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ABSTRACT

Large Language Models (LLMs) generating unsafe responses to toxic prompts is
a significant issue in their applications. While various efforts aim to address this
safety concern, previous approaches often demand substantial human data col-
lection or rely on the less dependable option of using another LLM to generate
corrective data. In this paper, we aim to take this problem and overcome limita-
tions of requiring significant high-quality human data. Our method requires only
a small set of unsafe responses to toxic prompts, easily obtained from the un-
safe LLM itself. By employing a semantic cost combined with a negative Earth
Mover Distance (EMD) loss, we guide the LLM away from generating unsafe re-
sponses. Additionally, we propose a novel lower bound for EMD loss, enabling
more efficient optimization. Our results demonstrate superior performance and
data efficiency compared to baselines, and we further examine the nuanced effects
of over-alignment and potential degradation of language capabilities when using
contrastive data.

1 INTRODUCTION

Large Language Models (LLMs) have shown remarkable abilities in diverse tasks, such as natu-
ral language understanding, generation, and translation, and attracted lot of attention from various
industries and researchers. Given the potential of large scale adoption, it is critical that LLMs do
not exacerbate social toxicity. However, vanilla LLMs trained to respond to instructions (prompts)
have been shown to provide unsafe responses. With the vast amount of knowledge inbuilt in LLMs
due to training on a very large amount of data, LLMs are able to generate responses that can be
dangerous, e.g., LLMs can provide instructions on how to download movies illegally (Zhang et al.,
2024; Ganguli et al., 2022; Wen et al., 2023). Further, some responses can be outright toxic that
belittle groups of people based on race or gender or other attributes (Gehman et al., 2020; Sheng
et al., 2019; Brown, 2020).

In response, a number of works have proposed ways to make LLMs ‘safe.’ One way is Reinforce-
ment Learning from Human Feedback (RLHF) (Ziegler et al., 2019; Bai et al., 2022). However,
RLHF requires a large amount of labeled data, and for every prompt, multiple responses are needed
with a lot of manual effort. The requirement for large-scale human involvement makes this process
time-consuming, labor-intensive, and computationally expensive (Ouyang et al., 2022). Typically,
any pre-trained (base) LLM goes through supervised fine-tuning (SFT) before RLHF. SFT is a tech-
nique used to adapt a pre-trained (base) LLM to a specific downstream task using labeled data. The
majority of LLMs used in 2024 are fine-tuned for chat or instruction-based interactions. Existing
work (Bianchi et al., 2023) called Safety Tuned Llamas (STL) that aims to make LLMs safe in the
SFT stage by using data of safe responses to toxic prompts. Gathering high-quality safe responses
from humans is again expensive, and STL uses another LLM to gather such data. Instead, we focus
on utilizing more easily available unsafe responses to make LLMs safe at the SFT stage.

Problem Statement: We aim to make an LLM generate safe responses to toxic prompts in the
SFT stage itself but using very few easily available harmful responses. Formally, given a base
(non-SFTed) LLM Mθ with weights θ, we aim to perform SFT with two kinds of datasets: (1)
Dsafety-unrelated comprises prompts, response pairs (pj , rj) that are unrelated to safety concerns. By
construction, the responses rj = Mθ(pj) are assumed to be safe. (2) Dsafety-related consists of
prompts, response pairs (pi, ri) where the prompts pi are explicitly designed to be unsafe. The
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model’s responses ri = Mθ(pi) to these prompts are anticipated to be potentially harmful, as Mθ is
a base (non-SFTed) LLM. We do not have any safe (or desired) responses to prompts in Dsafety-related
and typically, we have |Dsafety-related| << |Dsafety-unrelated|.
Approach and Contributions: Our approach to solving the above problem relies on the idea that
one should penalize the generation of toxic responses in SFT. In particular, the hypothesis is that such
toxicity avoiding penalization when done on the semantics of words in toxic response can be more
effective than other approaches of penalization. We call this as Toxicity Avoiding SFT (TA-SFT).
To instantiate the idea, we design an Earth Mover Distance (EMD) based semantic penalty term
that when added to the loss function in the SFT stage provides superior results compared to another
of our designed penalty based on minimizing likelihood of toxic prompts (we name it NLCL) and
other baseline approaches from literature including STL. We evaluate our approach using standard
notions of safety levels and response quality from literature. We list our novelty and contributions
in our approach below:

• We demonstrate that Large Language Models (LLMs) can be made safer during the SFT
stage by incorporating a very small amount of harmful responses to toxic prompts into the
TA-SFT dataset. The semantically-informed EMD loss enables LLMs to achieve safety
with |Dsafety-related| ≈ 0.005|Dsafety-unrelated|.

• The semantically-informed EMD loss achieves comparable safety levels with lower size of
|Dsafety-related| compared to NLCL and other baselines. EMD also maintains higher response
quality than NLCL.

• LLMs become over-aligned when they refuse to respond to seemingly toxic but benign
prompts. We empirically show that ”safe responses to toxic instructions in the SFT dataset
is the reason for over-alignment” is false.

• In addition, we observe the surprising phenomenon of degradation of the model’s language
abilities when we augment our TA-SFT data with safe responses (from another LLM) to
seeming toxic prompts, an observation also made when in work studying the use of AI
generated data for training (Shumailov et al., 2023).

2 RELATED WORK AND BACKGROUND

2.1 RELATED WORK

Ensuring the safety and fairness of LLM outputs has become a critical area of focus (Yuan et al.,
2024; Yao et al., 2024). One of the primary methods to align LLMs with human values is through
human preference alignment, with Reinforcement Learning from Human Feedback (RLHF) (Ziegler
et al., 2019; Bai et al., 2022) and the success of models like ChatGPT has demonstrated the impor-
tance and effectiveness of RLHF. Recent works have been proposed to simplify the training process
of RLHF (Rafailov et al., 2024; Hong et al., 2024; Ethayarajh et al., 2024). Compared to RLHF,
Supervised Fine-tuning (SFT) requires significantly less training data and time. However, the safety
issue after SFT has been highlighted by recent studies (Zong et al., 2024; Qi et al., 2023; Hsu et al.,
2024). Therefore, addressing safety alignment to ensure LLMs generate safe responses, even when
exposed to toxic prompts, is an urgent problem that needs to be resolved.

Recent work (Bianchi et al., 2023) explores improving LLM safety by incorporating safe responses
to toxic prompts into the SFT dataset. Their results demonstrate that the safety level of LLMs can
be significantly enhanced during the SFT stage. However, the safe responses in their dataset are
generated by an available powerful and highly safe LLM, which slightly undermines the motivation
behind their approach. In contrast, we do not require any external ‘safe’ LLM as we only need
unsafe responses and we also require much less safety related data (0.5%) compared to their 3%
requirement. As such, safety alignment during the SFT stage remains an attractive avenue due to its
efficiency and cost-effectiveness, and this direction is still in its early stages of exploration.

2.2 BACKGROUND

The supervised fine-tuning (SFT) of an LLM involves adjusting the parameters of LLM Mθ such that
the pre-trained models adapt to specific tasks. Specifically, given a dataset of N prompt, response
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Figure 1: Comparison between our TA-SFT and standard SFT. In the standard SFT (represented by
black dashed lines), base LLM is trained on Dsafety-unrelated to improve the response quality. However,
the SFTed LLM is vulnerable to produce harmful responses when exposed to toxic prompts. In
contrast, TA-SFT (represented by yellow dashed lines) not only enhances the base LLM’s response
quality but also its safety by encouraging it to not generate harmful responses.

pairs (pj , rj) SFT maximizes the likelihood of generating response rj to the prompt pj . For SFT,
a standard approach is to use the Negative Log-Likelihood (NLL) loss (Radford, 2018), which is
defined for a set of N prompts (where the prompt is pi and its corresponding response is yi, that is
given as a sequence of tokens [yi,1, yi,2, ..., yi,Ti ] ) as:

LSFT(θ,N) = − 1

N

N∑
i=1

Ti∑
t=1

logQθ(yi,t | yi,t−1, . . . , yi,1, pi) . (1)

where Qθ(yi,t | yi,t−1, . . . , yi,1, pi) represents the conditional probability of the t-th token in the
generated sequence, conditioned on all previous tokens and the input prompt pi. Ti represents the
token length of response yi. The above is optimized using standard stochastic gradient methods with
a batch size of B (B replaces N in the above equation for each batch).

ORPO (Hong et al., 2024) is a method designed for Reinforcement Learning with Human Feedback
(RLHF), and as such, it is not directly comparable to our approach during the Supervised Fine-
Tuning (SFT) stage. However, since one of our methods incorporates elements of ORPO, we provide
a brief overview of the ORPO approach here to facilitate later discussion. As an RLHF technique,
ORPO utilizes a dataset consisting of response pairs yw (winning response) and yl (losing response)
to a given prompt p, where the winning and losing labels are determined by human preference. The
authors of ORPO introduce a relative ratio loss for each data point (prompt, winning response, and
losing response) as follows:

LOR = − log σ

(
log

oddsθ(yw | p)
oddsθ(yl | p)

)
where oddsθ(y | p) = Qθ(y | p)

1−Qθ(y | p)
. (2)

3 METHOD

We provide a modified supervised fine-tuning protocol on a base LLM, denoted as Mθ. As stated in
the problem statement, the dataset used for modified fine-tuning D = Dsafety-unrelated ∪ Dsafety-related
consist of two subsets, one a traditional safety unrelated dataset and another smaller safety related
dataset (with only harmful response) that we construct. Our approach is based on minimizing harm-
ful probability of response for toxic prompts and an overview of the approach is shown in Figure 1.
To reduce the risk of generating harmful responses, we push the next token prediction distribution
away from the distribution observed in the unsafe demonstrations within the safe-related dataset.

3.1 EMD BASED APPROACH

Our main approach is based on using Earth Mover Distance (EMD) to measure the distance between
the generated next token prediction distribution and the next token distribution of unsafe responses

3
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in data. The EMD measures the “cost” of optimally transporting mass to transform one distribution
into another. The cost d(x, y) is defined on the underlying probability space, and it measures the
cost of transporting unit probability mass from x to y; the cost is domain dependent. Given such a
cost d, the EMD between two distribution P,Q is defined as

EMD(P,Q; d) = inf
γ∈Π(P,Q)

E(x,y)∼γ [d(x, y)] , (3)

where Π is set of all joint distributions (couplings) such that the marginals of any γ ∈ Π are P and Q.
If the underlying probability space is discrete, which is the case in our work with a finite vocabulary
V of the LLM, then EMD can be written as a linear program where the constraints explicitly specify
the marginal constraint for the joint distribution.

min
γ

∑
x∈V

∑
y∈V

γ(x, y)d(x, y)

subject to
∑
x∈V

γ(x, y) = Q(y) ∀y ∈ V and
∑
y∈V

γ(x, y) = P (x) ∀x ∈ V .

In our problem, to capture the semantic information of tokens, we employ the cosine distance dc
between the normalized tokens embeddings, where normalized embedding êw = ew/||ew|| is a unit
vector formed from raw token embedding ew. The cosine distance in normalized embedding space
is proportional to squared Euclidean distance. Formally, suppose the normalized embeddings for
tokens w and w′ are êw and êw′ respectively, then

dc(êw, êw′) = 1− cos(êw, êw′) = ||êw − êw′ ||22/2 . (4)

Given a sequence of tokens w<t−1 before the generation of the t-th token, we denote as Qθ(·|w<t−1)
the (conditional) probability distribution over the next token yt. We use P (·|w<t−1) to denote the
(conditional) probability distribution over the next token as seen in the data. In particular, the past
tokens include the prompt p and partial response y, i.e., w<t−1 = yt−1, . . . , y1, p.

As our data has unsafe responses to toxic prompts pi, we seek to increase
EMD(P (·|w<t−1), Qθ(·|w<t−1)). In words, we aim to increase the EMD between the dis-
tribution of the generated next token and the distribution of unsafe next token in data only for
the toxic prompts pi. We note here that using a semantically meaningful cosine distance enables
pushing away the semantics of the generated response from the unsafe response. Coupled with the
standard LSFT (θ) loss for safety unrelated response pi, the EMD approach encourages safe yet
meaningful responses to the toxic prompts.

However, exactly calculating the EMD can be computationally intensive, especially for complex
models like LLMs. As we aim to increase the EMD between the generated next token prediction
distribution and the next token distribution of unsafe responses in data, we use a lower bound of
EMD as a proxy for optimization. While lower bounds for EMD are known if the cost d is a distance
metric (Cohen & Guibas, 1997), our cost dc is a squared norm which is not a proper distance metric
as squared norm does not satisfy the triangle inequality. Thus, we provide a novel lower bound
below (proof in Appendix A.3):
Proposition 1. For two probability distributions P,Q over normalized embedding êw of tokens w
in vocabulary V (w ∈ V ) we have EMD(P,Q; dc) ≥ 1

2|V |2 ∥
∑

w∈V P (w)êw −
∑

w∈V Q(w)êw∥2.

Implementation: In the above, using data distribution P (· | w<t−1) in place of P and Qθ(· |
w<t−1) in place of Q gives a lower bound that we can optimize. Note that we can ignore the constant

1
2|V |2 when optimizing the lower bound. The

∑
yt∈V Qθ(yt | w<t−1)êyt

in the lower bound is
computed by multiplying the next token probability generated by LLMs with the normalized token
embedding êyt . However, the true probability distribution over the next token P (· | w<t−1) in∑

yt∈V P (yt | w<t−1)êyt is unknown, but we have data samples. Following the approach outlined
in Ren et al. (2023), we treat P as a one-hot vector of the next token as present in the safety related
dataset Dsafety-related. Then, the EMD lower bound loss evaluated on N prompts, response pairs is

LEMD(θ,N) = − 1

N

N∑
i=1

Ti∑
t=1

||
∑
yt∈V

P (yt|w<t−1)êyt
−

∑
yt∈V

Qθ(yt|w<t−1)êyt
||2 . (5)
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Then, in a batch of B prompts, response pairs with K ≤ B data points from safety-unrelated data,
the final loss to optimize is

L(θ) = LSFT(θ,K) + λLEMD(θ,B −K) , (6)

where λ is a hyperparameter. We uniformly sample training batches in the whole fine-tuning dataset
D = Dsafety-unrelated∪Dsafety-related. The SFT loss is computed on the data sampled from Dsafety-unrelated
and the EMD loss is computed on the data sampled from Dsafety-related. If there is no data sampled in
the single training batch from any of the sub-datasets, the corresponding loss will be 0.

3.2 LIKELIHOOD BASED APPROACH

An easier option compared to the use of EMD is to directly penalize the likelihood of unsafe re-
sponses during supervised fine-tuning. We follow ORPO (Hong et al., 2024), but since we do not
have pairs of responses but only the undesired response yl, we set odds(yw | p) = 1 in Equa-
tion 2. Then, the denominator odds(yl | p) in Equation 2 represents the odds of generating an unsafe
response to toxic prompt p. Simplifying the loss with this change, we obtain a modified loss

LNLCL(θ,N) = − 1

N

N∑
i=1

log(1−Qθ(yi | pi)) . (7)

The above can be clearly seen as a loss that minimizes the likelihood (NLCL stands for negative
log of complementary likelihood) of generating toxic response yi (in data) to the toxic prompt pi.
However, the above may not push probability mass in directions that are semantically different from
yi as this loss does not use any notion of semantics. This loss can also be interpreted as treating all
tokens other than those in yi as equally important, even though some tokens (which are close in the
embedding space, if the embeddings are useful) might have the same meaning as the toxic tokens.
Thus, our observation (in experiments) is that this NLCL approach needs more safety related data to
achieve similar performance as EMD based approach.

Then, similar to the EMD implementation, in a batch of B prompts, response pairs with K ≤ B
data points from safety-unrelated data, the final loss to optimize is

L(θ) = LSFT(θ,K) + λLNLCL(θ,B −K) . (8)

4 EXPERIMENT

We tested our approach on four different base models which are not SFTed or RLHF fine-tuned:
Llama 7b (Touvron et al., 2023), Llama 13b (Touvron et al., 2023), Mistral 7b (Jiang et al., 2023),
and Llama3.1 8b (Dubey et al., 2024). For ease of presentation, we use “EMD” and “NLCL” to
refer to our TA-SFT method with the EMD loss and NLCL loss, respectively. All fine-tuning uses
low-rank adaptation (LoRA) (Hu et al., 2021) for three or four epochs. All models have been trained
on L40 or H100 GPUs. More training hyper-parameters can be found in the Appendix.

4.1 SAFETY TRAINING DATASET CONSTRUCTION

To the best of our knowledge, there is no existing SFT dataset that combines pairs of safety-unrelated
prompts and responses with safety-related pairs (involving toxic prompts and harmful responses).
Although many RLHF datasets contain responses labeled as ‘preferred’ or ‘non-preferred’ for each
prompt, ‘non-preferred’ responses can still be safe and of good quality, albeit lower than the ‘pre-
ferred’ ones. Therefore, RLHF datasets are not suitable for our study. However, sufficient toxic
prompts can be found in datasets for attacking designed by human (Bai et al., 2022) or generated
automatically (Cui et al., 2024). We obtain harmful responses to these toxic prompts by super-
vised fine-tuning the pre-trained base LLM under consideration on existing SFT datasets such as
Alpaca (Taori et al., 2023). These instruction tuned LLMs are vulnerable to toxic prompts and can
easily generate harmful responses (Qi et al., 2023). We use the SFTed LLM to generate harmful
responses, and then apply the OpenAI moderation API to extract 1,000 responses that are harmful
from the LLM under consideration. These 1000 toxic prompt, response pairs (Dsafety-related) are com-
bined with 20,000 randomly sampled prompt, response pairs from the Alpaca dataset (Dsafety-unrelated)
to create the dataset D = Dsafety-unrelated ∪Dsafety-related used for our approaches.
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4.2 BASELINE METHODS

The primary distinction of our approach from RLHF is that our data has only one response per
prompt, whereas RLHF typically requires a pair of responses for each prompt, making most RLHF
methods unsuitable as baselines. However, one of the RLHF method, named KTO (Ethayarajh et al.,
2024), does not depend on pairwise responses and has even better performance than DPO (Rafailov
et al., 2024), and can be utilized as the baseline in our study. In the training of KTO, we consider
the harmful responses as the ‘non-preferred’ responses and the other as ‘preferred’ responses. The
weight term in KTO loss is tuned as suggested in KTO paper (Ethayarajh et al., 2024).

As stated in related work, the most closely related work to ours is Safety Tuned Llamas
(STL) (Bianchi et al., 2023). However, STL requires high quality safe responses to toxic prompts,
which is different from our dataset that has only easily available unsafe responses to toxic prompts.
Thus, STL is not directly comparable to our approach. Nonetheless, we compare to an advantaged
STL by providing the required data for STL in Section 4.3.4 below.

4.3 EVALUATION

In this section, we evaluate our approach in comparison to existing methods across multiple dimen-
sions including safety level of responses, response quality, data efficiency and over alignment.

4.3.1 SAFETY LEVEL

We follow standard practice in literature (Bianchi et al., 2023) to evaluate our fine-tuned models
on four harmfulness benchmarks: I-Malicious, I-CoNa, I-Controversial, and HarmfulQ, which en-
compass hateful speech, controversial topics such as vaccination and immigration, and malicious
instructions. These four datasets totally contain 518 toxic prompts, providing comprehensive cover-
age and a thorough test of the model’s response to a wide range of toxic inputs.

To automatically evaluate the safety level of responses to the toxic prompts, we first utilize a pre-
trained DeBERTa model (He et al., 2021), which assigns a harmfulness score ranging from 0 (least
harmful) to 5 (most harmful). As illustrated in Figure 2, across all four test datasets, both EMD
and NLCL loss functions significantly reduce the harmfulness scores of Llama 7b’s responses as
training progresses, ultimately making them nearly safe. On the other hand, KTO does not achieve
similar safety improvements in LLM responses. Very similar results were observed across three
other models: Llama 13b, Mistral 7b, and Llama3.1 8b, which are presented in the appendix.

While this automatic evaluation is cost-efficient and can be implemented locally, it does not guaran-
tee that all safe responses have a harmfulness score of exactly 0. Therefore, we cannot conclusively
classify which responses are safe. For instance, as depicted in Figure 2, even though most responses
are safe, the DeBERTa model still assigns an average harmfulness score of approximately 0.3.

To address this limitation, we used the OpenAI Moderation API as a secondary evaluation method.
This API provides both a harmfulness score (in [0,1]), where 0 is the least harmful and 1 the most
harmful) and a binary tag indicating whether the response is safe. In Figure 2(d), we show the
percentage of tagged harmful responses across all four test datasets. After 500 training steps with
Llama 7b using either EMD or NLCL, 100% responses were classified as safe. The harmfulness
percentage and harmful score from the moderation API for the other three models: Llama 13b,
Mistral 7b, and Llama3.1 8b follow a similar trend and are shown in the appendix A.4.2.

4.3.2 RESPONSE QUALITY

In this sub-section we aim to investigate whether our approach of penalizing LLMs for generating
unsafe responses negatively affects the response quality compared to standard SFT. AlpacaEval (Li
et al., 2023) is an automatic evaluator designed for instruction-following language models. The
tested models respond to 805 prompts spanning categories such as mathematical reasoning, conver-
sational responses, moral and ethical questions, factual questions, and more. It assesses response
quality by using another language model as an annotator to compare the outputs preference of the
tested model against a reference model across the 805 prompts, with a higher selection rate indicat-
ing better performance. In our experiment, we use GPT-4o mini as the annotator and text-davinci-
003 as the reference model.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) (b)

(c) (d)

Figure 2: Response safety evaluation on four harmfulness benchmarks for Llama 7b. (a)(b)(c) The
mean DeBERTa harmfulness score for KTO and our TA-SFT approach with EMD loss and NLCL
loss, seperately. Lower scores indicate less harmful (safer) responses. (d) The OpenAI Moderation
harmful rate, lower is better.

PIQA (Bisk et al., 2020), BoolQ (Clark et al., 2019), and OpenBookQA (Mihaylov et al., 2018)
are multiple-choice question answering datasets which evaluate LLM reasoning ability based on
short passages or facts from an “open book” of knowledge. We use the Language Model Evaluation
Harness framework (Gao et al., 2024) to standardize the evaluation of answer accuracy by assessing
the probability of each choice. It is worth noting that the tested models are not required to provide
complete answers to the questions but only the likelihood of tokens representing each choice.

We compare our method with standard instruction fine-tuning method SFT (Wei et al., 2021) using
the same subset of 20,000 samples from Alpaca. As illustrated in Table 1, on AlpacaEval dataset,
EMD outperforms NLCL by around 2% and is even slightly better than SFT. KTO exhibits the lowest
performance because it is rewarded to generate responses that are better than a reference model
πref . However, here πref is merely a non-SFTed base model with low-quality responses, which
is a low bar and hence KTO generates sub-par responses. Across the multiple-choice question-
answering datasets, all methods demonstrate comparable accuracy. The performance on PIQA and
OpenBookQA follow a similar trend and are in Appendix A.4.3.

4.3.3 DATA EFFICIENCY: FEWER HARMFUL EXAMPLES

In this part, we reduce the number of harmful responses (1000 originally) included in our dataset; we
try 500, 300, and 100 harmful responses. We train the models with these newly mixed instruction-
following dataset separately and calculate the number of harmful responses in each of the four
harmfulness benchmark datasets. As demonstrated in Table 2, the EMD loss function enables LLMs
to learn safe responses with only 100 harmful examples in our dataset, while the NLCL loss function
fails to achieve this. We attribute this to the fact that the EMD loss function not only penalizes the
generation probability of the exact tokens found in harmful examples but also those with similar
semantic meanings. Consequently, due to its better utilization of harmful examples, EMD enables

7
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Table 1: Response quality evaluation on BoolQ and AlpacaEval. For the multi-choice benchmark
BoolQ, the values represent the response correction rate (%). For the AlpacaEval benchmark, the
values represent the preference rate (%) of the responses from the tested models over those from the
text-davinci-003. There is no degradation of response quality of our TA-SFT approaches.

BoolQ AlpacaEval
Model SFT KTO NLCL EMD SFT KTO NLCL EMD
llama 7b 78.26 75.08 78.38 78.75 56.14 35.47 54.48 57.37
llama 13b 80.55 79.3 80.92 80.37 61.99 50.9 60.36 62.24
mistral 7b 84.34 84.37 84.92 84.31 69.81 64.85 70.42 71.06
llama3.1 8b 82.91 83.21 83.27 82.87 72.05 61.5 69.56 73.35

Table 2: Number of harmful responses using EMD and NLCL losses with fewer toxic prompts.
EMD loss exhibits higher data-efficiency in making LLMs achieve high safety level (lower number
of harmful responses) with only 100 toxic prompts in the instruction-tuning dataset.

I-Malicious I-CoNa I-Controversial HarmfulQ
Model # Toxic NLCL EMD NLCL EMD NLCL EMD NLCL EMD

1000 0 0 0 0 0 0 0 0
500 2 0 11 0 0 0 0 1
300 1 0 4 0 0 0 7 4Llama 7b

100 6 0 42 5 3 0 4 0

1000 0 1 2 0 0 0 0 2
500 1 0 1 0 0 0 0 1
300 1 1 0 0 0 1 0 1Llama 13b

100 10 2 40 1 8 1 16 2

LLMs to learn to be safe with fewer harmful examples. We observe similar results in the other LLMs
(Mistral 7b and Llama3.1 8b) which can be found in the Appendix A.4.4.

4.3.4 TRAINING DATA: SAFE SAMPLES VS UNSAFE SAMPLES

Here we compare to STL, even though STL has the advantage of being trained on high quality
(obtained using a commercial model like GPT3.5 turbo) safe responses to toxic prompts. On the
other hand, we train on easily accessible unsafe responses. Our results are shown in Table 3. It can
be seen that EMD is safer than STL overall and particularly more so in the low data regime. Also, the
results on I-CoNa show a stark difference between EMD and STL. Overall, this suggests that toxicity
avoidance (in semantics) can provide more safe outcomes than following a single safe response. A
similar result on other LLMs (Mistral7B and Llama3.1 8B) can be found in the Appendix A.4.5.

4.3.5 OVER-ALIGNMENT

The typical safe responses to toxic prompts are refusals (also called rejections), such as ‘It’s an inap-
propriate question, and I cannot ...’. Training with toxic prompts and corresponding safe responses
can lead to the side effect of over-refusal, not only during the instruction-following stage (Bianchi
et al., 2023) but also in the RLHF stage (Cui et al., 2024), where LLMs refuse to answer benign
prompts. This issue is particularly severe if the benign prompts contain potentially toxic words. For
example, over-aligned LLMs will refuse to answer “How to kill a Python process?” The ‘kill’ is
potentially toxic yet the overall prompt is harmless. These seemingly toxic prompts are hotspots for
over-refusal. One intuitive reason of over-refusal in prior works is the explicit inclusion of refusal
responses to the toxic prompts in the training dataset. In our approach, the training dataset contains
no refusal responses (recall we have only safety-unrelated prompts with corresponding responses or
toxic prompts with corresponding harmful responses). We aim to explore whether training without
refusal examples could help reduce the over-refusal problem.

8
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Table 3: Number of harmful responses using EMD and STL (Bianchi et al., 2023) with fewer toxic
prompts. There is a notable increase in the number of harmful responses (indicating a decrease in
safety) for STL as the number of safe responses in its instruction-tuning dataset decreases.

I-Malicious I-CoNa I-Controversial HarmfulQ
Model # Toxic STL EMD STL EMD STL EMD STL EMD

1000 2 0 10 0 0 0 2 0
500 2 0 22 0 0 0 3 1
300 5 0 40 0 3 0 2 4Llama 7b

100 4 0 70 5 3 0 3 0

1000 1 1 4 0 0 0 0 2
500 1 0 7 0 0 0 1 1
300 2 1 12 0 1 1 1 1Llama 13b

100 7 2 61 1 4 1 3 2

Figure 3: Over-refusal vs. Safety Levels at different training Stages for Llama 7b and Llama 13b
Models. In the early stage, over-refusal issues are minimal, but as training progresses and the safety
level improves, over-refusal issue becomes more heavier. Both TA-SFT and STL show the same
trend, empirically demonstrating that the inclusion of refusal examples in the instruction-following
dataset is not the cause of the over-refusal issue.

XSTest (Röttger et al., 2023) comprises 250 seemingly toxic prompts and 200 toxic prompts across
various categories. We evaluate the over-refusal levels of four LLMs fine-tuned with EMD and
NLCL loss functions, comparing them to a baseline method, safety-tuned-llamas (Bianchi et al.,
2023). As depicted in Figure 3, we observe that at the beginning of training of Llama 7b and
Llama 13b with NLCL and EMD, over-refusal issues do not appear, even though the safety levels
are relatively low. As training progresses, both NLCL and EMD enhance the safety of LLMs but
lead to a higher over-refusal issue. Moreover, all data points in Figure 3 align along the same
curve. Note that the baseline method, STL, is trained on the same instruction-tuning dataset but
with the harmful responses replaced with safe responses, unlike our NLCL and EMD approach.
This suggests that the inclusion of refusal examples in the SFT dataset is not the reason of over-
refusal issue. Moreover, the training method does not significantly impact the trade-off between
over-refusal and safety levels. Similar results were observed in the other three models, details of
which can be found in the Appendix A.4.6. Based on the above observations, further investigation
of the underlying cause of over-refusal presents a valuable direction for future research.

4.3.6 CONTRASTIVE AUGMENTATION

We report a phenomenon that was an unexpected outcome of our aim to reduce over-alignment. We
conjectured that LLMs learn to refuse (or reject) based on the presence of toxic words in prompts
rather than the semantic meaning. To test this hypothesis, we augmented our dataset with contrastive
training samples, having both toxic prompts and seemingly toxic prompts that contain the same
toxic words. Following the method described in Cui et al. (2024), we use toxic words extracted
from 1,000 toxic prompts in our dataset to generate seemingly toxic prompts. Considering some
word repetitions, we follow Cui et al. (2024) and create 5 seemingly toxic prompts for each toxic

9
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Figure 4: Response safety evaluation for
Llama 7b fine-tuned with contrastive aug-
mented dataset. Neither NLCL nor EMD
make Llama 7b as safe as when it was fine-
tuned without LLM-generated contrastive
sample even the penalty weight λ is in-
creased to more strongly discourage harmful
responses.

Figure 5: An example of increasing ‘non-English
answer’ with increasing penalty weight λ from
Llama 7b fine-tuned with contrastive augmented
dataset.

word, resulting in a total of 3,335 seemingly toxic prompts. We then use the Mixtral 8*7b (Jiang
et al., 2024) model, which has not undergone safety alignment and can generate high-quality, non-
refusing responses to almost all of 3,335 seemingly toxic prompts. These prompts, along with their
high-quality responses, are added to the our dataset as contrastive training samples.

We applied the same evaluation process as described in Section 4.4.1 to assess the Llama 7b model
fine-tuned with EMD and NLCL loss functions on four safety datasets, utilizing the pretrained De-
BERTa to assign harmfulness scores. As illustrated in Figure 4, neither NLCL nor EMD make
Llama 7b as safe as when it was fine-tuned without LLM-generated contrastive samples. Further-
more, when the penalty weight λ is increased to more strongly discourage harmful responses, the
fine-tuned Llama7b model (under both loss functions) exhibited ‘non-English answer’ phenom-
ena, which were not observed in the previous experiments. This observation suggests that fine-
tuning with LLM-generated seemingly toxic prompts and responses can degrade the model’s lan-
guage performance and is consistent with observations about the use of AI generated data in recent
works (Shumailov et al., 2023).

5 CONCLUSION AND LIMITATIONS

Our work provides a way to make LLM respond safely to toxic prompt in the SFT stage itself
and improves upon prior results by using much less safety relevant data and only required easily
available unsafe responses to toxic prompts. A key novelty in our work is the use of EMD loss
with an underlying semantic loss of cosine distance, and a novel lower bound for the same to enable
tractable optimization. Our results still continue to show over alignment issues that are also present
in all past work as well as reveal dangers of learning with AI generated data. We acknowledge
that our work is limited to LLMs sizes that we can handle and hope that some of the results can be
reproduced or analyzed with larger LLMs by the industry or large consortiums.

10
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ETHICAL STATEMENT

There are dangers and limitations with our study. While we have taken extensive precautions, there
is a possibility that some of the prompts and outputs we produce and release could be misused or
lead to unsafe outcomes. To fine-tune the models and facilitate our evaluation, we include prompts
that may elicit harmful, biased, or stereotypical responses from the models. We recognize the risks
associated with releasing these prompts but deem it necessary for the advancement of our research.
Despite efforts to improve the safety of the models we have fine-tuned, they are not guaranteed
to be safe in all scenarios. Certain edge cases may still result in inappropriate or harmful content
generation. Our approach is flexible and could be adapted to different contexts, where the standard
for safety might need to be adjusted.

REPRODUCIBILITY

We have uploaded code and the data to Anonymous GitHub1. We have listed hyperparameter values
and additional details in the appendix. The one proof in our paper is also present in the appendix.
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A APPENDIX

A.1 FINE-TUNING DETAILS

We follow Safety-Tuned-LLamas (STL) (Bianchi et al., 2023) to use the same prompt template to
train all the models described in the paper (Llama 7b, Llama 13b, and Mistral 7b and Llama3.1 8b):

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction: {instruction}
### Input: {input}
### Response:

The base models we use are available on HuggingFace. We use, huggyllama/llama-7b (Llama 7b),
huggyllama/llama-13b(Llama 13b), mistralai/Mistral-7B-v0.3(Mistral7b) and meta-llama/Meta-
Llama-3.1-8B(Llama3.1 8b).

A.2 HYPER PARAMETERS

All models have been trained NVIDIA L40 or H100 GPUs. For our approach TA-SFT We train
the base models for 3 epochs(Llama 7b, Llama 13b and Llama3.1 8b) or 4 epochs (Mistral7b),
using gradient accumulation (batch size of 96, micro-batch size of 3, gradient accumulation step of
32). The learning rate is set to 1e-4 for all models. The parameters for low-rank adaptations are as
follows. Alpha is 16, dropout is set to 0.05 and r is set to 8. Target modules are [q proj,v proj]. We
use grid search to tune the penalty weight λ. The tuned EMD and NLCL penalty weights for LLMs
fine-tuned with 1,000, 500, 300, and 100 toxic prompts are shown in the Table 4.

Table 4: The penalty weight λ for our TA-SFT approach with EMD and NLCL loss.
# Toxic Llama7b Llama13b Mistral7b Llama3.1-8b

EMD

1000 0.83 0.70 0.50 0.49
500 1.70 0.99 0.60 0.78
300 4.00 2.20 1.05 1.30
100 9.00 7.10 3.10 3.80

NLCL

1000 3.80 5.50 2.40 2.50
500 4.00 12.00 3.40 3.50
300 14.50 15.00 5.60 5.50
100 20.00 55.00 25.00 16.00

A.3 PROOF OF PROPOSITION 1

Proof. Note that a simple application of Cauchy Schwarz inequality n times yields the result that
n
∑n

i=1 ||xi||2 ≥ ||
∑n

i=1 xi||2 for n vectors xi. We use this fact below. Let γ be the joint distribu-
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tion (coupling) that is the minimizer in the definition of EMD.

EMD(P,Qθ; dc) =
∑
x∈V

∑
y∈V

γ(x, y)dc(êx, êy)

=
1

2

∑
x∈V

∑
y∈V

γ(x, y)∥êx − êy∥2

≥ 1

2

∑
x∈V

∑
y∈V

(γ(x, y))2∥êx − êy∥2 as γ(x, y) ≤ 1, so γ(x, y) ≥ (γ(x, y))2

=
1

2

∑
x∈V

∑
y∈V

∥γ(x, y)êx − γ(x, y)êy∥2

≥ 1

2|V |2
∥
∑
x∈V

∑
y∈V

γ(x, y)êx −
∑
x∈V

∑
y∈V

γ(x, y)êy∥2 as n
n∑

i=1

||xi||2 ≥ ||
n∑

i=1

xi||2

=
1

2|V |2
∥
∑
x∈V

P (x)êx −
∑
y∈V

Qθ(y)êy∥2 as P,Q are marginals of γ

A.4 ADDITIONAL RESULTS

A.4.1 COMPLEXITY OF EMD COMPUTATION

The additional training time required for our TA-SFT method is minimal, amounting to only 1–2%
longer than that of Original SFT. This ensures that TA-SFT remains scalable to very large datasets.
Below, we detail the modest computational requirements of TA-SFT:

TA-SFT introduces an additional loss term based on the Earth Mover’s Distance (EMD). Comput-
ing the EMD term involves two matrix multiplications and one squared Euclidean distance calcu-
lation, all of which are efficiently executed on GPUs. Once the EMD term is computed, the back-
propagation process in TA-SFT is identical to that of Original SFT, and the forward pass remains
unchanged. Consequently, the computational overhead introduced by TA-SFT is negligible.

We conducted experiments to measure the training time for both SFT and TA-SFT using consistent
hardware and configurations:

• LLaMA-7B: Trained on NVIDIA L40 GPUs.
• LLaMA-13B: Trained on NVIDIA H100 96GB GPUs.

All experiments used the same batch size, gradient accumulation steps, and training for 3 epochs.
The key difference is that SFT was trained on 20k Alpaca instruction-following data, while TA-
SFT included an additional 1k unsafe (toxic prompt, harmful response) pairs, leading to slightly
longer total training steps for TA-SFT. As shown in the Table 5, the Average Training Time per Step
indicates that TA-SFT is only 1.17% slower for LLaMA-7B and 2.36% slower for LLaMA-13B
compared to SFT.

Table 5: The comparison of average training time per step between TA-SFT with EMD term and
standard SFT.

Supervised Finetuning (SFT) TA-SFT

Model Total Training
Time (s)

Average Training
Time per Step (s)

Total Training
Time (s)

Average Training
Time per Step (s)

Llama-7B 3342±2 5.3590 3346±4 5.4225
Llama-13B 2729±10 4.3696 2927±7 4.4729
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(a) (b)

(c) (d)

Figure 6: Response safety evaluation on four harmfulness benchmarks for Llama 13b. (a)(b)(c) The
mean DeBERTa harmfulness score for KTO and our TA-SFT approach with EMD loss and NLCL
loss, separately. Lower scores indicate less harmful (safer) responses. (d) The OpenAI Moderation
harmful rate.

A.4.2 SAFETY LEVEL OF LLAMA 13B, MISTRAL 7B AND LLAMA3.1 8B

To confirm our results, we also tested our TA-SFT with EMD loss and NLCL loss on Llama 13b
(Figure 6), Mistral 7b (Figure 7) and Llama3.1 8b (Figure 8). These figures present both the harm-
fulness score from DeBERTa model and the harmfulness percentage from OpenAI moderation API.
All models exhibit similar to those observed for the Llama 7b model in Section 4.3.1 of the main
paper, showing a decrease in harmfulness as training progresses using our TA-SFT method, while
KTO fails to improve safety levels. Moreover, our TA-SFT approach, with both EMD loss and
ORPO loss, ultimately reduces the harmfulness rate to nearly 0%.

As stated in the main paper, the OpenAI Moderation API also provide a harmful score beside a bi-
nary tag which are shown in Figure 9. The curves in Figure 9 representing the average harmfulness
score across all responses in the four harmfulness benchmarks, exhibit a similar trend to the harm-
fulness rates from the OpenAI Moderation API, depicted in Figure 2, Figure 6, Figure 7, Figure 8,

A.4.3 RESPONSE QUALITY

To substantiate the claim that fine tune LLMs with our TA-SFT using both EMD and NLCL loss
does not degrade response quality (Section 4.3.2), we additionally evaluated the response quality on
PIQA and OpenBookQA shown in Table 6.
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(a) (b)

(c) (d)

Figure 7: Response safety evaluation on four harmfulness benchmarks for Mistral 7b. (a)(b)(c) The
mean DeBERTa harmfulness score for KTO and our TA-SFT approach with EMD loss and NLCL
loss, separately. Lower scores indicate less harmful (safer) responses. (d) The OpenAI Moderation
harmful rate.

Table 6: The response quality of four tested models on additional two multi-choice language mod-
eling benchmarks. There are not degrading patterns in terms of performance from our TA-SFT
approach with EMD loss and NLCL loss.

PIQA OpenBookQA
Model SFT KTO NLCL EMD SFT KTO NLCL EMD
Llama7b 77.09 89.11 79.27 79.22 32 35.4 35.2 34.8
Llama13b 75.46 79.11 79.33 79.33 35.6 34.8 34 33.4
Mistral7b 77.31 80.85 81.23 80.85 34 35.6 33.8 33.8
Llama3.1-8b 80.32 80.96 80.14 80.41 35 37 35.2 35.2

A.4.4 DATA EFFICIENCY: FEWER HARMFUL EXAMPLES

To confirm the statement that we made in Section 4.3.3, we present the number of harmful re-
sponses across the four harmfulness benchmarks in Table 7, using our TA-SFT approach with EMD
and NLCL. The EMD loss function enables LLMs to learn safe responses with only 100 harmful
examples on these two models, whereas the NLCL loss function fails to achieve this.

A.4.5 TRAINING DATA: SAFE SAMPLES VS UNSAFE SAMPLES

To confirm the observation that we made in Section 4.3.4, we compare the performance of Safety-
Tuned Llamas (STL) with our TA-SFT approach using EMD loss on Mistral7b and Llama3.1 8b,
despite the latter being fine-tuned with a smaller number of harmful data. Although STL benefits
from high-quality safe responses to toxic prompts, it is evident that TA-SFT with EMD loss still
significantly outperforms STL(Table 8).
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(a) (b)

(c) (d)

Figure 8: Response safety evaluation on four harmfulness benchmarks for Llama3.1 8b. (a)(b)(c)
The mean DeBERTa harmfulness score for KTO and our TA-SFT approach with EMD loss and
NLCL loss, separately. Lower scores indicate less harmful (safer) responses. (d) The OpenAI
Moderation harmful rate.

Table 7: Number of harmful responses using EMD and NLCL losses with fewer toxic prompts.
EMD loss exhibits higher data-efficiency to make LLMs achieve high safety level (lower number of
harmful responses) with only 100 toxic prompts in the instruction-tuning dataset.

I-Malicious I-CoNa I-Controversial HarmfulQ
Model # Toxic NLCL EMD NLCL EMD NLCL EMD NLCL EMD

1000 0 0 0 0 0 0 0 0
500 1 1 1 2 0 0 0 0
300 1 1 8 5 0 0 0 1Mistral 7b

100 3 0 53 4 2 0 4 1

1000 0 0 0 1 0 0 0 3
500 1 0 6 6 2 2 1 1
300 1 0 6 5 0 2 1 1Llama3.1-8b

100 1 0 12 7 2 2 1 1

A.4.6 OVER-ALIGNMENT OF MISTRAL 7B AND LLAMA3.1 8B

Consistent with the observation in Section 4.3.5 for Mistral 7b and Llama3.1 8b, as illustrated in
Figure 10, over-refusal issues do not emerge at the beginning of training for Llama 7b and Llama
13b with NLCL and EMD, despite the relatively low safety levels. However, as training progresses,
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(a) (b)

(c) (d)

Figure 9: The averaged OpenAI Moderation harmful scores for KTO and our TA-SFT approach
with EMD loss and NLCL loss.

Table 8: Number of harmful responses using EMD and safety-tuned-llamas (STL) Bianchi et al.
(2023) with fewer toxic prompts. There is a notable increase in the number of harmful responses
(indicating a decrease in safety) for STL as the number of safe responses in the instruction-tuning
dataset decreases.

I-Malicious I-CoNa I-Controversial HarmfulQ
Model # Toxic STL EMD STL EMD STL EMD STL EMD

1000 0 0 0 0 0 0 1 0
500 0 1 1 2 0 0 0 0
300 1 1 13 5 0 0 1 1Mistral 7b

100 8 0 64 4 1 0 5 1

1000 0 0 0 1 0 0 1 3
500 1 0 7 6 0 2 1 1
300 2 0 22 5 0 2 3 1Llama3.1-8b

100 11 0 71 7 1 2 5 1

both NLCL and EMD improve the safety of the LLMs but also result in an increased occurrence of
over-refusal.

A.4.7 LARGER FINETUNING DATASET

We conducted further evaluation of our models trained with a larger dataset to explore the impact
of increased data size on performance. We expanded the fine-tuning dataset to 2.5 times larger than
the dataset used in the main paper, resulting in a total of 50k data samples from Alpaca and 2,500
unsafe (toxic prompts and unsafe responses) pairs.
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Figure 10: Over-refusal vs. Safety Levels at different training Stages for Mistral 7b and Llama3.1 8b
Models. In the early stage, over-refusal issues are minimal, but as training progresses and the safety
level improves, over-refusal issue becomes more heavier. Both TA-SFT and STL show the same
trend, empirically demonstrating that the inclusion of refusal examples in the instruction-following
dataset is not the cause of the over-refusal issue.

Table 9: Performance of TA-SFT with EMD term trained with larger dataset.
Model Finetuning data OR-Bench AlpacaEval

Llama-7B 50k+2500 unsafe examples 0 57.22
Llama-7B 20k+1000 unsafe examples 1 57.37
Llama-13B 50k+2500 unsafe examples 2 62.35
Llama-13B 20k+1000 unsafe examples 5 62.24

As shown in Table 2 of the main paper, our TA-SFT method with EMD term already achieves
peak performance on the four safety evaluation benchmarks (with 0 harmful responses). To further
challenge our method, we evaluated its performance on the larger, more diverse and newly released
OR-Bench-Toxic benchmark (Cui et al., 2024). This benchmark includes 655 toxic prompts across
10 toxic types, providing broader coverage and a more rigorous evaluation. We use the following
metric to evaluate the performance.

• Safety Level: Measured by the number of harmful responses (lower is better).

• Response Quality: Measured using the same method and settings on the AlpacaEval bench-
mark as in the main paper (higher is better).

As shown in the Table 9, models trained with the larger dataset achieved:

• Slightly better safety levels on the OR-Bench-Toxic benchmark.

• Comparable response quality to models trained on the original dataset.

These results demonstrate that increasing the dataset size can further enhance the model’s safety
levels without compromising response quality. This finding suggests that scaling the fine-tuning
dataset is a promising approach for improving safety in large language models.

A.4.8 EVALUATION WITH JAILBREAKING ATTACKS

To further evaluate the robustness of the proposed TA-SFT method, We compared the performance
of TA-SFT against the baseline approach, Safety-Tuned LLaMAs (STL) under the attacking of jail-
breaking. We followed prior work (Chao et al., 2023) to implement the jailbreaking which requires
the following three components:

• Attacker LLM: GPT-4O generates jailbreaking prompts.

• Target LLM: Models trained with our method.
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Table 10: The comparison of Attack Success Rate (ASR) and Mean Judge Score between our method
TA-SFT (Ours) and Safety-tuned-llamas (STL).

Method Finetuning Data ASR Mean Judge Score

Ours Alpaca+1000 unsafe examples 19.57% 6.02
Ours Alpaca+500 unsafe examples 26.09% 7.39
Ours Alpaca+300 unsafe examples 34.78% 8.11
Ours Alpaca+100 unsafe examples 63.04% 9.13
STL Alpaca+1000 safe examples 60.00% 8.91
STL Alpaca+500 safe examples 63.04% 8.71
STL Alpaca+300 safe examples 73.33% 9.33
STL Alpaca+100 safe examples 69.57% 9.07

• Judging LLM: GPT-4O evaluates responses and scores their harmfulness on a scale of 1 to
10, where a score of 10 indicates a successful attack. Lower scores signify less harmfulness
and better robustness against jailbreaking.

The results, summarized in the Table 10, demonstrate that our method significantly outperforms
STL in both Attack Success Rate, ASR (lower is better) and Mean Judge Score (lower is better).
Notably, our method achieves a 19.57% ASR and a 6.02 Mean Judge Score, indicating superior
robustness. Additionally, the robustness improves as the number of unsafe examples used during
training increases.
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