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Overshoot: Taking advantage of future gradients in momentum-based stochastic
optimization
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Abstract

Overshoot is a novel, momentum-based stochastic
gradient descent optimization method designed
to enhance performance beyond standard and
Nesterov’s momentum. In conventional momen-
tum methods, gradients from previous steps are
aggregated with the gradient at current model
weights before taking a step and updating the
model. Rather than calculating gradient at the
current model weights, Overshoot calculates the
gradient at model weights shifted in the direction
of the current momentum. This sacrifices the im-
mediate benefit of using the gradient w.r.t. the
exact model weights now, in favor of evaluating
at a point, which will likely be more relevant for
future updates. We show that incorporating this
principle into momentum-based optimizers (SGD
with momentum and Adam) results in faster con-
vergence (saving on average at least 15% of steps).
Overshoot consistently outperforms both standard
and Nesterov’s momentum across a wide range
of tasks and integrates into popular momentum-
based optimizers with zero memory and small
computational overhead.

1. Introduction
Optimization algorithms are fundamental to machine learn-
ing. In past years, numerous SGD-like algorithms have
emerged aiming to accelerate convergence, such as Adam
(Kingma & Ba, 2015), RMSprop (Tieleman & Hinton.,
2012), ADAGRAD (Duchi et al., 2011a), Nadam (Dozat,
2016), RAdam (Liu et al., 2020), AdamP (Heo et al., 2021)
and many more. The vast majority of these algorithms uti-
lize momentum, a technique that accelerates convergence
in deep learning optimizers (Sutskever et al., 2013). Typi-
cally, a variation of Polyak’s “classical” momentum (CM)
(Polyak, 1964) or Nesterov’s Accelerated Gradient (NAG)

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
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Figure 1: Overshoot derives gradients from overshot model
weights θ′, instead of from base weights θ. The overshoot
weights are “future model weights” estimations, computed
by extending previous model updates by a factor of γ. This
way, past gradients become more relevant to the current
model weights, hence faster convergence. Consider the sit-
uation at θt+4: computing the next step will use gradients
coming from a more representative “neighborhood” group
of overshot models (red circles) instead of a less representa-
tive “tail” of past base models (gray points).

(Nesterov, 1983) is applied. While deep learning optimiza-
tion algorithms vary in many important aspects, their ap-
proach to momentum is similar: model updates are com-
puted by aggregating the latest and past gradients. Although
some optimizers, like RMSprop, do not incorporate momen-
tum, momentum-based optimizers are frequently the default
choice for optimization (Schmidt et al., 2021).

In this work, we introduce a novel approach to momentum
called Overshoot. The primary distinction between CM and
Overshoot is that in Overshoot, the gradients are computed
using model weights shifted in the direction of the cur-
rent momentum (future gradients). This makes Overshoot
similar to NAG, however unlike NAG, Overshoot decou-
ples the momentum coefficient and the ”look-ahead” factor.
To achieve that, Overshoot leverages two types of model
weights: 1) the Base weights (θ) being optimized, and 2) the
Overshoot weights (θ′) which are used to obtain the gradi-
ents, see Figure 1. Unlike mentioned methods, Overshoot
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Overshoot: Taking advantage of future gradients for stochastic optimization

focuses on the process of obtaining gradients, rather than
their aggregation into model updates. Consequently, the
Overshoot algorithm can, in principle, be combined with
any momentum-based optimization algorithm.

The contributions of this paper are two-fold:

1. The Overshoot momentum method description (sec-
tion 2), complemented by efficient implementations
for both the SGD and Adam1.

2. An empirical evaluation of Overshoot across a broad
range of tasks (section 5), benchmarking its effective-
ness against: accelerated SGD with CM and NAG (for
its simplicity) and Adam (for its widespread use).

With rate of convergence and test set performance
(loss/accuracy) as metrics, our results show Overshoot beat-
ing baselines across a diverse set of scenarios. Furthermore,
we implement Overshoot in SGD and Adam, achieving this
with zero memory and minimal computational overheads.

2. Method
The Overshoot algorithm is based on the three assumptions:

1: In stochastic optimization, better gradient estimates lead
to faster convergence and improved generalization.

2: The quality of the gradient estimate decreases with the
L2 distance between the model used to compute the gradi-
ent and the model for which the gradient is estimated. In
particular, for similar model weights θa and θb, we expect
the following to be generally true:

||θa − θb|| ∝ ||▽f(θa)− ▽f(θb)|| (1)

where f is the stochastic objective function and ▽f(θ)
denotes the vector of partial derivatives w.r.t. θ. In the
momentum-based optimizers, this relationship is managed
by exponential weight decay scheme for past gradients.

3: Consecutive updates θ̂t, θ̂t+1 have similar direction:

E
[
Sc(θ̂t, θ̂t+1)

]
> 0 (2)

where Sc is a cosine similarity. The similarity between
consecutive model updates, in momentum based optimiz-
ers, is primarily determined by the momentum coefficient
parameter (e.g., Adam: β1) with its default value of 0.9 pro-
moting update stability. Consequently, we expect the model
weights, shifted in the direction of the current momentum,
to be on average closer to the future model weights than the
current weights are. In particular:

2s∑
i=0

||(θt + sθ̂t)− θt+i|| <
2s∑
i=0

||θt − θt+i|| (3)

1https://anonymous.4open.science/r/overshoot-47DD

where θt denotes model weights at step t, s ∈ {1, ...,K}
represents overshoot, and θt + sθ̂t are weights shifted in
the direction of the current momentum. K is determined by
the optimization process stability (expressed by (2)). For
context: with very stable updates, s times the update would
take us approximately s steps forward in the optimization
process. By summing up to 2s, we are effectively looking
back by s steps and forward by s steps from that position.

Based on these premises, we hypothesize that gradients
computed on model weights shifted in the direction of
the current momentum can, on average, yield more ac-
curate future gradient estimates, and thereby result in
faster convergence. We empirically verify this hypothesis in
Section 5.

Algorithm 1 describes the general form of the Overshoot al-
gorithm. This definition is decoupled from the optimization
method, and illustrates Overshoot’s main idea. However,
it does not achieve the desired computational and memory
overheads. To do so, the Overshoot algorithm must be tai-
lored to specific optimization methods. We discuss such
implementations for SGD (SGDO) and Adam (AdamO) in
Sections 2.1 and 2.2.

Algorithm 1 General Overshoot definition visualized in
Figure 1. We copy the optimizer function ϕ to address
situations in which the optimizer maintains an internal state.

input Initial model weights θ0, stochastic objective func-
tion f(θ) with parameter θ, momentum-based optimiza-
tion method ϕ (e.g., Adam), learning rate η > 0, over-
shoot factor γ ≥ 0
θ′0 ← θ0
ϕ′ ← ϕ
for t = 1, 2, ... do
gt ← ▽f(θ′t−1)
θt ← ϕ(θt−1, gt, η)
θ′t ← ϕ′(θt, gt, γη)

end for
output θt

2.1. Efficient implementation for SGD

The main idea of efficient implementation is to compute up-
date vectors directly between consecutive overshoot model
weights, eliminating the need for base weights and reducing
computational overhead. However, without base weights,
we lose the ability to reproduce its loss during training.
Additionally, to fully align with the general version of Over-
shoot, the final overshoot weights should be updated to their
base variant at the end of the training.

The update vector for Overshoot weights is computed as:

θ̂′t+1 = −γθ̂t + (γ + 1)θ̂t+1 (4)
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Overshoot: Taking advantage of future gradients for stochastic optimization

where θ̂t denotes base weights update vector at step t. The
first term: −γθ̂t can be viewed as reversing the overshoot
from the previous step and: (γ + 1)θ̂t+1 as model update
from the base weights at step t to the overshoot weights at
step t+ 1. Using CM definition (Polyak, 1964):

mt+1 = µmt + ▽f(θt) (5)

θt+1 = θt − ηmt+1 (6)

with η > 0 is the learning rate and µ ∈ [0, 1] is the momen-
tum coefficient, the Overshoot model update is:

θ′t+1 = θ′t − η(−γmt + (γ + 1)mt+1) (7)

By substituting the mt+1 using CM’s recurrence relation
(5), and rearranging terms, (7) can be rewritten into:

θ′t+1 = θ′t − η((γ − γ

µ
+ 1)mt+1 +

γ

µ
▽f(θ′t)) (8)

In (8), update for overshoot weights is computed as a linear
combination of the current momentum and gradient. Based
on this observation we derive the efficient implementation
of Overshoot for SGD described in Algorithm 2.

Algorithm 2 SGDO: Overshoot for SGD

input Initial model weights θ0, stochastic objective func-
tion f(θ) with parameter θ, learning rate η > 0, overshoot
factor γ ≥ 0, momentum coefficient µ ∈ (0, 1]
m0 ← 0
mc ← γ − γµ−1 + 1
gc ← γµ−1

for t = 1, 2, ... do
gt ← ▽f(θt−1)
mt ← µmt−1 + gt
θt ← θt−1 − η(mcmt + gcgt)

end for
output θt + ηγmt (Base weights)

2.2. Efficient implementation for Adam

Following the method outlined in Section 2.1, we derive an
efficient implementation for Adam (AdamO) using the ap-
proach described in Equation 4. However, Adam introduces
two key differences:

1: Momentum is defined as a decaying mean of gradients
rather than a decaying sum:

mt+1 = β1mt + (1− β1)▽f(θt) (9)

where β1 denotes the momentum coefficient.

2: Adam applies additional operations to mt before calcu-
lating the model update θ̂t, concretely θ̂t =

η

dt
mt where

dt = (1− βt
1)
√
v̂t (from Algorithm 3). The inclusion of dt

complicates deriving θ̂t from momentum mt, making the
direct computation of (4) computationally inefficient.

There are three primary strategies to address this: (a) Com-
pute θ̂t and θ̂t+1 precisely at each step, leading to high
computational inefficiency; (b) Cache model updates, which
increases memory overhead; or (c) Use an approximation
method, which we adopt here.

A key observation is that for large t and with β2 = 0.999
(resulting in small updates for the second moment estimates
vt (Dozat, 2016)), the difference between dt and dt+1 be-
comes small. Thus, for larger t we can approximate θ̂t by
applying the bias correction: (1 − βt

1)
−1 and the second

momentum estimate:
√
v̂t from the subsequent step without

significant loss in accuracy:

θ̂t ≈
η

dt+1
mt (10)

To avoid applying (10) at small t we introduce a delayed
overshoot technique to postpone the application of Over-
shoot. This delay is further justified by the fact that, early in
training, momentum has not yet stabilized, and assumption
(2) may not hold. Delayed overshoot is defined as:

γt = max(0,min(γ, t− τ)) (11)

where τ ∈ N is the overshoot delay.

Starting with Equation 4, using delayed overshoot factor
(11), model update estimate (10), and momentum recurrent
formula (9), we derive the formula for model update used
in Algorithm 3:

θ̂′t+1 = −γtθ̂t + (γt+1 + 1)θ̂t+1 (4), (11)

≈ η

dt+1
(−γtmt + (γt+1 + 1)mt+1) (10)

=
η

dt+1
((−γt+1 − γtβ

−1
1 + 1)mt+1

+ (1− β1)γtβ
−1
1 ▽f(θ′t)) (9)

3. Related Work
In recent years, numerous new optimizers for deep learning
have emerged, with many—such as RMSprop (Tieleman
& Hinton., 2012), AdaGrad (Duchi et al., 2011b), Adam
(Kingma & Ba, 2015), AdamP (Heo et al., 2021) AdamW
(Loshchilov, 2017) RAdam (Liu et al., 2020) AdaBelief
(Zhuang et al., 2020) focusing on adaptive learning schemes.
These methods aim to stabilize the training process by lever-
aging first- and second-moment estimates to clip, normalize,
and adjust gradients, facilitating smooth and stable updates.

3
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Overshoot: Taking advantage of future gradients for stochastic optimization

Algorithm 3 Adam , AdamO with good defaults: τ = 50,
γ = 5.

input Initial model weights θ0, stochastic objective func-
tion f(θ) with parameter θ, learning rate η > 0, over-
shoot factor γ ≥ 0, overshoot delay τ ≥ 0, adam betas
β1, β2 ∈ (0, 1]
m0 ← 0
v0 ← 0
γ0 ← 0
for t = 1, 2, ... do
gt ← ▽f(θt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

m̂t ← mt(1− βt
1)

−1

γt ← max(0,min(γ, t− τ))

mc ← γt − γt−1β
−1
1 + 1

gc ← (1− β1)γt−1β
−1
1

m̂t ← (mcmt + gcgt)(1− βt
1)

−1

v̂t ← vt(1− βt
2)

−1

θt ← θt−1 −
η√

v̂t + ϵ
m̂t

end for
output θt +γ

η
√
vt + ϵ

mt

Despite these advances, recent methods often struggle to
consistently and significantly outperform Adam, which re-
mains a reliable default choice in many scenarios (Schmidt
et al., 2021) (or rather AdamW with fixed weight decay).

Other approaches, including Nadam (Dozat, 2016) and
Adan (Xie et al., 2024), focus on incorporating Nesterov’s
accelerated gradient (NAG) into the Adam optimizer. As
shown in Section 2.1, Overshoot shares similarities with
Nesterov’s momentum; it can be viewed as Nesterov’s mo-
mentum with a parameterized “look-ahead” step used to
compute gradients. Thus, Nadam and Adan also align
closely with our work, albeit with distinct approaches.

Nadam employs an approximation technique to merge up-
dates from consecutive steps into a single model update,
based on the observation that for the default Adam set-
ting (β2 = 0.999), updates to second-moment estimates do
not vary significantly. Adan, in contrast, introduces a new
method called NME to precisely integrate NAG into Adam
but relies on the difference between previous and current
gradients, which adds memory overhead. Our approach
to incorporating Overshoot into Adam is more similar to
Nadam’s, as it also uses an approximation method. However,
unlike Nadam, we also approximate the bias-correction term
after training step t.

The Look-ahead optimizer (Zhang et al., 2019) presents a
different strategy for the optimization step, sharing some
conceptual similarities with Overshoot. It also uses two
sets of weights (fast and slow), but differs in that Look-
ahead performs k full steps with the fast weights before
interpolating with the slow weights. In contrast, Overshoot
applies only a single step with an increased learning rate of
k times and uses the resulting gradients to update the model.

In Section 4.1, we show that Overshoot unifies three distinct
variants of SGD—CM, NAG, and vanilla SGD. This is sim-
ilar to how a previous work (Yan et al., 2018), introduced a
unification method for SGD momentum called SUM, which
integrates Polyak’s heavy ball momentum (Polyak, 1964),
NAG, and vanilla SGD.

4. Overshoot Properties
We examine the properties of Overshoot when paired with
the simplest momentum-based optimization method, SGD,
and demonstrate how it unifies CM, NAG, and vanilla SGD.

4.1. Momentum Unification

First we examine SGDO properties, by showing its equiva-
lence to various SGD variants. We will only focus on the
Overshoot weights θ′, omitting the final adjustment step to
base weights.

Nesterov’s accelerated gradient (NAG), can be rewritten
into form of the momentum (Sutskever et al., 2013):

mt+1 = µmt + ▽f(θt − ηµmt) (12)

θt+1 = θt − ηmt+1 (13)

SGDO update rule can be expressed as:

mt+1 = µmt + ▽f(θt − ηγmt) (14)

θt+1 = θt − ηmt+1 (15)

The difference between NAG and SGDO is that SGDO
decouples the momentum coefficient µ and the “look-ahead”
factor γ. Therefore, NAG is a special case of SGDO.

In Section 2.1, we show that the SGDO update is expressed
as a linear combination of current momentum and gradient.
From (8) we can see that momentum multiplication factor
(γ−γµ−1+1) can be equal to zero. In this case, the SGDO
omits the momentum component, making its update rule
equivalent to vanilla SGD. Taken together, SGDO (without
the final adjustment step), can be equivalent to the following
SGD variants:

γ = 0 SGD with CM
γ = µ SGD with NAG
γ = µ(1− µ)−1 vanilla SGD

4
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Overshoot: Taking advantage of future gradients for stochastic optimization

Figure 2: Overshoot for various γ and µ settings. Negative
momentum aggregates past gradients with an inverted sign.
Arguably, this is not the intended behavior of a momentum
based optimizer. *Estimated by minimizing (16), using
SGDO to generate a series of paths with 30,000 steps and
randomly sampled gradients from {g ∈ R20 : ||g|| = 1}.

4.2. Gradients relevance

Momentum can be interpreted as a form of gradient accu-
mulation. Its primary advantage over traditional gradient
accumulation lies in its computational efficiency, as it avoids
multiple forward and backward passes per optimization step.
However, in momentum, gradients are computed w.r.t. his-
torical model weights rather than the current ones. The
divergence between historical and current weights reduces
the relevance of historical gradients, though they remain
useful to some extent. To quantify the relevance of past
gradients, we introduce the measure:

Awd(γ) =
1

N

N∑
i=1

i∑
j=1

∥∥θi − θ′j
∥∥w(i, j) (16)

where N is a number of training steps, θi/θ′i are
base/overshoot weights at training step i and w(i, j) rep-
resents the weighting scheme of past gradients (acceler-
ated SGD: µi−j , Adam: (1− β1)β

i−j
1 ). Note that for non-

overshoot momentum θi = θ′i.

We hypothesize that argminγ Awd(γ) > 0, therefore
Overshoot should enhance the relevance of past gradi-
ents relative to current model weights, potentially leading
to faster convergence. Figure 2 illustrates the estimated
argminγ Awd(γ) w.r.t. µ, based on simulations of the
SGDO process. In Section 5.3.3 we empirically analyze
Awd across various tasks, comparing classical and over-
shoot momentum variants, and evaluate its impact on the
training loss convergence rate.

4.3. Gradient weight decay

The exponential weight decay scheme applied to past gra-
dients in accelerated SGD: µi−j , where i is the current

training step and j is the step in which the gradient was
computed, is suboptimal for Overshoot. This is because,
in Overshoot, there is no monotonous relationship between
’gradient age’ and its relevance. However, our experiments
demonstrate that Overshoot outperforms CM and NAG even
under the µi−j weight decay scheme (Section 5). Investi-
gating an alternative past gradient weighting scheme, more
suitable for Overshoot, is beyond the scope of this work and
is left for future research.

5. Experiments
We evaluate the Overshoot using its efficient implementa-
tion of SGDO and AdamO, as detailed in Sections 2.1 and
2.2 using overshoot factors γ ∈ {3, 5, 7}. Overshoot results
are compared against accelerated SGD, Adam, and Nadam
baselines. In all experiments we use the pytorch library
(2.4.0), automatic mixed precision, no learning rate sched-
ulers, and Nvidia GPUs with Ampere architecture. AdamW
weight-decay implementation is used for all Adam variants
(Adam, Nadam, AdamO). We use a constant momentum
coefficient in Nadam. All experiments were run with ten
different random seeds, except for those in Figure 4.

5.1. Hyper-parameters

For baselines (CM, NAG, Adam, Nadam) and their over-
shoot variants we use the same set of hyperparameters. For
most tasks, we use default optimization hyper-parameters:

Variable Name Value
B Batch size 64
lr Learing rate 0.001
β1 Adam beta 1 0.9
β2 Adam beta 2 0.999
µ Momentum 0.9
λ Weight decay 0
ϵ Epsilon 10−8

These values are either derived from the recommendations
provided by the authors of the respective algorithms or
set as defaults in widely used implementations. In tasks
where default hyper-parameters would lead to noticeably
suboptimal performance (e.g., η = 0.001 for SGD on Cifar-
100), we adopt the values used in one-shot evaluations from
(Schmidt et al., 2021). Any deviations from the default
hyper-parameters are made to enhance the baselines and are
documented in Table 1.

5.2. Tasks

Given that the performance of deep learning optimizers
varies across tasks (Schmidt et al., 2021), we evaluate Over-
shoot across a diverse range of scenarios, including various

5
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Table 1: Evaluation tasks. Configuration of 2c2d, 3c3d and VAE models are the same as in (Schneider et al., 2019). GPT-2
was fine-tuned with binary classification head, using LoRA (Hu et al., 2022).

ID Dataset Model Loss Epochs Parameters

MLP-CA CA Housing Prices
(Barry, 1997)

MLP with
2 hidden layers: 200, 150 Mean squared error 200 -

VAE-FM Fashion MNIST
(Xiao et al., 2017)

Variational autoencoder
(Kingma & Welling, 2013)

Mean squared error
KL divergence 100 -

VAE-M MNIST
(Deng, 2012) Variational autoencoder Mean squared error

KL divergence 50 -

2c2d-FM Fashion MNIST 2 convolutional layers: 32, 64
1 hidden layers: 256 Cross-entropy 50 -

3c3d-C10 CIFAR-10
(Krizhevsky, 2009)

3 convolutional layers: 64, 96, 128
2 hidden layers: 512, 256 Cross-entropy 100

B : 128
lr : 0.01 (SGD only)

Res-C100 CIFAR-100
(Krizhevsky, 2009)

ResNet-18
(He et al., 2015) Cross-entropy 250

B : 256, µ : 0.99
λ : 5e−4
lr : 0.01 (SGD only)

GPT-GLUE GLUE qqp
(Wang et al., 2019)

GPT-2
(Radford et al., 2019) Cross-entropy 10 λ : 5e−4, lr : 3e− 4

model architectures (MLP, CNN, transformers), loss func-
tions (Cross-entropy, Mean squared error, KL divergence),
and datasets. The selection of evaluation tasks was inspired
by (Schmidt et al., 2021). The detailed description of the
evaluation tasks is given in Table 1. Data augmentation is
only used with CIFAR-100 dataset.

5.3. Results

5.3.1. TRAINING LOSS CONVERGENCE

Utilizing the tasks delineated in Table 1 and the method-
ology outlined in Section 5 we conducted empirical eval-
uations to compare the convergence speeds of Overshoot
with those of accelerated SGD and Adam, as depicted in
Figure 3. Our results indicate that Overshoot (γ ∈ {3, 5, 7})
is robust and beneficial in speeding up the convergence of
the training loss. An exception was noted in the GPT-GLUE
task, where severe over-training occurred within the initial
four epochs.

To quantitatively assess the impact of Overshoot, we em-
ployed the Steps-to-95% Loss Reduction metric. Specifi-
cally, we calculate the percentage of steps saved to achieve
95% of the loss reduction realized by the baseline method
compared to the steps used by the baseline (see Table 2).

Table 2: Percentage of training steps saved by Overshoot
for various configurations.

γ = 3 γ = 5 γ = 7
SGD 23.77% 26.19% 26.53%
Adam 15.27% 19.53% 20.11%

These results are averaged across all tasks (Table 1) and
ten random seeds. To address the variability in mini-batch
losses, we smoothed the training losses using a mean win-

dow of size 400. Reported SGDO and AdamO losses are
obtained using the base model variant (θt − γθ̂t), which we
normally don’t compute, as it’s computationally costly and
unnecessary for the optimization process.

5.3.2. GENERALIZATION (MODEL PERFORMANCE)

The evaluation of performance on the test set is presented
in Table 3. For most tasks, Overshoot achieves statistically
significant improvements in final performance compared to
both SGD and Adam baselines and never underperformed
the baselines (with statistical significance). Thus, Overshoot
not only proves to be advantageous but also demonstrates
robustness across various tasks. However, selecting the
optimal Overshoot factor γ poses a challenge, as its efficacy
varies depending on the task and the optimizer. Notably,
AdamO benefits more from higher values of γ, whereas
SGDO exhibits small sensitivity to changes in this parameter.
The convergence of test loss is illustrated in Figure 3.

5.3.3. AVERAGE WEIGHTED DISTANCE

In Section 4.2 we introduced measure to estimate relevance
of past gradients used by momentum. In Figure 4 we em-
ployed AdamO for various tasks and hyper-parameters set-
tings, to measure relation between γ, Awd and loss conver-
gence. We estimate the Awd by considering past 50 models
at every 50th training step, which accounts for 99.4% and
92.3% of the weighted portion of Awd for β1 = 0.9/0.95
respectively. The GPT-GLUE task is excluded due to its
high computational and memory demands.

Empirical results confirm our hypothesis, that for default
momentum coefficient argminγ Awd(γ) > 0, in particular

argmin
γ

Awd(γ) ≈

{
2.5, if β1 = 0.9

5, if β1 = 0.95

6
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Figure 3: The average training and test losses, computed over 10 runs with different random seeds. Training losses are
smoothed using a one-dimensional Gaussian filter. Obtained using the base model weights: θt − γθ̂t. We employ a shifted
logarithmic y-axis scale to visually separate small absolute differences.

However, argminγ Awd(γ) does not necessarily yield the
optimal overshoot factor for reducing training loss. We
hypothesize that this discrepancy arises from the spatial
distribution of overshoot weights around the base weights,
which Awd does not account for as a measure of distance.
Further investigation into the optimal overshoot factor is
warranted.

6. Conclusion
In this paper, we introduced Overshoot, a novel approach
to momentum in stochastic gradient descent (SGD)-based
optimization algorithms. We detailed both a general vari-
ant of Overshoot and its efficient implementations for SGD
and Adam, characterized by zero memory and small com-

putational overheads. For SGD we showed that classical
momentum, Nesterov’s momentum and no momentum, are
all special cases of the Overshoot algorithm. We evaluated
Overshoot for various overshoot factors against the accel-
erated SGD and Adam baselines on several deep learning
tasks. The empirical results suggest that Overshoot im-
proves both the convergence of training loss and the model
final performance.

7. Limitations
Methodology limitations: In this work, we only show
empirical evidence of Overshoot’s superiority over classi-
cal momentum and Nesterov’s accelerated gradient, which
could be better supported by a theoretical proof. Addition-
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Figure 4: Relation between Awd (16) and training loss (AUC) is analyzed using AdamO for γ ∈ {0, 1..15} and β1 ∈
{0.9, 0.95}. The training loss is visualized using a colorbar that is specific to each subgraph (lower is better). Note that
AdamO with γ = 0 corresponds to the vanilla Adam optimizer. The Awd is estimated by considering the distance to the
past 50 model weights, sampled at every 50th training step. Training loss is computed based on the base model weights:
θt − γθ̂t. For β1 = 0.9 : argminγ Awd(γ) ≈ 2.5, and for β1 = 0.95 : argminγ Awd(γ) ≈ 5 across the tasks.

Table 3: Best achieved performance on test dataset. Evaluated after each epoch. Reporting mean values and 95% confidence
interval (as subscript) from 10 runs with different random seeds. γ=3 represents SGDO/AdamO described in Sections 2.1,
2.2 with overshot factor three. For AdamO we set the overshoot delay (τ ) to 50. *Statistically significant improvement over
the better baseline (p-value< 0.05).

SGD variants Adam variants
CM NAG γ=3 γ=5 γ=7 Adam Nadam γ=3 γ=5 γ=7

L
os

s
↓ MLP-CA 26.63.22 26.59.22 26.50.17 26.48∗.16 26.45.15 25.61.33 25.57.21 25.32∗.23 25.39.30 25.20∗

.26

VAE-FM 23.39.10 23.28.06 23.29.07 23.26.07 23.31.07 22.99.04 22.88.02 22.81∗.02 22.81∗.03 22.80∗
.03

VAE-M 27.28.07 27.21.03 27.08∗.04 27.01∗.04 26.98∗
.04 27.24.07 27.10.05 27.06.08 27.01∗

.08 27.02∗.09

A
cc

ur
ac

y
↑ 2c2d-FM 92.02.06 92.05.08 92.14∗.08 92.20∗

.06 92.18∗.07 92.20.13 92.23.15 92.36.08 92.37∗.09 92.43∗
.10

3c3d-C10 86.14.20 86.46.15 86.53.19 86.40.15 86.31.15 85.25.20 85.43.16 85.76∗.15 85.80∗
.13 85.65∗.16

Res-C100 52.92.10 53.95.12 55.22∗.12 55.64∗.12 56.07∗
.16 52.17.23 52.08.19 53.01∗.17 53.57∗.11 53.70∗

.32

GPT-GLUE 83.27.11 83.18.10 83.36.04 83.39∗
.08 83.36.06 87.82.08 87.78.11 87.81.10 87.84.05 87.90.05

ally, our empirical evaluations were conducted on a diverse,
but limited subset of deep learning tasks. Finally, our eval-
uations of overshoot were conducted on default settings of
optimizers without incorporating learning rate schedulers
or hyperparameter fine-tuning. All of these point to the
importance of future works evaluating overshoot in a wide
arrange of problems and optimizer settings.

Method limitations: We identify two primary limitations
in the presented implementation of Overshoot:

1. The weight decay scheme for past gradients. SGD:
µi−j and Adam: βi−j

1 (1− β1) where i is the current
training step and j is the step in which the gradient was
computed, prioritize the most recent gradient, which
may not accurately reflect the relevance of past gra-
dients in the Overshoot context. A revised weighting

scheme, better suited for Overshoot, could potentially
enhance performance beyond the results presented.

2. Adaptive Overshoot factor. As demonstrated in Sec-
tion 5.3.3 the optimal overshoot factor γ varies across
different tasks and hyper-parameter settings (e.g., β1

in adam). Dynamically adjusting the overshoot factor
during the training process could maximize the bene-
fits of Overshoot. One possible method could involve
monitoring (or estimating) the model update stability
dynamics (expressed by (2)) and adjusting γ accord-
ingly.

8
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