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ABSTRACT

Federated Learning (FL) frequently exhibits poor generalization due to unstable
training across heterogeneous clients. Although training instability can accel-
erate learning, it often compromises generalization, resulting in a fundamental
tension within FL. This work introduces ADAPT-FED, a framework that adap-
tively regulates training dynamics to leverage the advantages of instability while
mitigating its adverse effects. As a result, ADAPT-FED enables more stable and
consistent learning in privacy-constrained environments. Experimental results on
standard benchmarks demonstrate that ADAPT-FED enhances generalization and
convergence relative to state-of-the-art FL optimization algorithms.

1 INTRODUCTION

Federated learning (FL) enables decentralized model training while preserving data privacy Li et al.
(2019a); Wang et al. (2020b). However, FL implementation faces challenges due to the heterogeneity
of clients’ data distributions Hsieh et al. (2020), which complicates the aggregation of global model
parameters, leading to poor generalization performance Li et al. (2019b).
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Figure 1: Correlation of DP noise with train-
ing instability based on CIFAR10 setup. The
variance in relative progress shows that in-
creased DP noise elevates instability, leading
to larger gradient norms and lower accuracy.

Generalization is the model’s ability to perform well
on new, unseen data beyond the training dataset Zhang
et al. (2021). In FL, robust generalization is essential
for real-world applications where models face hetero-
geneous data and environmental conditions. Effective
generalization prevents overfitting and guarantees the
model’s reliability across heterogeneous environments.
Generalization is primarily pursued using first-order
gradient methods (e.g., gradient descent (GD) and its
variants Andrychowicz et al. (2016); Bottou (2010))
to minimize training loss during the learning process.
However, challenges such as the absence of flat sta-
tionary points near the trajectory of first-order gradient
methods Ahn et al. (2022), and differential privacy
(DP) Dwork (2006) lead to training instability Abadi
et al. (2016). This often results in non-monotonic
reductions in the training loss as shown in Figure 1
(a), affecting the model’s ability to generalize (models
that train stably generalize well Chandramoorthy et al.
(2022)). Interestingly, recent analyses suggest that
such unstable convergence can sometimes accelerate
optimization in centralized settings Ahn et al. (2022). This paradox motivates a critical but unexplored
question in FL: how can we adaptively regulate instability in FL to harness its optimization benefits
while suppressing its negative effects on generalization?

Recent developments in FL focus on improving generalization using sharpness-aware optimization.
These techniques aim for flatter minima in the loss landscape. Adaptations such as FedSAM Qu
et al. (2022) enhance generalization by applying sharpness-aware minimization at each client. This
approach promotes local generalization. Adaptive optimization techniques Reddi et al. (2020) also aim
to smooth the global loss surface, thereby improving generalization in FL. Despite these innovations,
most methods address optimization only indirectly by seeking flatter minima or smoother updates.
They do not directly control the training instability caused by the absence of flat stationary points
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near the trajectory of first-order gradient methods and DP noise. The localized nature of current
methods often cannot resolve the global stochasticity of FL environments. Thus, achieving robust
global model performance when combining locally optimal updates remains challenging. There is
a clear need for new approaches that go beyond flatness to refine local models and ensure stable,
generalizable global learning—an essential but currently unmet need in FL.

To address the challenges above, we propose Adaptive Federated Optimization with Learning
Stability (ADAPT-FED), a framework designed to enhance both stability and generalization of FL
models. ADAPT-FED dynamically adjusts learning rates based on historical relative progress (RP)
metrics, which act as stability indicators within the optimization process. Specifically, ADAPT-FED
increases the learning rate during stable periods and reduces it during unstable periods, ensuring
consistent training progress and mitigating the typical instabilities caused by erratic updates. In
designing and evaluating ADAPT-FED, we make the following contributions.

• We identify and analyze the causes of training instability and poor generalization in heterogeneous
FL settings, focusing on the adverse effects of GD’s lack of flat stationary points, partial client
participation, and DP noise.

• We propose ADAPT-FED, the first FL framework that explicitly leverages the relative progress
(RP) metric as an instability signal. Unlike prior adaptive or sharpness-aware approaches that either
smooth updates or seek flatter minima, ADAPT-FED dynamically increases the learning rate when
instability signals indicate faster progress is possible, and reduces it when instability threatens
generalization.

• We theoretically validate the effectiveness of ADAPT-FED in mitigating training instability. Our
analysis provides precise bounds on the improvements in stability and convergence rates, high-
lighting how ADAPT-FED mitigates the impact of training instability on the overall learning
process.

• We conduct rigorous empirical evaluations demonstrating that ADAPT-FED significantly enhances
model generalization and convergence across multiple datasets (CIFAR10, CIFAR100, and UTK),
with improvements of up to +5.06%, +14.79%, and +7.79% in generalization performance
compared to SOTA FL algorithms.

2 RELATED WORK

Sharpness-aware FL focuses on adapting sharpness-aware optimization techniques Caldarola et al.
(2022); Dai et al. (2023); Qu et al. (2022); Sun et al. (2023) to address the degradation of global model
generalization under non-IID settings. Sharpness-aware optimization methods Cha et al. (2021);
Izmailov et al. (2018); Foret et al. (2020); Kwon et al. (2021) improve generalization in centralized
learning by seeking flatter minima in the loss landscape Foret et al. (2020); Kwon et al. (2021),
which has inspired several adaptations for FL settings by prior work. For instance, FedSAM Qu et al.
(2022) and its variants (FedGAMMA Dai et al. (2023), SWA Izmailov et al. (2018)) apply these
optimizations locally at each client, promoting convergence to flatter local minima and improving
local generalization. In conclusion, by minimizing loss and sharpness with smoother loss landscapes,
sharpness-aware optimizations address client drift and improve both convergence and generalization
across diverse and unseen data.

Adaptive optimization techniques in FL. focus on addressing the convergence challenges posed
by heterogeneous client data and communication constraints. In particular, FedAdagrad Reddi
et al. (2020) adjusts the learning rate based on the accumulated gradient squared values, making it
effective for sparse-gradient tasks and ensuring that clients with less frequent updates still contribute
meaningfully. FedAdam Reddi et al. (2020) builds on this by incorporating momentum terms to
smooth out the optimization trajectory, offering robustness to noisy gradients. FedYogi Reddi et al.
(2020) uses a more conservative update rule, reducing the risk of divergence in situations with large
gradients. By adapting to the local landscape of each client, these optimizers ensure faster and more
stable convergence, especially where simple methods like FedAvg McMahan et al. (2017) struggle
due to the high variance in client updates.

Limitations of existing techniques. Despite recent innovations, most methods address optimization
only indirectly. They seek flatter minima or smooth updates, but do not explicitly regulate the training
instability. This instability is central to both convergence and generalization in FL. As a result, the
localized focus of these approaches often fails to resolve the global stochasticity of FL. This leaves a
persistent gap in achieving stable and reliable global learning.
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3 PRELIMINARIES AND PROBLEM SETUP

To establish the context for our study, we define FL with DP and introduce the problem of training
instability in FL. Our goal is to diagnose the role of instability in shaping convergence and general-
ization, thereby motivating the adaptive regulation strategy introduced later in this paper. The central
question addressed through both theoretical and empirical analysis is: What is the effect of training
instability on generalization in FL? By establishing this link, we motivate the need for methods that
not only avoid instability but also regulate it adaptively.

3.1 COMMON FL AGGREGATION ALGORITHM (FEDAVG)
We consider a standard federated learning (FL) setting where a global model θ is trained across
K decentralized clients. Each client k holds local data Dk = {(xn

k , y
n
k )}

Nk
n=1, which may differ in

distribution across clients due to non-IID sampling and data distribution skew Hsieh et al. (2020);
Liu et al. (2020). This data heterogeneity impairs convergence and generalization.

FL minimizes the global empirical risk:

θ∗ ≜ argmin
θ

{
F (θt+1) =

K∑
k=1

wkFk(θ
t+1
k )

}
, wk =

Nk∑
j Nj

, (1)

where Fk is the local empirical risk on client k. Each client performs local training by initializing
θt+1
k ← θt and minimizing:

θ∗ ← argmin
θ

{
(θ − θt+1

k )T∇Fk(θ
t+1
k )

}
s.t. ||θ − θt+1

k ||2 ≤ ϵ. (2)

The updated parameters are sent to the server and aggregated to form θt+1 =
∑K

k=1 wkθ
t+1
k .

3.2 PRELIMINARIES OF FLATNESS SEARCHING IN FL: FEDSAM
FedSAM leverages the SAM optimizer Foret et al. (2020) to enhance flatness exploration during local
training in FedAvg Qu et al. (2022), aiming for more robust model performance.

SAM optimizer: The SAM optimizer transforms a loss function F (θ) into a min-max cost function
as follows:

min
θ

max
||δ||≤ρ

F (θ + δ), (4)

where ρ is a positive real number and ||δ|| is the L2-norm of δ. As a key factor, δ works as the
perturbation that maximally raises the loss value so that the SAM optimizer can find flat minima.
The perturbation can be simply approximated as the gradient direction, which points to the steepest
direction of the loss surface.

To preserve model privacy, FL applies differential privacy (DP) via Gaussian noise added to clipped
local gradients. While DP prevents information leakage Shokri & Shmatikov (2015), it exacerbates
training instability in FL. We formalize the DP mechanism and its sensitivity bounds in Appendix C.

3.3 INSTABILITY IN MACHINE LEARNING

Training instability in centralized learning Ahn et al. (2022) refers to the phenomenon in which
GD in Equation 2 causes the local risk Fk(θ

t+1
k ) to decrease non-monotonically. The instability

occurs because GD trajectories infrequently encounter flat stationary points. Instead, the sharpness
(curvature) L fluctuates across training iterations Ahn et al. (2022). We give a rigorous analysis of
instability in FL with SAM optimizer. Several key assumptions are outlined below (the proof appears
in Appendix B).

Assumption 1 (Lipschitz smoothness). The function Fk is differentiable and ∇Fk is L-Lipschitz
continuous, ∀k ∈ {1, 2, . . . ,K}, i.e.,

||∇Fk(θ)−∇Fk(θ
′)|| ≤ L||θ − θ′||, ∀θ,θ′ ∈ Rd. (A.1)

Assumption 2 (Bounded variance). The gradient of the function Fk have σl-bounded variance, i.e.,

Eξe

[
||∇Fk(θ

e(k); ξk)−∇Fk(θ(k))||2
]
≤ σ2

l , ∀k ∈ {1, 2, . . . ,K}, e ∈ {1, . . . , E − 1}, (A.2)

and the global variance is also bounded, i.e.,

1

M

M∑
k=1

||∇Fk(θ)−∇F (θ)||2 ≤ σ2
g , ∀θ ∈ Rd. (A.3)

3
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Assumption 3 (Bounded gradient). For any k ∈ {1, 2, . . . ,K} and θ ∈ Rd, we have

||∇Fk(θ)|| ≤ B. (A.4)

Theorem 3.1 (Expected Descent Bound). Under Assumptions 1–3 (All variables and notation are defined in
Appendix B), the expected loss after one communication round satisfies

EBe
k
,ze

k
[F (θt+1)]Be

k
,ze

k
− E[F (θt)] ≤ ηπtEL2(ρ2 −B2)− πtηE

2
||∇F (θt)||2 − ηπt

2E
|| 1

K

K∑
k=1

∆t
k||2

+ 3πtη2E
2

(
2L2ρ2σ2

i + 6E(3σ2
g + 6L2ρ2) + 6E||∇F (θt)||2

)
+ 3πtη2E

2

(
3η2EL2ρ2 +B2)+ 3η2EL(L2ρ2+B2)

2

+ Lσ2C2pd
2m2 .

(29)

Notation. Be
k is the stochastic mini-batch for client k at iteration e. zek is the DP noise added to the clipped

gradient (e.g., Gaussian with variance σ2C2).

The bound in Theorem 3.1 shows that sharp curvature terms (L2ρ2) amplify instability and gradient fluctuations,
while DP noise contributes an additional error floor (Lσ2C2pd

2m2 ). When curvature L fluctuates due to lack of flat
stationary points near GD trajectory Ahn et al. (2022), these effects compound, preventing consistent descent of
the loss. This leads to unstable training dynamics and ultimately weakens generalization.

Proposition 1 (Relative Progress as an Instability Metric (RP)). Assume that Equation A.1 hold. We define RP:

RPt = η · ||gk(θt) ·min
(
1, C

||gk(θt)||2

)
+N

(
0, σ2C2

m
Id
)
||22︸ ︷︷ ︸

EBe
k
,ze

k
[ ||g̃k(θt)||22 ]

·
(
EBe

k
,ze

k
[F (θt+1)]− F (θt)

)
. (3)

where η is the learning rate, C the gradient clipping constant, σ2 the noise variance, m the number of sampled
clients, and d the model dimensionality.

RP quantifies how much the global empirical risk improves after updating the gradients at each round relative to
the size of the gradient and the step size η taken. Stability in FL is achieved when the RP consistently remains
below a negative threshold, indicating steady and controlled progress in the optimization process without erratic
fluctuations.

Proof of Proposition 1. Assume that the global empirical risk F (θ) is L-smooth. Using the standard descent
lemma for L-smooth functions and incorporating the DP-noised clipped gradient update, we have:

EBe
k
,ze

k
[F (θt+1)]− F (θt) ≤ −η

(
1− Lη

2

)
· EBe

k
,ze

k

[
||g̃k(θt)| |22

]
, (4)

η EBe
k
,ze

k

[
∥g̃k(θt)∥22

] (
EBe

k
,ze

k
[F (θt+1)]− F (θt)

)
= −η2∥∇F (θ)∥4 + η3∥∇F (θ)∥2

∫ 1

0

τ EBe
k
,ze

k

[
∥g(θ)∥2L

]
dτ

≤ −η2

(
1− Lη

2

)
EBe

k
,ze

k

[
∥g̃k(θt)∥32

]
.

(5)

Notation. τ ∈ [0, 1] is the interpolation parameter used in the integral, which traces points along the line
segment between the current iterate θ and the update θ − ηg(θ). It appears in the directional smoothness term
L(θ; ητg(θ)) to capture the curvature information along this path.

Takeaway: This formulation makes explicit how RP reflects both the gradient magnitude and the local curvature
through the expected Lipschitz constant L. As curvature increases, the second-order term grows linearly in L,
offsetting the negative first-order descent term −η2∥∇F (θ)∥4. The net effect is a less negative descent, i.e.,
reduced progress per step, which we capture as ∂RP/∂L > 0. In this sense, curvature inhibits descent efficiency,
making RP positively associated with sharpness while descent efficiency −RP decreases monotonically in L.
Analyzing the descent inequality equation 5 reveals two regimes: 1) When L < 2

η
, the right-hand side (RHS)

update term remains negative, ensuring each gradient step reduces the global empirical risk, promoting stable
convergence. 2) Conversely, when L > 2

η
, the RHS term becomes positive, potentially increasing the global

empirical risk at each step, leading to divergence and destabilizing the optimization.

3.4 EMPIRICAL ANALYSIS OF INSTABILITY IN FL
As a preliminary study, we compute the instability RP and generalization (accuracy) metrics of FedAvg for the
CIFAR10 benchmark across FL rounds. We use the experimental setup in §D.2.
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Observation: In Figure 1, the RP variance values across FL rounds are greater than zero, indicating training
instability in FL. Higher levels of DP lead to increased RP variance, suggesting higher training instability.
Additionally, higher gradient norm values, which are observed with increasing DP, signal slower convergence
during training and a noticeable decline in generalization.

Takeaway: In FL with DP, there exists an optimal point in stability where the η is optimized to maintain better
generalization. Identifying the optimal η enables maximization of both the model’s convergence rate and its
generalization capability by allowing all parameters to reach their optimal values, necessitating using larger η
for parameters that have a minimal impact on the model and smaller η for those that significantly alter it.

4 PROPOSED METHOD: ADAPT-FED
Following the preliminaries in Section 3, we describe the local training and aggregation steps of our method,
ADAPT-FED. Our approach extends FedSAM, which stabilizes training through sharpness-aware perturbations
that encourage flatter minima. Although FedSAM improves local generalization, it does not address instability
from the lack of flat stationary points and DP noise. As a result, local perturbations may enhance sharpness but do
not guarantee stable global convergence. To address this, ADAPT-FED introduces an adaptive mechanism that
adjusts learning rates based on relative progress, providing stability-aware training that complements FedSAM’s
sharpness-aware updates.

4.1 TRAINING PROCESS OF ADAPT-FED
Local training. At the start of training round t+ 1, client k receives the aggregated global model θt from the
previous round t, initializes its local model with the global one θt+1

k ←− θt, and runs E training epochs θt+1
k

with DP.

Gradient Descent with DP. Client k trains θt+1
k using GD to find the best local objective Fk(·) such that

Equation 2 is satisfied. As GD progresses, the global model’s training stability depends on the magnitude of the
learning rate η and the gradient norms EBe

k
,ze

k
[||g(θt)||]. When η is chosen such that L > 2

η
, we have observed

that the RHS term in Equation 5 becomes positive, which can increase the empirical risk at each step and lead
to divergence, destabilizing the optimization process. To stabilize the optimization process, we must take into
account a crucial piece of conventional wisdom originating from the quadratic Taylor approximation model of
GD. According to this wisdom LeCun et al. (1992); Schaul et al. (2013), if the sharpness at local step e is L,
then η should be set no larger than 2

L
to prevent training instability. The η = 2

L
rule continuously anneals the

step size, ensuring that the training objective decreases at each iteration.

In practice, FedSAM extends GD by introducing sharpness-aware perturbations that effectively reduce the
impact of high L, guiding updates toward flatter regions of the loss landscape.

Challenges in Learning Rate Scheduling Scheduling the learning rate using the η = 2
L

rule results in small η
that hinder the learning process due to the progressive increase in L at each training iteration, causing slow or
even stalled convergence Cohen et al. (2021). This stalled convergence happens particularly when the model
approaches areas of high sharpness (high sensitivity of the loss to perturbations in the parameter space) in the
loss landscape, which are typically regions with steep gradients. Thus, the inverse relationship 2

L
results in

tiny η, potentially hindering convergence by making the steps too cautious and slow. It is also computationally
expensive to compute L at each iteration since it involves the second-order derivative of the objective function.

4.2 ADAPT-FED DYNAMIC LEARNING RATE ADJUSTMENT

To address the instability challenges that FedSAM alone cannot resolve, ADAPT-FED augments sharpness-aware
training with an adaptive learning rate adjustment mechanism. Rather than relying solely on local perturbations,
ADAPT-FED explicitly tracks relative progress (RP) as a signal of training stability and adjusts step sizes
accordingly. This joint approach leverages the benefits of FedSAM’s flatter minima while directly mitigating
instability. We present the entire process of ADAPT-FED in Algorithm 1. Let F (θ) be an unstable objective
function: a function differentiable w.r.t. parameters θ . We want to minimize the expected value of this function,
E[F (θ)], relative to its parameters, θ . For each client k, we use {RP k

1 , . . . , RP k
T } to show the objective

function’s training stability measures at different FL training rounds t ∈ {1, . . . , T}.

ADAPT-FED introduces a novel method for scheduling each client’s local learning rate ηk. It dynamically
schedules the ηk based on the moving averages of the historical RP, where the hyperparameter β > 0 controls
the decay rate of the moving average, allowing for precise control of GD steps based on the observed training
instability. For each client k, ADAPT-FED calculates the moving average of RP values across training rounds
(RP

k
t ) to smooth out the measure of recent training progress over a window of N iterations. This average is vital

for assessing the overall direction and stability of the learning process RP
k
t = 1

N

∑t
i=t−N+1 exp(RP k

i ); ∀i ∈
{1, . . . , t}. Inspired by LeCun et al. (1992); Schaul et al. (2013), which proposes that the ηk should be chosen
based on the inverse sharpness of the objective function ηk = 2

L
that measures stability, ADAPT-FED schedules

the ηk for the next iteration based on the inverse of the moving average of RP
k
t . This transformation, in

5
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Algorithm 1 ADAPT-FED: FedSAM with RP–adaptive learning rates

1: Inputs: clients K, rounds T , local epochs E, initial model θ0, initial LR η0, decay β, RP window
N , SAM radius ρ, norm p∈{2,∞}, DP clip C, noise scale σ, small εnum

2: Output: global model θT

3: for t = 1 to T do
4: Server samples participating set K of size m and broadcasts θt

5: for all clients k ∈ K in parallel do
6: RPk

t ← ηk · EBe
k,z

e
k
[||g̃k(θk

t−1)||22] · (EBe
k,z

e
k
[F (θt−1)]− F (θt−2))

7: RP
k
t ← 1

N

∑t
i=t−N+1 exp(RPk

i ), ηk ← η0 · β

RPk
t

(RP from prior round)

8: θ0
k ← θt

9: for e = 0 to E − 1 do
10: gk ← ∇Fk(θ

e
k) (Local training with FedSAM + DP)

11: δk ← ρ · gk
||gk||p + εnum

(SAM perturbation)

12: θ̃e
k ← θe

k + δk

13: gsam
k ← ∇Fk(θ̃

e
k)

14: g̃dp
k ← gsam

k ·min
(
1, C

||gsam
k ||2

)
+N

(
0, σ2C2

m Id
)

15: θe+1
k ← θe

k − ηtk g̃
dp
k

16: end for
17: θt+1

k ← θE
k ; send θt+1

k to server
18: end for
19: Aggregate: θt+1 ←

∑
k∈St

wk θ
t+1
k (e.g., FedAvg weights)

20: end for

which each RP k
i value is exponentiated before the moving average is calculated, has several benefits: 1) The

exponential function increases very rapidly, making it possible to assign more weight to higher RP values; thus,
higher RP values will have a disproportionately larger learning rate ηk scheduling effect for enhanced stability.
2) If the RP includes negative values, the exponential function ensures all transformed RP s are positive to
guarantee positive learning rates. This scaling is designed to stabilize the training dynamically, responding to

the immediate past training stability conditions ηk = η0 ·
(

β

RP
k
t

)
.

Intuition: ADAPT-FED fine-tunes ηk to match the actual training dynamics. When the RP is low, indicative of
stable progress, ηk increases, which is conducive to faster convergence. Conversely, high RP signals training
instability, prompting a reduction in the ηk to safeguard against potential divergences, mitigating training
instability.

Based on the learning rate scheduling procedure, we perform the local model update as θe+1
k = θe

k − η0 ·(
β

RP
k
t

)
· ∇Fk(θ

e
k). Each training round t ends with the termination of local training and the return of updated

local models to the server for aggregation into a global model.

Server Aggregation: The updated local models are then aggregated at the server to newly update the global
model θt+1 for the next round. We adopt the commonly used FedAvg aggregation scheme to aggregate local
models into a global model θt+1 =

∑K
k=1 wkθ

e+1
k .

4.3 ADAPTIVE LEARNING RATE COMPONENTS

This section outlines methods for setting the learning rate decay constant β and the initial learning rate η0.

4.3.1 LEARNING RATE DECAY CONSTANT β

Choose β to adapt ηk responsively across rounds. Motivated by edge-of-stability theory Cohen et al. (2021)

(and the classical 2/L stability threshold), set β = 2 so that ηk = η0 ·
(

2

RP
k
t

)
, which makes ηk sensitive to

6
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instability magnitude. As RP k
t decreases in sharper regions, the step size contracts, helping cap fairness drift

when RP spikes.

4.3.2 INITIAL LEARNING RATE η0

We select η0 via a learning-rate range test Smith (2017), scanning a practical range and choosing the region
with best generalization. Anchoring η0 well improves both convergence and fairness by keeping subsequent
RP-driven adjustments within a stable, low-drift regime.

5 THEORETICAL ANALYSIS
This section discusses the theoretical bounds of ADAPT-FED, focusing on its convergence rate. We provide
theorems that set upper bounds on how quickly ADAPT-FED can stably converge, leading to performance
generalization. These theorems are essential for understanding how the eta affects convergence. Before that, we
introduce the assumptions consistent with other works in FL Li et al. (2019b):

5.1 CONVERGENCE ANALYSIS OF ADAPT-FED

Theorem 5.1 (Expected Descent with ADAPT-FED Scheduling). Let Assumptions 1–3 hold (All variables and
notation are defined in Appendix B). In round t, each client k uses the adaptive local learning rate

ηt
k=η0 ·

β

RP
k
t

, η̄t =
1

K

∑
k∈K

ηt
k (mean step− size).

EBe
k
,ze

k
[F (θt+1)]− F (θt) ≤ −

πt( 1
K

∑
k∈K

η0β

RP
k
t

)E

2
||∇F (θt)||2 +

( 1
K

∑
k∈K

η0β

RP
k
t

) 2EL2ρ2

2

+
3πt( 1

K

∑
k∈K

η0β

RP
k
t

) 2EL2ρ2

2
+

15πtE( 1
K

∑
k∈K

β

η0RP
k
t

) 2L2

2

+
3πt( 1

K

∑
k∈K

η0β

RP
k
t

) 2EL
(
L2ρ2 +B2

)
2

+
Lσ2C2pd

2m2
.

(30)

Takeaway: ADAPT-FED enables self-regulating optimization. Client-wise RP directly controls both progress
and error terms, resulting in larger, safer steps in flat regions and smaller, protective steps in sharp or noisy
regimes. This approach reduces loss fluctuations and enhances.

6 EXPERIMENTS
We extensively evaluate ADAPT-FED’s effectiveness in achieving generalization for FL with DP under different
data heterogeneity levels while adhering to two constraints: maintaining performance stability; and faster
convergence.

6.1 EXPERIMENTAL SETUP

Models and datasets. We assess ADAPT-FED’s efficacy using the setup in §D.2. We compare ADAPT-FED
with SOTA baselines on the FL classification benchmarks datasets CIFAR10, CIFAR10, and UTK, examining
generalization across different client partitions in FL.

Baselines: We evaluate ADAPT-FED across three key categories: 1) FL baseline category represented by
FedAvg, serves as the standard learning scheme in FL. 2) FL sharpness-aware category includes FedSAM and
FedASAM Caldarola et al. (2022); Dai et al. (2023); Qu et al. (2022); Sun et al. (2023), which flattens minima
in the loss landscape to improve model generalization. 3) FL regularization category includes FedProxMohri
et al. (2019), which uses regularization techniques to minimize the divergence of local models for improved
model generalization.
Hyperparameters. For each case of algorithm and its evaluation on the benchmarks, we tuned the hyper-
parameters: µ for FedProx is tuned among three choices {0.01, 0.1, 1}. We tuned the hyperparameters ρ of
FedSAM and FedASAM among three choices {0.02, 0.05, 0.1}, and their respective β ∈ {0.1, 0.9}. Finally,
we set the initial local learning rate using grid search as η0 = {0.09, 0.04, 0.1, 0.3}. We set the noniid-ness
α = {0.3, 0.05}, DP σ2 = {0.0, 0.01, 0.02, 0.03}, and DP clipping constant C = 1 for all the evaluations in
the main paper. We present empirical results across both 10 and 20 clients. Detailed ablation studies for these
hyperparameters and their impact on model generalization and convergence speed are reported in ??.

6.2 PERFORMANCE EVALUATION

6.2.1 GENERALIZATION ANALYSIS FL

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: λmax results for CI-
FAR10.

IID (ϵ = 0.53)

Algorithm λmax ↓
FedAvg 92.23 ± 1.05
FedSAM 23.25 ± 0.62
FedASAM 23.51 ± 0.58
FedProx 94.47 ± 1.12
FedAdagrad 24.05 ± 0.71
FedAdam 34.10 ± 0.84
FedYogi 91.90 ± 1.20
ADAPT-FED (ours) 18.90 ± 0.44

↓: lower is better.

ADAPT-FED outperforms SOTA techniques in heterogeneous FL settings
as shown in Table 3 (refer to Appendix E.1 for detailed generalization eval-
uations). ADAPT-FED demonstrates generalization improvements of up
to +5.06%, +14.79%, and +7.79% for CIFAR10, CIFAR100, and UTK
respectively. These results confirm that ADAPT-FED effectively mitigates
the strong training instability associated with heterogeneity, thereby enhanc-
ing generalization across clients. We believe these generalization gains
are largely due to ADAPT-FED’s use of stability-based adaptive learning
rates, which directly address training instabilities caused by the GD learning
algorithm. In contrast, existing techniques for training stability primarily
focus on instabilities caused by discrepancies in local models due to data
heterogeneity across clients, which does not inherently guarantee stability
in GD learning. As heterogeneity is alleviated, as α increases from 0.05
to 0.3, generalization performance across all baselines improves due to the
homogeneity of data distribution, which reduces discrepancies between local models across clients. Nevertheless,
ADAPT-FED continues to demonstrate superior capability in enhancing generalization.

Takeaway: ADAPT-FED improves generalization compared to SOTA techniques in non-IID FL environments.

Table 2: Generalization performance of ADAPT-FED versus baseline algorithms across 10 clients on
three datasets: CIFAR10, CIFAR100, and UTK (η0 = 0.1). For readability, only the mean values
across 3 runs are shown. Best means are in bold.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3)

ϵ = +∞ 1.85 0.53 0.23 +∞ 1.85 0.53 0.23 +∞ 1.85 0.53 0.23 +∞ 1.85 0.53 0.23 +∞ 1.85 0.53 0.23 +∞ 1.85 0.53 0.23

FedAvg 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 78.89 78.89 64.87 64.83
FedSAM 57.93 58.08 58.67 58.74 74.80 74.18 74.61 74.90 37.43 38.49 38.57 38.17 42.18 42.64 42.81 43.89 73.28 73.28 73.58 73.35 79.06 79.06 79.10 78.83
FedASAM 59.09 58.78 58.74 58.74 75.40 74.91 74.51 74.51 38.56 37.83 37.99 37.99 43.39 43.12 43.28 43.28 73.31 73.31 74.07 74.07 78.63 78.63 79.48 79.48
FedProx 59.86 55.27 49.14 42.82 73.54 69.48 64.36 59.91 37.90 36.37 34.30 30.97 42.36 40.66 36.87 34.84 65.42 65.42 55.05 54.68 71.40 71.40 57.03 56.65
FedAdagrad 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 71.06 71.06 56.38 56.56
FedAdam 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 78.89 78.89 64.87 64.83
FedYogi 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 78.89 78.89 64.87 64.83
ADAPT-FED (ours) 63.02 65.18 65.39 65.83 80.46 81.33 81.24 81.75 51.44 53.59 54.26 54.34 58.18 61.25 61.38 60.39 75.05 75.05 75.05 74.31 86.85 86.85 86.49 86.86

Table 3: Generalization performance of ADAPT-FED versus baseline algorithms across 20 clients on
three datasets: CIFAR10, CIFAR100, and UTK (η0 = 0.1). For readability, only the mean values
across 3 runs are shown. Best means are in bold.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3)

ϵ = +∞ 1.85 0.53 0.23 +∞ 1.85 0.53 0.23 +∞ 1.85 0.53 0.23 +∞ 1.85 0.53 0.23 +∞ 1.85 0.53 0.23 +∞ 1.85 0.53 0.23

FedAvg 41.83 41.83 36.20 32.72 62.29 59.05 53.79 50.27 22.12 21.77 21.15 19.74 41.81 41.24 37.66 34.20 61.71 61.71 53.73 53.94 74.28 74.28 60.14 60.20
FedSAM 42.45 44.40 45.02 45.02 60.85 60.41 60.73 59.00 18.23 20.17 20.53 19.53 41.52 42.32 41.90 42.96 72.98 72.98 72.77 72.13 82.22 82.22 82.78 82.43
FedASAM 45.57 45.49 45.89 45.89 61.91 61.49 61.07 61.07 22.29 22.57 21.91 21.91 42.82 42.19 42.60 42.60 72.19 72.19 73.25 73.25 83.30 83.30 82.68 82.68
FedProx 46.90 42.64 37.10 33.85 61.50 57.51 54.37 50.03 21.93 21.98 21.15 20.12 42.10 41.36 37.62 34.15 61.70 61.70 53.64 53.26 74.01 74.01 60.93 59.08
FedAdagrad 45.24 41.83 36.20 32.74 62.30 59.10 53.79 50.28 22.13 21.62 21.15 19.74 41.83 41.35 37.77 34.50 61.89 61.89 53.73 53.95 74.30 74.30 60.41 60.43
FedAdam 45.24 41.83 36.20 32.74 62.29 59.05 53.91 50.47 22.13 21.62 21.15 19.74 41.56 41.78 37.61 34.25 61.89 61.89 53.73 53.95 74.28 74.28 60.14 60.20
FedYogi 45.24 41.83 36.20 32.74 62.47 59.44 53.27 50.14 22.13 21.62 21.15 19.74 41.82 41.56 37.69 34.20 61.89 61.89 53.73 53.95 74.91 74.48 60.27 60.20
ADAPT-FED (ours) 43.39 49.99 50.78 49.55 72.01 73.88 73.88 74.60 7.75 23.08 13.12 24.29 48.41 52.48 54.88 56.13 79.20 79.20 76.22 76.22 84.95 84.95 85.13 84.13

6.2.2 RATE OF CONVERGENCE ANALYSIS

We compare ADAPT-FED with SOTA techniques to evaluate its ability to achieve faster convergence. On the
CIFAR10, CIFAR100, and UTK datasets, ADAPT-FED demonstrates faster and more robust convergence than
the baselines as shown in Figure 2. The improved convergence rate is a direct result of ADAPT-FED’s use of
adaptive learning rates, which specifically address training instabilities caused by the GD learning algorithm. In
contrast, other techniques mainly focus on mitigating instability arising from discrepancies in local models due
to data heterogeneity across clients, which does not inherently ensure stable learning.

Takeaway: ADAPT-FED leads to faster and more robust convergence compared to SOTA techniques in FL with
DP (For additional experiments, including comprehensive generalization comparisons, convergence behavior
under heterogeneity, and training stability across privacy levels, refer to Appendix E).

6.2.3 PRIVACY-UTILITY EVALUATION

Table 3 presents the test accuracies corresponding to different levels of privacy guarantees. ADAPT-FED
consistently surpasses previous state-of-the-art methods across a range of privacy budgets ϵ. The enhanced
convergence rate is attributed to ADAPT-FED’s implementation of adaptive learning rates, which mitigate
training instabilities introduced by the GD under differential privacy noise.
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Table 4: RP variation and generalization performance across three datasets. Top: results under
different η0 values. Bottom: results under different N values.

Variation with η0

CIFAR10 CIFAR100 UTK

η0 = 0.04 η0 = 0.1 η0 = 0.04 η0 = 0.1 η0 = 0.04 η0 = 0.1

RP Variation 1.98 2.10 1.66 1.83 2.23 2.31
Generalization 77.48 ± 0.42 73.88 ± 0.38 57.40 ± 0.35 54.88 ± 0.33 85.56 ± 0.28 84.95 ± 0.27

Variation with N

CIFAR10 CIFAR100 UTK

N = 1 N = Nmax N = 1 N = Nmax N = 1 N = Nmax

RP Variation 2.01 2.10 1.71 1.83 2.12 2.31
Generalization 75.63 ± 0.40 73.88 ± 0.38 56.34 ± 0.34 54.88 ± 0.33 86.10 ± 0.27 84.95 ± 0.27
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Figure 2: Convergence of the training loss of ADAPT-FED and baseline algorithms on 10 clients
(CIFAR10, CIFAR100, and UTK, noniid-ness α = 0.3) with DP σ2 = 0.01, ηo = 0.1.
6.2.4 FLATNESS RESULTS

To evaluate the flatness of the global model, we report the maximum eigenvalue of the Hessian, λmax, on
CIFAR10, a standard proxy for sharpness Qu et al. (2022). A lower value indicates flatter minima and better
stability. While baselines either converge to sharp regions (e.g., FedAvg, FedProx, FedYogi) or partially reduce
sharpness through perturbation-based methods (FedSAM, FedASAM), ADAPT-FED consistently achieves the
lowest λmax. This result highlights that adaptive learning rate regulation guided by relative progress is more
effective than static sharpness-aware updates, producing flatter solutions and mitigating DP-induced instabilities.
These flatter minima explain the faster and more stable convergence observed in ADAPT-FED.

6.2.5 ABLATION STUDY

We study the effect of two key components in ADAPT-FED: the initial learning rate η0 and the RP smoothing
window N . Table 4 shows that increasing η0 from 0.04 to 0.1 consistently raises RP variation across all datasets,
leading to reduced generalization. This confirms that larger step sizes amplify instability, which degrades
performance even when adaptive scheduling is applied. Similarly, Table 4 compares short vs. long RP smoothing.
Larger N increases RP variation and lowers accuracy, suggesting that excessive smoothing makes the controller
less responsive to instability spikes. stability-aware learning requires careful calibration: overly aggressive η0 or
excessive smoothing undermines the ability of ADAPT-FED to regulate instability, while moderate values strike
the best balance between stability and generalization.

7 CONCLUSION

We introduce ADAPT-FED, an FL method that tackles the challenges of training instability and suboptimal
generalization in FL. ADAPT-FED dynamically adjusts learning rates based on historical relative progress
metrics, enhancing stability and improving the generalization across clients with heterogeneous data. We establish
a detailed theoretical framework analyzing how ADAPT-FED mitigates the impacts of data heterogeneity and
gradient noise on the learning process. Our theoretical findings are supported by empirical evaluations across
various datasets, where ADAPT-FED consistently outperforms SOTA optimization methods in improving
stability, accelerating convergence, and generalization. These improvements make ADAPT-FED a robust
solution for practical, real-world FL applications.
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Appendix We provide additional information for our paper, ADAPT-FED: Adaptive Federated

Optimization with Learning Stability, in the following order:

• Preliminary Lemmas (Appendix A)

• Proof of Convergence Analysis (Appendix B)

• Differential Privacy Guarantees in Federated Learning (Appendix C)

• Detailed Preliminaries and Problem Setup (Appendix D)

• Additional Experimental Results (Appendix E)

• Alternative RP-Based β Scheduling Mechanisms (Appendix F)

A PRELIMINARY LEMMAS

Lemma 1 (Lemma B.1, Qu et al. (2022)). Under Assumptions 1–2, for any learning rate η ≤ 1
4EL

, the updates
exhibit drift arising from the deviation δk,e − δ.

1

K

∑
k

E
[
||δk,e − δ||2

]
≤ 2E2L2η2ρ2. (B.1)

Where

δ = ρ
∇F (θt)

||∇F (θt)|| , δk,e = ρ
∇Fk(θ

t,e, ξk)

||∇Fk(θt,e, ξk)||
. (B.2)

Lemma 2 (Lemma B.2, Qu et al. (2022)). Under the above assumptions, for any learning rate η ≤ 1
10EL

, the
updates exhibit drift arising from the deviation θt,e(k)− θt.

1

K

∑
k

E
[
||θt,e(k)− θt||2

]
≤ 5Eη2

(
2L2ρ2σ2

l + 6E(3σ2
g + 6L2ρ2) + 6E||∇F (θt)||2

)
+ 24K3η4L4ρ2.

(B.3)

Lemma 3. The two model parameters obtained from two adjacent datasets differing by a single sample of client
k in communication round t,

E−1∑
e=0

||yt,e(i)− xt,e(k)||22 ≤ 2Emax ||∆t
k(y)−∆t

k(x)||22. (B.4)

Proof. We recall that the local update performed by client k is

E−1∑
e=0

θt,e(k) =

E−1∑
e=0

θt,e−1(k) + ∆t
k,

(the initial value is assumed as θt−1 = θt,0 = θt). Then,

E−1∑
k=0

||yt,e(i)− xt,e(k)||22 ≤ 2

E−1∑
e=0

||yt,e−1(k)− xt,e−1(k)||22

+ 2||∆t
k(y)−∆t

k(x)||22.

(B.5)

Unrolling the recursion from τ = 0 to e yields

E−1∑
e=0

||yt,e(k)− xt,k(k)||22
a)

≤ 2Emax ||∆t
k(y)−∆t

k(x)||22. (B.6)

Where a) uses the initial value θt(k) = xt,0(k) = yt,0(k) and 0 < k ≤ E.

12
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Lemma 4. Assuming 1 and 3 hold, the aggregated update obtained by averaging the clipped local updates of
the selected clients is

E|| 1
m

∑
i∈W t

∆̃t
k||2 ≤ 3Eη2(L2ρ2 +B2). (B.7)

Proof.

E|| 1
m

∑
k∈W t

∆̃t
k||2 ≤ E|| 1

m

∑
i∈W t

E−1∑
k=0

ηgt,ek (k) · αt
k||2

≤ η2

m

∑
k∈W t

E−1∑
k=0

E||∇FK(θt,e(k) + δ; ξk)−∇Fk(θ
t,E(k); ξk)

+∇Fk(θ
t,e(k); ξk)−∇Fk(θ

t(k)) +∇Fk(θ
t(k))||2

a)

≤ 3Eη2(L2ρ2 +B2),

(B.8)

where (a) is derived using Assumptions 1 and 3, and

αt
k := min

(
1,

C

η||
∑E−1

e=0 gt,ek (k)||2

)
. (B.9)

B PROOF OF CONVERGENCE ANALYSIS

Proof of Theorem 3. For ease of reference, we define the following notations:

∆t
k = η

E−1∑
e=0

gek(k) · αt
k, ∆

t
k = η

E−1∑
e=0

gek(k) · αt, (6)

where

αt
k = min

(
1,

C

η
∑E−1

e=0 ||gek(k)||

)
, πt =

1

K

K∑
k=1

αt
k, α̂t =

1

K

K∑
k=1

∣∣αt
k − πt

∣∣ . (7)

The Lipschitz continuity of∇F :

E[F (θt+1)] ≤ E[F (θt)] + E⟨∇F (θt),θt+1 − θt⟩+ L

2
||θt+1 − θt||2

= E[F (θt)] + ⟨∇F (θt), 1
m

∑
i∈W t

∆t
i + zti⟩+ L

2

∣∣∣| 1m ∑
i∈W t

∆t
i + zti

∣∣∣|2
= E[F (θt)] + ⟨∇F (θt), 1

m

∑
i∈W t

∆t
i⟩+ L

2

∣∣∣| 1m ∑
i∈W t

∆t
i

∣∣∣|2 + L2σ2C2pd

2m2
.

(8)

Here, d is the dimension of θt
k, p denotes the sparsity ratio, and the noise ztk is assumed to have zero mean. Next,

we analyze I and II in turn.

For I, we have

⟨∇F (θt), 1
m

∑
k∈W t

∆t
k⟩ = ⟨∇F (θt), 1

K

K∑
k=1

∆t
k + 1

K

K∑
k=1

(∆t
k −∆

t
k)⟩+ ⟨∇F (θt), 1

K

K∑
k=1

∆
t
k⟩. (9)

Next, we provide bounds for the two terms in the preceding equality. In particular, for the first term we obtain

E⟨∇F (θt), 1
E

E∑
e=1

∆t
e −∆

t
e⟩ ≤ E⟨∇F (θt), 1

E

E∑
e=1

E−1∑
e=0

ηαt
k∇F (θt, gek(k))⟩

≤ ηE

K

K∑
k=1

Eαt
kπ

t⟨∇F (θt), gek(k)⟩

≤ η2E

2K

K∑
k=1

αt
kπ

t
(
− 1

2
||∇F (θt)||2 + ||∇F (θt, gek(k))−∇F (θt)||2

)
≤ η2E(α̂tL2ρ2 −B2),

(10)
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where α̂t = 1
K

∑K
k=1 |α

t
k − πt|. Here, (a) uses (a), (b) uses (b), and the result is established under Assump-

tion 1.3.

For the second term, we have

⟨∇F (θt), 1
K

K∑
k=1

∆
t
k⟩ ≤ −πtηE

2
||∇F (θt)||2 − πt

2E
|| 1

K

K∑
k=1

∆t
k||2

+ πt

2
||∇F (θt)||2 − 1

πtηEK

K∑
k=1

||∆t
k||2.

(11)

where (a, b) employs the relation (a, b) = ||a||2 + ||b||2 + 1
2
||a − b||2, under the condition 0 < η < 1.

Subsequently, we bound III as follows:

III = L
2
||∇F (θt) + 1

K

K∑
k=1

1
E

E−1∑
e=0

(∇Fk(θ
e
k; ξk)−∇Fk(θ

t))||2

≤ 1
K

K∑
k=1

1
E

E−1∑
e=0

E||∇Fk(θ
e
k + δk)−∇Fk(θ

t)||2

+ η(∇Fk(θ
e
k; ξk)−∇Fk(θ

t)) + (1 + η)∇F (θt)||2

≤ 3η2E2L2(ρ2 + ||∇F (θt)||2 +B2)

+ 3η2E2L2(2L2ρ2 + 6E(3σ2
g + 6L2ρ2) + 6E||∇F (θt)||2

)
+ 24E2η4L2ρ2 +B2,

(12)

where 0 < η < 1, (a, b), and the derivation relies on Assumptions 1 and 3 as well as Lemma 3, respectively.
For the second term (II), we invoke Lemma 8. By combining Eqs. 12–16, we arrive at

EF (θt+1) ≤ EF (θt) + ηπtEL2(ρ2 −B2)− πtηE
2
||∇F (θt)||2

− ηπt

2E
|| 1

K

K∑
k=1

∆t
k||2

+ 3πtη2E
2

[
2L2ρ2σ2

k + 6E(3σ2
g + 6L2ρ2) + 6E||∇F (θt)||2

]
+ 3πtη2E

2

(
3η2EL2ρ2 +B2)+ 3η2EL(L2ρ2+B2)

2

+ Lσ2C2pd
2m2 .

(13)

When η ≤ 1

3
√
EL

, the inequality is

EF (θt+1) ≤ F (θt)− πtηE
2
||∇F (θt)||2 + η2EL2ρ2

2

+ 3πtη2EL2ρ2

2
+ 15πtEη2L2

2

+ 3πtη2EL(L2ρ2+B2)
2

+ Lσ2C2pd
2m2 .

(30)

Sum over t from 1 to T , we have

1

T

T∑
t=1

E||∇F (θt)||2 ≤ 2L(F (θ1)− F ∗)√
ET

+
1

T

T∑
t=1

(
2πtEL2ρ2 − 2aα̂tB2 + 30η2L2T

)
+ 1

T

T∑
t=1

(
2L2ρ2σ2

k + 6E(3σ2
g + 6L2ρ2)

)
+ 72η4E3L2ρ2 + 3ηL(L2ρ2 +B2) + Lσ2C2pd

m2E
.

(14)

Assume the local adaptive learning rate satisfies η = O(1/L
√
KT ), both

∑T
t=1 α̂

t and
∑T

t=1 ᾱ
t are two

important parameters for measuring the impact of clipping. Meanwhile, both 1
T

∑T
t=1 α̂

t and 1
T

∑T
t=1 ᾱ

t are
also bounded by 1. Then, our result is

14
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1

T

T∑
t=1

E
[
πt||∇F (θt)||2

]
≤ O

(
2L(F (θ1)− F ∗)√

ET
+
(

1
T

T∑
t=1

σ2
g

T2 + L2ρ2

T2

)
+ L2σ2C2pd

m2
√
E

)
. (15)

If the perturbation amplitude ρ is chosen proportional to the learning rate, such as ρ = O(1/
√
T ), it follows that

1

T

T∑
t=1

E||∇F (θt)||2 ≤ O

(
2L(F (θ1)− F ∗)√

ET
+ L2ρ2

ET2 +
(

1
T

T∑
t=1

σ2
g

T2 + L2ρ2

T2

)
+ Lσ2C2pd

m2
√
E

)
. (16)

C DIFFERENTIAL PRIVACY GUARANTEES IN FEDERATED LEARNING

We utilize Rényi Differential Privacy (RDP) as our primary privacy measure, which provides strong composition
properties suitable for iterative federated learning procedures.

C.1 RÉNYI DIFFERENTIAL PRIVACY (RDP)

Definition C.1 (Rényi Differential Privacy Abadi et al. (2016)). A randomized mechanismM satisfies (α, ρ)-
RDP if for any two neighboring datasets D,D′ differing by a single client’s data, the following holds:

Dα(M(D)||M(D′)) =
1

α− 1
logE

[(
M(D)

M(D′)

)α]
≤ ρ. (17)

C.2 SENSITIVITY ANALYSIS

The sensitivity of local updates is critical to determining the magnitude of added noise. Given local updates
gk(θt) at round t ∈ T , sensitivity is defined as:

S2
gk(θt) = max

D≃D′
||gk(θt)(D)− gk(θt)(D

′)||22. (18)

Utilizing SAM optimization as in Shi et al. (2023), we have the sensitivity bound for SAM updates:

E[S2
gk(θt)] ≤ O

(
1

T 2

)
, (19)

C.3 GAUSSIAN MECHANISM

We employ the Gaussian mechanism to perturb clipped local updates. Given a clipping threshold C, noise is
added to the local updates as follows:

g̃k(θt)← gk(θt) ·min

(
1,

C

||gk(θt)||2

)
+N

(
0,

σ2C2

m
Id

)
, (20)

where m is the number of participating clients per round, and σ2 is the variance of the Gaussian noise.

C.4 PRIVACY BUDGET (CUMULATIVE PRIVACY LOSS)

The cumulative privacy budget ϵ after T rounds is derived from the Gaussian mechanism via RDP composition
as follows:

ϵ = ϵ′ +
(α− 1) log(1− 1

α
)− log(α)− log(δ)

α− 1
, (21)

where

ϵ′ =
T

α− 1
logEz∼µ0

[(
1− q + q

µ1(z)

µ0(z)

)α]
. (22)

Here, q = m
M

represents the client sampling ratio, and µ0, µ1 denote the Gaussian probability density functions
for distributionsN (0, σ) and the mixture qN (1, σ) + (1− q)N (0, σ), respectively. Parameter α is selected to
optimize the privacy-utility trade-off.

15
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D PRELIMINARIES AND PROBLEM SETUP

The purpose of this section is to provide additional Preliminaries and Problem Setup details that are dropped due
to the limited space of the main paper. It includes the plots of training instability and the Experimental Setup for
the CIFAR10, CIFAR100, and UTK datasets.

D.1 TRAINING INSTABILITY STUDY: RESULTS OVERVIEW

We measure the training instability (relative progresss RP ) and its impacts on generalization (utility/accuracy)
in FL across CIFAR10 (Figure 3), UTK (Figure 4,) and CIFAR100 (Figure 5) datasets. As depicted in most
of the graphs on the left, the RP , which measures the stability of training, shows significant variance across
training rounds. This variance is persistent and positive, indicating that the learning process is not stable. This
instability is further compounded as the differential privacy level increases. The increasing variance in RP
with higher levels of DP suggests that the noise added for privacy protection is disrupting the learning process,
making it harder for the model to converge consistently. This behavior demonstrates the challenge of balancing
model privacy with learning efficacy in FL environments.

The middle graphs show RP variance against different levels of differential privacy and confirm that as privacy
constraints tighten (σ2 increases), the overall variability in model performance also increases. The trend line
indicates a clear positive correlation between RP variance and the privacy level, highlighting a direct impact of
enhanced privacy measures on learning stability. Higher differential privacy levels introduce more noise into the
training process, which can lead to larger updates that are less about the true gradient direction and more about
compensating for the noise. This can cause the training process to become unstable, as shown by the rising RP
variance.

The right most graphs illustrates that with increasing DP, not only do gradient norms increase, but also accuracy
decreases significantly. This suggests that the model is struggling to generalize effectively under higher training
instability. Larger gradient norms indicate more substantial updates during training, which can overshoot optimal
points due to the high noise levels introduced by DP. This is likely contributing to the observed decrease in
model accuracy as DP levels increase, illustrating the difficulty in navigating the trade-off between privacy and
generalization.

These detailed analyses and observations demonstrate the complex interplay between privacy, stability, and
generalization in FL. By fine-tuning the learning rates and understanding the impact of differential privacy on
learning dynamics, it is possible to improve both the stability and generalization of models trained under privacy
constraints.
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Figure 3: Correlation of DP noise with training instability in a 10-client CIFAR10 setup (α = 0.3
non-iid, η0 = 0.1). Increased DP noise elevates instability, as shown by RP value variance, causing
larger gradient norms and lower accuracy.

D.2 EXPERIMENTAL SETUP

D.2.1 DATASETS AND MODEL ARCHITECTURES

Table 5: Datasets and Clients

Dataset Task Total Clients Total Samples Training Samples Test Samples

CIFAR10 Image classification 10,20 60,000 50,000 10,000
CIFAR100 Image classification 10,20 60,000 50,000 10,000
UTK Image classification 10,20 23,708 19,208 4,500
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Figure 4: Correlation of DP noise with training instability in a 10-client UTK setup (α = 0.3 non-iid,
η0 = 0.1). Increased DP noise elevates instability, as shown by RP value variance, causing larger
gradient norms and lower accuracy.
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Figure 5: Correlation of DP noise with training instability in a 10-client CIFAR100 setup (α = 0.3
non-iid, η0 = 0.1). Increased DP noise elevates instability, as shown by RP value variance, causing
larger gradient norms and lower accuracy.

Dataset: We analyze two widely utilized image classification datasets for federated learning: CIFAR10
Krizhevsky et al. (2009) and CIFAR100 Sharma et al. (2018), along with the UTK Savchenko (2021) image
classification dataset. The benchmarks for these datasets in a federated learning context are adopted from
established benchmarks based on CIFAR-10/100, as proposed by Foret et al. (2020). Each dataset is allocated
among K ∈ {10, 20} clients, employing a Dirichlet distribution-based approach for data distribution as done
in Zeng et al. (2023). The resultant data partitions are shown in Figure 6, Figure 7, Figure 8, and Figure 9.
Here, each client’s prior distribution follows a multinomial distribution derived from a symmetric Dirichlet
distribution with parameter α. As α approaches infinity, the data distribution among clients approximates an IID
scenario. Conversely, a reduction in α, moving towards zero, shifts the distribution towards a non-IID scenario.
We explore different scenarios with α ∈ {0.05, 0.3} across the CIFAR10, CIFAR100, and UTK datasets.

Figure 6: Noniid partition used in Yurochkin et al. (2019) and Wang et al. (2020a). The number of
CIFAR10, CIFAR1OO, and UTK data points and class proportions are unbalanced. Samples will be
partitioned into 10 clients by sampling α = 0.3.

Model architecture: By following the backbone architecture of the unstable convergence of gradient descent
work Ahn et al. (2022); Cohen et al. (2021). Specifically, we use GD to train a VGG (with batch normalization)
neural network Ding et al. (2021). For a fair comparison, we use the same backbone architecture for all different
types of methods for all evaluations. Also, the same architecture is identically used for the two CIFAR-10/100
benchmarks. Noteworthy, we added ResNet backbone for UTK dataset because of poor performance relative to
VGG on this dataset.
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Figure 7: Noniid partition used in Yurochkin et al. (2019) and Wang et al. (2020a). Number of
CIFAR10, CIFAR1OO, and UTK data points and class proportions are unbalanced. Samples will be
partitioned into 10 clients by sampling α = 0.05.

Figure 8: Noniid partition used in Yurochkin et al. (2019) and Wang et al. (2020a). The number of
CIFAR10, CIFAR1OO, and UTK data points and class proportions are unbalanced. Samples will be
partitioned into 20 clients by sampling α = 0.3.

D.2.2 DATA PRE-PROCESSING (CIFAR-10 AND CIFAR-100).

All training and test input images of size 32× 32 pixels are first padded by 4 pixels on each side, then randomly
cropped back to 32× 32 pixels. This technique helps the model become invariant to small translations of the
input image. Each image is flipped horizontally with a probability of 0.5. This step increases the diversity
of the training data and helps prevent overfitting by simulating different viewing angles. After converting the
image to a tensor, pixel values are normalized using the dataset-specific mean (0.4914, 0.4822, 0.4465) and
standard deviation (0.2023, 0.1994, 0.2010). This normalization facilitates faster convergence by scaling the
input features to have zero mean and unit variance.

D.2.3 DATA PRE-PROCESSING (UTK).

All training and test input images are resized to 32× 32 pixels, standardizing the input size across all images and
making it suitable for processing by the model designed for CIFAR datasets. Pixel values are normalized using
the mean (0.49) and standard deviation (0.23). This dataset appears to have grayscale images (indicated by a
single channel mean and standard deviation), and normalization adjusts the pixel intensity distribution similarly
to CIFAR datasets. Images undergo the same resizing to 32 × 32 pixels and are normalized using the same
values as the training images. Consistent image size and normalization between the training and testing phases
help in evaluating the model’s performance accurately.

E ADDITIONAL EXPERIMENTAL RESULTS

Here, we provide the additional experimental results that are dropped due to the limited space of the main paper.
It includes the the plots for generalization analysis, rate of convergence analysis, and training stability analysis
using for the CIFAR10, CIFAR100, and UTK datasets.

E.1 GENERALIZATION ANALYSIS FL

We conduct a thorough analysis of ADAPT-FED’s generalization performance against various baseline FL
algorithms. Our primary goal is to assess the efficacy of ADAPT-FED in generalizing under diverse privacy
settings and heterogeneous data distributions. Generalization analyses are performed on three widely recognized
datasets: CIFAR10, CIFAR100, and UTK, comparing ADAPT-FED with several SOTA FL algorithms, including
FedAvg, FedProx, FedAdagrad, FedYogi, FedSAM, and FedASAM.

Table 6 shows the results with 10 clients and learning rate ηo = 0.1. ADAPT-FED consistently outperforms all
baselines under both low and high heterogeneity settings across all three datasets and all privacy noise levels.
Notably, its performance remains stable even as ε increases, highlighting its robustness under privacy constraints.
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Figure 9: Noniid partition used in Yurochkin et al. (2019) and Wang et al. (2020a). The number of
CIFAR10, CIFAR1OO, and UTK data points and class proportions are unbalanced. Samples will be
partitioned into 20 clients by sampling α = 0.05.

Table 7 reports results for 20 clients at ηo = 0.04. Here too, ADAPT-FED achieves the highest test accuracy
across all settings. Compared to baselines, its margins of improvement are particularly significant under high
non-IID scenarios and when privacy noise is introduced. Table 8 further confirms the generalization advantage
of ADAPT-FED under similar settings (ηk = 0.04, C = 100). The performance trends remain consistent
across the three datasets. Finally, Table 9 explores two extreme participation scenarios: full clipping constants
C = 100 and C = 1. ADAPT-FED demonstrates remarkable stability and maintains generalization advantage
in both cases. Unlike FedAvg and FedProx, which degrade significantly under C = 1, ADAPT-FED remains
effective even under extreme clipping and high noise, suggesting its suitability for deployment in practical,
resource-constrained FL settings.

Across all experiments, ADAPT-FED achieves the highest or near-highest accuracy in nearly every configuration,
supporting its efficacy for privacy-preserving, prompt-based federated learning in heterogeneous environments.

Table 6: Generalization performance of ADAPT-FED versus baseline algorithms based on 10
clients across three datasets: (a) CIFAR10, (b) CIFAR100, and (c) UTK, respectively, ηo = 0.1.
ADAPT-FED outperforms the baseline algorithms in terms of generalization performance across
datasets.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3)

0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03

FedAvg 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 78.89 78.89 64.87 64.83
FedSAM 57.93 58.08 58.67 58.74 74.80 74.18 74.61 74.90 37.43 38.49 38.57 38.17 42.18 42.64 42.81 43.89 73.28 73.28 73.58 73.35 79.06 79.06 79.10 78.83
FedASAM 59.09 58.78 58.74 58.74 75.40 74.91 74.51 74.51 38.56 37.83 37.99 37.99 43.39 43.12 43.28 43.28 73.31 73.31 74.07 74.07 78.63 78.63 79.48 79.48
FedProx 59.86 55.27 49.14 42.82 73.54 69.48 64.36 59.91 37.90 36.37 34.30 30.97 42.36 40.66 36.87 34.84 65.42 65.42 55.05 54.68 71.40 71.40 57.03 56.65
FedAdagrad 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 71.06 71.06 56.38 56.56
FedAdam 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 78.89 78.89 64.87 64.83
FedYogi 58.76 53.72 47.31 41.91 74.55 70.18 64.76 59.68 37.73 37.03 33.94 30.89 41.21 40.91 37.48 34.84 64.11 64.11 55.18 54.98 78.89 78.89 64.87 64.83
ADAPT-FED (ours) 63.02 65.18 65.39 65.83 80.46 81.33 81.24 81.75 51.44 53.59 54.26 54.34 58.18 61.25 61.38 60.39 75.05 75.05 75.05 74.31 86.85 86.85 86.49 86.86

Table 7: Generalization performance of ADAPT-FED versus baseline algorithms based on 20 clients
across three datasets: (a) CIFAR10, (b) CIFAR100, and (c) UTK, respectively, ηo = 0.04.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3)

0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03

FedAvg 50.63 48.59 44.62 40.86 67.48 66.28 62.84 59.72 33.09 32.61 30.82 29.26 50.10 49.61 47.38 45.07 70.58 70.58 53.86 53.08 80.37 80.37 59.29 58.26
FedSAM 50.47 50.73 51.03 51.11 67.59 66.66 67.25 67.42 32.97 33.32 34.09 33.24 50.75 50.71 50.61 51.03 75.59 75.59 76.39 76.54 83.75 83.75 83.75 83.59
FedASAM 51.26 51.48 51.23 51.23 67.06 67.98 67.63 67.63 34.10 33.94 33.85 33.85 51.04 51.04 50.74 50.74 76.19 76.19 77.03 77.03 83.69 83.69 83.81 83.81
FedProx 50.82 48.78 44.77 41.15 66.97 65.27 62.45 59.17 32.98 32.70 31.00 29.42 49.67 49.47 47.51 44.68 70.49 70.49 53.59 53.12 79.75 79.75 58.94 57.02
FedAdagrad 50.89 48.66 44.68 40.96 67.48 66.28 62.84 59.72 32.98 32.70 31.00 29.42 50.10 49.61 47.38 45.07 70.58 70.58 53.86 53.08 80.35 80.84 59.94 58.62
FedAdam 50.63 48.59 44.62 40.86 67.48 66.28 62.84 59.72 32.98 32.70 31.00 29.42 50.10 49.61 47.38 45.07 70.58 70.58 53.86 53.08 80.45 80.91 59.61 58.10
FedYogi 50.63 48.59 44.62 40.86 67.48 66.28 62.84 59.72 32.98 32.70 31.00 29.42 50.10 49.61 47.38 45.07 70.58 70.58 53.86 53.08 80.37 80.37 59.29 58.26
ADAPT-FED (ours) 56.49 59.66 59.78 60.01 75.86 77.48 77.65 77.99 40.66 44.63 43.52 44.51 54.69 57.40 49.83 54.27 81.31 81.31 80.15 81.53 85.56 85.56 84.15 84.67

E.2 RATE OF CONVERGENCE ANALYSIS

We conduct a thorough analysis of ADAPT-FED’s convergence performance against various baseline FL
algorithms. Our primary goal is to assess the efficacy of ADAPT-FED in achieving faster and more stable
convergence rates, particularly under diverse privacy settings and heterogeneous data distributions. Convergence
analyses are performed on three widely recognized datasets: CIFAR-10, CIFAR-100, and UTK, comparing
ADAPT-FED with SOTA FL algorithms, including FedAvg, FedSAM, and FedASAM.

As illustrated in Figure 2, ADAPT-FED demonstrates robust convergence in settings with data heterogeneity
(α = 0.3). This performance is indicative of the adaptive learning rate mechanism within ADAPT-FED,
which fine-tunes the updates based on the observed instability and heterogeneity levels, thereby enhancing the
convergence rate.

ADAPT-FED utilizes an innovative adaptive learning rate strategy that dynamically adjusts based on the model’s
performance from one iteration to the next. This approach addresses not only the variability introduced by
differential privacy but also the challenges posed by non-IID data across clients. Unlike traditional methods that
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Table 8: Generalization performance of ADAPT-FED versus baseline algorithms based on 20 clients
across three datasets: (a) CIFAR10, (b) CIFAR100, and (c) UTK, respectively, ηk ∈ {0.04}, C = 100.

CIFAR-10 CIFAR-100 UTK

Algorithm Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3) Dir. (α = 0.05, non-IID) Dir. (α = 0.3)

0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03

FedAvg 50.63 48.59 44.62 40.86 67.48 66.28 62.84 59.72 33.09 32.61 30.82 29.26 50.10 49.61 47.38 45.07 70.58 70.58 53.86 53.08 80.37 80.37 59.29 58.26
FedSAM 50.47 50.73 51.03 51.11 67.59 66.66 67.25 67.42 32.97 33.32 34.09 33.24 50.75 50.71 50.61 51.03 75.59 75.59 76.39 76.54 83.75 83.75 83.75 83.59
FedASAM 51.26 51.48 51.23 51.23 67.06 67.98 67.63 67.63 34.10 33.94 33.85 33.85 51.04 51.04 50.74 50.74 76.19 76.19 77.03 77.03 83.69 83.69 83.81 83.81
FedProx 50.82 48.78 44.77 41.15 66.97 65.27 62.45 59.17 32.98 32.70 31.00 29.42 49.67 49.47 47.51 44.68 70.49 70.49 53.59 53.12 79.75 79.75 58.94 57.02
ADAPT-FED (ours) 56.49 59.66 59.78 60.01 75.86 77.48 77.65 77.99 40.66 44.63 43.52 44.51 54.69 57.40 49.83 54.27 81.31 81.31 80.15 81.53 85.56 85.56 84.15 84.67

Table 9: Generalization performance of ADAPT-FED versus baseline algorithms based on 20 clients
across three datasets: (a) CIFAR10, (b) CIFAR100, and (c) UTK, respectively, ηk ∈ {0.04}, C = 100.

CIFAR-10 CIFAR-100 UTK

Algorithm C = 1 C = 100 C = 1 C = 100 C = 1 C = 100

0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03

FedAvg 67.48 62.43 54.67 48.36 67.48 66.28 62.84 59.72 50.10 fail fail fail 50.10 49.61 47.38 45.07 80.37 79.05 51.48 50.45 80.37 80.37 59.29 58.26
FedSAM 67.59 68.08 67.80 68.25 67.59 66.66 67.25 67.42 50.75 50.82 50.48 50.72 50.75 50.71 50.61 51.03 83.75 83.38 83.50 83.79 83.75 83.75 83.75 83.59
FedASAM 67.06 68.15 68.29 68.29 67.06 67.98 67.63 67.63 51.04 50.60 51.01 51.01 51.04 51.04 50.74 50.74 83.69 83.98 83.56 83.56 83.69 83.69 83.81 83.81
FedProx 66.97 62.07 52.56 43.63 66.97 65.27 62.45 59.17 49.67 fail fail fail 49.67 49.47 47.51 44.68 79.75 71.31 48.74 48.79 79.75 79.75 58.94 57.02
ADAPT-FED (ours) 75.86 78.03 77.75 77.79 75.86 77.48 77.65 77.99 54.69 57.81 47.94 54.61 54.69 57.40 49.83 54.27 85.56 84.01 84.90 84.45 85.56 85.56 84.15 84.67

apply uniform updates, ADAPT-FED tailors the learning rates to mitigate the impact of high gradient variances
and ensures consistent learning progress.

E.3 TRAINING STABILITY ANALYSIS

We evaluate the training stability of ADAPT-FED in comparison to various baseline FL algorithms. These
experiments are conducted across the CIFAR10, CIFAR100, and UTK datasets, with emphasis on differential
privacy settings and data heterogeneity.

Figure 10, Figure 12, and Figure 11, illustrate the relative progress (RP) across 200 training round under varying
conditions. These figures capture the effectiveness of ADAPT-FED’s adaptive learning rate mechanism in
enhancing training stability compared to traditional FL approaches. This strategy significantly reduces the
oscillations in RP , particularly evident in scenarios with high differential privacy levels and heterogeneous
data distributions. ADAPT-FED maintains a lower variance in RP compared to baselines like FedAvg and
FedProx, indicating more consistent progress and reduced training disruptions despite the introduction of noise
through differential privacy. Figure 10 Figure 12, and Figure 11 highlight ADAPT-FED’s ability to sustain lower
variability in RP even under severe data heterogeneity, reflecting its capacity to adapt to heterogeneous data
distributions effectively. ADAPT-FED employs an adaptive learning rate that dynamically adjusts based on the
observed gradient norms.

While baseline algorithms exhibit increased RP fluctuations, indicating struggles with gradient noise and
data heterogeneity, ADAPT-FED demonstrates a markedly smoother convergence curve. This distinction
demonstrates the limitations of SOTA methods that do not account dynamically for changing gradient scales,
often leading to inefficient learning rates that either overstep or underutilize the learning potential of the model.
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Figure 10: Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients
(CIFAR10 noniid-ness α = 0.3, η0 = 0.1) across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and
(c) σ2 = 0.02, respectively. ADAPT-FED exhibits more stable convergence compared to baselines.

F ALTERNATIVE RP-BASED β SCHEDULING MECHANISMS

To address the heuristic nature of the exponential RP transformation, we explore several theoretically motivated
alternatives to the β function in ADAPT-FED. These variants aim to improve the robustness, interpretability,
and adaptability of local learning rate schedules under varying sharpness and instability conditions.
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Figure 11: Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients (UTK
noniid-ness α = 0.3, η0 = 0.1) across three DP levels: (a) σ2 = 0.0, (b) σ2 = 0.01, and (c)
σ2 = 0.02, respectively. ADAPT-FED exhibits more stable convergence compared to baselines.
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Figure 12: Stability of the training loss of ADAPT-FED and baseline algorithms on 10 clients
(CIFAR100 noniid-ness α = 0.3, η0 = 0.1). ADAPT-FED exhibits more stable convergence
compared to baselines.

F.1 OVERVIEW OF INSTABILITY-AWARE β SCHEDULES

Let RP k = {RP k
1 , . . . , RP k

N} denote the observed relative progress or sharpness proxy values for client k
across the last N training rounds. Each βk variant below uses a transformation of RP k to adjust the local
learning rate ηk

t = η0 · f(RP k).

F.1.1 SOFTMAX-BASED β

This schedule encourages more exploration when RP values are sharp by giving more weight to flatter (lower
RP) regions:

βk =

N∑
i=1

exp(−RP k
i )∑N

j=1 exp(−RP k
j )

. (23)

This corresponds to a soft attention mechanism over past instability, encouraging smoother directions.

F.1.2 SELF-NORMALIZED β

This approach normalizes the instability magnitude:

βk =
1

||RP k||2 + ϵ
. (24)

This ensures scale-invariant adjustment and guards against sudden spikes in sharpness.

F.2 COMPARATIVE ADVANTAGES

• Softmax-based β: Smoothly prioritizes flatter directions, especially useful when recent RP values
vary dramatically.

• Self-normalized β: Scale-invariant and robust to overall instability magnitude.

F.3 EMPIRICAL EVALUATION

We present ablation results comparing these variants to the RP -based β scheduling mechanism. Results show
that in highly unstable or DP -noisy settings, entropy-based and harmonic mean-based schedulers maintain more
stable learning while achieving competitive generalization performance.
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(a) CIFAR10
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(B) CIFAR100
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(d) UTK

Figure 13: Test loss trajectories under three β scheduling strategies: the baseline exponential decay
(Exp), and two self-normalized variants defined as β = 0.1

||RP k||2+ϵ
and β = 0.5

||RP k||2+ϵ
, across 200

communication rounds for CIFAR-10, CIFAR-100, and UTK datasets with DP noise σ2 = 0.03. Exp
baseline β schedules consistently lead to smoother convergence loss.
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