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ABSTRACT

Federated Learning (FL) frequently exhibits poor generalization due to unstable
training across heterogeneous clients. Although training instability can accel-
erate learning, it often compromises generalization, resulting in a fundamental
tension within FL. This work introduces ADAPT-FED, a framework that adap-
tively regulates training dynamics to leverage the advantages of instability while
mitigating its adverse effects. As a result, ADAPT-FED enables more stable and
consistent learning in privacy-constrained environments. Experimental results on
standard benchmarks demonstrate that ADAP T-FED enhances generalization and
convergence relative to state-of-the-art FL. optimization algorithms.

1 INTRODUCTION

Federated learning (FL) enables decentralized model training while preserving data privacy |Li et al.
(2019a)); |Wang et al.|(2020b). However, FL implementation faces challenges due to the heterogeneity
of clients’ data distributions Hsieh et al.[(2020), which complicates the aggregation of global model
parameters, leading to poor generalization performance [Li et al.|(2019b).

Generalization is the model’s ability to perform well
on new, unseen data beyond the training dataset Zhang
et al.[(2021)). In FL, robust generalization is essential méz
for real-world applications where models face hetero- 293
geneous data and environmental conditions. Effective §§
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generalization prevents overfitting and guarantees the # Rounds % T o
model’s reliability across heterogeneous environments.
Generalization is primarily pursued using first-order (a)

gradient methods (e.g., gradient descent (GD) and its <o
variants |Andrychowicz et al.| (2016); Bottou| (2010))  Zoes
to minimize training loss during the learning process. oo
However, challenges such as the absence of flat sta-
tionary points near the trajectory of first-order gradient
methods |Ahn et al.| (2022)), and differential privacy (©) (d)

(DP) Dwork|(2006) lead to training instability Abadi

et al| (2016). This often results in non-monotonic  Figure 1: Correlation of DP noise with train-
reductions in the training loss as shown in ing instability based on CIFAR10 setup. The
(a), affecting the model’s ablhty to generalize (models variance in relative progress shows that in-
that train stably generalize well Chandramoorthy et al.| creased DP noise elevates instability, leading
(2022)). Interestingly, recent analyses suggest that (o larger gradient norms and lower accuracy.
such unstable convergence can sometimes accelerate

optimization in centralized settings/Ahn et al.|(2022)). This paradox motivates a critical but unexplored
question in FL: how can we adaptively regulate instability in FL to harness its optimization benefits
while suppressing its negative effects on generalization?
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Recent developments in FL focus on improving generalization using sharpness-aware optimization.
These techniques aim for flatter minima in the loss landscape. Adaptations such as FedSAM |Qu
et al.[(2022) enhance generalization by applying sharpness-aware minimization at each client. This
approach promotes local generalization. Adaptive optimization techniques|/Reddi et al.| (2020) also aim
to smooth the global loss surface, thereby improving generalization in FL. Despite these innovations,
most methods address optimization only indirectly by seeking flatter minima or smoother updates.
They do not directly control the training instability caused by the absence of flat stationary points
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near the trajectory of first-order gradient methods and DP noise. The localized nature of current
methods often cannot resolve the global stochasticity of FL environments. Thus, achieving robust
global model performance when combining locally optimal updates remains challenging. There is
a clear need for new approaches that go beyond flatness to refine local models and ensure stable,
generalizable global learning—an essential but currently unmet need in FL.

To address the challenges above, we propose Adaptive Federated Optimization with Learning
Stability (ADAPT-FED), a framework designed to enhance both stability and generalization of FL
models. ADAPT-FED dynamically adjusts learning rates based on historical relative progress (RP)
metrics, which act as stability indicators within the optimization process. Specifically, ADAPT-FED
increases the learning rate during stable periods and reduces it during unstable periods, ensuring
consistent training progress and mitigating the typical instabilities caused by erratic updates. In
designing and evaluating ADAPT-FED, we make the following contributions.

* We identify and analyze the causes of training instability and poor generalization in heterogeneous
FL settings, focusing on the adverse effects of GD’s lack of flat stationary points, partial client
participation, and DP noise.

* We propose ADAPT-FED, the first FL. framework that explicitly leverages the relative progress
(RP) metric as an instability signal. Unlike prior adaptive or sharpness-aware approaches that either
smooth updates or seek flatter minima, ADAPT-FED dynamically increases the learning rate when
instability signals indicate faster progress is possible, and reduces it when instability threatens
generalization.

* We theoretically validate the effectiveness of ADAPT-FED in mitigating training instability. Our
analysis provides precise bounds on the improvements in stability and convergence rates, high-
lighting how ADAPT-FED mitigates the impact of training instability on the overall learning
process.

* We conduct rigorous empirical evaluations demonstrating that ADAPT-FED significantly enhances
model generalization and convergence across multiple datasets (CIFAR10, CIFAR100, and UTK),
with improvements of up to +5.06%, +14.79%, and +7.79% in generalization performance
compared to SOTA FL algorithms.

2 RELATED WORK

Sharpness-aware FL focuses on adapting sharpness-aware optimization techniques Caldarola et al.
(2022);|Dai et al.|(2023));|Qu et al.[(2022); |Sun et al.|(2023) to address the degradation of global model
generalization under non-IID settings. Sharpness-aware optimization methods (Cha et al.| (2021);
[zmailov et al.| (2018)); [Foret et al.| (2020); Kwon et al.|(2021)) improve generalization in centralized
learning by seeking flatter minima in the loss landscape [Foret et al.| (2020); [Kwon et al.| (2021)),
which has inspired several adaptations for FL settings by prior work. For instance, FedSAM |Qu et al.
(2022) and its variants (FedGAMMA |Dai et al.|(2023), SWA [[zmailov et al.| (2018))) apply these
optimizations locally at each client, promoting convergence to flatter local minima and improving
local generalization. In conclusion, by minimizing loss and sharpness with smoother loss landscapes,
sharpness-aware optimizations address client drift and improve both convergence and generalization
across diverse and unseen data.

Adaptive optimization techniques in FL. focus on addressing the convergence challenges posed
by heterogeneous client data and communication constraints. In particular, FedAdagrad [Reddi
et al.| (2020) adjusts the learning rate based on the accumulated gradient squared values, making it
effective for sparse-gradient tasks and ensuring that clients with less frequent updates still contribute
meaningfully. FedAdam Reddi et al.[|(2020) builds on this by incorporating momentum terms to
smooth out the optimization trajectory, offering robustness to noisy gradients. FedYogi Reddi et al.
(2020) uses a more conservative update rule, reducing the risk of divergence in situations with large
gradients. By adapting to the local landscape of each client, these optimizers ensure faster and more
stable convergence, especially where simple methods like FedAvg McMahan et al.|(2017)) struggle
due to the high variance in client updates.

Limitations of existing techniques. Despite recent innovations, most methods address optimization
only indirectly. They seek flatter minima or smooth updates, but do not explicitly regulate the training
instability. This instability is central to both convergence and generalization in FL. As a result, the
localized focus of these approaches often fails to resolve the global stochasticity of FL. This leaves a
persistent gap in achieving stable and reliable global learning.
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3 PRELIMINARIES AND PROBLEM SETUP

To establish the context for our study, we define FL with DP and introduce the problem of training
instability in FL. Our goal is to diagnose the role of instability in shaping convergence and general-
ization, thereby motivating the adaptive regulation strategy introduced later in this paper. The central
question addressed through both theoretical and empirical analysis is: What is the effect of training
instability on generalization in FL? By establishing this link, we motivate the need for methods that
not only avoid instability but also regulate it adaptively.

3.1 CoOMMON FL AGGREGATION ALGORITHM (FEDAVG)

We consider a standard federated learning (FL) setting where a global model 8 is trained across
K decentralized clients. Each client & holds local data Dy, = {(x7, y)}2% ,, which may differ in
distribution across clients due to non-IID sampling and data distribution skew [Hsieh et al.[(2020);
Liu et al.| (2020). This data heterogeneity impairs convergence and generalization.

FL minimizes the global empirical risk:

K
7] Aargmeln{F(Ot+l):Zkak(BZ_H)}, wg = SN, @))
k=1 J
where F}, is the local empirical risk on client k. Each client performs local training by initializing
6! + 6* and minimizing:

6" « argmin {(e - ez“)TVFk(e;“)} st |0 — 6 < 2)

The updated parameters are sent to the server and aggregated to form 8*+! = Zle Wi 9,’2“.

3.2 PRELIMINARIES OF FLATNESS SEARCHING IN FL: FEDSAM
FedSAM leverages the SAM optimizer Foret et al. (2020) to enhance flatness exploration during local
training in FedAvg|Qu et al.| (2022)), aiming for more robust model performance.

SAM optimizer: The SAM optimizer transforms a loss function (@) into a min-max cost function
as follows:

min max F(0 + 9), ()

o ldll<p

where p is a positive real number and ||d]| is the L2-norm of J. As a key factor, 6 works as the
perturbation that maximally raises the loss value so that the SAM optimizer can find flat minima.
The perturbation can be simply approximated as the gradient direction, which points to the steepest
direction of the loss surface.

To preserve model privacy, FL applies differential privacy (DP) via Gaussian noise added to clipped
local gradients. While DP prevents information leakage [Shokri & Shmatikov|(2015)), it exacerbates
training instability in FL. We formalize the DP mechanism and its sensitivity bounds in Appendix [C]
3.3 INSTABILITY IN MACHINE LEARNING

Training instability in centralized learning |Ahn et al.| (2022) refers to the phenomenon in which
GD in causes the local risk £} (6, ") to decrease non-monotonically. The instability

occurs because GD trajectories infrequently encounter flat stationary points. Instead, the sharpness
(curvature) L fluctuates across training iterations |Ahn et al.|(2022). We give a rigorous analysis of
instability in FL with SAM optimizer. Several key assumptions are outlined below (the proof appears
in Appendix [B).

Assumption 1 (Lipschitz smoothness). The function F}, is differentiable and ¥V Fy, is L-Lipschitz
continuous, Vk € {1,2,..., K}, ie.,

IVF(0) — VF:(68')]| < L||6 6|, V6,08 R (A.1)

Assumption 2 (Bounded variance). The gradient of the function Fy have oi-bounded variance, i.e.,

and the global variance is also bounded, i.e.,

M
% SO IIVE(6) - VE@)| < o?, Vo e R (A3)
k=1
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Assumption 3 (Bounded gradient). For any k € {1,2,..., K} and 6 € R?, we have

[IVE(0)]| < B. (A4)

Theorem 3.1 (Expected Descent Bound). Under Assumptions 1-3 (All variables and notation are defined in
Appendix|B), the expected loss after one communication round satisfies

K
t t
Epg a5 [F(0" )]sy 2y — E[F(6")] < nn' EL*(p* — B) — "4 E(|[VF(8")||* - 45|l Y Akl
k=1

+ 'n’E (2L2p20i2 +6E(302 + 6L%p%) + 6E||VF(9t)|\2) (29)

+ 3ntn?E (3772EL2,02 + BQ) + 3n?EL(L?p?+B?)
2 2
+ Lo‘202pd'

2m?2

Notation. Bj, is the stochastic mini-batch for client & at iteration e. zj, is the DP noise added to the clipped
gradient (e.g., Gaussian with variance c2C?).

The bound in Theorem shows that sharp curvature terms (L?p?) amplify instability and gradient fluctuations,
while DP noise contributes an additional error floor (%). When curvature L fluctuates due to lack of flat
stationary points near GD trajectory |Ahn et al.|(2022), these effects compound, preventing consistent descent of

the loss. This leads to unstable training dynamics and ultimately weakens generalization.

Proposition 1 (Relative Progress as an Instability Metric (RP)). Assume that[Equation A1) hold. We define RP:

)+ N (0,28 00) 115+ (Big g [F(Oer1)] — F(8) . (3)

RP; =17 - ||gr(6:) - min (1: Tontoos

[l2

EBi,zi[Hgk(et)H%]

where 1) is the learning rate, C' the gradient clipping constant, o2 the noise variance, m the number of sampled
clients, and d the model dimensionality.

RP quantifies how much the global empirical risk improves after updating the gradients at each round relative to
the size of the gradient and the step size 7 taken. Stability in FL is achieved when the RP consistently remains
below a negative threshold, indicating steady and controlled progress in the optimization process without erratic
fluctuations.

Proof of Proposition 1. Assume that the global empirical risk F'(€) is L-smooth. Using the standard descent
lemma for L-smooth functions and incorporating the DP-noised clipped gradient update, we have:

L
Byt [F(6)] — F(0Y) < = (1= 51) B g (1001 ] @

NEs; zg [136(0:)13] (Esg .z [F(8")] — F(6")) = —n* [ VE(O)||* +773HV1““(49)||2/0 7 Esg ap [19(0)]°L] dr

IN

L .
_f@—éQMWﬂMWMﬁ
(5

Notation. 7 € [0, 1] is the interpolation parameter used in the integral, which traces points along the line
segment between the current iterate @ and the update 6 — ng(0). It appears in the directional smoothness term
L(6;n71g(0)) to capture the curvature information along this path.

Takeaway: This formulation makes explicit how RP reflects both the gradient magnitude and the local curvature
through the expected Lipschitz constant L. As curvature increases, the second-order term grows linearly in L,
offsetting the negative first-order descent term —n?||V F(0)||*. The net effect is a less negative descent, i.e.,
reduced progress per step, which we capture as ORP /OL > 0. In this sense, curvature inhibits descent efficiency,
making RP positively associated with sharpness while descent efficiency —RP decreases monotonically in L.
Analyzing the descent inequality equationreveals two regimes: 1) When L < % the right-hand side (RHS)
update term remains negative, ensuring each gradient step reduces the global empirical risk, promoting stable
convergence. 2) Conversely, when L > % the RHS term becomes positive, potentially increasing the global
empirical risk at each step, leading to divergence and destabilizing the optimization.

3.4 EMPIRICAL ANALYSIS OF INSTABILITY IN FL

As a preliminary study, we compute the instability RP and generalization (accuracy) metrics of FedAvg for the
CIFAR10 benchmark across FL rounds. We use the experimental setup in
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Observation: In[Figure 1] the RP variance values across FL rounds are greater than zero, indicating training
instability in FL. Higher levels of DP lead to increased RP variance, suggesting higher training instability.
Additionally, higher gradient norm values, which are observed with increasing DP, signal slower convergence
during training and a noticeable decline in generalization.

Takeaway: In FL with DP, there exists an optimal point in stability where the 1 is optimized to maintain better
generalization. Identifying the optimal 1 enables maximization of both the model’s convergence rate and its
generalization capability by allowing all parameters to reach their optimal values, necessitating using larger n
Sfor parameters that have a minimal impact on the model and smaller n) for those that significantly alter it.

4 PROPOSED METHOD: ADAPT-FED

Following the preliminaries in Section |3} we describe the local training and aggregation steps of our method,
ADAPT-FED. Our approach extends FedSAM, which stabilizes training through sharpness-aware perturbations
that encourage flatter minima. Although FedSAM improves local generalization, it does not address instability
from the lack of flat stationary points and DP noise. As a result, local perturbations may enhance sharpness but do
not guarantee stable global convergence. To address this, ADAPT-FED introduces an adaptive mechanism that
adjusts learning rates based on relative progress, providing stability-aware training that complements FedSAM’s
sharpness-aware updates.

4.1 TRAINING PROCESS OF ADAPT-FED
Local training. At the start of training round ¢ + 1, client k receives the aggregated global model 8* from the

previous round t, initializes its local model with the global one 92“ +— 6", and runs FE training epochs OZH
with DP.

Gradient Descent with DP. Client k trains OZH using GD to find the best local objective F(-) such that
[Equation 2]is satisfied. As GD progresses, the global model’s training stability depends on the magnitude of the
learning rate 7 and the gradient norms Eze e [[|g(0*)|]. When 7 is chosen such that L > 2 we have observed
that the RHS term in[Equation 5|becomes positive, which can increase the empirical risk at each step and lead
to divergence, destabilizing the optimization process. To stabilize the optimization process, we must take into
account a crucial piece of conventional wisdom originating from the quadratic Taylor approximation model of
GD. According to this wisdom|LeCun et al.|(1992);|Schaul et al.| (2013)), if the sharpness at local step e is L,
then 7 should be set no larger than % to prevent training instability. The n = % rule continuously anneals the
step size, ensuring that the training objective decreases at each iteration.

In practice, FedSAM extends GD by introducing sharpness-aware perturbations that effectively reduce the
impact of high L, guiding updates toward flatter regions of the loss landscape.

Challenges in Learning Rate Scheduling Scheduling the learning rate using the n = % rule results in small n
that hinder the learning process due to the progressive increase in L at each training iteration, causing slow or
even stalled convergence |Cohen et al.|(2021). This stalled convergence happens particularly when the model
approaches areas of high sharpness (high sensitivity of the loss to perturbations in the parameter space) in the
loss landscape, which are typically regions with steep gradients. Thus, the inverse relationship % results in
tiny 7, potentially hindering convergence by making the steps too cautious and slow. It is also computationally
expensive to compute L at each iteration since it involves the second-order derivative of the objective function.

4.2 ADAPT-FED DYNAMIC LEARNING RATE ADJUSTMENT

To address the instability challenges that FedSAM alone cannot resolve, ADAP T-FED augments sharpness-aware
training with an adaptive learning rate adjustment mechanism. Rather than relying solely on local perturbations,
ADAPT-FED explicitly tracks relative progress (RP) as a signal of training stability and adjusts step sizes
accordingly. This joint approach leverages the benefits of FedSAM’s flatter minima while directly mitigating
instability. We present the entire process of ADAPT-FED in Algorithm [1] Let F'(0) be an unstable objective
function: a function differentiable w.r.t. parameters 8. We want to minimize the expected value of this function,
E[F(8)], relative to its parameters, 8. For each client k, we use {RPf, ..., RPF} to show the objective
function’s training stability measures at different FL training rounds ¢t € {1,...,T}.

ADAPT-FED introduces a novel method for scheduling each client’s local learning rate n*. It dynamically
schedules the ”* based on the moving averages of the historical RP, where the hyperparameter 8 > 0 controls
the decay rate of the moving average, allowing for precise control of GD steps based on the observed training
instability. For each client k, ADAPT-FED calculates the moving average of RP values across training rounds

(RP,) to smooth out the measure of recent training progress over a window of N iterations. This average is vital
for assessing the overall direction and stability of the learning process RP; = % > E: N1 exp(RPf); Vi €

{1,...,t}. Inspired by LeCun et al.|(1992);|Schaul et al.|(2013), which proposes that the n* should be chosen
based on the inverse sharpness of the objective function 77, = # that measures stability, ADAP T-FED schedules

the n* for the next iteration based on the inverse of the moving average of RP,. This transformation, in
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Algorithm 1 ADAPT-FED: FedSAM with RP—adaptive learning rates

1: Inputs: clients K, rounds 7', local epochs F, initial model 69, initial LR 7o, decay /3, RP window
N, SAM radius p, norm pe{2, oo}, DP clip C, noise scale o, small £yym

2: Output: global model 7

3: fort =1to 1T do

4:  Server samples participating set K of size m and broadcasts 6*

5. for all clients k € K in parallel do

6: RP}  11* - Epg ¢ [|13k(0F_1)113] - (Eng 2 [F(671)] — F(6"72))

7: ﬁf ~ % Zf:t_NH exp(RPY), 0¥ « g - Rl% (RP from prior round)

0) + 6

9: fore=0to £ — 1do

10: gr < VE(65) (Local training with FedSAM + DP)
11: O < p- 9 (SAM perturbation)

19k lp + €num
12: 05 < 65 + 5,
13: g™ < VI (65)
. ~d : c a2C?
14: g’ < gi*™ - min (1, W) + N (0, =5 1y)
e e ~d

15: 0 05—k giP

16: end for

17: BtkH + 0F: send 0?‘1 to server

18:  end for

19:  Aggregate: 0"t < 37, o wy oL+t (e.g., FedAvg weights)
20: end for

which each RP} value is exponentiated before the moving average is calculated, has several benefits: 1) The
exponential function increases very rapidly, making it possible to assign more weight to higher RP values; thus,
higher RP values will have a disproportionately larger learning rate n® scheduling effect for enhanced stability.
2) If the RP includes negative values, the exponential function ensures all transformed RPs are positive to
guarantee positive learning rates. This scaling is designed to stabilize the training dynamically, responding to

the immediate past training stability conditions n* = ng - Riik ) .

t
Intuition: ADAPT-FED fine-tunes n® to match the actual training dynamics. When the RP is low, indicative of
stable progress, n* increases, which is conducive to faster convergence. Conversely, high RP signals training
instability, prompting a reduction in the n* to safeguard against potential divergences, mitigating training
instability.

Based on the learning rate scheduling procedure, we perform the local model update as 02*1 =0y —no -

L) . VE, (07). Each training round ¢ ends with the termination of local training and the return of updated
RP}
local models to the server for aggregation into a global model.

Server Aggregation: The updated local models are then aggregated at the server to newly update the global
model '™ for the next round. We adopt the commonly used FedAvg aggregation scheme to aggregate local

models into a global model 8! = Zle wrOT

4.3 ADAPTIVE LEARNING RATE COMPONENTS

This section outlines methods for setting the learning rate decay constant 3 and the initial learning rate 7.
4.3.1 LEARNING RATE DECAY CONSTANT (3

Choose 3 to adapt n* responsively across rounds. Motivated by edge-of-stability theory [Cohen et al[(2021)

(and the classical 2/ L stability threshold), set 3 = 2 so that n* =no - % , which makes n* sensitive to
t
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instability magnitude. As RP} decreases in sharper regions, the step size contracts, helping cap fairness drift
when RP spikes.

4.3.2 INITIAL LEARNING RATE 79

We select 7o via a learning-rate range test|[Smith|(2017), scanning a practical range and choosing the region
with best generalization. Anchoring no well improves both convergence and fairness by keeping subsequent
RP-driven adjustments within a stable, low-drift regime.

5 THEORETICAL ANALYSIS

This section discusses the theoretical bounds of ADAPT-FED, focusing on its convergence rate. We provide
theorems that set upper bounds on how quickly ADAPT-FED can stably converge, leading to performance
generalization. These theorems are essential for understanding how the eta affects convergence. Before that, we
introduce the assumptions consistent with other works in FL|L1 et al.|(2019b):

5.1 CONVERGENCE ANALYSIS OF ADAPT-FED

Theorem 5.1 (Expected Descent with ADAPT-FED Scheduling). Let Assumptions 1-3 hold (All variables and
notation are defined in Appendix[B)). In round t, each client k uses the adaptive local learning rate

1
=10 - £ . M = 7 Z nk (mean step — size).
RP, kEK
Wt(% Zke[{ %)E (% Zkg}( 77fLi)QELQP2
Esg . [F(0")] - F(6') < — S [IVF(8Y)|* + 5
te1 0B \2 T2 2 tpe L B 272
+37T(szeKﬁf) EL%p +157r E(KZkGKnORTDf) L 30)
2 2
3G Taen 40 BUEP +5) pacap
+ 2 LT

Takeaway: ADAPT—FED enables self-regulating optimization. Client-wise RP directly controls both progress
and error terms, resulting in larger, safer steps in flat regions and smaller, protective steps in sharp or noisy
regimes. This approach reduces loss fluctuations and enhances.

6 EXPERIMENTS

We extensively evaluate ADAPT-FED’s effectiveness in achieving generalization for FL with DP under different
data heterogeneity levels while adhering to two constraints: maintaining performance stability; and faster
convergence.

6.1 EXPERIMENTAL SETUP

Models and datasets. We assess ADAPT-FED’s efficacy using the setup in We compare ADAPT-FED
with SOTA baselines on the FL classification benchmarks datasets CIFAR10, CIFAR10, and UTK, examining
generalization across different client partitions in FL.

Baselines: We evaluate ADAPT-FED across three key categories: 1) FL baseline category represented by
FedAvg, serves as the standard learning scheme in FL. 2) FL sharpness-aware category includes FedSAM and
FedASAM |Caldarola et al.|(2022); Dai et al.|(2023));|Qu et al.|(2022); |Sun et al.| (2023), which flattens minima
in the loss landscape to improve model generalization. 3) FL regularization category includes FedProxMohri
et al.|(2019), which uses regularization techniques to minimize the divergence of local models for improved
model generalization.

Hyperparameters. For each case of algorithm and its evaluation on the benchmarks, we tuned the hyper-
parameters: y for FedProx is tuned among three choices {0.01,0.1,1}. We tuned the hyperparameters p of
FedSAM and FedASAM among three choices {0.02,0.05, 0.1}, and their respective 5 € {0.1,0.9}. Finally,
we set the initial local learning rate using grid search as g = {0.09,0.04, 0.1, 0.3}. We set the noniid-ness
a = {0.3,0.05}, DP ¢ = {0.0,0.01,0.02, 0.03}, and DP clipping constant C' = 1 for all the evaluations in
the main paper. We present empirical results across both 10 and 20 clients. Detailed ablation studies for these
hyperparameters and their impact on model generalization and convergence speed are reported in ??.

6.2 PERFORMANCE EVALUATION

6.2.1 GENERALIZATION ANALYSIS FL
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ADAPT-FED outperforms SOTA techniques in heterogeneous FL settings  Table 1: A,y results for CI-

as shown in [Table 3| (refer to Appendix [ET]for detailed generalization eval- EAR1(Q.
uations). ADAPT-FED demonstrates generalization improvements of up

to +5.06%, +14.79%, and +7.79% for CIFAR10, CIFAR100, and UTK

- . .. 1D (e = 0.53
respectively. These results confirm that ADAPT-FED effectively mitigates ) 1D (e =0.53)
the strong training instability associated with heterogeneity, thereby enhanc- _Algorithm Amax 4
ing generalization across clients. We believe these generalization gains  FedAvg 92.23 + 1.05

, . . . FedSAM 23.25 + 0.62

are large‘1y duf: to ADAPT-FED’S use of qub.lllty—based adaptive learnl.ng FedASAM 23.51 £ 0.58
rates, which directly address training instabilities caused by the GD learning  FedProx 94.47 £ 1.12
leorithm. I trast istine techni for traini tabilit . il FedAdagrad 24.05+0.71
algorithm. In contrast, existing techniques for training stability primarily  peqadam 3410 % 0.84
focus on instabilities caused by discrepancies in local models due to data ~ FedYogi 91.90 £ 1.20
ADAPT-FED (ours) 18.90 + 0.44

heterogeneity across clients, which does not inherently guarantee stability
in GD learning. As heterogeneity is alleviated, as « increases from 0.05
to 0.3, generalization performance across all baselines improves due to the
homogeneity of data distribution, which reduces discrepancies between local models across clients. Nevertheless,
ADAPT-FED continues to demonstrate superior capability in enhancing generalization.

1 Tower is better.

Takeaway: ADAPT—-FED improves generalization compared to SOTA techniques in non-11D FL environments.

Table 2: Generalization performance of ADAPT-FED versus baseline algorithms across 10 clients on
three datasets: CIFAR10, CIFAR100, and UTK (79 = 0.1). For readability, only the mean values
across 3 runs are shown. Best means are in bold.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (a = 0.05, non-1ID) Dir. (a = 0.3) Dir. (e = 0.05, non-1ID) Dir. (a = 0.3) Dir. (a = 0.05, non-1ID) Dir. (a = 0.3)

e=+o0 185 053 023 +00 185 053 023 +00 185 053 023 +00 185 053 023 +00 185 053 023 +00 185 053 023
FedAvg 5876 5372 4731 4191 7455 70.18 6476 59.68 37.73 37.03 3394 3089 41.21 4091 3748 3484 6411 6411 5518 5498 7889 78.89 64.87 64.83
FedSAM 57.93 5808 58.67 5874 7480 74.18 7461 7490 3743 3849 3857 3817 4218 4264 4281 4389 7328 7328 7358 7335 79.06 79.06 79.10 7883
FedASAM 59.09 5878 58.74 5874 7540 7491 7451 7451 3856 37.83 37.99 3799 4339 4312 4328 4328 7331 7331 7407 7407 7863 78.63 7948 7948
FedProx 59.86 5527 49.14 4282 7354 6948 6436 5991 3790 3637 3430 3097 4236 40.66 36.87 3484 6542 6542 5505 5468 7140 7140 57.03 56.65
FedAdagrad 58.76 5372 4731 4191 7455 70.18 6476 59.68 37.73 37.03 3394 30.89 4121 4091 3748 3484 6411 6411 5518 5498 71.06 71.06 5638 56.56
FedAdam 58.76 5372 4731 4191 7455 70.18 6476 59.68 37.73 37.03 3394 30.80 4121 4091 3748 3484 6411 64.11 5518 5498 7889 7889 64.87 64.83
FedYogi 58.76 5372 4731 4191 7455 70.18 6476 59.68 37.73 37.03 3394 30.89 4121 4091 3748 3484 6411 64.11 5518 5498 7889 7889 6487 64.83

ADAPT-FED (ours) 63.02 65.18 6539 6583 80.46 81.33 81.24 8175 5144 5359 5426 5434 58.18 61.25 6138 60.39 7505 75.05 7505 7431 8685 8685 8649 86.86

Table 3: Generalization performance of ADAPT-FED versus baseline algorithms across 20 clients on
three datasets: CIFAR10, CIFAR100, and UTK (79 = 0.1). For readability, only the mean values
across 3 runs are shown. Best means are in bold.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (a = 0.05, non-1ID) Dir. (a = 0.3) Dir. (a = 0.05, non-1ID) Dir. (a = 0.3) Dir. (a = 0.05, non-1ID) Dir. (a = 0.3)

e=+o00 185 053 023 +4oo 185 053 023 +00 185 053 023 +00 185 053 023 +00 185 053 023 +00 185 053 023
FedAvg 41.83 41.83 3620 3272 6229 59.05 5379 5027 2202 21.77 2115 1974 41.81 4124 3766 3420 61.71 61.71 5373 5394 7428 7428 60.14 60.20
FedSAM 42.45 4440 4502 4502 60.85 6041 60.73 59.00 1823 20.17 20.53 19.53 41.52 4232 4190 4296 7298 7298 7277 7213 8222 8222 8278 8243
FedASAM 4557 4549 4589 4589 6191 6149 61.07 61.07 2229 2257 2191 2191 4282 4219 4260 4260 7219 7219 7325 7325 8330 8330 8268 82.68
FedProx 46.90 4264 37.10 3385 61.50 57.51 5437 50.03 2193 2198 21.15 20.12 4210 4136 37.62 3415 61.70 61.70 53.64 5326 7401 7401 6093 59.08
FedAdagrad 4524 4183 3620 3274 6230 59.10 5379 5028 2213 21.62 21.15 1974 41.83 4135 3777 3450 61.89 61.89 5373 5395 7430 7430 6041 60.43
FedAdam 4524 4183 3620 3274 6229 59.05 5391 5047 2213 21.62 21.15 1974 4156 41.78 37.61 3425 6189 61.89 53.73 5395 7428 7428 60.14 60.20
FedYogi 45.24 41.83 3620 3274 6247 5944 5327 50.14 2213 21.62 2115 1974 41.82 4156 37.69 3420 6189 61.89 5373 5395 7491 7448 6027 60.20

ADAPT-FED (ours) 43.39 49.99 50.78 49.55 72.01 7388 7388 7460 775 23.08 13.12 2429 4841 5248 54.88 56.13 79.20 7920 76.22 7622 84.95 8495 8513 84.13

6.2.2 RATE OF CONVERGENCE ANALYSIS

We compare ADAPT-FED with SOTA techniques to evaluate its ability to achieve faster convergence. On the
CIFAR10, CIFAR100, and UTK datasets, ADAPT-FED demonstrates faster and more robust convergence than
the baselines as shown in[Figure 2] The improved convergence rate is a direct result of ADAPT-FED’s use of
adaptive learning rates, which specifically address training instabilities caused by the GD learning algorithm. In
contrast, other techniques mainly focus on mitigating instability arising from discrepancies in local models due
to data heterogeneity across clients, which does not inherently ensure stable learning.

Takeaway: ADAPT-FED leads to faster and more robust convergence compared to SOTA techniques in FL with
DP (For additional experiments, including comprehensive generalization comparisons, convergence behavior
under heterogeneity, and training stability across privacy levels, refer to Appendix[E).

6.2.3 PRIVACY-UTILITY EVALUATION

presents the test accuracies corresponding to different levels of privacy guarantees. ADAPT-FED
consistently surpasses previous state-of-the-art methods across a range of privacy budgets e. The enhanced
convergence rate is attributed to ADAPT-FED’s implementation of adaptive learning rates, which mitigate
training instabilities introduced by the GD under differential privacy noise.
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Table 4: RP variation and generalization performance across three datasets. Top: results under
different 7y values. Bottom: results under different NV values.

Variation with 7o
CIFAR10 | CIFAR100 | UTK
o = 0.04 =01 | n =004 no =01 | no=0.04 no = 0.1

RP Variation 1.98 5 1.66 1.83 . 231
Generalization 7748 £0.42 73.88 £0.38 | 57.40 4+ 035 54.88+£0.33 | 8556 £0.28 84.95+0.27

Variation with N
CIFAR10 ‘ CIFAR100 ‘ UTK
N=1 N=Npa | N=1 N=Nnw | N=1 N = Nmax

RP Variation A 3 . 1.83 2.12 231
Generalization ~ 75.63 £0.40  73.88 £0.38 | 56.34 +0.34 54.88 £0.33 | 86.10 027 84.95+£0.27

—— FedAvg, var=15.31 FedAdagrad, var=15.31 —— FedAvg, var=46.41 FedAdagrad, var=46.41 — FedAvg, var=172.76 FedAdagrad, var=172.7
—— FedSAM, var=17.59 ~ —— FedAdam, var=15.31 —— FedSAM, var=47.24 ~ —— FedAdam, var=46.41 — FedSAM, var=164.88  —— FedAdam, var=172.76
—— FedASAM, var=16.36 FedYogi, var=15.31 ~ —— FedASAM, var=45.24 FedYogi, var=46.41 — FedASAM, var=158.16 FedYogi, var=172.76
—— FedProx, var=16.35 ~ —— ADAPT-FED, var=0.62 —— FedProx, var=46.17 ~ —— ADAPT-FED, var=0.56 — FedProx, var=133.61 ~ —— ADAPT-FED, var=3.76
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Figure 2: Convergence of the training loss of ADAPT-FED and baseline algorithms on 10 clients
(CIFAR10, CIFAR100, and UTK, noniid-ness o = 0.3) with DP 02 = 0.01, 1, = 0.1.

6.2.4 FLATNESS RESULTS

To evaluate the flatness of the global model, we report the maximum eigenvalue of the Hessian, Amax, on
CIFARI10, a standard proxy for sharpness|Qu et al.|(2022). A lower value indicates flatter minima and better
stability. While baselines either converge to sharp regions (e.g., FedAvg, FedProx, FedYogi) or partially reduce
sharpness through perturbation-based methods (FedSAM, FedASAM), ADAPT-FED consistently achieves the
lowest Amax. This result highlights that adaptive learning rate regulation guided by relative progress is more
effective than static sharpness-aware updates, producing flatter solutions and mitigating DP-induced instabilities.
These flatter minima explain the faster and more stable convergence observed in ADAPT-FED.

6.2.5 ABLATION STUDY

We study the effect of two key components in ADAPT-FED: the initial learning rate 79 and the RP smoothing
window N [Table 4]shows that increasing 7o from 0.04 to 0.1 consistently raises RP variation across all datasets,
leading to reduced generalization. This confirms that larger step sizes amplify instability, which degrades
performance even when adaptive scheduling is applied. Similarly,[Table 4compares short vs. long RP smoothing.
Larger N increases RP variation and lowers accuracy, suggesting that excessive smoothing makes the controller
less responsive to instability spikes. stability-aware learning requires careful calibration: overly aggressive 1o or
excessive smoothing undermines the ability of ADAPT—-FED to regulate instability, while moderate values strike
the best balance between stability and generalization.

7 CONCLUSION

We introduce ADAPT-FED, an FL method that tackles the challenges of training instability and suboptimal
generalization in FL. ADAPT-FED dynamically adjusts learning rates based on historical relative progress
metrics, enhancing stability and improving the generalization across clients with heterogeneous data. We establish
a detailed theoretical framework analyzing how ADAPT-FED mitigates the impacts of data heterogeneity and
gradient noise on the learning process. Our theoretical findings are supported by empirical evaluations across
various datasets, where ADAPT-FED consistently outperforms SOTA optimization methods in improving
stability, accelerating convergence, and generalization. These improvements make ADAPT-FED a robust
solution for practical, real-world FL applications.
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Appenle We provide additional information for our paper, ADAPT-FED: Adaptive Federated
Optimization with Learning Stability, in the following order:

* Preliminary Lemmas (Appendix [A)
* Proof of Convergence Analysis (Appendix [B)

Differential Privacy Guarantees in Federated Learning (Appendix [C)

Detailed Preliminaries and Problem Setup (Appendix D)

Additional Experimental Results (Appendix [E)
Alternative RP-Based 3 Scheduling Mechanisms (Appendix [F)

A PRELIMINARY LEMMAS

Lemma 1 (Lemma B.1,|Qu et al. (2022)). Under Assumptions 1-2, for any learning rate n < ﬁ, the updates
exhibit drift arising from the deviation dy . — 4.

1
% > E[lok, — 8|°] < 2E°L?n°p%. (B.1)
k
Where \ .
VF(0) VF, (0%, &)
§=p—at Ohe = prmon 2SK)_ (B.2)
PIVE@)]] ke TPV R85, & )]]

Lemma 2 (Lemma B.2, Qu et al. (2022)). Under the above assumptions, for any learning rate n < mﬁ the
updates exhibit drift arising from the deviation 8¢ (k) — 6°.

1 e
% > E[|6%(k) — 6'|]°] < 5En” (2L2p2a? +6E(30: +6L%p°) + GEHVF(Bt)HQ) + 24K°3n* L.
k
(B.3)

Lemma 3. The two model parameters obtained from two adjacent datasets differing by a single sample of client
k in communication round t,

E—-1
Do lly"e(@) = =" (k)|[3 < 2B max [|AL(y) — Ak(@)][3. (B.4)
e=0

Proof. We recall that the local update performed by client & is

E-1 E-1
S04 (k) =" 0" (k) + AL,
e=0 e=0

(the initial value is assumed as 8*~* = 6%° = @%). Then,

E—1 E—1
Dol @) = R <2> Iy k) — 2" T (R
k=0 e=0

(B.5)
+2[|Ak(y) — Ak()]]3-
Unrolling the recursion from 7 = 0 to e yields
E-1 )
D lly e (k) — 2" (k)|[3 < 2Emax||Ak(y) — AL(x)]]3. (B.6)
e=0

Where a) uses the initial value 8*(k) = 2"°(k) = y"°(k) and 0 < k < E.
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Lemma 4. Assuming 1 and 3 hold, the aggregated update obtained by averaging the clipped local updates of
the selected clients is

1 ~
E||— > AL < 3En* (10" + B?). (B.7)
ieWt
Proof.
1 Xt 2 1« 02
Efl —~ > Al < E|l— DD ngt(k) - akll
kewt iEWt k=0
nQ E-1
< D D EIVEk(8"(k) + 6 &) — VFL(0"" (k) &) (B.8)
kew?t k=0

+ V(0" (k); &) — VEL(6 (k) + VEL(6 (k))|I*
23E7}2(L2p2 +B2)7

where (a) is derived using Assumptions 1 and 3, and

t . C
ap :=min | 1, - . (B.9)
( ll e 9 (k )Ilz)

B PROOF OF CONVERGENCE ANALYSIS

Proof of Theorem 3. For ease of reference, we define the following notations:

E-1 E—-1
e —~t e —
Ab=n) gilk)-ak, Ay=n>_ gi(k)-a, (6)
e=0 e=0
where
(tosmta ) ™= ek &= ket
t . t A~
ap, = min —_— |, T == ag, O = — ap — 7 |. @)
1Yo g (k)| K K=

The Lipschitz continuity of VF:

E[F(6°)] < ELF(6")] + E(VF(6),6° — 0%) + ~l6"+ — o'’
=E[FO)] + (VF(O'), L 3 Al+2)+ L1230 b+
e e ®)

2
—E[F(0")]+ (VF(O), 2 3 ah+ L)1 30 Al M

m2
iewt iEWt

Here, d is the dimension of 8}, p denotes the sparsity ratio, and the noise 2, is assumed to have zero mean. Next,
we analyze I and II in turn.

For I, we have
K K K .
(VEO'), 2 > AL =(VF(0'), £ AL+ £> (AL +(VF(O'), £ > D). 9
kewt k=1 k=1 k=1

Next, we provide bounds for the two terms in the preceding equality. In particular, for the first term we obtain

E E-1
E(VF(6), £ ZA‘ AL <E(VF(0), 533 0ol VF(6', i (k)
e=1 e=1 e=0

K
nkE t_t ty e
< K ;Eakﬁ (VF(6°), gk (k))

K

< T Dok (= 3@ +[[VF@, g5 (k) - VF(O)))

10)

S 772E(6c\tL2p2 _ B2)7
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where @' = & 35| o, — |. Here, (a) uses (a), (b) uses (b), and the result is established under Assump-
tion 1.3.

For the second term, we have

K
(VF(6"), Z — B |7 F(6Y)|? HKZAkH
- an
HVF(@t - ﬂnEKZHAkH
where (a,b) employs the relation (a,b) = |[|a||* + ||b||* + 3||a — b]|*, under the condition 0 < n < 1.
Subsequently, we bound III as follows:
K  E-1
= LZ[VFO') + %> % > (VF(6; &) — VE(6")|[
k=1 e=0
K B-1
< 2% D BIVEO; +0k) — VE(O)|
k=1 e=0 (12)

+0(VE(85; &) — VEL(6")) + (L+n)VEF(6")[]

<3’ E*L*(p* + ||[VF(8")|* + B?)
+30*E*L? (2L%p* + 6E(30, + 6L°p%) + 6E||VF(8")]]%)
—|—24E2774L2p2 + B2,

where 0 < 7 < 1, (a, b), and the derivation relies on Assumptions 1 and 3 as well as Lemma 3, respectively.
For the second term (II), we invoke Lemma 8. By combining Eqs. 12—16, we arrive at

7\'t
F(6"") <EF(6") +nr' EL*(p* — B*) — =37 ||VF(6")|]”
. K
~ B ll% Y AP
k=1

: 13
4t [2L2p202 +6E(30; +6L%p%) + GEHVF(Gt)HQ} (43

+ 37r*'n2E(3 QEszz —|—BQ) + 3n2EL(L?p?+B?)
2
4 Lo‘zCzpd

2m?2

When n < \/7 the inequality is

t41 t wtnE 112 2EL?p?
F(O7) < F(0°) - 5= VEO)|]” + =+
t, 2 2 2 t 272
4 3m'n 2EL P + 157 gn L (30)
3rtn2EL(L2p2+B2) Lo2c? d
_|_ n 5 P _|_ B p

Sum over ¢ from 1 to 7', we have

T T
1 )12 2 2 ot 2 2,2

— E||VEF(6 < -7 2L 2 FEL -2 B L°T
T ;:1 [IVF(O)||” < kET T gz T P ad + 307 )

T
14
+ 4> (2L%p°0k + 6E(30y + 6L%p%))
t=1
+ 72774E3L2p2 + 377L(L2p2 + Bz) + Lo;g';pd.
. . . T it T _t
Assume the local adaptive learning rate satisfies n = O(1/LvV KT), both >~,_, &" and >, , &" are two

important parameters for measuring the impact of clipping. Meanwhile, both & >~/ &' and ~ 3"/, a" are
also bounded by 1. Then, our result is
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T T
0 2L(F(0') — F*) L o2 g2 120207 pa
Z [ |IVF@6|*] < <\/ﬁ +(72T—9+ T§)+7m2ﬁp . (15)

o~
Il
-

If the perturbation amplitude p is chosen proportional to the learning rate, such as p = O(1/ \/T), it follows that

T
1 2 2L(F(01)—F*) 12,2 1 o2 12,2 Lo202pd
— < = 7 - 7/ P ,E g9 p [ p .
T ;:1 EHVF(O )H = O< \/ﬁ + ET2 + (T P zt T2 ) + m2VE (16)

C DIFFERENTIAL PRIVACY GUARANTEES IN FEDERATED LEARNING

We utilize Rényi Differential Privacy (RDP) as our primary privacy measure, which provides strong composition
properties suitable for iterative federated learning procedures.

C.1 RENYI DIFFERENTIAL PRIVACY (RDP)

Definition C.1 (Rényi Differential Privacy |Abadi et al{(2016)). A randomized mechanism M satisfies (c, p)-
RDP if for any two neighboring datasets D, D’ differing by a single client’s data, the following holds:

D MDD = e | (505 ) | <0 a7

C.2 SENSITIVITY ANALYSIS

The sensitivity of local updates is critical to determining the magnitude of added noise. Given local updates
gr(6;) at round ¢ € T, sensitivity is defined as:

Siet0n) = max [1gx(8:)(D) — gi (8:) (D")][5. (18)

Utilizing SAM optimization as in|Shi et al.|(2023), we have the sensitivity bound for SAM updates:

1
E[$5. (00 < O (ﬁ) ) (19)

C.3 GAUSSIAN MECHANISM

We employ the Gaussian mechanism to perturb clipped local updates. Given a clipping threshold C, noise is
added to the local updates as follows:

- . C o2C?
gk(et)  gr(6:) - min (L m) +N (0, Tjd> 5 (20)

where m is the number of participating clients per round, and ¢ is the variance of the Gaussian noise.

C.4 PRIVACY BUDGET (CUMULATIVE PRIVACY LOSS)

The cumulative privacy budget € after 7" rounds is derived from the Gaussian mechanism via RDP composition
as follows:

,, (@—1)log(1 — %) —log(a) — log(d)

€e=¢€ + = , 21
a—1
where
/ T pi1(2) “
= logE.~ 1-— . 22
€ =108k q+qm(z) (22)
Here, ¢ = 7} represents the client sampling ratio, and pi, p11 denote the Gaussian probability density functions

for distributions N(0, ) and the mixture ¢\ (1, 0) + (1 — ¢)N (0, o), respectively. Parameter « is selected to
optimize the privacy-utility trade-off.
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D PRELIMINARIES AND PROBLEM SETUP

The purpose of this section is to provide additional Preliminaries and Problem Setup details that are dropped due
to the limited space of the main paper. It includes the plots of training instability and the Experimental Setup for
the CIFAR10, CIFAR100, and UTK datasets.

D.1 TRAINING INSTABILITY STUDY: RESULTS OVERVIEW

We measure the training instability (relative progresss RP) and its impacts on generalization (utility/accuracy)
in FL across CIFAR10 (Figure 3), UTK (Figure 4}) and CIFAR100 datasets. As depicted in most
of the graphs on the left, the RP, which measures the stability of training, shows significant variance across
training rounds. This variance is persistent and positive, indicating that the learning process is not stable. This
instability is further compounded as the differential privacy level increases. The increasing variance in RP
with higher levels of DP suggests that the noise added for privacy protection is disrupting the learning process,
making it harder for the model to converge consistently. This behavior demonstrates the challenge of balancing
model privacy with learning efficacy in FL environments.

The middle graphs show R P variance against different levels of differential privacy and confirm that as privacy
constraints tighten (o increases), the overall variability in model performance also increases. The trend line
indicates a clear positive correlation between R P variance and the privacy level, highlighting a direct impact of
enhanced privacy measures on learning stability. Higher differential privacy levels introduce more noise into the
training process, which can lead to larger updates that are less about the true gradient direction and more about
compensating for the noise. This can cause the training process to become unstable, as shown by the rising R P
variance.

The right most graphs illustrates that with increasing DP, not only do gradient norms increase, but also accuracy
decreases significantly. This suggests that the model is struggling to generalize effectively under higher training
instability. Larger gradient norms indicate more substantial updates during training, which can overshoot optimal
points due to the high noise levels introduced by DP. This is likely contributing to the observed decrease in
model accuracy as DP levels increase, illustrating the difficulty in navigating the trade-off between privacy and
generalization.

These detailed analyses and observations demonstrate the complex interplay between privacy, stability, and
generalization in FL. By fine-tuning the learning rates and understanding the impact of differential privacy on
learning dynamics, it is possible to improve both the stability and generalization of models trained under privacy
constraints.
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Figure 3: Correlation of DP noise with training instability in a 10-client CIFAR10 setup (o = 0.3
non-iid, ny = 0.1). Increased DP noise elevates instability, as shown by RP value variance, causing
larger gradient norms and lower accuracy.

D.2 EXPERIMENTAL SETUP

D.2.1 DATASETS AND MODEL ARCHITECTURES

Table 5: Datasets and Clients

Dataset Task Total Clients Total Samples Training Samples Test Samples
CIFAR10 Image classification 10,20 60,000 50,000 10,000
CIFAR100 TImage classification 10,20 60,000 50,000 10,000
UTK Image classification 10,20 23,708 19,208 4,500

16
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Figure 4: Correlation of DP noise with training instability in a 10-client UTK setup (o = 0.3 non-iid,
1o = 0.1). Increased DP noise elevates instability, as shown by RP value variance, causing larger
gradient norms and lower accuracy.
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Figure 5: Correlation of DP noise with training instability in a 10-client CIFAR100 setup (o = 0.3
non-iid, 7y = 0.1). Increased DP noise elevates instability, as shown by RP value variance, causing
larger gradient norms and lower accuracy.

Dataset: We analyze two widely utilized image classification datasets for federated learning: CIFAR10
Krizhevsky et al (2009) and CIFAR100 [Sharma et al| (2018), along with the UTK [Savchenko| (2021) image
classification dataset. The benchmarks for these datasets in a federated learning context are adopted from
established benchmarks based on CIFAR-10/100, as proposed by [Foret et al.| (2020). Each dataset is allocated
among K € {10,20} clients, employing a Dirichlet distribution-based approach for data distribution as done
in (2023). The resultant data partitions are shown in [Figure 6] [Figure 7] [Figure 8] and [Figure 9}
Here, each client’s prior distribution follows a multinomial distribution derived from a symmetric Dirichlet
distribution with parameter a.. As o approaches infinity, the data distribution among clients approximates an IID
scenario. Conversely, a reduction in «, moving towards zero, shifts the distribution towards a non-IID scenario.
We explore different scenarios with o € {0.05, 0.3} across the CIFAR10, CIFAR100, and UTK datasets.

- classo
- class1

1000 2000 3000 4000 5000 6000 7000 0 100 20 30 40 s s
sample num Sample nur

o0 00 1000 1500 2000
sample num

Figure 6: Noniid partition used in|Yurochkin et al.[(2019) and [Wang et al.|(2020a). The number of
CIFAR10, CIFAR1OO, and UTK data points and class proportions are unbalanced. Samples will be
partitioned into 10 clients by sampling o = 0.3.

Model architecture: By following the backbone architecture of the unstable convergence of gradient descent
work [Ahn et al| (2022); (2021). Specifically, we use GD to train a VGG (with batch normalization)
neural network Ding et al.| (2021). For a fair comparison, we use the same backbone architecture for all different
types of methods for all evaluations. Also, the same architecture is identically used for the two CIFAR-10/100
benchmarks. Noteworthy, we added ResNet backbone for UTK dataset because of poor performance relative to
VGG on this dataset.
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Figure 7: Noniid partition used in [Yurochkin et al.| (2019) and [Wang et al.[(2020a). Number of
CIFAR10, CIFAR10O, and UTK data points and class proportions are unbalanced. Samples will be
partitioned into 10 clients by sampling o = 0.05.

nnnnnnnn

Figure 8: Noniid partition used in[Yurochkin et al.| (2019) and[Wang et al.|(2020a). The number of
CIFAR10, CIFAR10O, and UTK data points and class proportions are unbalanced. Samples will be
partitioned into 20 clients by sampling a = 0.3.

D.2.2 DATA PRE-PROCESSING (CIFAR-10 AND CIFAR-100).

All training and test input images of size 32 x 32 pixels are first padded by 4 pixels on each side, then randomly
cropped back to 32 x 32 pixels. This technique helps the model become invariant to small translations of the
input image. Each image is flipped horizontally with a probability of 0.5. This step increases the diversity
of the training data and helps prevent overfitting by simulating different viewing angles. After converting the
image to a tensor, pixel values are normalized using the dataset-specific mean (0.4914, 0.4822,0.4465) and
standard deviation (0.2023,0.1994, 0.2010). This normalization facilitates faster convergence by scaling the
input features to have zero mean and unit variance.

D.2.3 DATA PRE-PROCESSING (UTK).

All training and test input images are resized to 32 x 32 pixels, standardizing the input size across all images and
making it suitable for processing by the model designed for CIFAR datasets. Pixel values are normalized using
the mean (0.49) and standard deviation (0.23). This dataset appears to have grayscale images (indicated by a
single channel mean and standard deviation), and normalization adjusts the pixel intensity distribution similarly
to CIFAR datasets. Images undergo the same resizing to 32 x 32 pixels and are normalized using the same
values as the training images. Consistent image size and normalization between the training and testing phases
help in evaluating the model’s performance accurately.

E ADDITIONAL EXPERIMENTAL RESULTS

Here, we provide the additional experimental results that are dropped due to the limited space of the main paper.
It includes the the plots for generalization analysis, rate of convergence analysis, and training stability analysis
using for the CIFAR10, CIFAR100, and UTK datasets.

E.1 GENERALIZATION ANALYSIS FL

We conduct a thorough analysis of ADAPT-FED’s generalization performance against various baseline FL
algorithms. Our primary goal is to assess the efficacy of ADAPT-FED in generalizing under diverse privacy
settings and heterogeneous data distributions. Generalization analyses are performed on three widely recognized
datasets: CIFAR10, CIFAR100, and UTK, comparing ADAP T-FED with several SOTA FL algorithms, including
FedAvg, FedProx, FedAdagrad, FedYogi, FedSAM, and FedASAM.

Table [6] shows the results with 10 clients and learning rate , = 0.1. ADAPT-FED consistently outperforms all
baselines under both low and high heterogeneity settings across all three datasets and all privacy noise levels.
Notably, its performance remains stable even as ¢ increases, highlighting its robustness under privacy constraints.
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Figure 9: Noniid partition used in [Yurochkin et al.|(2019) and|[Wang et al.| (2020a). The number of
CIFAR10, CIFAR10O, and UTK data points and class proportions are unbalanced. Samples will be
partitioned into 20 clients by sampling o = 0.05.

Table[7]reports results for 20 clients at n, = 0.04. Here too, ADAPT-FED achieves the highest test accuracy
across all settings. Compared to baselines, its margins of improvement are particularly significant under high
non-IID scenarios and when privacy noise is introduced. [Table 8] further confirms the generalization advantage
of ADAPT-FED under similar settings (n, = 0.04, C = 100). The performance trends remain consistent
across the three datasets. Finally, [Table 9]explores two extreme participation scenarios: full clipping constants
C =100 and C' = 1. ADAPT-FED demonstrates remarkable stability and maintains generalization advantage
in both cases. Unlike FedAvg and FedProx, which degrade significantly under C = 1, ADAPT-FED remains
effective even under extreme clipping and high noise, suggesting its suitability for deployment in practical,
resource-constrained FL settings.

Across all experiments, ADAPT-FED achieves the highest or near-highest accuracy in nearly every configuration,
supporting its efficacy for privacy-preserving, prompt-based federated learning in heterogeneous environments.

Table 6: Generalization performance of ADAPT-FED versus baseline algorithms based on 10
clients across three datasets: (a) CIFAR10, (b) CIFAR100, and (c) UTK, respectively, n, = 0.1.
ADAPT-FED outperforms the baseline algorithms in terms of generalization performance across
datasets.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (a = 0.05, non-IID) Dir. (a = 0.3) Dir. (a = 0.05, non-1ID) Dir. (a = 0.3) Dir. (a = 0.05, non-1ID) Dir. (a = 0.3)

0.0 0.01 002 003 0.0 0.01 002 0.03 0.0 001 002 0.03 0.0 0.01 002 003 0.0 0.01 002 0.03 0.0 001 002 0.03
FedAvg 5876 5372 4731 4191 7455 70.18 6476 59.68 37.73 37.03 3394 30.89 4121 4091 3748 3484 6411 6411 5518 5498 7889 7889 64.87 64.83
FedSAM 5793 5808 58.67 58.74 7480 74.18 7461 7490 3743 3849 3857 3817 4218 4264 4281 4389 7328 7328 7358 7335 79.06 79.06 79.10 78.83
FedASAM 59.09 5878 5874 5874 7540 7491 7451 7451 3856 37.83 37.99 3799 4339 43.12 4328 4328 7331 7331 7407 7407 7863 78.63 79.48 79.48
FedProx 59.86 5527 49.14 4282 7354 6948 6436 5991 3790 3637 3430 3097 4236 40.66 36.87 3484 6542 6542 5505 5468 7140 7140 57.03 56.65
FedAdagrad 5876 5372 4731 4191 7455 70.18 6476 59.68 37.73 37.03 3394 30.89 4121 4091 3748 3484 6411 6411 5518 5498 7106 71.06 56.38 56.56
FedAdam 5876 5372 4731 4191 7455 70.18 6476 59.68 37.73 37.03 3394 30.89 4121 4091 3748 3484 6411 6411 5518 5498 7889 78.89 64.87 64.83
FedYogi 5876 53.72 4731 4191 7455 70.18 6476 59.68 37.73 37.03 3394 30.89 4121 4091 3748 3484 64.11 64.11 5518 5498 7889 78.89 64.87 64.83

ADAPT-FED (ours) 63.02 65.18 6539 65.83 80.46 8133 81.24 8175 5144 53.59 5426 5434 5818 6125 6138 60.39 7505 75.05 75.05 7431 86.85 86.85 86.49 86.8&)

Table 7: Generalization performance of ADAPT-FED versus baseline algorithms based on 20 clients
across three datasets: (a) CIFARI10, (b) CIFAR100, and (c) UTK, respectively, n, = 0.04.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (a = 0.05, non-IID) Dir. (a = 0.3) Dir. (a = 0.05, non-IID) Dir. (a = 0.3) Dir. (a = 0.05, non-IID) Dir. (a = 0.3)

00 001 002 003 00 001 002 003 00 00l 002 003 00 00l 002 003 00 00 002 003 00 00 002 003
FedAvg 5063 4859 44.62 4086 67.48 6628 6284 5972 3309 3261 30.82 2926 5010 49.61 4738 4507 7058 7058 53.86 5308 80.37 8037 5929 5826
FedSAM 5047 5073 5103 SLII 67.59 66.66 6725 6742 3297 3332 3409 3324 5075 5071 5061 5103 7559 7559 7639 7654 8375 8375 8375 83.59
FedASAM 5126 5148 5123 5123 67.06 67.98 67.63 67.63 34.10 3394 33.85 3385 5104 5L04 5074 5074 7619 76.19 77.03 77.03 83.69 83.69 83.81 8381
FedProx 50.82 4878 4477 4115 6697 6527 6245 59.17 3298 3270 3100 2942 49.67 4947 4751 44.68 7049 7049 5359 5312 7975 7975 5894 57.02
FedAdagrad 50.89 48.66 44.68 4096 67.48 6628 6284 5972 3298 3270 3100 2942 S50.10 4961 4738 4507 70.58 7058 5386 5308 8035 80.84 59.94 58.62
FedAdam 5063 48.59 44.62 4086 67.48 6628 6284 5972 3298 3270 3100 29.42 5010 49.61 4738 4507 7058 7058 53.86 53.08 8045 8091 5961 58.10
FedYogi 50.63 48.50 44.62 4086 67.48 6628 6284 5972 3298 3270 3100 29.42 50.10 49.61 4738 4507 70.58 7058 53.86 53.08 8037 8037 5929 5826

ADAPT-FED (ours) 56.49 59.66 59.78 60.01 7586 77.48 77.65 77.99 40.66 44.63 43.52 4451 54.69 57.40 49.83 5427 8131 8131 80.15 8153 8556 8556 84.15 84.67

E.2 RATE OF CONVERGENCE ANALYSIS

We conduct a thorough analysis of ADAPT-FED’s convergence performance against various baseline FL
algorithms. Our primary goal is to assess the efficacy of ADAPT-FED in achieving faster and more stable
convergence rates, particularly under diverse privacy settings and heterogeneous data distributions. Convergence
analyses are performed on three widely recognized datasets: CIFAR-10, CIFAR-100, and UTK, comparing
ADAPT-FED with SOTA FL algorithms, including FedAvg, FedSAM, and FedASAM.

As illustrated in[Figure 2] ADAPT-FED demonstrates robust convergence in settings with data heterogeneity
(v = 0.3). This performance is indicative of the adaptive learning rate mechanism within ADAPT-FED,
which fine-tunes the updates based on the observed instability and heterogeneity levels, thereby enhancing the
convergence rate.

ADAPT-FED utilizes an innovative adaptive learning rate strategy that dynamically adjusts based on the model’s
performance from one iteration to the next. This approach addresses not only the variability introduced by
differential privacy but also the challenges posed by non-1ID data across clients. Unlike traditional methods that
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Table 8: Generalization performance of ADAPT-FED versus baseline algorithms based on 20 clients
across three datasets: (a) CIFAR10, (b) CIFAR100, and (c) UTK, respectively, ;. € {0.04}, C' = 100.

CIFAR-10 CIFAR-100 UTK
Algorithm Dir. (a = 0.05, non-1ID) Dir. (a = 0.3) Dir. (o = 0.05, non-1ID) Dir. (a = 0.3) Dir. (a = 0.05, non-1ID) Dir. (o = 0.3)
0.0 0.01 0.02  0.03 0.0 0.01 0.02  0.03 0.0 0.01 0.02  0.03 0.0 0.01 0.02  0.03 0.0 0.01 0.02  0.03 0.0 0.01 0.02  0.03
FedAvg 50.63 4859 4462 40.86 6748 66.28 62.84 59.72 33.09 3261 30.82 2926 50.10 49.61 4738 4507 70.58 70.58 53.86 53.08 80.37 80.37 59.29 58.26
FedSAM 5047 5073 51.03 5111 67.59 66.66 67.25 6742 3297 3332 3409 3324 50.75 50.71 50.61 5103 7559 7559 7639 7654 8375 83.75 8375 83.59
FedASAM 5126 5148 5123 5123 67.06 6798 67.63 67.63 34.10 3394 3385 3385 51.04 5104 5074 5074 76.19 76.19 77.03 77.03 83.69 83.60 83.81 8381
FedProx 50.82 48.78 4477 41.15 6697 6527 6245 59.17 3298 3270 31.00 2942 49.67 4947 4751 4468 7049 7049 5359 5312 7975 79.75 5894 57.02

ADAPT-FED (ours) 56.49 59.66 59.78 60.01 7586 77.48 77.65 77.99 40.66 44.63 4352 4451 54.69 5740 49.83 5427 8131 8131 80.15 81.53 8556 8556 84.15 84.67

Table 9: Generalization performance of ADAPT-FED versus baseline algorithms based on 20 clients
across three datasets: (a) CIFAR10, (b) CIFAR100, and (c) UTK, respectively, ;. € {0.04}, C' = 100.

CIFAR-10 CIFAR-100 UTK
Algorithm C=1 C =100 C=1 C =100 =1 C =100
0.0 0.01 002 003 0.0 0.01 002  0.03 0.0 001 002 0.03 0.0 0.01 002 003 0.0 0.01 002  0.03 0.0 001 002 0.03
FedAvg 6748 6243 5467 4836 6748 6628 62.84 59.72 50.10  fail fail fail ~ 50.10 49.61 4738 4507 80.37 79.05 5148 5045 8037 8037 5929 5826
FedSAM 67.59 68.08 67.80 6825 67.59 66.66 67.25 6742 50.75 50.82 5048 50.72 50.75 50.71 50.61 51.03 8375 8338 8350 83.79 8375 83.75 8375 83.59
FedASAM 67.06 68.15 6829 6829 67.06 6798 67.63 67.63 51.04 50.60 51.01 51.01 51.04 5104 5074 50.74 83.69 8398 83.56 83.56 83.69 83.69 83.81 8381
FedProx 66.97 6207 5256 43.63 6697 6527 6245 59.17 49.67 fail fail fail  49.67 4947 4751 4468 7975 7131 4874 4879 79.75 79.75 5894 57.02

ADAPT-FED (ours) 7586 78.03 77.75 77.79 7586 7748 77.65 77.99 54.69 5781 4794 54.61 54.69 5740 49.83 5427 8556 84.01 84.90 8445 8556 8556 84.15 84.67

apply uniform updates, ADAPT—-FED tailors the learning rates to mitigate the impact of high gradient variances
and ensures consistent learning progress.

E.3 TRAINING STABILITY ANALYSIS

We evaluate the training stability of ADAPT-FED in comparison to various baseline FL algorithms. These
experiments are conducted across the CIFAR10, CIFAR100, and UTK datasets, with emphasis on differential
privacy settings and data heterogeneity.

|[Figure 10} [Figure 12| and [Figure 11} illustrate the relative progress (RP) across 200 training round under varying
conditions. These figures capture the effectiveness of ADAPT-FED’s adaptive learning rate mechanism in
enhancing training stability compared to traditional FL approaches. This strategy significantly reduces the
oscillations in RP, particularly evident in scenarios with high differential privacy levels and heterogeneous
data distributions. ADAPT-FED maintains a lower variance in RP compared to baselines like FedAvg and
FedProx, indicating more consistent progress and reduced training disruptions despite the introduction of noise
through differential privacy. [Figure 10|[Figure 12} and|[Figure 11]highlight ADAPT-FED’s ability to sustain lower
variability in RP even under severe data heterogeneity, reflecting its capacity to adapt to heterogeneous data
distributions effectively. ADAPT-FED employs an adaptive learning rate that dynamically adjusts based on the
observed gradient norms.

While baseline algorithms exhibit increased RP fluctuations, indicating struggles with gradient noise and
data heterogeneity, ADAPT-FED demonstrates a markedly smoother convergence curve. This distinction
demonstrates the limitations of SOTA methods that do not account dynamically for changing gradient scales,
often leading to inefficient learning rates that either overstep or underutilize the learning potential of the model.
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Figure 10: Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients
(CIFAR10 noniid-ness o = 0.3, 59 = 0.1) across three DP levels: (a) o2 = 0.0, (b) 02 = 0.01, and
(c) 02 = 0.02, respectively. ADAPT-FED exhibits more stable convergence compared to baselines.

F ALTERNATIVE RP-BASED 3 SCHEDULING MECHANISMS

To address the heuristic nature of the exponential R P transformation, we explore several theoretically motivated
alternatives to the 3 function in ADAPT—-FED. These variants aim to improve the robustness, interpretability,
and adaptability of local learning rate schedules under varying sharpness and instability conditions.
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Figure 11: Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients (UTK
noniid-ness & = 0.3, g = 0.1) across three DP levels: (a) o2 = 0.0, (b) 02 = 0.01, and (c)
02 = 0.02, respectively. ADAPT-FED exhibits more stable convergence compared to baselines.
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Figure 12: Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients
(CIFAR100 noniid-ness « = 0.3, o = 0.1). ADAPT-FED exhibits more stable convergence
compared to baselines.

F.1 OVERVIEW OF INSTABILITY-AWARE 3 SCHEDULES

Let RP* = {RP{“ ey RP]\“,} denote the observed relative progress or sharpness proxy values for client k&
across the last N training rounds. Each 8* variant below uses a transformation of RP" to adjust the local
learning rate n; = no - f(RP¥).

F.1.1 SOFTMAX-BASED 3

This schedule encourages more exploration when RP values are sharp by giving more weight to flatter (lower
RP) regions:

N k
—RPFy)
5’“ — E exp(—l. (23)
i=1 Z;V:l eXp(iRP]k)

This corresponds to a soft attention mechanism over past instability, encouraging smoother directions.

F.1.2 SELF-NORMALIZED f3

This approach normalizes the instability magnitude:

1

k
= - 24
7= R e (&9

This ensures scale-invariant adjustment and guards against sudden spikes in sharpness.

F.2 COMPARATIVE ADVANTAGES

¢ Softmax-based 3: Smoothly prioritizes flatter directions, especially useful when recent RP values
vary dramatically.

* Self-normalized (: Scale-invariant and robust to overall instability magnitude.

F.3 EMPIRICAL EVALUATION
We present ablation results comparing these variants to the R P-based /3 scheduling mechanism. Results show

that in highly unstable or D P-noisy settings, entropy-based and harmonic mean-based schedulers maintain more
stable learning while achieving competitive generalization performance.
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Figure 13: Test loss trajectories under three 3 scheduling strategies: the baseline exponential decay

(Exp), and two self-normalized variants defined as 5 = W and 8 = %, across 200

communication rounds for CIFAR-10, CIFAR-100, and UTK datasets with DP noise 02 = 0.03. Exp
baseline 3 schedules consistently lead to smoother convergence loss.
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