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Abstract. The Variational Principle (VP) forms diffeomorphisms (non-
folding grids) with prescribed Jacobian determinant (JD) and curl under
an optimal control set-up, which satisfies the properties of a Lie group.
To take advantage of that, it is meaningful to regularize the resulting
deformations of the image registration problem into the solution pool of
VP. In this research note, (1) we provide an optimal control formulation
of the image registration problem under a similar optimal control set-
up as is VP; (2) numerical examples demonstrate the confirmation of
diffeomorphic solutions as expected.
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1 Our approach to Image Registration
This work connects the resulting registration deformations to the solution pool of
VP in [1], which achieves a recent progression in describing non-folding grids in
a diffeomorphism group. Hence, to restrict the image registration method built
in [3] satisfying the constraint of VP, it is reformulated and proposed as follows:
let Immm be a movingmovingmoving image is to be registered to a fixedfixedfixed image Ifff on the fixed
and bounded domain (ωωω =< x, y, z >∈)Ω ⊂ R3, the energy function Loss is
minimized over the form φφφ = ididid+ uuu on Ω with uuu = 000 on ∂Ω,

Loss(φφφ) =
1

2

∫
Ω

[Immm(φφφ)− Ifff ]2dωωω subjects to ∆φφφ = FFF (f,ggg) in Ω, (1)

where the scalar-valued f and the vector-valued ggg are the control functions in
the sense of VP that mimic the prescribed JD and curl, respectively.

1.1 Gradient with respect to control FFF
The variational gradient of (1) with respect to δ∆φφφ = δ∆uuu = δFFF is derived. For
all δFFF vanishing on ∂Ω and by Green’s identities with fixed boundary condition,

δLoss(φφφ) = δ(
1

2

∫
Ω

[Immm(φφφ)− Ifff ]2dωωω) =

∫
Ω

[(Immm(φφφ)− Ifff )∇Immm(φφφ) · δφφφ]dωωω

=

∫
Ω

[∆bbb · δφφφ]dωωω =

∫
Ω

[bbb · δ∆φφφ]dωωω =

∫
Ω

[bbb · δFFF ]dωωω ⇒ ∂Loss

∂FFF
= bbb,

(2)
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where ∆bbb = (Immm(φφφ)− Ifff )∇Immm(φφφ), so, a gradient-based algorithm can be formed.

1.2 Hessian Matrix with respect to control function FFF

In case of a Newton optimizing scheme is applicable, from (2), one can derive
the Hessian matrix HHH of (1) with respect to FFF as follows,

δ2Loss(φφφ) := δ(δLoss(φφφ)) = δ(

∫
Ω

[(Immm(φφφ)−Ifff )∇Immm(φφφ)·δφφφ]dωωω) =

∫
Ω

[δφφφ>KKKδφφφ]dωωω,

where ∆2HHH = KKK = ∇Immm(φφφ)[∇Immm(φφφ)]> + (Immm(φφφ)− Ifff )∇2Immm(φφφ),

and ∇2Immm(φφφ) =

Immm(φφφ)xx Immm(φφφ)xy Immm(φφφ)xz
Immm(φφφ)yx Immm(φφφ)yy Immm(φφφ)yz
Immm(φφφ)zx Immm(φφφ)zy Immm(φφφ)zz

 ,

so, δ2Loss(φφφ) =

∫
Ω

[δφφφ>∆2HHHδφφφ]dωωω =

∫
Ω

[δ∆φφφ>HHHδ∆φφφ]dωωω ⇒ ∂2Loss

(∂FFF )2
= HHH. (3)

A necessary condition that ensures a Newton scheme works is to show such
Hessian HHH must be of Semi-Positive Definite matrix. This is left for future study.

1.3 Partial Gradients with respect to control functions f̂ and ggg

To ensure (1) producing diffeomorphic solutions that is controlled by Jmin ∈ (0, 1),
instead of optimizing along FFF by (2), it can be set that f := Jmin + f̂2 in (1).
Since it is known δ∆uuu = δFFF = δ(∇f −∇× ggg), then, it carries to,

δLoss(φφφ) =

∫
Ω

[bbb · δ∆φφφ]dωωω =

∫
Ω

[bbb · δFFF ]dωωω =

∫
Ω

[bbb · δ(∇f −∇× ggg)]dωωω

=

∫
Ω

[bbb · (∇δ(Jmin + f̂2)]dωωω +

∫
Ω

[−bbb · ∇ × δggg]dωωω

=

∫
Ω

[bbb · (2f̂∇δf̂)]dωωω+

∫
Ω

[−bbb ·∇×δggg]dωωω =

∫
Ω

[−2f̂∇·bbbδf̂ ]dωωω+

∫
Ω

[−∇×bbb ·δggg]dωωω

⇒ ∂Loss

∂f̂
= −2f̂∇ · bbb and

∂Loss

∂ggg
= −∇× bbb. (4)

2 Numerical Examples

In our algorithms, Jmin = 0.5 is artificially set. It is desirable to design a
mechanism that yields optimal values of Jmin. The gradient-based algorithms
can be structured with (1) the coarse-to-fine multiresolution technique, which
fits better in large deformation problems over binary images, as it did in [2]; and
(2) the function composition regriding technique, which divides the problem
difficulty and prevent non-diffeomorphic solutions on medical image registrations.
These observations are demonstrated by the next example.
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2.1 A Large Deformation Test and A MRI Registration Test
The J-to-V part of this example is done with multiresolution and the Brain
Morph part is done with regriding. In Fig.1(c, j), φφφ is the diffeomorphic solution
found by the proposed method; Fig.1(d, k), Immm(φφφ) is the registered image that is
close to Ifff , Fig.1(b, i). Next, φφφ−1

vp is the inverse of φφφ that constructed by VP. In
Fig.1(f,m,t), φφφ is composed by φφφ−1, in Red grid, and superposed on Black grid
ididid but the Black grid barely shows. This shows the composition TTT = φφφ−1

vp ◦φφφ is
very close to ididid. Therefore, φφφ−1

vp can be treated as the inverse to φφφ and they are
of the same diffeomorphism group which VP focuses.

Table 1: Evaluation of the Proposed Image Registration
e.g. Ω ratio = Loss(φφφ)/Loss(ididid) min(det∇φφφ) JSC DICE

J-to-V [1, 128]2 0.0034 0.2191 0.9337 0.9657
Brain Morph [1, 128]2 0.0605 0.2540 0.9849 0.9924

(a) Immm (b) Ifff (c) φφφ (d) Immm(φφφ) (e) φφφ−1
vp (f) TTT vs ididid (g) Ifff (φφφ−1

vp )

(h) Immm (i) Ifff (j) φφφ (k) Immm(φφφ) (l) φφφ−1
vp (m) TTT vs ididid (n) Ifff (φφφ−1

vp )

Fig. 1: Resulting Registration Deformations and their Inverses by VP
The question is whether φφφ−1

vp is also a valid inverse registration deformation that
moves Ifff back to Immm. The answer is YES, at least in our tested examples. Ifff (φφφ−1

vp )
is indeed close to Immm. That means φφφ−1

vp can be treated as a valid registration
deformation from Ifff to Immm, as it is confirmed by the Table. 2 records.

Table 2: Evaluation of φφφ−1
vp by VP in the sense of Image Registration

e.g. ratio (of Loss from Ifff (φφφ−1
vp ) to Immm) min(det∇φφφ−1

vp ) JSC DICE
J-to-V 0.0029 0.1520 0.9195 0.9581

Brain morph 0.0657 0.3212 0.9832 0.9915

3 Discussion
This note is merely the analytic description and a short demonstration of the
proposed method. A full and detailed paper will be available in a soon future.
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