
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SEEKER: ENHANCING EXCEPTION HANDLING IN
CODE WITH A LLM-BASED MULTI-AGENT APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

In real-world software development, improper or missing exception handling can
severely impact the robustness and reliability of code. Exception handling mech-
anisms require developers to detect, capture, and manage exceptions according to
high standards, but many developers struggle with these tasks, leading to fragile
code. This problem is particularly evident in open-source projects and impacts
the overall quality of the software ecosystem. To address this challenge, we ex-
plore the use of large language models (LLMs) to improve exception handling in
code. Through extensive analysis, we identify three key issues: Insensitive De-
tection of Fragile Code, Inaccurate Capture of Exception Types, and Distorted
Handling Solutions. These problems are widespread across real-world reposito-
ries, suggesting that robust exception handling practices are often overlooked or
mishandled. In response, we propose Seeker, a multi-agent framework inspired by
expert developer strategies for exception handling. Seeker uses agents—Scanner,
Detector, Predator, Ranker, and Handler—to assist LLMs in detecting, capturing,
and resolving exceptions more effectively. Our work is the first systematic study
on leveraging LLMs to enhance exception handling practices, providing valuable
insights for future improvements in code reliability.

1 INTRODUCTION

In the era of large-scale pre-trained code language models (code LLMs) such as DeepSeek-Coder
(Guo et al., 2024), Code-Llama (Rozière et al., 2023), and StarCoder (Li et al., 2023b), functional
correctness has become the primary method for evaluating these models. For instance, HumanEval
(Chen et al., 2021) proposed generating code based on natural language programming problem de-
scriptions and measured performance using the Pass@k metric, representing the rate at which gen-
erated code passes all test cases within k attempts. Additionally, CoderEval (Yu et al., 2024) and
DevEval (Li et al., 2024a) introduced repo-level code generation tasks to evaluate code LLMs in real
development scenarios.

As functional correctness improves, research has shifted focus to addressing defects in LLM-
generated code. For example, SWE-bench (Jimenez et al., 2024) evaluates LLMs’ ability to generate
maintenance patches based on real GitHub issues, while SecurityEval (Siddiq & Santos, 2022) as-
sesses the risk of LLMs generating vulnerable code using CWE-defined vulnerabilities. Studies like
He & Vechev (2023b) and Li et al. (2024c) explore guiding code generation to avoid common vulner-
abilities. Recently, Ren et al. (2023) conducted a study on the performance of LLM-generated code
in code robustness represented by exception handling mechanisms, which opened up new explo-
rations for LLM to predict and handle potential risks of generated code itself before a vulnerability
occurs.

Despite progress in exception detection and handling techniques, little attention has been paid
to standardizing exception mechanisms, especially for custom exceptions and long-tail exception
types. We believe that interpretable and generalizable exception handling strategies are crucial yet
underestimated attributes in real code development, significantly affecting code robustness and the
quality of code LLM training data. This paper explores these neglected aspects and raises the re-
search question: Do we need to enhance the standardization, interpretability, and generalizability

*Equal contribution.
†Equal Advising.
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(a) Our preliminary tendency. (b) a schematic diagram of human developers who well-
performed in exception handling.

Figure 1: Preliminary on exception handling performance by LLM and human. Prompt1, Prompt2,
Prompt3 and Prompt4 in (a) indicate General prompting, Coarse-grained Knowledge-driven prompt-
ing, Fine-grained Knowledge-driven prompting and Fine-grained Knowledge-driven with handling
logic prompting respectively

of exception handling in real code development scenarios? To the best of our knowledge, no prior
work has studied this issue.

To investigate the role of interpretability and rule generalization in exception handling for both hu-
man developers and LLMs, we expanded upon preliminary experiments by Ren et al. (2023). We in-
troduced four sets of prompts—Coarse-grained Reminding, Fine-grained Reminding, Fine-grained
Inspiring, and Fine-grained Guiding—based on 100 fragile Java code snippets from real projects.
These prompts progressively added interpretability and rule generalization to influence code writers’
in-context learning. Our findings indicate that code generated with the Fine-grained Guiding prompt
exhibits significantly better exception handling performance, while lacking interpretability or rule
generalization reduces performance, as shown in Figure 1(a).

Figure 1(b) illustrates the Chain-of-Thought used by senior developers under the Fine-grained Guid-
ing prompt. Notably, rare exceptions like BrokenBarrierException and AccessControlException can
cause high risks but are often poorly handled. Good exception handling practices focus on the speci-
ficity of exceptions, accurately capturing exception types deeper in the class hierarchy. Capturing
specific exceptions, such as SQLClientInfoException over its superclass SQLException, provides
more detailed error information Osman et al. (2017). However, accurately achieving this remains
challenging due to lack of handling paradigms for long-tail or customized exceptions, complex in-
heritance relationships, and multiple exception handling patterns.

To improve code robustness by leveraging best exception handling practices, we propose Seeker,
which decomposes exception handling into five tasks handled by specialized agents: Scanner,
Detector, Predator, Ranker, and Handler. We build a Common Exception Enumeration (CEE) from
trusted external documents to enhance detection, capture, and handling tasks where LLMs perform
poorly. This method integrates easily with existing code LLMs to generate highly robust code, and
CEE offers community contribution value by helping developers understand ideal exception prac-
tices.

However, using Java exceptions as an example, the inheritance tree contains 433 nodes, 62 branches,
and 5 layers, making direct retrieval inefficient. To address this, we propose a deep retrieval-
augmented generation (Deep-RAG) algorithm tailored for complex inheritance relationships. By
assigning development scenario labels to branches and using few-sample verification to fine-tune
labels, we improve retrieval performance and reduce overhead. Experiments show that Seeker helps
LLMs optimize or generate highly robust code, enhancing performance in various code tasks.

In summary, our main contributions are:
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• We highlight the importance of standardization, interpretability, and generalizability in ex-
ception handling mechanisms, identifying a gap in existing research.

• We propose Seeker, which decomposes exception handling into specialized tasks and in-
corporates Common Exception Enumeration (CEE) to enhance performance.

• We introduce a deep retrieval-augmented generation (Deep-RAG) algorithm tailored for
complex inheritance relationships, improving retrieval efficiency.

• We conduct extensive experiments demonstrating that Seeker improves code robustness
and exception handling performance in LLM-generated code.

2 PRELIMINARY

2.1 MITIGATION EFFECT

In this section, we study how the standardization, interpretability, and generalizability of exceptions
affect the exception handling performance of code developers and determine the mitigation effect
of poor exception handling. To achieve this, we conduct extensive comparative experiments by
controlling the standardization of exception types, the interpretability of risk scenarios, and the gen-
eralization of handling strategies, respectively, applying the four sets of in-context learning prompt
proposed in figure 4 and 5 (i.e., Coarse-grained Reminding prompting, Fine-grained Reminding
prompting, Fine-grained Inspiring prompting, and Fine-grained Guiding prompting).

Specifically, based on the preliminary exploration of Ren et al. (2023), we screened several well-
maintained codebases, combined manual and automatic code reviews to filter out high-quality also
important exception handling therefore obtain the fragile code that is in serious situation in real de-
velopment scenarios. Then we allowed code developers to familiarize with these filtered codebases
and record the methods and processes they used when handling exceptions. In order to reduce the
difficulty of the entire task and simulate the developer’s thought about exception handling during the
development process, we set up four prompt links to provide developers with progressive exception
handling information. The implementation results can be found in figure 1(a).

The comparative experiment reveals an interesting phenomenon: prompts without effective guid-
ance information are not helpful for both human developers and LLMs, while adding type norma-
tive information about exception mechanisms will slightly improve developers’ vague perception of
the source of code fragility, but cannot accurately locate and handle them due to the unfamiliarity
with the exception, which is easy to cause insensitive detection. Increasing the interpretability in-
formation of the development scenario will greatly improve developers’ understanding of the code
itself and potential fragility, which is beneficial to the accuracy of exception capture. Increasing
the generalization information of handling strategies further improves developers’ ability to analyze
the source of fragility and improve the quality of handling block. The phenomenon that the above
information bring significant gains in exception handling tasks is called the mitigation effect. This
phenomenon answers the research questions raised in Section 1 by revealing the mitigation effect
by specific prompt information, impacting the quality of code developers’ exception handling prac-
tices. It also inspires the proposed Seeker method to combine external document information to
align the generated prompts with fine-grained guidance standards. In addition, Section 3.1 provides
a reasonable explanation for the occurrence of the mitigation effect, providing data and insights on
the effectiveness of the proposed method. We believe that our findings can provide valuable insights
for future research related with reliable code generation, laying the foundation for potential RAG
code agent progress.

2.2 A REVISIT OF HUMAN EMPIRICALS

Over the years, there have been numerous empirical studies and practical discussions on exception
handling, but what is common is that exception handling has been repeatedly emphasized as an
important mechanism directly related to code robustness. Nakshatri et al. (2016) points out that
exception handling is a necessary and powerful mechanism to distinguish error handling code from
normal code, so that the software can do its best to run in a normal state. Weimer & Necula (2004)
points out that the exception mechanism ensures that unexpected errors do not damage the stability
or security of the system, prevents resource leakage, ensures data integrity, and ensures that the
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program still runs correctly when unforeseen errors occur. In addition, Jacobs & Piessens (2009)
points out that exception handling also involves solving potential errors in the program flow, which
can mitigate or eliminate defects that may cause program failure or unpredictable behavior.

Although the exception mechanism is an important solution to code robustness, developers have al-
ways shown difficulties in dealing with it due to its complex inheritance relationship and processing
methods. de Pádua & Shang (2017) points out that various programming language projects show a
long-tail distribution of exception types when facing exception handling, which means that devel-
opers may only have a simple understanding of the frequently occurring exception types. However,
according to section1, good exception practices rely on developers to perform fine-grained specific
capturing. Nguyen et al. (2020b) also points out multi-pattern effect of exception handling. For
example, even for peer code, capturing different exception types will play different maintenance
functions, so exception handling is often not generalized or single-mapped. These complex ex-
ception mechanism practice skills have high requirements for developers’ programming literacy.
de Sousa et al. (2020) manually reviewed and counted the exception handling of a large number of
open source projects, and believed that up to 62.91% of the exception handling blocks have vio-
lations such as capturing general exceptions and destructive wrapping. This seriously violates the
starting point of the exception mechanism. de Pádua & Shang (2017) emphasizes the urgent need
and importance of automated exception handling suggestion tools.

The failure of human developers in the exception handling mechanism seriously affects the quality of
LLM’s code training data (He & Vechev (2023a)), which further leads to LLM’s inability to under-
stand the usage skills of maintenance functions (Wang et al. (2024)). To solve the above problems,
we first proposed Seeker−Java for the Java language. This is because the Java language has a more
urgent need for exception handling and is completely mapped to the robustness of Java programs.
Ebert et al. (2020) pointed out that as a fully object-oriented language, Java’s exception handling is
more complex than other languages, and it has a higher degree of integration into language struc-
tures. Therefore, Java projects are more seriously troubled by exception handling bugs. In addition,
Java relies heavily on exceptions as a mechanism for handling exceptional events. In contrast, other
languages may use different methods or have less strict exception handling mechanisms. It is worth
mentioning that Seeker’s collaborative solution based on an inherent multi-agent framework plus
an external knowledge base, they can quickly migrate multiple languages by maintaining documents
for different languages. We will also maintain Seeker − Python and Seeker − C# in the future
to provide robustness guarantees for the development of more programming languages.

3 METHODOLOGY

In this section, we introduce the proposed Seeker method. We first review the historical observations
of developers on exception handling issues, and then introduce three exception handling pitfalls,
Insensitive-Detection of Fragile Code, Inaccurate-Capture of Exception Type and Distorted-Solution
of Handling Block. Finally, we introduce the method’s dependency construction and the entire
method.

3.1 RULES OF GOOD PRACTICE

In this section, we introduce four prompt settings: Coarse-grained Reminding prompting, Fine-
grained Reminding prompting, Fine-grained Inspiring prompting and Fine-grained Guiding prompt-
ing, which can be used to demonstrate the mitigation effect of bad practices on developers when fac-
ing exception handling tasks. For Coarse-grained Reminding prompting, we use “pay attention to
potential exceptions” to remind developers of the exception mechanism, and let developers find the
fragile parts of the target code slice and handle them according to their own practical experience. As
shown in figure 1(a) , figure 4 and figure 5, although developers will consciously start screening for
exception handling, given the difficulties mentioned in Section 2.2, both humans and LLM develop-
ers are very insensitive to identifying fragile code. Ren et al. (2023) also found this phenomenon and
summarized this series of bad practices as Incorrect exception handling. For Fine-grained Remind-
ing prompting, we provide developers with fine-grained reminders of specific exception types based
on the fragile code scenario, and let developers understand the source of code fragility and handle
it in a standardized manner based on the exception. Although developers will consciously learn
from external documents or examples, the information in these documents is often too abstract to
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Empirical View from Exception 
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Figure 2: Distribution of Exception Type. Human practice may be far from good practice, thus we
conduct data and info processing to align user distribution to good practice.

be interpreted, and as for the examples, most of the time there is no standardized quality assurance
or generalization. Therefore, developers tend to catch exceptions inaccurately, and do not funda-
mentally solve the potential risks of the program. Related studies have shown that the bad practice
of Abuse of try-catch often appears in this experimental benchmark. For Fine-grained Inspiring
prompting, we additionally provide a code-level scenario analysis of the fragile code. Although
developers still rely on their own understanding of the code, the intuitive and interpretable natural
language significantly improves developers’ insight and analysis capabilities for exceptions in this
scenario. Related studies also show that for standalone function-level fragile code optimization, this
experimental settings can achieve relatively stable good exception handling practices. However, in
the face of real development scenarios with complex dependencies, how to generate high-quality
handling blocks with generalization is still a challenge. Zhang et al. (2023) pointed out that ex-
ception handling code is prone to errors in real projects. For Fine-grained Guiding prompting, we
additionally give a generalized handling strategy for the exception. Based on the stable exception de-
tection performance of the above experimental benchmarks, developers finally achieve high-quality
exception handling practices. de Pádua & Shang (2017) also strongly recommended that develop-
ers should use generalizable exception handling strategies, because it is difficult for developers to
perform higher-quality optimization before fully mastering the information of an exception type. In
essence, these four prompt settings can be regarded as information progression for exception type
standarization, fragile interpretability, and handling generalization, thereby changing the developer’s
in-context learning. By changing the prompts, the robustness of the code generated by the developer
will be affected, thereby affecting the quality of the final project. Note that the four sets of prompt
we proposed can be applied to any code-based in-context learning, thereby promoting research on
the impact of prompt specifications on LLM code generation performance.

Note that for most programming languages, there are three ways to handle exceptions. Exceptions
thrown using throws keyword in the method signature, Exceptions thrown using throw keyword in
the method body, and Exceptions caught in a try-catch block of a method. Nakshatri et al. (2016)
points out that the first method may not provide the real situation, because the exceptions thrown
using throws in the method signature will be incorrectly added to the method’s call stack, thereby
propagating the exception until it is caught. In addition, the exceptions thrown using the second
method will eventually be caught by the caller using a try catch block. Therefore, the third method
is the most efficient and common exception practice. In our method, we only take the third exception
handling way as the best practice when optimize the target.

3.2 THE RAG-AGENT METHOD

To enhance the standardization, interpretability, and generalizability of exception handling in real
code development scenarios, we propose a method called Seeker. Seeker disassembles the chain-
of-thought processes of senior human developers and divides the exception mechanism into five
specialized tasks, each handled by a dedicated agent: Planner, Detector, Predator, Ranker,
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CEE Doc (Exception hierarchy tree format)

Each node has 

Basic exception info, Scenario, Property, and Handling logic.

Planner agent
code

input

manageable units

Exception robust code

output

public void processString(String str) {
  String trimmed = str.trim(); 
  System.out.println(trimmed);
  String upper = trimmed.toUpperCase();
  System.out.println(upper);

}

Detector agent

Predator agent

. . .  

Predator agent

Activate

... 
String trimmed = str.trim(); × Sensitive 
System.out.println(trimmed); √ Pass
...

... 
String trimmed = str.trim(); try-block -> NullPointerException
System.out.println(trimmed); code-line -> None
...

Ranker agent

Feedback ①：Code level likelihood
Accepted, the code scenario and prop fits...
Or Reject, the code is actually...

Feedback ②：Strategy Suitability
Accepted, the code should be handled like...
Or Reject, the code don’t need to...

Handler agent

public void processString(String str) {
  String trimmed;
  try {
    trimmed = str.trim();
  } catch (NullPointerException e) {
    System.err.println("NullPointer");
    return;
  }
  System.out.println(trimmed);
  String upper = trimmed.toUpperCase();
  System.out.println(upper);

}

Feedback ③：Node Selection
Accepted, the exception branch suits for...
Or Reject, the branch is different from...

Figure 3: Seeker Work Flow. The workflow consists of four agents: Planner, Detector, Ranker, and
Handler, collaborating to manage exception handling in code. The color circle indicates the info
passing along the pipeline or used by agents.

and Handler. By integrating a large amount of trusted external experience documents with excep-
tion practices, we build the Common Exception Enumeration (CEE). CEE is a comprehensive
and standardized document providing a structured and exhaustive repository of exception informa-
tion, encompassing scenarios, properties, and recommended handling strategies for each exception
type. The foundation of CEE is detailed in AppendixA.1.2. With the help of CEE, Seeker retrieves
and enhances the detection, capture, and handling tasks where the original LLM performs poorly.
This method can be easily integrated into existing code LLMs to generate highly robust code, and
CEE has promising community contribution and maintenance value, helping developers further un-
derstand the ideal practices of exception mechanisms.

Generally, given a piece of code, we first use a planner agent to segment it into manageable units
such as function blocks, class blocks, and file blocks. The planner employs a thoughtful approach
to segmentation by considering factors such as the overall code volume, dependency levels, and
requirement relationships. This strategy helps mitigate the pressure on processing, particularly re-
garding context window limitations and complex dependency chains, ensuring that no single unit
overwhelms the analysis agents. By balancing the granularity of segmentation, we can avoid overly
fine divisions that may introduce high complexity, thus maintaining clarity and efficiency in handling
large and intricate codebases.

For the Detector agent, it simultaneously performs scenario and property matching alongside static
analysis to identify fragile areas in the code that are likely to lead to errors or crashes. These two
approaches run in parallel, each contributing their strengths to the detection process. Scenario and
property matching offers shallow-level analysis, capturing vulnerabilities based on semantic cues
and contextual scenarios that static analysis might overlook due to its challenges in achieving high
coverage for exception handling issues. Conversely, static analysis excels in uncovering complex
dependencies and deep-level defects, providing insights that shallow analysis may miss. By com-
bining the results from both methods—taking their union—the Detector agent covers both shallow
and deep-level risks, effectively detecting potential exceptions with equal consideration for long-tail,
domain-specific, or customized exception types. However, as discussed in section 1, detecting ex-
ceptions without considering the complex inheritance relationships between exception types may not
yield optimal results, as it could lead to inaccurate exception specificity in the exception hierarchy.

Therefore, it is necessary to incorporate external knowledge to guide the capture and analysis pro-
cesses. To achieve this, we integrate the CEE into the Predator agent. Similar to Retrieval-
Augmented Generation (RAG) models, the Predator agent summarizes the code at the function
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Algorithm 1: Seeker Framework
Input: Codebase C
Output: Optimized code C ′ with robust exception handling

1 Segment the codebase C into manageable units U = {u1, u2, . . . , uN};
2 foreach code segment ui in C do
3 if (length of ui is within predefined limit) and (function nesting level is low) and (logical

flow is clear) then
4 Add ui to U ;

5 Initialize optimized units U ′ = {};
6 foreach unit ui in U do

// Detection Phase
7 Initialize potential exception set Ei = {};
8 Use the Detector agent to analyze unit ui;
9 In parallel do { // Static Analysis

10 Generate control flow graph CFGi and exception propagation graph EPGi for ui;
11 Identify sensitive code segments Sstatic

i = {sstatic
i1 , sstatic

i2 , . . . } in ui;
// Scenario and Property Matching

12 Perform scenario and property matching on ui;
13 Identify sensitive code segments Smatch

i = {smatch
i1 , smatch

i2 , . . . } in ui;
14 } Combine sensitive code segments: Si = Sstatic

i ∪ Smatch
i ;

15 foreach segment sij in Si do
16 Detect potential exception branches Ebij in sij ;
17 Ebi ← Ebi ∪ Ebij ;

// Retrieval Phase
18 Use the Predator agent to retrieve fragile code and try-catch blocks;
19 Summarize unit ui at the function level to obtain code summary Fi;
20 Perform Deep-RAG using Fi and exception branches Ebi, get exception nodes Eni;
21 Mapping relevant exception handling strategies Hi = {hi1, hi2, . . . } from CEE;

// Ranking Phase
22 Use the Ranker agent to assign grades to exceptions in Eni;
23 foreach exception eik in Eni do
24 Calculate exception likelihood score lik based on eik attribute and impact;
25 Calculate suitability score uik of handling strategy hik;
26 Compute overall grade gik = α · lik + β · uik;
27 Rank exceptions in Eni based on grades gik in descending order to get ranked list E′

ni;
// Handling Phase

28 Use the Handler agent to generate optimized code u′
i;

29 foreach exception eik of E′
ni if gik > γ do

30 Mapping handling strategy hik from Hi;
31 Apply hik to code segment(s) related to eik in ui;
32 U ′ ← U ′ ∪ {u′

i};
33 Combine optimized units U ′ to produce the final optimized code C ′;

level and queries the CEE for relevant exception attributes. It performs multi-layered deep searches
to retrieve information that can be applied to the detected issues, providing valuable context for ex-
ception handling. Crucially, during few-shot testing phases, the environment supplies feedback on
both the accuracy and coverage of the retrieved information. This feedback is integral to the agent’s
learning process, enabling it to refine its search strategies and improve the relevance of the infor-
mation it retrieves. We propose a Deep Retrieval-Augmented Generation (Deep-RAG) algorithm
to handle the complex inheritance relationships in exception types as further detailed in Appendix
A.1.1.

By combining the outputs from the Detector and Predator agents, the Ranker assigns grades
to the detected exceptions based on their likelihood and the suitability of the handling strategies
retrieved from the CEE. This grading system ensures that Seeker prioritizes the most critical ex-
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ceptions for immediate handling. The Ranker considers factors such as the likelihood of the excep-
tion occurring, the potential impact on the program, and the specificity of the exception type within
the inheritance hierarchy. It gives feedback to Detector and Predator agents along with the node
selection steps through score ranking and judge, ensuring the agents learning from the actual code
environment.

Analyzing the ranked exceptions, the Handler agent generates optimized code that incorporates
robust handling strategies. It utilizes templates and logic patterns derived from the CEE to ensure
that the generated code is functionally correct. The Handler focuses on capturing accurate fine-
grained exceptions, moving down the class hierarchy to provide additional information about errors,
beyond what the superclass exceptions provide. This approach helps developers quickly identify the
source of the problem, effectively improve the readability and maintainability of the code, and avoid
mishandling different types of errors.

However, integrating such a comprehensive exception handling mechanism introduces challenges
in computational overhead, especially when dealing with a large number of exception types and
complex inheritance relationships. To address this, we designed a high-concurrency interface that
keeps the additional computing time overhead constant, regardless of the code volume level. This
ensures that the method is scalable and the complexity is controllable when facing any codebase
size. We discuss the time costs of Seeker in detail in Appendix A.2.3.

4 EXPERIMENTS

In this section, we evaluate the performance of our proposed method, Seeker, on the task of excep-
tion handling code generation. We aim to answer the following research questions (RQs):

• RQ1: How does Seeker perform compared to state-of-the-art methods on exception han-
dling code generation tasks?

• RQ2: What is the effect of different agents in the Seeker framework on the overall perfor-
mance?

• RQ3: How does Seeker perform across different evaluation metrics, specifically in terms
of code quality and correctness?

• RQ4: How does the choice of underlying language model (LLM) affect the performance
of Seeker?

• RQ5: What is the impact of integrating domain-specific knowledge, such as the Common
Exception Enumeration (CEE), into Seeker?

4.1 EXPERIMENT SETUP

4.1.1 DATASETS

We conduct experiments on a dataset consisting of 750 fragile Java code snippets extracted from
real-world projects. These code snippets are selected based on their potential for exception handling
improvements, following the rules outlined in Appendix A.2.1.

4.1.2 BASELINES

We compare Seeker with the following methods:

• General Prompting: A straightforward approach where the LLM is prompted to generate
exception handling code without any specialized framework or additional knowledge.

• Traditional Retrieval-Augmented Generation (RAG): A method that retrieves relevant
information from external sources to assist in code generation.

• KPC (Ren et al., 2023): The state-of-the-art method for exception handling code genera-
tion, which leverages knowledge graphs and pattern mining.

• FuzzyCatch (Nguyen et al., 2020a): A tool for recommending exception handling code for
Android Studio based on fuzzy logic.
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• Nexgen (Zhang et al., 2020): A neural network approach for automated exception handling
in Java, which predicts try block locations and generates complete catch blocks in relatively
high accuracy.

4.1.3 EVALUATION METRICS

To comprehensively assess the effectiveness of our method, we employ six quantitative metrics:

1. Automated Code Review Score (ACRS): This metric evaluates the overall quality of the
generated code in terms of adherence to coding standards and best practices, based on an
automated code review model.

ACRS =

∑N
i=1 wisi∑N
i=1 wi

× 100% (1)

where:

• N is the total number of code quality checks performed by the automated code review
tool.

• wi is the weight assigned to the i-th code quality rule, reflecting its importance.
• si is the score for the i-th rule, defined as:

si =

{
1, if the generated code complies with the i-th rule
0, if it does not comply

(2)

A higher ACRS indicates better adherence to coding standards and best practices.

2. Coverage (COV): This metric measures the proportion of actual sensitive code segments
that our method successfully detects.
Let S = {s1, s2, . . . , sN} be the set of actual sensitive code segments.
Let D = {d1, d2, . . . , dM} be the set of detected sensitive code segments.
Define an indicator function:

Idetected(si) =

{
1, if ∃dj ∈ D such that dj = si
0, otherwise

Then, the Coverage is defined as:

COV =

∑N
i=1 Idetected(si)

N
× 100%

This metric reflects the percentage of actual sensitive code segments correctly detected by
our method. Over-detection (detecting more code segments than actual sensitive code) is
not penalized in this metric.

3. Coverage Pass (COV-P): This metric assesses the accuracy of the try-blocks detected by
the Predator agent compared to the actual code that requires try-catch blocks, penalizing
over-detection.
Let T = {t1, t2, . . . , tP } be the set of actual code regions that should be enclosed in try-
catch blocks (actual try-blocks).

Let T̂ = {t̂1, t̂2, . . . , t̂Q} be the set of code regions detected by the Predator agent as
requiring try-catch blocks (detected try-blocks).
Define an indicator function:

Icorrect(t̂j) =

{
1, if t̂j ∈ T

0, otherwise

The number of correctly detected try-blocks is:

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

TP =

Q∑
j=1

Icorrect(t̂j)

The number of false positives (incorrectly detected try-blocks) is:

FP = Q− TP

The number of false negatives (actual try-blocks not detected) is:

FN = P − TP

We define the Coverage Pass (COV-P) as:

COV-P =
TP

P + FP
× 100%

This formulation penalizes over-detection by including the false positives in the denom-
inator. A try-block is considered correct if it exactly matches the actual code lines; any
over-marking or under-marking is counted as incorrect.

4. Accuracy (ACC): This metric evaluates the correctness of the exception types identified
by the Predator agent compared to the actual exception types.
Let E = {e1, e2, . . . , eR} be the set of actual exception types that should be handled.
Let Ê = {ê1, ê2, . . . , êS} be the set of exception types identified by the Predator agent.
Define an indicator function:

Icorrect(êj) =

{
1, if ∃ei ∈ E such that êj = ei or êj is a subclass of ei
0, otherwise

Then, the Accuracy is defined as:

ACC =

∑S
j=1 Icorrect(êj)

S
× 100%

This metric reflects the proportion of identified exception types that are correct, considering
subclass relationships. Over-detection of incorrect exception types decreases the accuracy.

5. Edit Similarity (ES): This metric computes the text similarity between the generated try-
catch blocks and the actual try-catch blocks.
Let G be the generated try-catch code, and A be the actual try-catch code.
The Edit Similarity is defined as:

ES = 1− LevenshteinDistance(G,A)

max(|G|, |A|)
where LevenshteinDistance(G,A) is the minimum number of single-character edits (inser-
tions, deletions, or substitutions) required to change G into A, and |G|, |A| are the lengths
of G and A, respectively.
A higher ES indicates that the generated code closely matches the actual code.

6. Code Review Score (CRS): This metric involves submitting the generated try-catch blocks
to an LLM-based code reviewer (e.g., GPT-4o) for evaluation. The language model pro-
vides a binary assessment: good or bad.
Let Ngood be the number of generated try-catch blocks evaluated as good, and Ntotal be the
total number of try-catch blocks evaluated.
The Code Review Score is defined as:

CRS =
Ngood

Ntotal
× 100%

This metric reflects the proportion of generated exception handling implementations that
are considered good according to engineering best practices.
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4.2 RQ1: PERFORMANCE COMPARISON WITH BASELINES

We compare the performance of Seeker with the baselines on the exception handling code genera-
tion task. The results are presented in Table 1.

Table 1: Comparison of Exception Handling Code Generation Methods

Method ACRS COV (%) COV-P (%) ACC (%) ES CRS (%)
General Prompting 0.21 13 9 8 0.15 24
Traditional RAG 0.35 35 31 29 0.24 31
KPC (Ren et al., 2023) 0.26 14 11 8 0.17 27
FuzzyCatch (Nguyen et al., 2020a) 0.76 83 77 75 0.71 73
Nexgen (Zhang et al., 2020) 0.73 79 74 75 0.68 72
Seeker (Ours) 0.85 91 81 79 0.64 92

As shown in Table 1, Seeker outperforms all baselines across all evaluation metrics. Specifically,
we observe:

• A significantly higher ACRS, indicating superior overall code quality.

• Substantially greater Coverage (COV) and Coverage Pass (COV-P), demonstrating
Seeker’s effectiveness in detecting and correctly wrapping sensitive code regions.

• Higher Accuracy (ACC) in identifying the correct exception types, including recognizing
subclass relationships.

• An improved Edit Similarity (ES), showing that the generated code closely matches the
actual exception handling code.

• A higher Code Review Score (CRS), confirming that our implementations are more fre-
quently deemed good by the LLM reviewer.

These results demonstrate that Seeker achieves state-of-the-art performance in exception handling
code generation.

In our experiments, we also evaluated the stability of our method against multiple baselines across
two key dimensions: the creation time of test code snippets and the function count within these snip-
pets. Performance over time, as shown in Figure 77, indicates that while baseline methods tend to
exhibit variability, particularly in recent years, our method consistently maintains high performance
levels. This stability suggests that our approach is less sensitive to temporal changes in the test
code’s development environment, highlighting its robustness in adapting to evolving software trends
and requirements.

Similarly, when analyzing performance as a function of code complexity, represented by the number
of functions per test snippet, our method demonstrates a clear advantage in stability. Baseline meth-
ods generally perform well under simpler conditions (lower function counts) but show significant
declines as the complexity of the code increases. In contrast, our method sustains its performance
across all levels of code complexity, demonstrating adaptability to more complex test scenarios. This
robustness in handling both temporal and complexity-based variations underscores the resilience of
our approach, making it a reliable choice in dynamic and evolving code testing environments.

4.3 RQ2: EFFECT OF DIFFERENT AGENTS IN SEEKER

To understand the contribution of each agent in the Seeker framework, we conduct an ablation study
by removing one agent at a time. The results are presented in Table 2.

From Table 2, we can observe that removing any agent from the framework leads to a degradation
in performance across all metrics. This highlights the importance of each agent’s role:

• The Scanner agent is crucial for initial code analysis, contributing to all metrics.

• The Detector agent enhances the identification of sensitive code regions, mainly affecting
COV-P and COV.

11
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Table 2: Ablation Study on the Effect of Different Agents

Configuration ACRS COV (%) COV-P (%) ACC (%) ES CRS (%)
Seeker (Full) 0.85 91 81 79 0.64 92
Without Scanner Agent 0.78 85 75 73 0.59 86
Without Detector Agent 0.76 63 54 61 0.51 84
Without Predator Agent 0.72 61 53 42 0.47 81
Without Ranker Agent 0.63 90 79 75 0.49 65
Without Handler Agent 0.50 91 81 79 0.34 42

• The Predator agent is key for accurately detecting exception types, mainly impacting ACC,
COV and COV-P.

• The Ranker agent improves the selection of the best handling strategies, contributing to
overall code quality, mainly affecting ES and CRS.

• The Handler agent ensures proper implementation of exception handling, affecting ES and
CRS.

4.4 RQ3: PERFORMANCE ACROSS DIFFERENT METRICS

We further analyze Seeker’s performance across the different evaluation metrics. The high scores
in ACRS and CRS indicate that Seeker not only generates code that adheres to best practices but
also produces high-quality code as per automated and LLM-based code reviews. The high COV and
COV-P scores show that our method effectively detects and correctly wraps sensitive code regions.
The high ACC and ES scores demonstrate accurate exception type identification and code similarity
to actual implementations.

4.5 RQ4: EFFECT OF UNDERLYING LANGUAGE MODEL

To evaluate the impact of the underlying LLM, we implement Seeker using different models, in-
cluding open-source models and GPT-4. The results are presented in Appendix A.2.4

The results indicate that more advanced language models like GPT-4o lead to better performance
in Seeker. This suggests that the capabilities of the underlying LLM significantly affect the overall
performance of our method.

4.6 RQ5: IMPACT OF DOMAIN-SPECIFIC KNOWLEDGE INTEGRATION

To assess the impact of integrating domain-specific knowledge, we compare Seeker with and with-
out the inclusion of the Common Exception Enumeration (CEE). The results are shown in Table 3.

Table 3: Impact of Integrating Common Exception Enumeration (CEE)

Configuration ACRS COV (%) COV-P (%) ACC (%) ES CRS (%)
Seeker with CEE 0.85 91 81 79 0.64 92
Seeker without CEE 0.38 48 41 32 0.29 46

The inclusion of CEE leads to significant improvements across all metrics. This demonstrates that
integrating domain-specific knowledge enhances Seeker’s ability to accurately detect and handle
exceptions.

4.7 ADDITIONAL ANALYSIS

In addition to the main experiments, we evaluated Seeker’s performance on generating repository-
level code and optimizing code patches for GitHub issues. The details of these experiments are
provided in Appendix A.3. The results confirm that Seeker maintains competitive performance in
model-based code generation tasks, further highlighting its robustness and applicability in real-world
scenarios.
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Our experiments demonstrate that Seeker achieves state-of-the-art performance in exception han-
dling code generation. By effectively combining comprehensive exception knowledge with a spe-
cialized agent framework, our method addresses the complexities of exception handling in code
generation. The superior performance across all metrics highlights the importance of integrating
domain-specific knowledge and best practices into code generation models.

5 CONCLUSION

In this paper, we extend the study of the impact of prompt specifications on the robustness of LLM
generated code. We conduct extensive comparative experiments using four sets of prompt settings
and further confirm the mitigating effect of developers’ poor exception handling practices. To ex-
ploit this phenomenon, we introduce the Seeker method, a multi-agent collaboration framework
that provides LLM with the prompt information required for mitigation effects with the support of
CEE documents and Deep-RAG algorithms. The upper bound model achieves SOTA performance
on exception handling tasks. In general, Seeker can be integrated into any base model, extended to
multiple programming languages, and even generalized to knowledge analysis and reasoning of gen-
eral inheritance relations, such as requirements engineering in Appendix A.3. We hope that our find-
ings and proposed methods can provide new insights and promote future research in these areas. The
source code of this paper is available at https://anonymous.4open.science/r/Seeker.
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A APPENDIX

A.1 METHOD DETAILS

A.1.1 DEEP-RAG ALGORITHM

Algorithm 2: Deep Retrieval-Augmented Generation (Deep-RAG)
Input: Knowledge hierarchy tree T , unit summary Fi, detected queries Qi, environment

context Env
Output: Relevant information retrievals Ri

1 Initialize relevant knowledge branches set B = {};
2 Assign knowledge scenario labels L = {l1, l2, . . . } to branches of T ;
3 foreach query qik in Qi do
4 Identify branches Bik in T related to qik based on labels L;
5 B ← B ∪Bik;
6 foreach branch bm in B do

// Verification Step
7 Select few-sample document examples Xm = {xm1, xm2, . . . } associated with branch bm;
8 foreach example xmj in Xm do
9 Perform query matching to obtain pass rate pmj and capture accuracy amj ;

10 if pmj or amj below threshold θ then
11 Record failure pattern fpmj based on Env;
12 Update environment context Env with fpmj ;

13 Compute average pass rate p̄m and accuracy ām for branch bm;
14 if p̄m or ām below threshold θ then
15 Fine-tune labels L for branch bm based on aggregated feedback from Env;

16 Initialize information retrievals set Ri = {};
17 foreach branch bm in B do
18 Select depth level D for node evaluation;
19 for d = 1 to D do
20 foreach node nml at depth d in branch bm do
21 Evaluate relevance score rml to summary Fi and queries Qi;
22 if rml > δ then
23 Retrieve information rml from knowledge base;
24 Ri ← Ri ∪ {rml};

In the Deep-RAG algorithm, we assign development scenario labels to each branch of the exception
inheritance tree based on their inheritance relationships, enabling the identification of branches that
may correspond to specific information of fragile code segments. Acting as an intelligent agent,
the algorithm interacts dynamically with its operational environment by leveraging feedback from
detection pass rates and capture accuracies obtained during the few-shot verification step. This
feedback mechanism allows the system to refine the granularity and descriptions of the scenario
labels through regularization prompts derived from failed samples. As a result, Deep-RAG can ac-
curately identify the risk scenarios where fragile codes are located and the corresponding knowledge
branches that are activated. Subsequently, the algorithm selectively performs node evaluations on
these branches by depth, thereby enhancing retrieval performance and optimizing computational
overhead. Additionally, we have designed the algorithm interface to be highly general, ensuring
its applicability across a wide range of RAG scenarios beyond exception handling. This generality
allows Deep-RAG to support diverse applications, as further detailed in Appendix A.3. By integrat-
ing environmental feedback and maintaining a flexible, agent-based interaction model, Deep-RAG
not only improves retrieval accuracy and efficiency but also adapts seamlessly to various domains
and information retrieval tasks, demonstrating its versatility and robustness in enhancing the perfor-
mance of large language models.
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A.1.2 COMMON EXCEPTION ENUMERATION

In this section, we introduce the framework for constructing the CEE, which serves as a foundational
resource for enhancing the reliability of exception handling in code generation by developers. With-
out a comprehensive and standardized document like CEE, developers may struggle to accurately
detect and handle these exceptions, leading to either overly generic or improperly specific exception
management. CEE addresses these challenges by providing a structured and exhaustive repository of
exception information, encompassing scenarios, properties, and recommended handling strategies
for each exception type. The construction of CEE is guided by three essential rules, each aimed at
addressing the complexities of exception management within Java development. First and foremost,
we establish a robust standard documentation base, drawing from the Java Development Kit (JDK)
to identify and compile a comprehensive set of exception nodes and their descriptions. This foun-
dational layer comprises a total of 433 nodes, organized into 62 branches and spanning five layers
within the Java exception hierarchy. By utilizing the standardized documentation from the JDK,
we ensure that the CEE is grounded in official, authoritative sources, providing a reliable reference
point for exception handling practices. Next, we enhance the CEE by integrating insights from real-
world human practices. This involves gathering a range of resources, including enterprise-level Java
development documentation and analyzing mature open-source Java projects hosted on platforms
like GitHub. By examining exemplary Java code, particularly focusing on effective exception han-
dling practices, we can enrich each exception node in the CEE with detailed contextual information.
Specifically, we define three key components for each exception node: Scenario, Property, and
Handling Logic.

• Scenario: This component describes the specific coding situations or environments in
which an exception is likely to occur. By analyzing real-world applications and common
coding patterns, we can create realistic scenarios that help developers understand when
to anticipate particular exceptions. This contextual understanding is critical for effective
exception handling, as it allows developers to write more accurate and responsive code.

• Property: This aspect outlines the characteristics and attributes of each exception. Un-
derstanding the properties of an exception, such as its severity, possible causes, and the
context of its occurrence, they are vital for appropriate handling. This detailed information
allows developers to make informed decisions on how to respond to exceptions based on
their inherent properties.

• Handling Logic: For each exception node, we define best practices for handling the ex-
ception. This includes recommended coding strategies, such as specific try-catch blocks,
logging mechanisms, and fallback strategies. By incorporating proven handling logic de-
rived from both successful enterprise practices and open-source contributions, we provide
a comprehensive guide that assists developers in implementing effective exception man-
agement.

The third rule emphasizes the need for fine-grained control over the matching and handling of ex-
ceptions through the use of few-shot samples. To ensure that the CEE maintains high accuracy in
matching exceptions with the appropriate handling logic, we establish a testing framework compris-
ing a variety of small-scale testing libraries. These libraries are designed to cover a wide range of
exceptions, providing high coverage rates for various scenarios. We leverage the CEE in conjunc-
tion with these testing libraries to conduct detailed evaluations of exception matching. By analyzing
the performance of the CEE in identifying and matching exceptions, we can identify instances of
false positives (incorrect matches) and false negatives (missed matches). Based on this analysis, we
iteratively refine the information associated with each exception node, adjusting the granularity of
the descriptions until we achieve a high accuracy in matching rates. This continuous feedback loop
allows us to optimize the CEE for real-world application, ensuring that developers can rely on it to
provide accurate and contextually relevant exception handling guidance. By adhering to these rules,
the CEE is positioned as a powerful resource that enhances the quality of exception handling in
code generated by LLMs. The combination of authoritative documentation from the JDK, insights
from real-world practices, and rigorous testing mechanisms creates a comprehensive framework that
not only improves the robustness of generated code but also empowers developers with the knowl-
edge and tools they need to manage exceptions effectively. It is worth mentioning that CEE, as a
knowledge base, has the value of free expansion and supporting community contributions. We will
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continue to be responsible for the version updates and iterations of CEE. An excerpt sample of CEE
can be found in Appendix A.2.2

A.2 EXPERIMENTAL DETAILS

A.2.1 DATASETS

To ensure the quality and representativeness of the dataset, we carefully selected projects on GitHub
that are both active and large in scale. We applied stringent selection criteria, including the number
of stars, forks, and exception handling repair suggestions in the project (Nguyen et al., 2020b), to
ensure that the dataset comprehensively covers the exception handling practices of modern open-
source projects. By automating the collection of project metadata and commit history through the
GitHub API, and manually filtering commit records related to exception handling, we have con-
structed a high-quality, representative dataset for exception handling that provides a solid foundation
for evaluating Seeker.

Table 4: The Excerpt Data source

Repo Commits Stars Forks Issue Fix Doc Under Maintenance
Anki-Android 18410 8500 2200 262 Y Y
AntennaPod 6197 6300 1400 295 Y Y
connectbot 1845 2480 629 321 N/A Y
FairEmail 30259 3073 640 N/A Y Y
FBReaderJ 7159 1832 802 248 Y N/A
FP2-Launcher 1179 25 2 16 Y N/A
NewsBlur 19603 6800 995 158 Y Y
Launcher3 2932 91 642 2 N/A Y
Lawnchair-V1 4400 93 43 394 Y Y
MozStumbler 1727 619 212 203 Y N/A

We quantify the quality of datasets in the context of code generation and exception handling using
multiple dimensions, encompassing project popularity, community engagement, codebase quality,
security posture, documentation integrity and dynamic maintenance. To provide a holistic assess-
ment, we propose a Composite Quality Metric (CQM) that aggregates these dimensions into a single
quantitative indicator. Open source code repositories that perform well under this metric enter our
semi-automated review process to screen high-quality exception handling blocks for few-shot, CEE
building, or testing.

To avoid data leakage, we also performed a round of variations on the test set. Considering that our
method does not directly rely on data but fully utilizes the LLM’s ability to understand and reason
about code, the evaluation results are consistent with our predictions, and the impact of data leakage
on the credibility of our method is negligible.

A.2.2 PROMPT AND DOCUMENT

CEE Prompt Template

genscenario = “““Below is a kind of exception in java. Please according to the sample
discription of scenario of errortype, provide a scenario description of the exception in java
just like the sample description.Please note that the granularity of the scenario descriptions
you generate should be consistent with the examples.

[Sample Description]
{sample desc}

[Exception]
{ename}
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Note you should output in the json format like below, please note that the granularity of the
scenario descriptions you generate should be consistent with the examples:
{{

“scenario”: ...
}}
”””
genproperty = “““Below is a kind of exception in java and its scenario description. Please
according to the sample discription of scenario and property of errortype, provide a
property description of the exception in java just like the sample description. You can
alse adjust the given scenario description to make them consistent. Please note that the
granularity of the property descriptions you generate should be consistent with the examples.

[Sample Description]
{sample desc}

[Exception]
{ename}

[Scenario Description]
{scenario}

Note you should output in the json format like below, please note that the granularity of the
property descriptions you generate should be consistent with the examples:
{{

“scenario”: ...;
“property”: ...

}}
”””

Planner Prompt Template

planner prompt = “““You are a software engineer tasked with analyzing a codebase. Your
task is to segment the given codebase into manageable units for further analysis. The criteria
for segmentation are:
- Each unit should have a length within 200 lines.
- The function nesting level should be low.
- The logical flow should be clear and self-contained.
- The segment should be complete and readable.

Given the following codebase:

[Codebase]
{codebase}

Please segment the codebase into units and list them as:

Unit 1:[Code Segment]
{{unit1}}

Unit 2:[Code Segment]
{{unit2}}
...

Ensure that each unit complies with the criteria specified above.
”””
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Detector Prompt Template

detector senario match = “““You are a java code auditor. You will be given a doc describe
different exception scenarios and a java code snippet.

Your task is to label each line of the code snippet with the exception scenario that it belongs
to. If a line does not belong to any scenario, label it with “None”. If a line belongs to one of
the given scenarios, label it with all the scenarios it belongs to.

[Scenario description]
{scenario}

[Java code]
{code}

Please output the labeling result in the json format like below:
{{

“code with label”: ...
}}
”””
detector prop match = “““You are a java code auditor. You will be given a doc describe
different exception properties and a java code snippet.

Your task is to label each line of the code snippet with the exception property that it belongs
to. If a line does not belong to any property, label it with “None”. If a line belongs to one of
the given properties, label it with all the properties it belongs to.

[property description]
{property}

[Java code]
{code}

Please output the labeling result in the json format like below:
{{

“code with label”: ...
}}
”””

Predator Prompt Template

predator prompt = “““You are a code analysis assistant. Your task is to process the given
code unit and identify specific exception types that may be thrown.

[Code Unit]
{code unit}

[Code Summary]
{code summary}

Based on the code summary and the potential exception branches provided, identify the
specific exception nodes that may be thrown.

[Potential Exception Branches]
{exception branches}
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Please answer in the following JSON format:
{{

“ExceptionNodes”: [
{{

“ExceptionType”: “ExceptionType1”,
}},
{{

“ExceptionType”: “ExceptionType2”,
}},
...

]
}}
Ensure that your response strictly follows the specified format.
”””

Ranker Prompt Template

ranker prompt = “““You are an exception ranking assistant. Your task is to assign grades
to the identified exceptions based on their likelihood and the suitability of their handling
strategies.

For each exception, please calculate:

- Exception Likelihood Score (from 0 to 1) based on its attributes and impact.
- Suitability Score (from 0 to 1) of the proposed handling strategy.

[Identified Exceptions and Handling Strategies]
{exception nodes}

Provide your calculations and the final grades in the following JSON format:
{{

“Exceptions”: [
{{

“ExceptionType”: “ExceptionType1”,
“LikelihoodScore”: value,
“SuitabilityScore”: value,
}},
...

]
}}

Please ensure your response adheres to the specified format.

”””

Handler Prompt Template

handler prompt = “““You are a software engineer specializing in exception handling. Your
task is to optimize the given code unit by applying appropriate exception handling strategies.

[Code Unit]
{code unit}

[Handling Strategy]
{strategy1}
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Generate the optimized code with the applied exception handling strategies.

Please provide the optimized code in the following format:

[Optimized Code]
{{optimized code}}

Ensure that the code is syntactically correct and adheres to best practices in exception han-
dling.
”””

Sample CEE Node

{
“name”: “IOException”,
“children”: [...],
“info”: {

“definition”: “IOException is a checked exception that is thrown when an input-output
operation failed or interrupted. It’s a general class of exceptions produced by failed or
interrupted I/O operations.”,

“reasons”: “There are several reasons that could cause an IOException to be thrown.
These include: File not found error, when the file required for the operation does not exist;
Accessing a locked file, which another thread or process is currently using; The file system
is read only and write operation is performed; Network connection closed prematurely;
Lack of access rights.”,

“dangerous operations”: “Operations that could typically raise an IOException in-
clude: Reading from or writing to a file; Opening a non-existent file; Attempting to open
a socket to a non-existent server; Trying to read from a connection after it’s been closed;
Trying to change the position of a file pointer beyond the size of the file.”,

“sample code”: “String fileName = ’nonexistentfile.txt’; \n FileReader fileReader =
new FileReader(fileName);”,

“handle code”: “String fileName = ’nonexistentfile.txt’; \n try { \n FileReader
fileReader = new FileReader(fileName); \n } catch(IOException ex) { \n Sys-
tem.out.println(’An error occurred while processing the file ’ + fileName); \n
ex.printStackTrace(); \n }”,

“handle logic”: “Try the codes attempting to establish connection with a
file/stream/network, catch corresponding IOException and report it, output openpath
is suggested.”
},
“scenario”: “attempt to read from or write to a file/stream/network connection”,
“property”: “There might be an unexpected issue with accessing the file/stream/network

due to reasons like the file not being found, the stream being closed, or the network
connection being interrupted”
}

A.2.3 COMPUTATION COST ANALYSIS

Integrating a comprehensive exception handling mechanism like Seeker introduces potential chal-
lenges in computational overhead, especially when dealing with a large number of exception types
and complex inheritance relationships. To address this, we designed a high-concurrency interface
that keeps the additional computing time overhead constant, regardless of the code volume level.
This ensures scalability and controllable complexity when processing any size of codebase.

To evaluate the efficiency of our high-concurrency interface, we conducted experiments on 100
Java code files both before and after implementing parallel processing. For each code file, we exe-
cuted the exception handling process and recorded the time taken. In the parallelized version, while
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the processing between different code files remained sequential, the processing within each code
file—specifically, the CEE retrieval involving branch and layered processing—was parallelized.

The results are summarized in Table 5. After applying parallel processing, the average time per code
file was reduced to approximately 19.4 seconds, which is about 1

15 of the time taken with sequential
processing. This significant reduction demonstrates the effectiveness of our parallelization strategy.

Table 5: Computation Time Before and After Parallelization

Processing Method Average Time per Code File (s) Speedup Factor
Sequential Processing 291.0 1x
Parallel Processing (Seeker) 19.4 15x

Notably, the size of the code files did not affect the processing time, indicating that our method
efficiently handles codebases of varying sizes without compromising on speed. This stability ensures
that Seeker can perform consistent and efficient exception handling across any code, making it
highly suitable for practical applications.

A.2.4 FURTHER RESULTS ON DIFFERENT LLMS

We use different open-source (e.g. Code Llama-34B (Rozière et al., 2023), WizardCoder-34B (Luo
et al., 2024), Vicuna-13B (Zheng et al., 2023)) and closed-source(e.g. Claude-2 (Clade, 2023),
GPT-3-davinci (GPT-3, 2022), GPT-3.5-turbo (GPT-3.5, 2023), GPT-4-turbo (GPT-4, 2023), GPT-
4o (GPT-4o, 2024)) LLMs as the agent’s internal model to further analyze models’ ability for ex-
ception handling. The results are summarized in Table 6.

Table 6: Performance of Different Models on Exception Handling Code Generation

Model ACRS COV (%) COV-P (%) ACC (%) ES CRS (%)
Open-Source Models

Code Llama-34B 0.31 37 35 c 32 0.25 34
WizardCoder-34B 0.37 35 31 29 0.28 35
Vicuna-13B 0.23 15 9 11 0.19 26

Closed-Source Models
Claude-2 0.42 64 59 54 0.40 54
GPT-3-davinci 0.56 78 68 60 0.48 58
GPT-3.5-turbo 0.63 79 72 66 0.52 71
GPT-4-turbo 0.84 91 83 77 0.63 89
GPT-4o 0.85 91 81 79 0.64 92

The performance variations among different models can be explained by:

- Pre-training Data: Models pre-trained on larger and more diverse code datasets (e.g., GPT-4o)
have a better understanding of programming constructs and exception handling patterns.

- Model Architecture: Advanced architectures with higher capacities and more layers (e.g., GPT-4)
capture complex patterns more effectively.

- RAG Performance: Models that efficiently integrate retrieval-augmented generation, effectively
utilizing external knowledge (as in our method), perform better.

- Understanding Capability: Models with superior comprehension abilities can accurately detect
sensitive code regions and predict appropriate exception handling strategies.

Open-source models, while valuable, may lack the extensive training data and architectural sophis-
tication of closed-source models, leading to lower performance. Closed-source models like GPT-4o
and GPT-4 benefit from advanced training techniques and larger datasets, enabling them to excel in
tasks requiring nuanced understanding and generation of code, such as exception handling.
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A.3 OTHER APPLICABLE SCENARIOS ANALYSIS

Figure 6 shows the migration application of Seeker multi-agent framework in APP requirement en-
gineering that also includes parent-child inheritance relationship. We have reason to believe that
Seeker framework can try to be compatible with more complex inheritance relationship, being re-
sponsible for reasoning representation, while having high performance and interpretability. The
above achievements are not easy to accomplish based on graphs or traditional algorithms.

To validate the general applicability of our system in diverse scenarios, we evaluated Seeker on stan-
dard code generation benchmarks, including SWE-bench and CoderEval. We present comparative
results demonstrating the incremental improvements achieved by our method.

SWE-bench is an evaluation framework comprising 2,294 software engineering problems de-
rived from real GitHub issues and corresponding pull requests across 12 popular Python repos-
itories(Jimenez et al., 2024). It challenges language models to edit a given codebase to resolve
specified issues, often requiring understanding and coordinating changes across multiple functions,
classes, and files simultaneously. This goes beyond traditional code generation tasks, demanding in-
teraction with execution environments, handling extremely long contexts, and performing complex
reasoning.

For our experiments, we selected 50 issues related to exception handling from the SWE-bench Lite
dataset. Using GPT-4o as the internal large model, the SweAgent(Yang et al., 2024) coupled with
GPT-4o achieved a 19% resolve rate and a 43% apply rate. In contrast, our Seeker framework
attained a 26% resolve rate and a 61% apply rate, indicating a significant improvement.

Table 7: Performance on SWE-bench Lite Exception Handling Issues

Method Resolve Rate (%) Apply Rate (%)
SweAgent + GPT-4o 19 43
Seeker + GPT-4o 26 61

CoderEval is a benchmark designed to assess the performance of models on pragmatic code genera-
tion tasks, moving beyond generating standalone functions to handling code that invokes or accesses
custom functions and libraries(Yu et al., 2024). It evaluates a model’s ability to generate functional
code in real-world settings, similar to open-source or proprietary projects.

In the Java code generation tasks on CoderEval, using Codex(Codex, 2021) directly yielded a
Pass@1 score of 27.83%. When integrating our Seeker framework with Codex, the Pass@1 score
increased to 38.16%, demonstrating a substantial enhancement in code generation performance.

Table 8: Performance on CoderEval Java Code Generation Tasks

Method Pass@1 (%)
Codex 27.83
Seeker + Codex 38.16

These experiments conclusively demonstrate that our Seeker framework can achieve significant
incremental improvements across different scenarios and benchmarks. By effectively handling
exception-related tasks and enhancing code robustness, Seeker proves to be a valuable addition
to existing code generation models, improving their practical applicability in real-world software
engineering problems.

Inspired by OpenAI o1 (o1, 2024) and DoT (Zhang et al., 2024b), we found that Seeker framework
has more room for development in LLM reasoning. Through pre-deduction in tree inference, LLM
is expected to enter the problem-solving ideas more efficiently and optimize its reasoning actions
through interaction with the external environment. In the future, we will continue to explore research
in this direction.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B RELATED WORK

At present, machine learning has been widely integrated in the field of software engineering, espe-
cially in code generation tasks. In this section, we will discuss the progress of Seeker-related work
from the latest progress of automatic exception handling tools. These methods have contributed to
the robustness or productivity of software engineering, but they also have limitations, which is also
the focus of Seeker.

B.1 AUTOMATIC EXCEPTION HANDLING TOOLS

Zhang et al. (2020) introduced a neural network approach for automated exception handling in Java,
which predicts try block locations and generates complete catch blocks in relatively high accuracy.
However, the approach is limited to Java and not generalize well without retraining. Additionally,
the reliance on GitHub data could introduce biases based on the types of projects and code quality
present in the dataset.

Li et al. (2024b) conducted an exploratory study on fine-tuning LLM for secure code generation.
Their results showed that after fine-tuning issue fixing commits, the secure code generation rate
was slightly improved. The best performance was achieved by fine-tuning using function-level
and block-level datasets. However, the limitation of this study is still generalization, not directly
applicable to other languages. In addition, it limits the amount and the domain of code that can
be effectively processed. Little much code beyond training data scale will affect the processing
effect. Li et al. (2023c) also pointed out that in terms of automatic vulnerability detection, the use
of traditional fine-tuning methods may not fully utilize the domain knowledge in the pre-trained
language model, and may overfit to a specific dataset, resulting in misclassification, excessive false
positives and false negatives. Its performance is not as good as emerging methods such as prompt-
based learning.

Ren et al. (2023) proposed the Knowledge-driven Prompt Chaining (KPC) approach to improve
code generation by chaining fine-grained knowledge-driven prompts. Their evaluation with 3,079
code generation tasks from Java API documentation showed improvements in exception handling.
However, the approach’s efficiency relies heavily on the inquiry about built-in exceptions for each
built-in JDK, and its practical application is limited if the codebase is complex.

Nguyen et al. (2020a) developed FuzzyCatch, a tool for recommending exception handling code
for Android Studio based on fuzzy logic. However, the performance of FuzzyCatch depends on
the quality and relevance of the training data. In addition, the tool does not perform well for less
common exceptions or domains that are not well represented in the training data.

A common limitation of these studies is that the training data they rely on may not fully represent
all possible coding scenarios. This may result in a model that is effective in specific situations, but
may not generalize well to other situations. In addition, the complexity of exception handling in
real-world applications may exceed the capabilities of models trained on more common or simpler
cases, so it is crucial to call on the understanding and reasoning capabilities of the model itself. The
interpretability of exception handling also provides a guarantee for the improvement of developers’
programming literacy. The comparison between the above methods and Seeker is shown in figure 7.

B.2 MULTI-AGENT COLLABERATION

Multi-agent collaboration refers to the coordination and collaboration between multiple artificial
intelligence (AI) systems, or the symbiotic collaboration between AI and humans, working together
to achieve a common goal (Smoliar, 1991). This direction has been explored for quite some time
(Claus & Boutilier, 1998) (Minsky, 2007). Recent developments show that multi-agent collaboration
techniques are being used to go beyond the limitations of LLM, which is a promising trajectory.
There are many ways for multi-agents to collaborate with LLM.

VisualGPT (Wu et al., 2023) and HuggingGPT (Shen et al., 2023) explored the collaboration be-
tween LLM and other models. Specifically, LLM was used as a decision center to control and call
other models to handle more domains, such as vision, speech, and signals. CAMEL (Li et al., 2023a)
explored the possibility of interaction between two LLMs. These studies mainly use case studies in
the experimental stage to demonstrate their effectiveness and provide specific hints for each case.
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For multi-agent collaborative software engineering, which is most relevant to Seeker, Dong et al.
(2023) introduces quantitative analysis to evaluate agent collaborative code generation. It intro-
duces the waterfall model in software development methods into the collaboration between LLMs.
However, there is still a gap between the evaluation benchmarks used and the actual software devel-
opment scenarios. In addition, although this work builds a fully autonomous system, adding a small
amount of guidance from human experts to supervise the operation of the virtual team will help
improve the practicality of the method in actual application scenarios. These problems are exactly
what we have improved on Seeker.

Zhang et al. (2024a) formalized the repo-level code generation task and proposed a new agent frame-
work CODEAGENT based on LLM. CODEAGENT developed five programming tools to enable
LLM to interact with software artifacts and designed four agent strategies to optimize the use of
tools. The experiment achieved improvements on various programming tasks. However, it only
integrated simple tools into CODEAGENT. Some advanced programming tools were not explored.
This limitation limits the ability of the agent in some challenging scenarios, such as exception han-
dling tasks.

Above all, nowadays, most code-agent works focus on the transformation from the requirements to
code and overlook the code robustness during software evolution, which requires not only under-
standing the requirement but also dealing with potential exceptions.

B.3 ROBUST SOFTWARE DEVELOPMENT MECHANISM

Code robustness refers to the practices and mechanisms that ensure software to run as expected
without causing unexpected side effects, security vulnerabilities, or errors. It involves techniques
such as type safety, memory safety, and ensuring that all code paths are well-defined, including
when exceptions exist. Exception handling is a necessary programming mechanism to maintain code
robustness, allowing programs to manage and respond to runtime errors or other abnormal events.
It helps maintain the normal flow of execution and ensures that resources are properly released
even when errors occur. Exception handling is critical to code robustness because it ensures that
unexpected errors do not compromise the stability or security of the system, prevents resource leaks,
ensures data integrity, and keeps the program running correctly even when unforeseen errors occur.
(Weimer & Necula, 2004)

From the perspective of code robustness, the defect repair work in the field of software engineering
is closely related to exception handling mechanisms, because exception handling involves solving
potential errors in the program flow, and developers can mitigate or eliminate defects that may
cause program failures or unpredictable behavior.(Jacobs & Piessens, 2009) Currently, since each
defect represents a potential vulnerability or instability in the software and is directly related to the
functional correctness of the program, research focuses more on defect repair, such as Wen et al.
(2023), Devign (Wen et al., 2023), VulAdisor (Wen et al., 2023), while the program’s exception
safety and exception handling, the powerful program defense mechanisms are not considered.

When a program lacks good exception handling, errors may propagate uncontrollably, leading to re-
source leakage, data corruption, and potential security vulnerabilities. This situation is called fragile
code. After the error occurs, Automatic Program Repair related work performs post-processing to
fix the code bug. Representative works include Zhou et al. (2012), Magis (Tao et al., 2024), Huang
et al. (2025), PatchFinder (Li et al., 2024d). However, they lack the ability to perceive and repair
program risks in advance, and there is a risk of accidentally changing the original function of the
code.
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Insensitive Detection

Inaccurate Capture

Incorrect Generating

Good Practice

Figure 4: A schematic diagram of Preliminary Phenomenon, highlight what information will boost
LLM EH performance, with a case study.
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Insensitive Detection

Inaccurate Capture

Distorted Solution

Good Practice

Human

Figure 5: A schematic diagram of Preliminary Phenomenon, highlight what information will boost
LLM & human EH performance, with a case study.
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Figure 6: A schematic diagram of APP requirement engineering, highlight seeker’s generalizability.

Figure 7: Comparison of Performance Stability Across Baselines and Our Method over Varying
Conditions. The top set of curves illustrates the performance metrics over time (2019 to 2024)
across different baselines and our method. The bottom set displays performance across increasing
function counts.
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