1). A package ?p can be loaded onto a
truck ?t provided 2t is at location ?1, (at 2t ?21),and
?pisatlocation ?1, (at ?p ?21).Asaresultof applying
the action, the package will no longer be at ?1, (not (at

115

120

125

130

135

140

145

150

160

165

170

175

180

185

190

(:action load-truck
:parameters (?p, ?t, ?1)
:precondition (and (at 2t ?1)
(at ?p ?1))
(not (at 7?p ?1))
(in ?p ?t))

:effect (and

Figure 3: PDDL action representation.

1t = InstantaneousAction("loadTruck",
p=parcel, t=truck, l=location)
lt.add_precondition(at (lt.t, 1lt.1l)
&
at (1t.p, 1t.1l))
lt.add_effect (at (1t.p, 1lt.1l), False)
lt.add_effect (in(lt.p, 1lt.t), True)

Figure 4: UP python action representation.

(move robotl office storage_room)
(pick_up robotl box3 storage_room)
(move robotl storage_room load_bay)
(load robotl wvan2 box3)

Figure 5: Example plan for the Warehouse problem.

?p ?1)), and will be in the truck, (in ?p ?t). When
an action is chosen by the planner to be part of the plan, its
parameters will be replaced by objects in the planning prob-
lem (e.g., vanl for ?t, box2 for ?p, and cell_1_2 for
?1).

Domain and problem definitions are used as input to an
automated planner that can reason about the changes in the
world state when actions are applied, and generate a plan
that achieves the goal conditions. A plan is typically a se-
quence of actions, as shown in Figure 5, where each row
represents and action and its (grounded) parameters, where
the parameters in the action schema have been replaced with
objects or agents from the problem definition.

Plan Visualisation

PDSim (Anonymous 2023) is part of the small ecosystem
of simulators for automated planning which use visual cues
and animations to translate the output of a plan into a 3D
or 2D environment. The closest approach to ours is Plani-
mation (Chen et al. 2020) which uses Unity as the front-end
engine to display objects and animate their position while
following a given plan. Planimation defines animations us-
ing an ad hoc language (namely, an animation profile) sim-
ilar to PDDL. This differs from PDSim, where animations
are defined using Unity’s visual scripting system.?

The Logic Planning Simulator (LPS) (Tapia, San Se-
gundo, and Artieda 2015) also provides a planning simu-

Zhttps://docs.unity3d.com/Packages/com.unity.
visualscripting @ 1.7/manual/vs-nodes-reference.html

lation system that represents PDDL objects with 3D models
in a user-customisable environment. The approach is inte-
grated with a SAT-based planner and a user interface that
enables plan execution to be simulated while visualising up-
dates to the world state and individual PDDL properties in
the 3D environment. LPS is not based on Unity but provides
the user with a simple interface for plan visualisation. Sev-
eral user-specified files are also required to define 3D object
meshes, the relationship between PDDL elements and 3D
objects, and the specific animation effects.

vPlanSim (Roberts et al. 2021) is a similar application that
also aims to provide a 3D visualization of a plan but with
a number of important differences. While vPlanSim offers
a simple and fast custom graphical environment for creat-
ing plan simulations with few dependencies, PDSim uses
the Unity game engine to offer the user industry-standard
tools for creating realistic scenarios. PDSim also provides a
language-agnostic tool to set up simulations which is key for
users who are not familiar with PDDL and Unity.

Several systems also exist to help users formalise plan-
ning domains and problems through user-friendly interfaces.
For instance, GIPO (Simpson, Kitchin, and McCluskey
2007), ItSimple (Vaquero et al. 2007) and VIZ (Vodrazka
and Chrpa 2010) use graphical illustrations of the do-
main and problem elements, removing the requirement of
PDDL language knowledge, to help new users approach
planning domain modelling for the first time. Tools such
as Web Planner (Magnaguagno et al. 2017) and Plan-
ning.Domains (Muise 2016) use Gantt charts or tree-like
visualisations to illustrate generated plans and the state
spaces searched by a particular planning algorithm. Plan-
Curves (Le Bras et al. 2020) uses a novel interface based
on time curves (Bach et al. 2015) to display timeline-based
multiagent temporal plans distorted to illustrate the similar-
ity between states. All of these tools attempt to assist users
in understanding how a plan is generated and to help detect
potential errors in the modelling process.

Simulators are also prevalent in robotics applications, and
multiple systems make use of game engines to provide vir-
tual environments, such as MORSE (Echeverria et al. 2011)
or Drone Sim Lab (Ganoni and Mukundan 2017). Game en-
gines also offer several benefits such as multiple rendering
cameras, physics engines, realistic post-processing effects,
and audio engines, without the need to implement these fea-
tures from scratch (Ganoni and Mukundan 2017), making
them desirable tools for simulation. For example, Unity has
been used as a tool for data visualisation, architectural pro-
totypes, robotics simulation (Green et al. 2020), and syn-
thetic data generation for computer vision (James Fort and
Davis 2021) and machine learning applications (Haas 2014;
Craighead, Burke, and Murphy 2008). There are also inter-
esting use cases of Unity related to Al and planning, includ-
ing the Unity AI Planner,® an integrated planner being cre-
ated by Unity as a component for developing Al solutions
for videogames, and Unity’s machine learning agents,* a so-

3Unity AI Planner: https://docs.Unity3d.com/Packages/com.
Unity.ai.planner @0.0/manual/index.html

*Machine Learning Agents: https:/github.com/Unity-

195

200

205

210

215

220

225

230

235

240

245

250

260

270

275

280

285

290

295

£Planning—

UPL
Facts Internal
Representation

Y

PDSim

Protobuf Representation

A
A

Figure 6: Representations Mappings

Iution for training and displaying agents whose behaviour is
driven by an external machine learning component.

Knowledge Representation

The Planning Domain Simulation (PDSim) system is a plan
and state visualizer that operates in the Unity game environ-
ment. We approach the problem of knowledge visualization
by defining a planning problem using the UP library or by
using the latter to parse a PDDL representation. After a plan
is generated, both the plan and the problem definition are
converted to a protocol buffer’ representation that will be
later mapped to Unity’s game engine objects. In unity, the
user defines the procedures and animations, and final visu-
alising the plan. In this section, we discuss the underlying
Planning model of Unity mappings and the representation
that is used.

Mapping planning components into Unity

Unity does not have built-in support for planning problem
modelling languages but instead uses C# as a scripting lan-
guage. As a result, components must be mapped into C#
constructs (classes) to be represented in Unity. For a given
planning domain and problem description, a set of basic con-
structs must be translated for plan visualisation: predicates,
actions, constants, and types. Figure 6 shows the underlying
general diagram of how the different knowledge representa-
tions are used and manipulated during a visualisation with
PDSim. The ’facts’ correspond to the high level of knowl-
edge that the user wants to represent e.g.: a user wants to
represent how a robot interacts in a warehouse environment.
This high-level representation can be mapped to the *UP In-
ternal Representation’ by using the PDDL language or the
Python library. Here the representation is used to perform
the search and all sorts of knowledge manipulation regard-
ing the planning aspect. The last block corresponds to the
’PDSim Representation’ that maps the planning modelling
to Unity C# components using the protocol buffer represen-
tation.

Predicates define the properties of objects that can hold
(or not) in a particular state. In PDSim predicates are en-
coded as Object Oriented Programming (OOP) classes. In
particular, PDSim differentiates between Boolean, Numeric
or Symbolic predicates. Boolean represent predicates that
can be either true or false the animation can split in two
way and the user can customise the behaviour of both val-
ues. Numeric represents a predicate that can hold a numeric
value the animations can map the assignment the increase or
decrease respectively. Finally the symbolic is used to map

Technologies/ml-agents
>Protocol Buffers: https:/protobuf.dev/

animations to predicates that have a symbolic value (such as
a constant). Actions are defined by their preconditions and
effects. Actions in PDSim are also represented by classes
that store the set of effects and all the possible objects that
can be used with the action. Types are used to define a spe-
cific property for an object, in a parent-child relationship. In
C#, types are represented with a tree-type structure so that
if an object is of a particular type it inherits all the possi-
ble actions that the supertype has access to. For example, a
robot can be a physicObject child type that inherits all the
animation available to this type. Although types are not a
necessary requisite for PDSim as a predicate animation can
also be used to define the type of constant on the Unity side,
for example, cube(?c¢) can be mapped to an animation that
can spawn a cube model or sprite and set its position in the
3D environment. Constants are used to refer to specific ob-
jects in the planning problem. In C#, and more particularly
in Unity, constants represent the virtual actors in the scene.
These can be 3D or 2D models and the animations that are
directly applied to them.

From the planning model to PDSim

The planning model is converted to a protobuf representa-
tion that maps to a C# model internal to PDSim representing
the components presented above (predicates, actions, con-
stants, etc.) that are used in Unity to set up the simulation.
Domain entities such as actions, types, and predicates are
used to set up the core Unity simulation. Similarly, problem
components such as constants and the initial state are used
to set up a Unity-level scene. Once these components are
defined, the user can customise them using the Unity edi-
tor, for instance configuring multiple problems for the same
domain, or multiple simulations for different plans.

Figure 7 shows the PDDL problem definition for the ini-
tial state described in the introduction. The at predicate is
used to describe the position of a physical object (robots,
boxes and vans), robot —empty represents if a robot is car-
rying a box or not, van-request represents which box
is requested by a particular van, and up, down, right,
left represent the connections between cells in the grid.
The same PDDL representation can be visualized with 3D
models in PDSim as shown in Figure 8. The PDDL :init
block from Figure 7 can be animated in PDSim by assigning
translation sequences to the physical objects and displaying
them in game mode.

From C# to Animations

The planning domain description is used to build the core
elements and animations for the simulation. The types and
objects define the visual aspect of the simulation in Unity:
3D models or 2D sprites. Once mapped, predicates are used
to define the 2D/3D animations using the visual scripting
option in Unity. This visual scripting language is used to de-
fine common transformation operations, path planning, au-
dio emission, particle effects, etc.

For example, Figure 9 shows an animation definition for
the earlier Warehouse planning problem, for a predicate that
captures the movement of the robot position from the cur-
rent grid to an adjacent cell. Action effects are the animated

300

305

310

315

320

325

330

335

340

345

350

355

360

365

370

(at boxl cell_1_1)

(at box2 cell_1_2)

(at robotl cell _0_0)
(at robot2 cell_2_2)
(robot-empty robotl)
(robot—-empty robot2)
(at vanl cell_2_2)
(van-request vanl boxl)
(clear cell_0_1)
(clear cell_0_2)
(clear cell_0_3)

(up cell _0_1 cell 1_1)

(down cell_1_1 cell _0_1)
(right cell_0_2 cell_0_1)
(left cell _0_1 cell_0_2)

Figure 7: Initial state example.

Figure 8: Initial state representation in PDSim.

components, where every predicate in the effects list that has
an associated animation graph will execute an animation at
simulation time.

The Algorithm 1 shows how animations are selected to
be scheduled for execution. When a plan is executed PDSim
look in the mapped actions definition to check the effects of
an action. If one of those effects has an animation defined
by the user it will start the animation loop as illustrated in
Figure 10. This animation loop is based on a simple state
machine where the connection between states are:

1. Default behaviour if fluents exist

No more fluents to animate in the queue
Queue has fluents to animate
Animation exists and is selected
Animation has finished

Queue still has animation scheduled

NSk w

No more fluents to animate in the queue

Users can define their own behaviours in the virtual scene
for every predicate they want to animate. The example in

taons]values Dim Cary lgn = Disute = | Overview| FulSces

+ Effect Event

0
Translate To
aQ

-
3 Object0 Position
2 Object1

Vad @ Duration

Negative Effect

o] ® Name At-Robot-Cell -

Figure 9: Example animation definition.

Figure 9 shows a simple translation animation from an ob-
ject position to a target position. In particular, the exam-
ple shows one of the custom animation nodes developed in
PDSim to help simplify the creation of animations for new
users. Every predicate in an action’s effect can have one of
these graphs linked to it, and every graph comes with an
EffectEvent that is invoked during plan simulation with the
corresponding objects from the Unity scene (i.e., the objects
in the plan’s action).

To simplify the development of new animations, and to
help new users with visual scripting, a set of predefined an-
imation nodes has been created which cover a number of
useful simulation cases that frequently arise, such as:

1. TranslateToPoint: Move a particular object in the scene
to a specific point in the world or to another object’s po-
sition (using path planning or simple interpolation).

2. TranslateToObject: Move a particular object in the
scene to a specific other object in the world (using path
planning or simple interpolation).

3. SpawnObject: Instantiate an object (i.e., a 3D mesh) in
the scene.

4. PlayPauseParticle: Create and either play or pause a
particle effect.

5. PlayPauseSound: Create and either play or pause an au-
dio effect.

6. GetCurrentPlanactions: Can get the current simulated
actions. Multiple actions can return if the simulated plan
is temporal and multiple actions are currently being exe-
cuted. It also returns metadata for the action such as pa-
rameters (objects) and action duration.

375

380

385

390

395

400

410

415

420

A
[1:]
jat]
[=1
-
(=)
]

Figure 10: Fluent animation State machine

Algorithm 1: Animation Selection

Input: plan
1: Create animationque.
. Get actions_map{name, action)
. Get predicates,ap(name, predicate)
while plan has actions do
if temporal plan then
Group action with same initial_time
end if
Get action from actions_map
repeat
Let animations=ENUMERATE action.ef fects
if animations_map CONTAINS animations
then
12: AnimationLoop(animations)
13: end if
14: until No effects
15: end while

TRYRIAIUNAELD

—_—

System Architecture

The high-level structure of the PDSim system is shown in
Figure 11. The PDSim system can be imported into Unity3D
as a common asset, where the Unity editor interface is used
to interact with PDSim components, such as setting the sim-
ulation scene, creating animations, or importing 3D or 2D
models. PDSim also relies on a Python backend implemen-
tation, which is used to parse PDDL files and generate plans.
A PDSim simulation is initialised and handled by the back-
end server running the Unified Planning Library (UPL®),
which is responsible for parsing and building a Protobuf
representation of the planning model and running a user-
defined planner (defaulting to FastDownward) to generate
a plan. UPL is a planner-agnostic framework for Python,
which increases PDSim’s modularity and lets users select
their preferred planner implementation, separating it from
the simulation stage itself which comes later in the process.
We describe the major components of PDSim below.

Front-End

Unity (Unity Technologies 2022) is a popular state-of-the-
art game engine used for building 3D projects across a range

Shttps://github.com/aiplandeu/unified-planning

Domain
—*| Problem

definitions

User

Unified
Planning
Library

Unity Editor
PDSIim Protobuf

Planners

Frontend | Backend |

Figure 11: High-level PDSim system architecture.

of diverse applications. In PDSim, Unity provides the fron-
tend interface and is responsible for handling all of the
2D/3D graphics and animations related to the simulation.

One of the fundamental design concepts used by Unity is
the idea of composition, which means that an object can be
composed of different types of objects. In particular, Unity’s
component system provides the capability for every object
in a Unity scene to be assigned custom scripts or modules,
such as a rigid body for the physics simulation, a collision
volume, an audio source, etc. Every object in Unity can also
be scripted using the C# language, meaning that an object
can have a user-defined behaviour in the scene. For exam-
ple, an object can respond to user inputs from a mouse or
keyboard or can be translated, rotated and scaled, or have its
colour changed, based on conditional events. Object script-
ing in Unity is key to the modularity of the simulation, espe-
cially for the custom representation of PDDL elements.

Scripting can also be applied to the editor window, where
users interact with the engine and where it is possible to set
the properties of the objects in the scene by using Unity’s
user interface. PDSim makes heavy use of all the features
provided by Unity, such as the Visual Scripting Language
used to create animations and events. As a result, users do
not need to learn a new language to develop animations and
animation graphs can be modified on the fly without waiting
for scripts to be recompiled.

A type in PDSim is represented by a simulation object, a
structure that shares similar information for all the objects
defined in a planning problem. A simulation object is de-
fined by two main components: models and control points.
Models are used to visually represent the object type in the
virtual world (e.g., block, airport, player, robot, etc.). These
can be 3D meshes or 2D textured sprites that can be im-
ported into the Unity editor. A user can add as many models
as they like. A collision box that wraps all the models is au-
tomatically calculated to be used later in the simulation to
detect the interaction with the user inputs and the collisions
calculated by the physics engine. Control points are 3D vec-
tors that represent particular points of interest in the object

425

430

435

440

445

450

455

465

470

475

480

485

490

495

500

& Object ~ AuoSave |+~
|9~ =» & w <~

i
¥ 60 Paints

Figure 12: Simulation object example with a Robot type.

type representation (e.g., the cardinal points of an object, a
point that represents the arm position of an agent, etc.).

Figure 12 shows an example of how a simulation object
can be composed. The models(highlighted in red) are com-
posed of only one mesh representing a robot rover, and the
control points (highlighted in blue) are the 3D vector po-
sitions of the front and back of the robot that can be used
inside the animations as an anchor point for other objects
(e.g., attaching cargo on the front).

If types are specified in the domain definition, then the
simulation manager creates simulation object blueprints for
all the leaf types of the type tree that is built when the do-
main is parsed for the first time. These types are replicated
for each object defined in the problem that matches the par-
ticular type, using the user configuration of simulation ob-
jects, as described above.

A simulation manager is initialised using the Protobuff
data from the backend server containing the planning model
and the representation of the plan. Every action effect will
have an associated list of animation graphs representing the
effects of an action. The simulation manager will execute the
animations using the attributes in the plan representing the
simulation objects involved in the simulation of that action.
As the first step in every simulation, the init block is ani-
mated. Init represents the starting state of a planning prob-
lem and is defined by a list of fluents describing the current
state of the world. These fluents are represented in the form
of fluent_name(arguments) where the arguments are the ob-
jects that are present in the environment. The simulation
manager will publish events with the corresponding fluent
name and objects from the simulation scene that will be used
by the visual scripting language to map which animation to
execute and the graphical objects to use. The process is then
repeated for every action effect in the plan.

Back-End

PDSim’s backend system is a Python server that commu-
nicates with the Unity editor and supports communication
between the planning and animation components of the sys-
tem. Unity tries to connect to the backend server by sub-
mitting a request using these files. The planners that can
be used by PDSim are Fast-Downward (Helmert 2006),
ENHSP (Scala et al. 2016), Tamer (Valentini, Micheli, and

Cimatti 2020), LPG (Gerevini and Serina 2002), Aries (Bit-
Monnot 2023) and Pyperplan (Alkhazraji et al. 2020). If ei-
ther the parsing or planning actions fail, the interface will
warn the user of the error.

PDSim’s backend system wraps the functionality of the
Unified Planning Library (UPL) as the main tool for ma-
nipulating and solving planning problems in PDSim. UPL
is a Python library provided by the AIPlan4EU project’
that aims to simplify the use of automated planning tools
for Al application development. UPL attempts to standard-
ize aspects of the planning process, making it accessible to
users of any level of expertise. In particular, it offers a well-
developed PDDL parser and a standard interface for com-
municating with external planners. Integration with UPL en-
ables the PDSim system to take advantage of these features
and any future updates that UPL may provide.

At the technical level, communication between PDSim’s
backend server and Unity is provided by the ZeroMQ net-
working library,® in particular the Python implementation
package pyzmgq® on the server side and the C# implemen-
tation netMQ'? on the Unity side.

Examples

PDSim has been developed and tested using the published
benchmark domains from the International Planning Com-
petition (IPC).!" and is currently used to visualise real-world
planning problems. We illustrate the capabilities of PDSim
to visualise plans using as examples real-world agricul-
tural and robotics use-case planning problems, and include
a video demonstration of how to setup a simulation with the
system.

Real-world robotics

PDSim can be used to represent and visualise state changes
from real-world scenarios as shown in Figure 13. The exam-
ple shows a visualisation of the state changes related to sen-
sors in a smart home. PDSim is used to play animation re-
lated for example to the robot movements between rooms or
if the cupboard sensor detects it’s open. This is done by con-
necting Unity with the Robotics Operating System (ROS)
and replaying the sensor recording (ROS bags).

Agricoltural use-case

PDSim has been used to visualise a real-world use case in-
volving an agricultural planning problem currently being de-
veloped by the Agrotech Valley Forum '> The problem in-
volves a real scenario as shown in Figure 14 that has been
converted into 3D models of roads and fields. There is a set
of harvesters and vehicles for the transportation of grain into
a silo for stocking. The vehicles can only access the fields for
particular access points in the map and there is the need for a

"https://www.aiplan4eu-project.eu/

8https://zeromq.org/

*https://pypi.org/project/pyzmgq/

Onhttps://github.com/zeromg/netmg/

https://github.com/potassco/pddI-instances

Phttps://www.ai4europe.eu/ai-community/organizations
/association/agrotech-valley-forum-ev

505

510

515

520

525

530

535

540

545

550

555

560

565

570

alter(cupboard_0)

-alter(sink)

on(mug, counter)
at(robot, kitchen)

-alter(cupboard_7) alter(stove) 7

Figure 13: PDSim for real-world robotics: HSR robot (Ya-
mamoto et al. 2019)

€ Agri Use Case
] , >

Figure 14: PDSim for an agricultural domain

planning solution to orchestrate the transporting vehicle that
follows the harvesting of the fields (EV).

Video Example

Due to the interactive nature of the system, we have created
a video to demonstrate the capabilities of PDSim. The video
will show how to start a new simulation from the problem
definition to the final 3D animation and all the interactions
with the Unity front end to customise a plan visualisation.
The video is available here 3.

Discussion

In general, PDSim offers a powerful and flexible framework
for visualising planning problems using a state-of-the-art
graphical engine. More specifically, PDSim aims to fill a gap
in current systems that provide plan simulations, by offering
users a simplified environment to develop 3D or 2D simula-
tions, compared with current approaches that come with the
overhead of learning and using an ad hoc scripting language
to interact with a custom simulator (Tapia, San Segundo, and
Artieda 2015; Chen et al. 2020; Roberts et al. 2021).
PDSim is designed as a support system for automated
planning by providing intuitive tools to interface with a plan

Bhttps://drive.google.com/file/d/
1AHIcYkadRalndJp7sxpC2VEOOTEZhOii/view ?usp=sharing

solution. Approaches like (Le Bras et al. 2020; Fox, Long,
and Magazzeni 2017) also suggest that answering the ques-
tion of why an action has been successfully executed or has
failed, further increases the explainability of a plan. In this
context, PDSim provides intuitive hints about possible er-
rors using visual cues, by displaying an interface with the
transitions of each action and how they modify the state of a
particular object or agent.

It is important to reiterate, however, that PDSim is primar-
ily aimed at planning-agnostic users like students. Within
this group, as (Chen et al. 2020) indicates, there is a dif-
ference between the mental model the user has of the plan-
ning problem and the actual implementation. PDDL is often
approached as a traditional programming language by be-
ginners, rather than a knowledge definition language. With
this in mind, PDSim aims to simplify the learning curve of
PDDL by assisting with components that provide informa-
tion about the state of planning entities in real-time.

Conclusion and Future Work

This paper presented the structure and operation of PDSim, a
simulation system for animating PDDL-based planning do-
mains and plans. In future work, we plan to introduce a more
intuitive way to create and modify the knowledge model, us-
ing the same visual scripting paradigm and thus completely
removing the need to know the PDDL language syntax. This
will be internally used together with an in-engine planner
that the user can interact with at planning time to change
object properties and replan on the fly. Given the close rela-
tionship between PDSim and Unity, it will also be possible
to use applications such as extended reality (XR) to interact
with the plan. Another planned direction for PDSim will also
be to include extensions for visualising the current state of
an agent’s knowledge and beliefs to support epistemic plan-
ning, allowing visualisations to be generated from different
agent perspectives. Finally, at the time of writing an eval-
uation is scheduled to be performed by assessing the use
of PDSim in an education setting, and feedback about the
overall helpfulness and usefulness of PDSim as a develop-
ment aid for students learning about automated planning in
an introductory Al course.

References
Alkhazraji, Y.; Frorath, M.; Griitzner, M.; Helmert, M.;
Liebetraut, T.; Mattmiiller, R.; Ortlieb, M.; Seipp, J.; Sprin-
genberg, T.; Stahl, P; and Wiilfing, J. 2020. Pyperplan.
https://doi.org/10.5281/zenodo.3700819.
Anonymous. 2020. Anonymous.
Anonymous. 2021. Anonymous.
Anonymous. 2022. Anonymous.
Anonymous. 2023. Anonymous. In ICAPS 2023 Work-
shop on Knowledge Engineering for Planning and Schedul-
ing (KEPS).
Bach, B.; Shi, C.; Heulot, N.; Madhyastha, T.; Grabowski,
T.; and Dragicevic, P. 2015. Time curves: Folding time to
visualize patterns of temporal evolution in data. IEEE trans-

actions on visualization and computer graphics, 22(1): 559—
568.

575

580

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

Bensalem, S.; Havelund, K.; and Orlandini, A. 2014. Veri-
fication and validation meet planning and scheduling. Inter-
national Journal on Software Tools for Technology Transfer,
16: 1-12.

Bit-Monnot, A. 2023. Experimenting with Lifted Plan-
Space Planning as Scheduling: Aries in the 2023 IPC. In
2023 International Planning Competition at the 33rd Inter-
national Conference on Automated Planning and Schedul-
ing.

Chen, G.; Ding, Y.; Edwards, H.; Chau, C. H.; Hou, S.; John-
son, G.; Sharukh Syed, M.; Tang, H.; Wu, Y.; Yan, Y.; Gil,
T.; and Nir, L. 2020. Planimation.

Cimatti, A.; Micheli, A.; and Roveri, M. 2017. Validating
domains and plans for temporal planning via encoding into

infinite-state linear temporal logic. In Proceedings of AAAI,
3547-3554.

Craighead, J.; Burke, J.; and Murphy, R. 2008. Using the
unity game engine to develop sarge: a case study. In Pro-
ceedings of the 2008 Simulation Workshop at the Interna-
tional Conference on Intelligent Robots and Systems (IROS
2008).

Echeverria, G.; Lassabe, N.; Degroote, A.; and Lemaignan,
S.2011. Modular open robots simulation engine: Morse. In
2011 IEEE International Conference on Robotics and Au-
tomation, 46-51. IEEE.

EV, A. V. E. 777? https://www.aideurope.eu/business-and-
industry/case-studies/campaign-planning-silage-maize-
harvesting. Accessed: 2023-12-13.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. In Proceedings of the IJCAI Workshop on Ex-
plainable Al.

Ganoni, O.; and Mukundan, R. 2017. A framework for visu-
ally realistic multi-robot simulation in natural environment.
arXiv preprint arXiv:1708.01938.

Gerevini, A.; and Serina, 1. 2002. LPG: A Planner Based
on Local Search for Planning Graphs with Action Costs. In
Aips, volume 2, 281-290.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: theory and practice. Elsevier.

Green, C.; Platin, J.; Pinol, M.; Trang, A.; and Vij, V. 2020.
Robotics simulation in Unity is as easy as 1, 2, 3!

Haas, J. K. 2014. A history of the Unity game engine.

Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An introduction to the planning domain definition
language. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 13(2): 1-187.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191-246.
Hill, A.; Komendantskaya, E.; and Petrick, R. P. A. 2020.
Proof-Carrying Plans: A Resource Logic for Al Planning.
In International Symposium on Principles and Practice of
Declarative Programming (PPDP), 1-13.

Howey, R.; and Long, D. 2003. VAL’s Progress: The Au-
tomatic Validation Tool for PDDL2.1 used in the Interna-
tional Planning Competition. In Proceedings of the ICAPS

Workshop on The Competition: Impact, Organization, Eval-
uation, Benchmarks.

James Fort, J. H.; and Davis, N. 2021. Boosting computer
vision performance with synthetic data.

Le Bras, P.; Carreno, Y.; Lindsay, A.; Petrick, R. P. A.; and
Chantler, M. J. 2020. PlanCurves: An Interface for End-
Users to Visualise Multi-Agent Temporal Plans. In Proceed-
ings of the ICAPS Workshop on Knowledge Engineering for
Planning and Scheduling (KEPS).

Magnaguagno, M. C.; Fraga Pereira, R.; Mére, M. D.; and
Meneguzzi, F. R. 2017. Web planner: A tool to develop clas-
sical planning domains and visualize heuristic state-space
search. In ICAPS Workshop on User Interfaces and Schedul-
ing and Planning (UISP).

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL—
The planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.

Micheli, A.; and Bit-Monnot, A. A. 2022. , Unified Plan-
ning: A Python Library Making Planning Technology Ac-
cessible. In 32nd International Conference on Automated
Planning and Scheduling, System Demonstration.

Muise, C. 2016. Planning.domains. ICAPS System Demon-
stration.

Roberts, J. O.; Mastorakis, G.; Lazaruk, B.; Franco, S.;
Stokes, A. A.; and Bernardini, S. 2021. vPlanSim: An Open
Source Graphical Interface for the Visualisation and Simula-
tion of Al Systems. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 31,
486-490.

Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In
ECAI 2016, 655-663. 10S Press.

Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. The Knowledge
Engineering Review, 22(2): 117-134.

Tapia, C.; San Segundo, P.; and Artieda, J. 2015. A PDDL-
based simulation system. In Proceedings of the IADIS Inter-
national Conference Intelligent Systems and Agents.

Unity Technologies. 2022. Unity.

Valentini, A.; Micheli, A.; and Cimatti, A. 2020. Temporal
planning with intermediate conditions and effects.

Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An Integrated Tool for Designing Plan-
ning Domains. In Proceedings of ICAPS, 336-343.
Vodrazka, J.; and Chrpa, L. 2010. Visual design of planning
domains. In Proceedings of ICAPS Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS), 68—69.
Yamamoto, T.; Terada, K.; Ochiai, A.; Saito, F.; Asahara, Y.;
and Murase, K. 2019. Development of human support robot

as the research platform of a domestic mobile manipulator.
ROBOMECH journal, 6(1): 1-15.

685

690

695

700

705

710

715

720

725

730

735

