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ABSTRACT

Most existing graph generative diffusion models suffer from significant exposure
bias during graph sampling. We observe that the forward diffusion’s maximum
perturbation distribution in most models deviates from the standard normal distribu-
tion, while reverse sampling consistently starts from a standard normal distribution.
This mismatch results in a reverse starting bias, which, together with the expo-
sure bias, degrades generation quality. The exposure bias typically accumulates
and propagates throughout the sampling process. In this paper, we effectively
address both biases. To mitigate reverse starting bias, we employ a newly designed
Langevin sampling algorithm to align with the forward maximum perturbation
distribution, establishing a new reverse starting point. To address the exposure
bias, we introduce a fraction correction mechanism based on a newly defined score
difference. Our approach, which requires no network modifications, is validated
across multiple models, datasets, and tasks, achieving state-of-the-art results.

1 INTRODUCTION

In recent years, graph diffusion models have made significant progress. GDSS (Jo et al., 2022)
introduced the score-based diffusion model to the one-shot graph generative task, demonstrating
remarkable results and proving superior to baselines. Then, more advanced graph diffusion models
such as MOOD (Lee et al., 2023), GSDM (Luo et al., 2023), and HGDM (Wen et al., 2024) were
proposed. Given the constraints of graph data scale and network learning capacity, these models
truncate the forward diffusion process to enhance performance, preventing it from fully reaching
the standard Gaussian distribution. However, during sampling, they have to start from the standard
Gaussian distribution without employing any specific strategy. We identify this mismatch as a critical
issue and including exposure bias, we work on bias analysis and mitigation in graph diffusion models.

Diffusion models (Ho et al., 2020; Song et al., 2021) consist of a forward noising and a reverse
denoising process. In the forward process, the data is gradually corrupted by noise over multiple
steps. This process can be divided into four stages with the reduction of the signal-to-noise ratio: (1)
the data distribution, (2) the low-noise stage, (3) the high-noise stage, and (4) the standard Gaussian.

Reverse-Starting Bias. Ideally, the forward process gradually perturbs the data distribution to the
standard Gaussian, while the reverse process starts from the standard Gaussian and gradually recover
clean samples. However, in graph learning, due to limitations in data scale and the network’s learning
ability, it is difficult to accurately predict scores from the high-noise state. This forces the forward
perturbation to adopt a conservative strategy, where the maximum perturbation distribution falls far
short of the standard Gaussian (Jo et al., 2022; Luo et al., 2023; Wen et al., 2024; Lee et al., 2023).
Yet, the sampling starting point remains standard Gaussian, resulting in a severe reverse-starting bias,
as shown in Figs. 1(a) and 1(b), which significantly affects the generation quality.

Exposure Bias. During the training phase of diffusion model, the model generates corrupted samples
xt based on ground truth with noise. During the sampling phase, the model starts from a standard
Gaussian distribution and iteratively denoises to obtain predicted samples x̂t using the score network.
Due to the prediction error of the score network, this leads to the exposure bias: a mismatch between
xt in the training phase and x̂t in the sampling phase. This bias accumulates and propagates as
sampling progresses, ultimately affecting the generation quality. Naturally, the most direct approach
to address exposure bias is to reduce the prediction error of the score network.

Rather than exploring the two biases independently, this paper aims to analyze and mitigate these two
biases in graph diffusion models from a unified perspective:
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Model GDSS GSDM HGDM MOOD

Dataset Comm. Enz QM9 ZINC250k

Type Edge Eigen Edge Node

SDE VPSDE VPSDE VESDE VPSDE

βmin 0.1 0.1 0.1 0.1

βmax 1.0 1.0 1.0 1.0

uT 0.7596 0.7596 1.0 0.7596

σ2
T 0.4231 0.4231 1.0 0.4231

(a) reverse-starting Bias
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Figure 1: (a) According to the forward formula, we can always write the perturbation distribution as
q(xt|x0) = N

(
xt|utx0, σ

2
t I
)
.The maximum perturbation distribution of these graph diffusion mod-

els in the training phase is N
(
xT |uTx0, σ

2
T I
)
, but the reverse-starting point of the sampling phase

always obeys N (xT |0, I), resulting in significant inconsistencies between training and sampling. In
particular, we find that xT of different baselines are in the low-noise state, since their signal-to-noise
ratio are always greater than 1. We provide more details in appendix A. (b) and (c) Expectation
of ∥sθ,t(·)∥2 during sampling (without corrector) and training on Community-small. Due to the
initial deviation, there is a significant difference between training and inference in the early stages of
sampling in (b). However, after improvement through our method, not only is the reverse-starting
bias mitigated, but the exposure bias during the sampling process is also further alleviated.

Q1: Is it possible to mitigate exposure bias while addressing Reverse-Starting bias? It originates
from a key finding: when xt is in the high-noise stage, the model is highly sensitive to the prediction
error of the score network, which means the prediction error at this stage can significantly affect the
generative quality. Conversely, when xt is in the low-noise state, the model is quite resistant to the
prediction error. Coincidentally, the forward maximum perturbation distribution of many models
are in the low-noise state as shown in Fig. 1(a). Thus, for a given score network sθ,t(·), we use
Langevin sampling with sθ,T (·) to obtain samples of the forward maximum perturbation distribution
q(xT |x0). It solves the reverse-starting bias, meanwhile it pushes the reverse-starting point towards
the low-noise state, utilizing the model’s resistance to prediction error to avoid exposure bias.

However, the prediction error of the score network severely affects the stable distribution of Langevin
sampling, forcing us to improve the prediction accuracy of the network, which is also beneficial for
mitigating exposure bias in the sampling process. In particular, we also focus on the cost of achieving:

Q2: How to correct scores without modifying the network or introducing other components?
It originates from a key situation: current graph diffusion models design different networks based
on various standards (spatial domain, spectral domain and hyperbolic domain, etc.). We hope our
correction method is seamlessly integrated into these models without modifying networks, which
means we do not alter the network architecture or model parameters. We also do not introduce any
additional components, such as GAN (Goodfellow et al., 2014), Flow (Kingma & Dhariwal, 2018),
or discriminator (Kim et al., 2023). We aim to fully utilize existing components of diffusion models
to solve their own bias problems. Firstly, we use the pre-trained score network to generate a batch
of samples; Then, we train a pseudo score network based on the generated samples; Finally, we use
difference of two score networks to correct scores. In summary, our contributions are:

• To the best of our knowledge, we are the first to systematically address bias issues in graph
diffusion models, effectively employing Langevin sampling to resolve reverse-starting bias
while significantly mitigating exposure bias in the graph sampling.

• We propose a score correction mechanism based on the score difference, and prove both
theoretically and practically that the corrected scores are closer to the true scores, further
mitigating reverse-starting bias exposure bias.

• Our method does not require modifying the network or introducing new components. It has
been validated on multiple graph diffusion models, multiple datasets, and multiple tasks,
achieving state-of-the-art metrics.
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2 RELATED WORK

Diffusion models were first introduced by Sohl-Dickstein et al. (2015) and later improved by Ho
et al. (2020). Notably, Song et al. (2021) proposed a unified framework for diffusion models based
on stochastic differential equations, greatly advancing their development. GDSS (Jo et al., 2022)
was the first to introduce diffusion models to both nodes and edges of graphs. GSDM (Luo et al.,
2023) extended GDSS by introducing the diffusion process of adjacency matrices into the spectral
domain. HGDM (Wen et al., 2024) introduced node diffusion into hyperbolic space based on degree
distribution characteristics. Huang et al. (2023) proposed a conditional diffusion model based on
discrete graph structures. Additionally, Vignac et al. (2023) defined a discrete denoising diffusion
model through the process of adding or removing edges and changing categories. Furthermore, Xu
et al. (2022) proposed a diffusion model for predicting molecular conformations.

The reverse-starting bias of diffusion models was first discovered by Lin et al. (2024), which proposed
modifying the diffusion noise schedule to force the last time step of forward diffusion to have
zero Signal-to-Noise Ratio. Shortly after, Everaert et al. (2024) estimated the actual maximum
perturbation distribution of forward noise addition as the starting point for inference to match the
endpoint of forward noise addition. The exposure bias of diffusion models was first discovered by
ADM-IP (Ning et al., 2023), which proposed re-perturbing the perturbation distribution to simulate
exposure bias during inference. EB-DDPM (Li & van der Schaar, 2023) estimated the upper bound
of cumulative errors and used it as a regularization term to retrain the model. MDSS (Ren et al.,
2024) proposed a multi-step timed sampling strategy to mitigate exposure bias. It’s worth noting
that ADM-IP, EB-DDPM, and MDSS all require model retraining. In contrast, ADM-ES (Ning
et al., 2024) proposed a noise scaling mechanism to mitigate exposure bias without retraining, while
TS-DPM (Li et al., 2024) only needs to find the optimal time steps during inference to match the
forward process as closely as possible.

We emphasize that our work focuses more on the reverse-starting bias, hoping to address it by utilizing
components of diffusion model itself while also mitigating exposure bias to some extent. This is a
novel and interesting perspective.

3 MOTIVATION

3.1 GRAPH DIFFUSION MODELS

First, we define a graph with N nodes as G = (X,A), where X ∈ RN×F represents node features,
with F indicating that each node has F features; A ∈ RN×N represents the weighted adjacency
matrix. Then, we formally represent the graph diffusion process as the trajectory of the random
variable G over time [0, T ], as shown below:

dGt = ft(Gt)dt+ gt(Gt)dw, G0 ∼ pdata . (1)

We view this diffusion process as an SDE, where ft(Gt) is the linear drift coefficient, gt(Gt) is the
diffusion coefficient, w is a standard Wiener process, and G0 is a graph from the original distribution
pdata. Specifically, we replace G in Eq. (1) with node X or edge A, representing the forward
diffusion process of node X or edge A, separately.

Following GDSS (Jo et al., 2022), we separate X and A in the reverse diffusion:

dXt =
[
f1,t(Xt)− g21,t∇Xt log pt(Xt,At)

]
dt̄+ g1,tdw̄1 ,

dAt =
[
f2,t(At)− g22,t∇At

log pt(Xt,At)
]
dt̄+ g2,tdw̄2

(2)

where f1,t and f2,t satisfy ft(X,A) = (f1,t(X), f2,t(A)), representing the drift coefficients of
the reverse-diffusion process for nodes and edges, respectively. g1,t and g2,t are the correspond-
ing scalar diffusion coefficients, w̄1 and w̄2 are standard Wiener processes in reverse time, and
∇Xt

log p (Xt,At) and ∇At
log p (Xt,At) represent the partial scores of nodes and edges, re-

spectively. It’s worth noting that each SDE in Eq. (2) corresponds to the diffusion process of X
and A respectively. We choose different types of SDEs for X and A based on actual conditions.
For example, for VPSDE (Song et al., 2021), f1,t(Xt) = − 1

2β(t)Xt, f2,t(At) = − 1
2β(t)At,

g1,t = g2,t =
√
β(t), β(t) = β̄min + t(β̄max − β̄min), where β̄max and β̄min are hyperparameters.
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(a) sθ̄,t(·) (b) sθ,t(·) (c) FCD metric

Figure 2: (a) and (b) The ℓ2 norm distribution of the predicted outputs of the two score networks
at different time steps. (c) The response of the predicted outputs of the two score networks to
perturbations at different time steps during the sampling phase.

Next, we use sθ,t(Gt) and sϕ,t(Gt) to estimate the partial scores ∇Xt
log p (Xt,At) and

∇At
log p (Xt,At) respectively. Based on the idea of reverse denoising score matching, we derive

sθ,t(Gt) ≈ ∇Xt log p0t(Xt|X0) and sϕ,t(Gt) ≈ ∇At log p0t(At|A0), and then give the loss
function of the model:

min
θ

Et
{
λ1(t)EG0

EGt|G0

∥∥sθ,t(Gt)−∇Xt
log p0t(Xt|X0)

∥∥2
2

}
.

min
ϕ

Et
{
λ2(t)EG0

EGt|G0

∥∥sϕ,t(Gt)−∇At
log p0t(At|A0)

∥∥2
2

} (3)

where λ1(t) and λ2(t) are positive weight functions, t is uniformly sampled from [0, 1]. For nodes,
we have X0 ∼ p0(X), Xt ∼ p0t(Xt|X0), and similarly for edges, we have A0 ∼ p0(A),
At ∼ p0t(At|A0). Since f1,t and f2,t are affine, the transition kernels p0t(Xt|X0) and p0t(At|A0)
are always Gaussian distributions, and closed-form means and variances are obtained based on
standard techniques. For example, the node transition kernel in VPSDE (Song et al., 2021) form is
shown as follows:

p0t(Xt|X0) = N
(
Xt|e−

1
4 t

2(β̄max−β̄min)− 1
2 tβ̄minX0, I− Ie−

1
2 t

2(β̄max−β̄min)−tβ̄min

)
. (4)

For simplicity, the subsequent derivations only focus on X , as the derivations for A are the same as
those for X .

3.2 WHY GRAPH DIFFUSION MODELS ARE TRUNCATED?

In this section, we use GDSS as the basic model and QM9 as the dataset to demonstrate the
phenomenon of the reverse-starting bias and cleverly corroborate our motivation. We have two score
networks: the first is a pretrained network sθ,t(·) whose forward maximum perturbation is far from
reaching standard Gaussian; the second is a network sθ̄,t(·) whose forward maximum perturbation
distribution is forced to be standard Gaussian.

Figs. 2(a) and 2(b) show the ℓ2 norm distribution of the predicted outputs of the two score networks
at different time steps. Taking Fig. 2(a) as an example, at each step, we obtain perturbed samples
through forward noising, then use sθ̄,t(·) to obtain the predicted score and calculate the corresponding
ℓ2 norm value. We present the details of the figure in Appendix B. At time step 0, the score ℓ2 norm of
the ground truth X0 spans approximately (0, 2500), demonstrating the diversity of the original data
and its scores. As the noise intensity increases, the range of the score ℓ2 norm narrows, eventually
stabilizing within (0, 10). The evolution of the score ℓ2 norm of perturbed samples at different time
steps indicates that as the distribution approaches standard Gaussian, the model becomes highly
sensitive to score changes. The tightened score ℓ2 norm also implies that slight perturbations in
scores during the early sampling stages significantly affect generation performance. For Fig. 2(b),
the evolution pattern of sθ,t(·) is consistent with that of sθ̄,t(·), but since the forward perturbation
of sθ,t(·) is far from reaching standard Gaussian, its ℓ2 norm range is wider, indicating a higher
tolerance for score deviations.

Fig. 2(c) illustrates the response of the predicted outputs of the two score networks to pertur-
bations at different time steps during the sampling phase. Each point in Fig. 2(c) represents a

4
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perturbation experiment. The x-axis represents the addition of a standard Gaussian noise per-
turbation to the score prediction output at the current time step, while the y-axis represents
the final generation metric for this perturbation experiment (details in Appendix B). For sθ̄,t(·),
at time step 0, we start from standard Gaussian and perturb the predicted score at the current
step. Subsequent sampling is not perturbed, ultimately resulting in a rather poor generation met-
ric. As sampling progresses, the destructive effect of score perturbation on generation quality
rapidly weakens and stabilizes after 200 steps. The evolution pattern of the score perturbation
experiment indicates that diffusion models heavily rely on accurate scores in the early sampling
stages, where score deviations severely impact generation quality. For sθ,t(·), instead of using
standard Gaussian as the sampling starting point, we artificially use samples from the forward
maximum perturbation distribution as the actual starting point to eliminate the reverse-starting bias.

Figure 3: Fractional correction based on the score
difference. At the reverse sampling time step t,
the ideal score always points to X0. sθ,t(·) points
to γtX0 with some deviation (partially contain-
ing X0), while sψ,t(·) points to γ̃tX0 with larger
deviation (containing little X0). The difference
between real and fake scores guides the real score
towards the ideal score. We use λ to control this ex-
tent and β to adjust the magnitude of ŝθ,t(·). The
final corrected score flexibly approaches the real
score within the dashed box.

The above two experiments demonstrate that
diffusion models are highly sensitive to score
deviations in high-noise states, while in low-
noise states, their resistance to score deviations
significantly increases. Notably, these experi-
ments also provide us with two directions for
addressing the reverse-starting bias: sθ̄,t(·) sug-
gests that we need to retrain and force the for-
ward maximum perturbation distribution to be
standard Gaussian, while sθ,t(·) implies that we
need to explore a starting distribution aligned
with the forward maximum perturbation distri-
bution during the sampling phase. We find that
the latter not only resolves the reverse-starting
bias but also provides stronger tolerance to sub-
sequent deviations.

4 METHODOLOGY

4.1 STABLE DISTRIBUTION

Langevin sampling is a key component of SDE-
based diffusion models. Given sufficiently small
step sizes and a large number of steps, Langevin
sampling can utilize the score function to obtain
samples from a probability distribution. Impor-
tantly, the prior distribution of Langevin sam-
pling can be consistent with that of the diffusion model, typically a standard Gaussian distribution.
Moreover, we already have a pretrained score network sθ,T (·) ≈ ∇ log q(XT |X0). This score
guides Langevin sampling to obtain samples from the distribution p(X̂T ) ≈ q(XT |X0):

X̂i+1
T ← X̂i

T + ϵiTsθ(X̂
i
T , T ) +

√
2ϵiTz

i
T (5)

where the subscript T represents the time step parameter of the diffusion model. In the presampling
stage, we only use the score sθ,T (·) at time T . The superscript i denotes the time step parameter
of Langevin sampling, ϵiT represents the step size at the current sampling step, and ziT is standard
Gaussian noise. After obtaining a batch of samples X̂T based on Eq. (5), we use X̂T as the new
starting point for the reverse sampling process. We refer to this stage as the presampling stage.

4.2 BIAS CORRECTION METHOD

In theory, the presampling stage based on Eq. (5) can obtain samples from the distribution q(XT |X0).
However, the converged score network sθ,T (·) can never access the true score∇XT

log q(XT |X0) =
XT−

√
ᾱTX0

1−ᾱT
. We have to consider the exposure bias of the score network. Without loss of generality,

5
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we consider the predicted value of the score at any time step:

sθ,t(X̂t) = −
X̂t −

√
ᾱtX̂0

1− ᾱt
. (6)

Clearly, it is challenging for the score network to analytically predict the original data X0. We can
rewrite this as:

X̂0 =
1√
ᾱt

(
X̂t + (1− ᾱt)sθ,t(X̂t)

)
. (7)

Following Zhang et al. (2023), we model the estimate of X̂0 as:

X̂θ = γtX0 + ηtϵa (8)

where ηt < M , ϵa ∼ N (0, I), and for 0 ≤ j < k ≤ N , we have 1 > γj > γk ≥ 0, 0 ≤ ηj < ηk.
Now, we use the diffusion model to generate a batch of samples X̃0 and train a new score network
using these as the original data. We know that X̃0 always has exposure bias compared to X0, so the
score sϕ,t(·) trained on X̃0 naturally learns these exposure bias. Similarly, we define the estimation
of the original data by the new network during the reverse sampling, X̂ψ(X̂t, t) = γ̃tX0 + η̃tϵb, and
we can easily see that γ̃t < γt. Now we consider the score difference between the two scores at the
same time step and for the same sample:

sθ,t(X̂t)− sψ,t(X̂t) =
√
ᾱt

(γt − γ̃t)X0 + (ηtϵa − η̃tϵb)

1− ᾱt
. (9)

We find that the score difference contains information about the original data. We aim to utilize
this information. Inspired by classifier-free guidance (Ho & Salimans, 2021) and extrapolation
operations (Zhang et al., 2023), we define a new score correction method based on Eq. (9),

ŝθ,t(X̂t) = sθ,t(X̂t) + λ
(
sθ,t(X̂t)− sψ,t(X̂t)

)
= −X̂t −

√
ᾱt ((γt + λ(γt − γ̃t))X0 + ηtϵa + λ(ηtϵa − η̃tϵb))

1− ᾱt

(10)

where λ ≥ 0 represents the step size for correcting the score using the score difference, Eq. (9). When
λ = 0, no correction is applied. Conceptually, the correction operation pulls the biased direction
towards the unbiased direction. Although there is some noise in this correction direction, choosing
appropriate parameters λ improve the accuracy of the score. Then, we divide the ŝθ,t(X̂t) by a scalar
to adjust the magnitude of the score, further driving ŝθ,t(X̂t) closer to the true score:

ŝθ,t(X̂t) = ŝθ,t(X̂t)/ω . (11)

In particular, we emphasize that the score correction at time step T is far more important than at other
time steps, as the score is directly related to the steady-state distribution of Langevin sampling, which
is crucial for addressing initialization bias. Therefore, we recommend decoupling the correction
parameter at time step T from those at other time steps during the actual score correction process..
Specifically, since we use Langevin sampling to obtain a distribution aligned with the forward
maximum perturbation distribution, and this distribution is in a low-noise state, retaining some data
information from X0, we can shorten the sampling chain, significantly reducing the sampling time.
Experimental validation is provided in §5.3.

We emphasize that utilizing Langevin sampling to obtain aligned samples and using the difference
signal to correct scores are indispensable components for addressing the reverse-starting bias and
the exposure bias. The effect is shown in Fig. 1(c). Additionally, we conduct extensive ablation
experiments in §5.4 to demonstrate this point. We provide a detailed geometric illustration in Fig. 3
and provide detailed derivations and proofs of the formulas from §4 in Appendix C.

5 EXPERIMENTS

In this section, we select three generic graph datasets and two molecular datasets to evaluate the per-
formance of our method. In order to demonstrate the broad applicability of this method in addressing

6
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the reverse-starting bias and mitigating exposure bias, we tested it on a variety of mainstream graph
diffusion models, namely GDSS (Jo et al., 2022), GSDM (Luo et al., 2023), HGDM (Wen et al.,
2024), and MOOD (Lee et al., 2023). Our improved model is prefixed with the basic diffusion model
and denoted by S++ at its suffix. At the same time, we perform extensive downstream task testing
and ablation study to further illustrate the effectiveness and necessity of S++.

5.1 GENERIC GRAPH GENERATION

Experimental Setup We selected three generic graph datasets to test our approach: (1) Community-
small: 100 artificially generated graphs with community structure; (2) Enzymes: 600 protein maps
representing the enzyme structure in the BRENDA database (Schomburg et al., 2004); (3) Grid: 100
standard 2D grid diagrams. To evaluate the quality of the generated graphs, we followed the practice
of Jo, Lee, and Hwang (2022) and we used the Maximum Mean Difference (MMD) to compare the
statistical distribution of the graphs between the same number of generated plots and the test plots,
including the distribution of measured degrees, clustering coefficients, and the number of occurrences
of the 4-node track.

Dataset Community-small Enzymes Grid
Info. Synthetic, 12 ≤ |V | ≤ 20 Real, 10 ≤ |V | ≤ 125 Synthetic, 100 ≤ |V | ≤ 400

Method Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓
GDSS-OC 0.050 0.132 0.011 0.064 0.052 0.627 0.249 0.309 0.270 0.009 0.034 0.070
GDSS-OC-S++ 0.021 0.061 0.005 0.029 0.067 0.099 0.007 0.058 0.105 0.004 0.061 0.066
GDSS-WC 0.045 0.088 0.007 0.045 0.044 0.069 0.002 0.038 0.111 0.005 0.070 0.070
GDSS-WC-S++ 0.019 0.062 0.004 0.028 0.031 0.050 0.003 0.028 0.105 0.004 0.061 0.057
HGDM-OC 0.065 0.119 0.024 0.069 0.125 0.625 0.371 0.374 0.181 0.019 0.112 0.104
HGDM-OC-S++ 0.021 0.034 0.005 0.020 0.080 0.500 0.225 0.268 0.023 0.034 0.004 0.020
HGDM-WC 0.017 0.050 0.005 0.024 0.045 0.049 0.003 0.035 0.137 0.004 0.048 0.069
HGDM-WC-S++ 0.021 0.024 0.004 0.016 0.040 0.041 0.005 0.029 0.123 0.003 0.047 0.058
GSDM-OC 0.142 0.230 0.043 0.138 0.930 0.867 0.168 0.655 1.996 0.0 1.013 1.003
GSDM-OC-S++ 0.011 0.016 0.001 0.009 0.012 0.087 0.011 0.037 1.2e-4 0.0 1.2e-4 0.066
GSDM-WC 0.011 0.016 0.001 0.009 0.013 0.088 0.013 0.038 0.002 0.0 0 7.2e-5
GSDM-WC-S++ 0.011 0.016 0.001 0.009 0.011 0.086 0.010 0.036 5.0e-5 0.0 1.1e-5 0.066

Table 1: Generation results on the generic graph datasets (Lower is better). The results of the Enzymes
dataset of GDSS are reproduced by ourselves, and the results of other baselines are all from published
papers, and we give detailed settings and instructions in the appendix D.

Results Table 1 shows that S++ significantly outperforms all baseline models. For the uncorrected
sampling method, the performance indicators of the baseline model are particularly poor due to the
existence of the reverse-starting bias and score exposure bias, while S++ can significantly improve
the performance of all baseline models and reach or even exceed the level of the baseline model
with correctors. Because the method without correctors can significantly reduce the computational
consumption, we believe that S++ can really release the ability of the graph diffusion model, which is
enlightening for large-scale datasets. For the sampling method with aligners, S++ is still significantly
better than all baseline models. At the same time, we also give experimental comparisons of other
advanced models in the appendix F, and the results show that S++ can achieve the SOTA indicators
of the corresponding tasks.

5.2 MOLECULAR GRAPH GENERATION

Experimental Setup We selected two widely recognized molecular datasets to evaluate our methods:
QM9 (Ramakrishnan et al., 2014) and ZINC250k (Irwin et al., 2012). We generated 10,000 molecules
and selected the following widely used evaluation metrics: Frechet ChemNet Distance (FCD) (Preuer
et al., 2018), Neighborhood subgraph pairwise distance kernel (NSPDK) MMD (Costa & Grave,
2010), validity w/o correction, and the generation time. (1) FCD uses the activation of the penultimate
layer of ChemNet to calculate the distance between the benchmark molecular dataset and the generated
dataset to characterize the similarity between the two, and the lower the FCD value, the higher the
similarity between the two distributions. (2) (NSPDK) MMD considered the characteristics of nodes
and edges at the same time, and calculated the MMD between the benchmark molecular dataset and
the generated dataset; (3) Sampling time is used to evaluate the rapidity of the model in generating
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large-scale molecular datasets, and we only count the time spent on sampling, regardless of the time
spent on preprocessing and evaluation.

Results Table 2 shows that both in terms of sampling time and generation quality, S++ is significantly
better than the baseline model. For the sampling method without correctors, due to the existence
of the reverse-starting bias and score exposure bias, the quality of generation from the baseline
model is particularly poor, while S++ can significantly improve the performance of all baselines
and approximate the sampling methods with correctors of the baseline model. For the sampling
method with aligners, S++ is still significantly better than all baseline models and greatly reduces the
sampling time. At the same time, we provide more comparative experimental results in appendix F
and provide parameter sensitivity experiments in appendix G.

Method QM9 ZINC250k

Sampling time ↓ NSPDK MMD ↓ FCD ↓ Sampling time s↓ NSPDK MMD ↓ FCD ↓
GDSS-OC 0.73e2 0.016 4.584 0.73e3 0.047 20.53
GDSS-OC-S++ 5.10 0.001 1.661 0.70e3 0.050 16.79
GDSS-WC 1.61e2 0.004 2.550 1.41e3 0.019 14.66
GDSS-WC-S++ 9.25 0.001 1.661 0.98ee3 0.012 12.70

HGDM-OC 0.62e2 0.005 3.164 0.76e3 0.033 21.38
HGDM-OC-S++ 0.62e2 0.003 2.512 0.77e3 0.034 20.79
HGDM-WC 1.16e2 0.002 2.147 1.52e3 0.016 17.69
HGDM-WC-S++ 0.98e2 0.001 2.001 1.17e3 0.016 16.24

Table 2: Comparison of different methods on QM9 and ZINC250k datasets.

5.3 DIVERSITY GENERATION

Characteristic molecule generation To evaluate the performance of S++ in generating novel,
drug-like, and synthesizable molecules, we follow (Lee et al., 2023) and assess S++ in the five
docking score (DS) optimization tasks under the quantitative estimate of synthetic accessibility (SA),
drug-likeness (QED) and novelty constraints. We define the property Y by

Y (G) = D̂S(G)× QED(G)× ŜA(G) ∈ [0, 1] (12)

where D̂S refers to the normalized docking score, ŜA denotes the normalized synthetic accessibility,
and QED represents drug-likeness. We used MOOD-S++ to generate 3000 molecules and evaluate
performance using the following metrics. Novel hit ratio (%) is the fraction of unique hit molecules
whose maximum Tanimoto similarity with the training molecules is less than 0.4. In particular, hit
molecules are defined as the molecules that satisfy the following conditions: DS < (the median DS
of the known active molecules), QED > 0.5, and SA < 5. Novel top 5% docking score refers to the
average DS of the top 5% unique molecules that satisfy the constraints QED > 0.5 and SA < 5 and
their maximum similarity with the training molecules is below 0.4. To avoid bias in target selection,
we utilize five protein targets: parp1, fa7, 5ht1b, braf, and jak2.

Results Tables 3 and 4 show that MOOD-S++ is significantly better than baseline in all target
proteins. This indicates that S++ still has advantages in the discovery of drug-like, synthesizable, and
novel molecular tasks with high binding affinity, and it can be seen that the reverse-starting bias and
exposure bias pose a significant threat to various generation tasks.

Accelerate generation To demonstrate that S++ can generate good samples faster by using fewer
steps of reverse diffusion, We chose GDSS-OC as the benchmark model, and QM9 and Comm
datasets were selected to test the performance of our method and benchmark model at different
sampling total time steps.

Results Table 5 shows that S++ is significantly better than the baseline model at different sampling
total time steps. S++ was not only able to generate samples with fewer reverse-diffusion steps, but
also achieved consistent improvements across generation metrics, especially on the QM9 dataset,
where S++ remained close to optimal performance even with a significant reduction in the sampling
time step (T = 100), while the performance of the benchmark model decreased significantly.

In conclusion, S++ shows higher efficiency, better quality, and stronger robustness in graph generative
tasks, which provides a powerful improvement scheme for the application of diffusion model.
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Method Target protein

parp1 fa7 5ht1b braf jak2

MOOD 7.017 (± 0.428) 0.733 (± 0.141) 18.673 (± 0.423) 5.240 (± 0.285) 9.200 (± 0.524)
MOOD-S++ 8.286 (± 0.214) 0.900 (± 0.068) 20.354 (± 0.672) 5.653 (± 0.073) 9.167 (± 0.067)

Table 3: Novel hit ratio (%) results (↑).

Method Target protein

parp1 fa7 5ht1b braf jak2

MOOD -10.865 (± 0.113) -8.160 (± 0.071) -11.145 (± 0.042) -11.063 (± 0.034) -10.147 (± 0.060)
MOOD-S++ -10.961 (± 0.027) -8.182 (± 0.028) -11.231 (± 0.036) -11.143 (± 0.025) -10.163 (± 0.015)

Table 4: Novel top 5% docking score (kcal/mol) results (↓).

T Method QM9 Community-small

Val. w/o corr. ↑ NSPDK MMD ↓ FCD ↓ Deg.↓ Clus. ↓ Orbit ↓ Avg. ↓

1000 GDSS-OC 73.5 0.015 4.584 0.050 0.132 0.011 0.064
GDSS-OCS++ 94.0 0.001 1.671 0.021 0.061 0.005 0.029

500 GDSS-OC 46.2 0.045 7.960 0.136 0.456 0.151 0.248
GDSS-OC-S++ 93.9 0.001 1.665 0.029 0.142 0.008 0.060

100 GDSS-OC 37.8 0.069 9.951 0.092 0.666 0.394 0.384
GDSS-OC-S++ 93.9 0.001 1.663 0.061 0.414 0.140 0.205

Table 5: Comparison of different methods on QM9 and ZINC250k datasets under different total
sampling time steps.

Method QM9

Val. w/o corr. ↑ NSPDK MMD ↓ FCD ↓
GDSS-OC 73.5 0.0157 4.58
GDSS-w/o Score Correction 94.8 0.0037 2.65
GDSS-w/o Langevin Alignment 89.8 0.0031 2.01
GDSS-OC-S++ 94.0 0.0014 1.67

Table 6: Ablation experiments on the OM9 dataset.

5.4 ABLATION STUDY

Table 6 clearly shows that GDSS-w/o Langevin Alignment or Langevin Alignment alone can improve
the performance of the baseline model to varying degrees, however, when we combine these two
methods, the model performance is significantly improved, which strongly proves the effectiveness
and necessity of the combination of the two methods, and their synergistic effect. Moreover, we
provide a comparative analysis of the two biases in the image and graph fields in appendix H, and
provide comparative experiments of S++ with existing methods on images in appendix I.

6 CONCLUSION

In this paper, we use Langevin sampling to obtain samples aligned with the forward maximum
perturbation distribution, which solves the reverse-starting bias and greatly alleviates the exposure
bias of the score network, and we propose a score correction mechanism based on score difference
to further promote the stable-state distribution of Langevin sampling to the real forward maximum
perturbation distribution, and further alleviate the exposure bias during the sampling phase. Our
approach does not require network modifications or the introduction of new components, and can
be naturally integrated into existing graph diffusion models to achieve state-of-the-art metrics on
multiple datasets and multiple tasks.
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A REVERSE-STARTING BIAS

In this section, we provide a detailed discussion of the initialization bias in diffusion mod-
els. It is worth noting that these diffusion models are based on diffusion models defined by
SDE (Song et al., 2021). For VPSDE, the diffusion model obtains perturbed samples through
p0i(Xi|X0) = N (Xi|

√
αiX0, (1 − αi)I), where αi :=

∏i
j=1(1 − βj). When this expression

is extended continuously, it leads to Eq. (4), which corresponds to Equation (33) in the SDE. At
t = 1, Eq. (4) gives the maximum perturbation distribution, which is N (0, I). Similarly, for
VESDE, the diffusion model obtains perturbed samples through p0i(Xi|X0) = N (Xi|X0, σiI),
where σmin = σ1 < σ2 < · · · < σN = σmax. When this expression is extended continuously,

p0t(Xt|X0) = N
(
Xt|X0, σ

2
min

(σmax

σmin

)2t
I
)
, (13)

it corresponds to Eq. (31) of the paper of SDE (Song et al., 2021). At t = 1 Eq. (13) achieves the
maximum perturbation distribution, which is N (Xi;X0, σmaxI). In particular, we need to make
sure that σmax is large enough that N (Xi|X0, σmaxI) ≈ N (Xi|0, σmaxI).

However, in practice, Lots of diffusion models (Jo et al., 2022; Luo et al., 2023; Wen et al., 2024)
adopted a rather conservative strategy when training the network. For VPSDE, this results in the
maximum forward perturbation distribution being N (XT |uTx0, σT I), which is far from reaching
N (0, I). For VESDE, due to σmax not being large enough, the maximum forward perturbation
distribution is N (Xi|X0, σmaxI), which cannot be approximated by N (Xi|0, σmaxI). However,
GDSS et al. always start reverse sampling from the standard Gaussian distribution, which leads to
significant initialization bias. A detailed comparison of the parameters is shown in Tables 7, 8, and 9.

Model GDSS

Dataset Community-small Enzymes Grid QM9 ZINC250k

Type Node Edge Node Edge Node Edge Node Edge Node Edge

SDE VPSDE VPSDE VPSDE VESDE VPSDE VPSDE VESDE VESDE VPSDE VESDE
βmin 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2
βmax 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0
uT 0.7596 0.7596 0.7596 1.0 0.7596 0.7788 1.0 1.0 0.7596 1.0
σ2
T 0.4231 0.4231 0.4231 1.0 0.4231 0.3935 1.0 1.0 0.4231 1.0

Table 7: The actual parameters of the forward perturbation of the GDSS.

Model HGDM

Dataset Community-small Enzymes Grid QM9 ZINC250k

Type Node Edge Node Edge Node Edge Node Edge Node Edge

SDE VPSDE VPSDE VPSDE VESDE VPSDE VESDE VPSDE VESDE VPSDE VESDE
βmin 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2
βmax 1.0 1.0 1.0 1.0 7.0 0.8 2.0 1.0 1.0 1.0
uT 0.7596 0.7596 0.7596 1.0 0.1695 1.0 0.5916 1.0 0.7596 1.0
σ2
T 0.4231 0.4231 0.4231 1.0 0.9713 0.64 0.6501 1.0 0.4231 1.0

Table 8: The actual parameters of the forward perturbation of the HGDM.

Model GSDM MOOD

Dataset Community-small Enzymes Grid QM9 ZINC250k

Type Node Eigen Node Eigen Node Eigen Node Edge Node Edge

SDE VPSDE VPSDE VPSDE VPSDE VPSDE VPSDE VPSDE VESDE VPSDE VESDE
βmin 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2
βmax 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0
uT 0.7596 0.7596 0.7596 0.7596 0.7596 0.7788 1.0 1.0 0.7596 1.0
σ2
T 0.4231 0.4231 0.4231 0.4231 0.4231 0.3935 1.0 1.0 0.4231 1.0

Table 9: The actual parameters of the forward perturbation of the GSDM and MOOD.
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B FIGURE DETAILS

In this section, we present the detailed procedures to plot Fig. 2. Let sθ,t(·) represent the GDSS
pretrained score network. Due to the conservative strategy of GDSS, with βmin = 0.1 and βmax = 1,
the maximum perturbation distribution is N (XT |0.7596X0, 0.4231I) at t = 1. On the other
hand, sψ,t(·) is defined with the forced constraints of βmin = 0.1 and βmax = 20. At t = 1, the
maximum perturbation distribution is N (0, I). Then, sθ,t(·) and sψ,t(·) not only represent two
different networks, but also indicate that their maximum perturbation distributions during the training
phases are completely different.

To plot Figs. 2a and 2b, we freeze the converged sθ,t(·) and sψ,t(·), then replace X in Eq. (3) with
A to obtain perturbation samples of 1024 edges at different timesteps. We then compute ∥sθ,t(·)∥2
and ∥sψ,t(·)∥2 and plot them on the figure.

To plot Fig. 2c, we introduce perturbations to sθ,t(·) at different timesteps during the sampling phase.
We employ a sampling method without a corrector and perturb the score at the selected timestep
(horizontal axis) using Gaussian noise:

sθ,t(·) = sθ,t(·) + zt (14)

where z ∼ N (0, I). For the other timesteps, we do not introduce any perturbations, allowing the
diffusion model to perform sampling and record the generation metrics. We conduct the perturbation
experiment on sθ,t(·) using the same method, and ultimately compare the results of the two perturba-
tion experiments based on the timesteps to evaluate how different score networks in the diffusion
model resist bias at various timesteps. We present a detailed comparison of the generation metrics
from the perturbation experiments, as shown in Fig. 4.

(a) FCD (b) NSPDK (c) Validity w/o correction

Figure 4: Generation metric responses to perturbations at different timesteps for two-score networks.

C DERIVATIONS FOR §4.2

For a diffusion model, let the original data be X0, and the pretrained score network be sθ,t(·). Based
on the set noise addition method, we have:

∇Xt
log q(Xt|X0) = −

Xt −
√
ᾱtX0

1− ᾱt
(15)

However, sθ,t(·) often deviates from the ideal logarithmic gradient. In the reverse process, assuming
the current time step t has a data state X̂t, the score network’s predicted output is:

sθ,t(X̂t) = −
X̂t −

√
ᾱtX̂0

1− ᾱt
(16)

Since it’s difficult for the trained score to analytically predict X0. We model X̂0 by:

X̂0 = γtX0 + ηtϵa (17)

Eq. (16) becomes:

sθ,t(X̂t) = −
X̂t −

√
ᾱt(γtX0 + ηtϵa)

1− ᾱt
(18)
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Now, we train a new score network sψ,t(·) based on the generated data X̄ from the score network.
Following the above derivation, we can write the predicted score at the current time step t as:

sψ,t(X̂t) = −
X̂t −

√
ᾱtx̃0

1− ᾱt
(19)

Due to the bias of sθ,t(·), the generated data X1 always deviates from X0, and considering the
prediction error of the network, we can easily obtain:

X̃0 = γ̃tX0 + η̃tϵb (20)

where γ̃t < γt, η̃t > ηt, meaning that at the same reverse time step t, sψ,t(·) trained on generated
data has a larger bias in predicting the target distribution than sθ,t(·) trained on original data. We can
rewrite sψ,t(·) as:

sψ,t(X̂t) = −
X̂t −

√
ᾱt(γ̃tX0 + η̃tϵb)

1− ᾱt
(21)

Next, we derive the meaning of the score difference, defined as Eq. (18) minus Eq. (21):

sθ,t(X̂t)− sψ,t(X̂t) = −
X̂t −

√
ᾱt(γtX0 + ηtϵa)

1− ᾱt
−

(
−X̂t −

√
ᾱt(γ̃tX0 + η̃tϵb)

1− ᾱt

)

=
√
ᾱt

(γt − γ̃t)X0 + (ηtϵa − η̃tϵb)

1− ᾱt
(22)

We add this score difference as a correction term to the original predicted score and introduce a
hyperparameter to control the influence of the original and the noise scores:

ŝθ,t(X̂t) = sθ,t(X̂t) + λ
(
sθ,t(X̂t)− sψ,t(X̂t)

)
= −X̂t −

√
ᾱt (γtX0 + ηtϵa + λ(γt − γ̃t)X0 + λ(ηtϵa − η̃tϵb))

1− ᾱt

= −X̂t −
√
ᾱt ((γt + λ(γt − γ̃t))X0 + ηtϵa + λ(ηtϵa − η̃tϵb))

1− ᾱt

(23)

Because γ̃t < γt, this score difference helps the original score add more information from the original
data X0. By setting an appropriate hyperparameter λ, we can always use the information from
the original score to guide the correction of the score. Finally, we add a coefficient of adjustment
amplitude to the score corrected based on the score difference to further promote the prediction error
to approximate the true score.

ŝθ,t(X̂t) = ŝθ,t(X̂t)/ω (24)

We theoretically prove that the score difference helps to correct the score.

D DETAILS FOR EXPERIMENT

We provide detailed parameters for experiments related to §5, as shown in Tables 10 and 11. In
particular, we differentiate the relevant parameters for sampling methods with correctors and those
without correctors.

E SAMPLING ALGORITHM

In this subsection, we present the sampling algorithm procedure for S++, as shown in algorithm1.
Additionally, our method can be naturally integrated into the reverse sampling of various diffusion
models, greatly improving the generation quality of sampling methods without corrector. For methods
with corrector, we can significantly reduce the correction time interval by introducing a truncation
time step. Specifically, we only apply the corrector when the time step exceeds tc further reducing
computational cost.t
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Algorithm 1 The S++ sampling algorithm.

Input: pretrained real diffusion model sθ,t(·); Trained fake diffusion model sψ,t(·); Correction
step size λ; Cut-off time tc
Initialize: XN ∼ N (0, I)
for j = 1 to M do
sθ,N (XN )←

(
sθ,N (XN ) + λ1(sθ,N (XN )− sψ,N (XN ))

)
/ω1

z ∼ N (0, I)
XN ←XN + ϵNsθ,N (XN ) +

√
2ϵNzN

end for
for i = N − 1 to 0 do
sθ,i(Xi)←

(
sθ,i(Xi) + λ2(sθ,i(Xi)− sψ,i(Xi))

)
/ω2

X ′
i−1 ← (2−

√
1− βi)Xi + βisθ,i(Xi)

z ∼ N (0, I)

Xi ←X ′
i +
√

βi+1z
if i ≤ tc then

for j = 1 to M ′ do
z ∼ N (0, I)
Xi ←Xi + βiϵisθ,i+1(Xi+1) +

√
2ϵiz

end for
end if

end for
return X0

Model Hyper. Comm. Enzymes Grid QM9 ZINC250k

M 400 420 350 400 400
λ1 0.2 0.0008 0.06 1.19 2.5

GDSS-OC-S++ ω1 0.998 1.0 1.0 1.09 1.0
λ2 0 0 0 0 0
ω2 1.0 1.0 1.0 1.0 1.0

M 280 310 280 240 220
λ1 0.02 0.0 0.02 0.1 0.025

HGDM-OC-S++ ω1 1.0 1.0 1.0 1.0 1.07
λ2 0.36 0.0 0.0 0.36 0.0
ω2 1.0 1.0 1.0 0.78 1.0

M 200 400 400 - -
λ1 0.0 0.0 0.0 - -

GSDM-OC-S++ ω1 1.0 1.0 1.0 - -
λ2 0.0 0.0 0.0 - -
ω2 1.0 1.0 1.0 - -

Table 10: Experimental parameters for sampling methods with and without a corrector (OC).

F ADDITIONAL EXPERIMENTS

To demonstrate the superiority of S++, we selected generative models other than diffusion models
as baseline models for comparison. GraphVAE (Simonovsky & Komodakis, 2018) is a graph
generation model based on variational autoencoders; DeepGMG (Li et al., 2018) is a deep generative
model that generates graphs in a sequential, pnode-by-node manner; GraphAF (Shi et al., 2020)
is an autoregressive flow-based model. GraphRNN (You et al., 2018) is an autoregressive model
using recurrent neural networks to generate graphs; EDP-GNN (Niu et al., 2020) is a score-based
generative model using energy-based dynamics. GraphEBM (Liu et al., 2021) is an energy-based
generative model that generates molecules by minimizing energy through Langevin dynamics, which
is categorized as a one-shot generative method. We provide detailed comparative experiments in
Tables 12 and 13, and the results show that our method significantly outperforms the baseline models
and other generative models.
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Model Hyper. Comm. Enzymes Grid QM9 ZINC250k

M 400 420 350 400 400
λ1 0.2 0.0008 0.06 1.19 2.5

GDSS-WC-S++ ω1 0.998 1.0 1.0 1.09 1.0
tc 0.2 0.45 0.055 0.1 0.4
λ2 0 0 0 0 0
ω2 1.0 1.0 1.0 1.0 1.0

M 280 200 360 240 220
λ1 0.02 0.0 0.18 0.1 0.25

HGDM-WC-S++ ω1 1.0 1.0 1.0 1.0 1.07
tc 0.2 0.5 0.1 0.65 0.6
λ2 0.36 0.0 0.0 0.0 0.0
ω2 1.0 1.0 1.0 1.44 0.87

M 200 400 400 - -
λ1 0.0 0.0 0.0 - -

GSDM-WC-S++ ω1 1.0 1.0 1.0 - -
tc 0.05 0.70 0.45 - -
λ2 0.0 0.0 0.0 - -
ω2 1.0 1.0 1.0 - -

Table 11: Experimental parameters for sampling methods with and without a corrector (WC).

Dataset Community-small Enzymes Grid
Info. Synthetic, 12 ≤ |V | ≤ 20 Real, 10 ≤ |V | ≤ 125 Synthetic, 100 ≤ |V | ≤ 400

Method Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg.

DeepGMG 0.220 0.950 0.400 0.523 - - - - - - - -
GraphRNN 0.080 0.120 0.040 0.080 0.017 0.062 0.046 0.042 0.064 0.043 0.021 0.043
GraphAF 0.18 0.20 0.02 0.133 1.669 1.283 0.266 1.073 - - - -
GraphDF 0.06 0.12 0.03 0.070 1.503 1.061 0.202 0.922 - - - -
GraphVAE 0.350 0.980 0.540 0.623 1.369 0.629 0.191 0.730 1.619 0.0 0.919 0.846
EDP-GNN 0.053 0.144 0.026 0.074 0.023 0.268 0.082 0.124 0.455 0.238 0.328 0.340

GDSS-OC 0.050 0.132 0.011 0.064 0.052 0.627 0.249 0.309 0.270 0.009 0.034 0.070
GDSS-OC-S++ 0.021 0.061 0.005 0.029 0.067 0.099 0.007 0.058 0.105 0.004 0.061 0.066
GDSS-WC 0.045 0.088 0.007 0.045 0.044 0.069 0.002 0.038 0.111 0.005 0.070 0.070
GDSS-WC-S++ 0.019 0.062 0.004 0.028 0.031 0.050 0.003 0.028 0.105 0.004 0.061 0.057
HGDM-OC 0.065 0.119 0.024 0.069 0.125 0.625 0.371 0.374 0.181 0.019 0.112 0.104
HGDM-OC-S++ 0.021 0.034 0.005 0.020 0.080 0.500 0.225 0.268 0.023 0.034 0.004 0.020
HGDM-WC 0.017 0.050 0.005 0.024 0.045 0.049 0.003 0.035 0.137 0.004 0.048 0.069
HGDM-WC-S++ 0.021 0.024 0.004 0.016 0.040 0.041 0.005 0.029 0.123 0.003 0.047 0.058
GSDM-OC 0.142 0.230 0.043 0.138 0.930 0.867 0.168 0.655 1.996 0.0 1.013 1.003
GSDM-OC-S++ 0.011 0.016 0.001 0.009 0.012 0.087 0.011 0.037 1.2e-4 0.0 1.2e-4 0.066
GSDM-WC 0.011 0.016 0.001 0.009 0.013 0.088 0.013 0.038 0.002 0.0 0 7.2e-5
GSDM-WC-S++ 0.011 0.016 0.001 0.009 0.011 0.086 0.010 0.036 5.0e-5 0.0 1.1e-5 0.066

Table 12: Additional experiments on generic graph datasets.

Method QM9 ZINC250k

Val. w/o corr. (%)↑ NSPDK MMD ↓ FCD ↓ Val. w/o corr. (%)↑ NSPDK MMD ↓ FCD ↓
GraphAF 67.00 0.020 5.268 68.00 0.044 16.289
GraphDF 82.67 0.063 10.816 89.03 0.176 34.202
MoFlow 91.36 0.017 4.467 63.11 0.046 20.931
EDP-GNN 47.52 0.005 2.680 82.97 0.049 16.737
GraphEBM 8.22 0.030 6.143 5.29 0.212 35.471

GDSS-OC 73.49 0.015 4.584 41.84 0.047 20.53
GDSS-OC-S++ 93.74 0.001 1.661 59.50 0.050 16.79
GDSS-WC 94.91 0.004 2.550 95.83 0.019 14.66
GDSS-WC-S++ 93.79 0.001 1.661 93.15 0.012 12.70
HGDM-OC 92.22 0.005 3.164 66.47 0.033 21.38
HGDM-OC-S++ 94.95 0.003 2.512 67.12 0.034 20.79
HGDM-WC 98.02 0.002 2.147 93.26 0.016 17.69
HGDM-WC-S++ 97.03 0.001 2.001 91.03 0.016 16.24

Table 13: Additional experiments on QM9 and ZINC250k datasets.
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G INSENSITIVITY OF λ

We emphasize that S++ is insensitive to λ, since performance gain can always be achieved over a
wide range of λ, as shown in Tables 14 and 15.

Table 14: FCD(↓) on GDSS-OC baseline and
QM9 under different parameters λ (λ = 0 repre-
sents the baseline)

λ 0 1.17 1.18 1.19 1.20 1.21

FCD 4.583 1.768 1.756 1.754 1.761 1.762

Table 15: Degree(↓) on GDSS-OC baseline and
Community-small under different parameters λ
(λ = 0 represents the baseline)

λ 0 0.18 0.19 0.20 0.21 0.22

Degree 0.05 0.023 0.024 0.022 0.024 0.026

H TWO BIAS IN IMAGE AND GRAPH

Considering that there have been relevant studies on starting bias and exposure bias in the image field,
this section will explain the differences between the two biases in the image and graph fields from
three aspects: data scale, data structure, and network performance.

1-a Starting Bias in Images. DPM-Fixes (Lin et al., 2024) first discovered that conventional noise
scheduling strategies cannot guarantee that the maximum forward perturbation distribution follows a
standard Gaussian distribution:

xT = 0.068265x0 + 0.997667ϵT (25)

This shows a slight deviation from the reverse sampling starting point of standard Gaussian. DPM-
Fixes forces forward xT to follow standard Gaussian by adjusting noise scheduling scale, benefiting
from sufficient image data scale and strong network performance, enabling accurate noise (or score)
prediction in high-noise states. DPM-Leak (Everaert et al., 2024) estimates the maximum forward
perturbation distribution during training based on pixel modeling and uses it as new sampling starting
points, benefiting from image data structure and scale that allows pixels to be independent and follow
Gaussian distribution.

1-b Starting Bias in Graphs. Unlike image data, limited by data scale and network performance,
models struggle to accurately predict noise (or score) from high-noise states. Therefore, the baseline
model adopts a conservative strategy during training, resulting in the maximum forward perturbation
distribution falling far short of standard Gaussian. While this avoids high-noise states, it introduces
significant starting bias. Consequently, strategies like DPM-Fixes that force training xT to follow
standard Gaussian are unsuitable; due to node and edge interdependencies in graph data and high
sparsity characteristics, we cannot simply assume nodes or edges follow Gaussian distribution to
estimate maximum forward perturbation distribution, making DPM-Leak unsuitable as well.

2-a Exposure Bias in Images. In images, exposure bias refers to the mismatch between forward
process xt and reverse process x̂t, with differences accumulating throughout sampling, ultimately
affecting generation quality. Many current image exposure bias works assume no starting bias exists,
focusing on sampling process bias, as starting bias in images is indeed quite minimal.

2-b Exposure Bias in Graphs. Unlike the minor signal leakage in images, graph diffusion models
have significant starting bias, meaning severe exposure bias exists after the first sampling step. In
other words, graph exposure bias isn’t solely caused by network prediction errors and sampling
iteration accumulation but is severely impacted by starting bias. Therefore, addressing graph exposure
bias requires first resolving starting bias.

In conclusion, we emphasize that starting bias in graph diffusion models is a more acute and unique
problem. Although exposure bias exists in graphs, image-based solutions cannot be simply imitated.
We are the first work focusing on starting bias in graph diffusion models, proposing a simple yet
effective solution. We aim to draw attention from relevant researchers, hoping they consider bias
analysis while developing graph diffusion models.
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I S++ AND EXISTING SOLUTIONS IN IMAGES

Although there are many solutions to solve the exposure bias in current images, these solutions
cannot replace S++. In this section, we choose to compare with similar works (Li et al., 2024; Ning
et al., 2024) to S++ in detail because they are plug-and-play solutions that do not introduce new
components.

TS-DPM(Li et al., 2024) proposes searching an optimal timestep s during sampling. TS-DPM relies
on two fundamental assumptions: (a) image pixels are independent and follow Gaussian distribution -
Eq.13 in Appendix J of [1]; (b) sample pixel variance approximates population variance - Eq.20 in
Appendix J of TS-DPM. These assumptions are based on large image datasets and large number of
pixels. However, nodes and edges in graphs are highly sparse. Specifically, many graph datasets are
small (Community-small, Enzymes, and Grid have fewer than 1000 samples). Both assumptions do
not hold for graph data, making TS-DPM inapplicable to graph diffusion models.

ADM-ES((Ning et al., 2024) proposes reducing sθ,t(·) (originally ϵθ,t(·)) during sampling to mitigate
exposure bias. However, this approach does not involve the angle of the vector sθ,t(·). Our approch
addresses this limitation:

sθ,t(Xt) = (sθ,t(Xt) + λ(sθ,t(Xt)− sψ,t(Xt)))/ω (26)

when λ = 0, sθ,t(Xt) ← sθ,t(Xt)/ω, which is equivalent to work ADM-ES. In other words,
ADM-ES is a special case of S++, while (sθ,t(Xt)− sψ,t(Xt)) provides angle information.

For fair comparison with ADM-ES, we introduce λ(sθ,t(Xt)− sψ,t(Xt)) for each magnitude factor
ω, with λ uniformly set to 0.5, to examine whether (sθ,t(Xt)− sψ,t(Xt)) brings improvements over
ADM-ES. Tables 16 and 17 demonstrate that the angle information in S++ leads to significant gains.
We conducted experiments between S++ and ADM-ES as following:

Table 16: FCD(↓) on QM9 without corrector.

ω 0.7 0.8 0.9 1.0 1.1

GDSS-OC-ES 3.57 3.417 3.768 4.584 5.517
GDSS-WC-S++ 2.94 2.814 3.198 4.187 5.201

Table 17: FCD(↓) on QM9 with corrector.

ω 0.9 1.0 1.1 1.2 1.3

GDSS-WC-ES 2.809 2.552 2.319 2.301 2.542
GDSS-WC-S++ 2.321 2.034 1.858 1.852 2.152
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