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ABSTRACT

The scaling law is a notable property of neural network models and has signif-
icantly propelled the development of large language models. Scaling laws hold
great promise in guiding model design and resource allocation. Recent research
increasingly shows that scaling laws are not limited to NLP tasks or Transformer
architectures; they also apply to domains such as recommendation. However,
there is still a lack of literature on scaling law research in online advertisement
retrieval systems. This may be because 1) identifying the scaling law for resource
cost and online revenue is often expensive in both time and training resources for
industrial applications, and 2) varying settings for different systems prevent the
scaling law from being applied across various scenarios. To address these issues,
we propose a lightweight paradigm to identify online scaling laws of retrieval
models, incorporating a novel offline metric R/ R* and an offline simulation algo-
rithm. We prove that under mild assumptions, the correlation between R/R* and
online revenue asymptotically approaches 1 and empirically validates its effec-
tiveness. The simulation algorithm can estimate the machine cost offline. Based
on the lightweight paradigm, we can identify online scaling laws for retrieval
models almost exclusively through offline experiments, and quickly estimate ma-
chine costs and revenues for given model configurations. We further validate
the existence of scaling laws across mainstream model architectures—including
Transformer, MLP, and DSSM—in our real-world advertising system. With the
identified scaling laws, we demonstrate practical applications for ROI-constrained
model designing and multi-scenario resource allocation in the online advertising
system. To the best of our knowledge, this is the first work to study the identi-
fication and application of online scaling laws for online advertisement retrieval,
showing great potential for scaling laws in advertising system optimization.

1 INTRODUCTION

The neural scaling laws, describing how neural network performance changes with key factors (e.g.
model size, dataset size, computational cost), have been discovered in various research areas (Kaplan
et al., [2020; [Hoffmann et al., 2022} [Shin et al., |2023; [Isik et al., [2024; [Zhang et al., 2024} |[Fang
et al., |2024). Early research (Hestness et al.l [2017) shows that the neural network performance is
predictable when scaling training data size in various tasks such as neural machine translation and
language modeling. [Kaplan et al.(2020) further empirically verify the scaling law of the Transformer
architecture in language modeling, regarding the key factors (model size, data size, training cost)
and training performance (PPL). Inspired by the scaling law, researchers extend the size of pre-
trained language models and further empirically verify the scaling law by training GPT-3 (Brown,
2020). This wave of enthusiasm has led to the creation of GPT-3.5 and GPT-4 (Achiam et al.| [2023),
ushering in a new era of NLP research and applications.

Based on the scaling laws, the optimal key factors of the model can be determined under given
constraints, thus guiding us in model design and resource allocation. Recommendation and adver-
tising systems are mature commercial applications that prioritize ROI, making it highly valuable to
explore whether there exist scaling laws for recommendation and advertising models. Due to the
lack of a thriving community and open data ecosystem similar to NLP, research on model scaling
is relatively scarce in the recommendation and advertisement areas. Early studies primarily gave
some qualitative or offline quantification conclusions about model scaling (Shin et al.,|2023; [Zhang
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et al.| [2024). [Fang et al.[2024) attempts to give a quantitative scaling law of model performance
and the amount of training data and model parameters based on public information retrieval bench-
marks, and first gives an offline application practice in the recommendation area, which is to solve
the optimal amount of data and model parameters under a given total training resource.

Crucially, no work has addressed the online identification of scaling laws between business
revenue and machine costs in real-world advertising systems. We attribute this to two pri-
mary challenges: 1) The scaling law must describe the online revenue-cost relationship (not offline
metrics), requiring costly online experiments; 2) System-specific configurations prevent universal
applicability, making scaling law adoption prohibitively expensive. As a result, to use scaling laws
to guide system optimization in a specific scenario, one must first incur substantial costs to obtain
the necessary parameters. This makes it impractical for commercial systems to identify and apply
scaling laws in many real-world settings.

We aim to identify scaling laws in online advertising systems with low experimental costs and ex-
plore their applications in guiding system optimization. An advertising system typically consists of
several subsystems (e.g., advertisement retrieval, bidding, and ranking), each with distinct technical
architectures. This heterogeneity complicates establishing a unified paradigm for lightweight scal-
ing law identification. In this work, we focus on the online advertisement retrieval subsystem—a
critical component that selects the top-k ads for downstream stages without directly determining
billing. This subsystem is described in detail in Section 2]

To address these challenges, we propose a lightweight paradigm for identifying online scaling
laws in industrial advertisement retrieval. First, we introduce a novel offline metric, R/ R*, which
integrates the predicted revenue of each ad from the training data. We prove that, under mild as-
sumptions, the correlation between R/R* and online revenue asymptotically approaches 1. This
theoretical guarantee, combined with historical A/B test data from daily model iterations, enables us
to calibrate the R/ R*-revenue relationship without requiring additional online experiments. Then,
we design a simulation algorithm to estimate machine cost from model configurations. By treat-
ing model size as the decision variable and using FLOPs and R/R* as intermediate proxies, our
paradigm enables end-to-end prediction of both machine cost and online revenue, facilitating effi-
cient offline model selection and system optimization.

We validate the effectiveness of R/R* through extensive online A/B tests. Results demonstrate
that R/R* serves as a more accurate offline surrogate for online revenue than traditional met-
rics. Then, we conduct extensive offline experiments across mainstream retrieval architectures—
Transformer (Vaswani et al., [2017), MLP (mlp, [1958)), and DSSM (Huang et al., [2013)—in both
the pre-ranking and matching stages. Using FLOPs as the independent variable and R/R* as the
dependent variable, we observe consistent broken neural scaling laws (Caballero et al.,[2023)) across
all architectures and stages. Building on this, we apply the identified scaling laws to two critical
use cases: ROI-constrained model design and multi-scenario resource allocation. These deploy-
ments yield a substantial combined 5.10% improvement in online revenue, demonstrating the
practical utility of scaling laws in real-world system optimization.

Our contributions are threefold: 1) We propose R/R*, a novel offline metric that is both theoreti-
cally justified (asymptotically correlated with online revenue under mild assumptions) and empir-
ically validated as a superior surrogate for online revenue. 2) We present a lightweight paradigm
for identifying scaling laws between machine cost and online revenue in industrial retrieval sys-
tems, enabling offline discovery of broken neural scaling laws across diverse architectures (e.g.,
Transformer, MLP, DSSM). 3) We demonstrate real-world applications in ROI-constrained model
selection and multi-scenario resource allocation, achieving a substantial 5.10% gain in online rev-
enue. Our framework enables rapid offline ROI estimation for hundreds of model configurations
within days—accelerating model iteration and system optimization at scale.

2 FORMULATION OF ONLINE ADVERTISEMENT RETRIEVAL

In this section, we clarify the research subject and experimental background of this paper. We give
a formulation of online advertisement retrieval, including the definition of the retrieval stage,
mainstream industrial practice of architecture and learning tasks for retrieval (i.e., multi-
pathway architecture and learning-to-rank tasks).
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Figure 1: The cascade ranking architecture of our advertising system, includes four stages: Match-
ing, Pre-ranking, Ranking, and Mix-ranking. Typically, we regard the “Matching” and ‘Pre-
ranking” stages as retrieval stages, which do not decide the billing of ads.

2.1 OVERVIEW OF ONLINE ADVERTISING SYSTEM

Figure [I]illustrates a typical cascade ranking system for online advertising systems. The system is
comprised of four main stages: Matching, Pre-ranking, Ranking, and Mix-ranking. The “Matching”
and “Pre-ranking” stages serve as retrieval mechanisms, focusing on selecting candidate ads without
directly impacting their billing. Conversely, the “Ranking” stage plays a dual role by determining
both the selection and billing of ads. It achieves this by predicting the eCPM (Effective Cost Per
Mille) of each ad, serving as the standard for billing after its exposure. The “Mix-ranking” stage
integrates the outputs from the advertising and recommendation systems to decide the final set of
items presented to the user. For advertising systems, the differences in the goal of the retrieval
and ranking stages lead to some technical differences, such as training objectives, system design,
evaluation metrics, etc. In this work, we focus on the scaling laws of retrieval stages.

Figure [2| shows the typical algorithm architecture of the Matching and Pre-ranking stages in ad-
vertising systems. They all adopt a multi-pathway ensemble architecture. The Matching stage
can be divided into model-based pathways and rule-based pathways. The rule-based pathway can
quickly filter out irrelevant ads using predefined criteria, ensuring compliance with regulations and
improving ad relevance, while providing flexibility and transparency in the ad selection process.
The model-based pathway uses machine learning algorithms to predict and select ads, achieving
higher performance ceilings in ad selection. The Pre-ranking stage operates on the set of ads already
selected by the Matching stage, and thus only employs the model-based pathways.

Model-based pathways in the Matching and Pre-ranking stages can typically be categorized based
on different modeling objectives, such as revenue-oriented, user-interest-oriented, and lifetime
value-oriented pathways. In advertising systems, revenue-oriented pathways usually carry the most
weight. Since the earlier stages only need to perform set selection, advertising systems often em-
ploy Learning-to-rank methods to learn the optimal ranking order to maximize the revenue objective.
The Learning-to-rank pathway is the most prevalent and important in the system, as it is typically
the primary focus for algorithm researchers to iterate and improve (Wang et al,, 2018} Jagerman
et al., 2022} [Zheng et al.| [2024} Lyu et al.l [2023; Wang et al., 2024; [2025). Therefore, we use the
Learning-to-rank pathway as a case study to verify scaling laws in online advertisement retrieval.

2.2 FORMULATION OF RETRIEVAL TASKS

Here, we give the formulation of retrieval tasks represented by learning-to-rank. Following Zheng
et al.; Wang et al.(2024; 2025), we randomly draw samples from the Matching, Pre-ranking, Rank-
ing, and Mix-ranking stages. We use all the samples for training the model of the Matching stage,
and we use the samples from all stages except the Matching stage to train the Pre-ranking models.
The training set can be formulated as:

Divain = {(fuis {f3, 0] ecpm|1 < j < n})i}iy (1)

where u; means the user of the i-th impression in the training set, a’ means the j-th material for
ranking in the system. [V is the number of impressions of Dy;.4;,. The ¢ in ag means that the sample
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Figure 2: A typical multi-pathway architecture of Matching and Pre-ranking stages. Each pathway
has its own weight, determining the proportion of ads sent to the next stage after the Fusion module.

a’ corresponds to impression i. The size of the materials for each impression is n. f(.) means the

feature of (). v/ is the ground truth rank index (the higher the better) of the pair (u;, a’). The rank
index is the relative position of the sampled ads within the system queue, ordered by their original
positions. ecpm{ is the eCPM (Effective Cost Per Mille) predicted by the Ranking stage, which
can be regarded as the expected revenue for the exposure of adg If ad{ does not win in the

Matching or Pre-ranking and thus does not enter the Ranking stage, the ecpm{ equals 0. The eCPM
information in the dataset is only used to construct our offline evaluation metric.

The learning objective in Learning-to-Rank is to learn the order of all or part of the training set
Dyrqin- This can typically be achieved using different types of methods, such as point-wise (Cram-
mer and Singer;, 2001; |Shashua and Levin, 2002; |(Cossock and Zhang, |2006; |L1 et al., |2007), pair-
wise (Cao et al., [2006; Zheng et al., 2007 Burges et al., [2005), and list-wise (Burges, 2010; Wang
et al., [2018}; 2024} |[Zheng et al., 2024) approaches. We employ ARF (Wang et al.,|2024) to train the
models in our scenario.

3 SCALING LAWS OF BUDGET AND REVENUE

In this section, we present a lightweight paradigm for identifying the scaling laws of compu-
tation budget (namely, machine cost) and revenue. We also verify whether MLP (mlpl |1958),
DSSM (Huang et al., 2013), and Transformer (Vaswani et al., [2017)) exhibit scaling laws in the
context of online advertisement retrieval. In sub-section we first introduce R/R*, a carefully
designed offline metric that is highly linearly correlated with online revenue. In sub-section[3.2] we
then demonstrate that DSSMs, MLPs, and Transformers exhibit a broken neural scaling law (Ca-
ballero et al., 2023) between FLOPs and the offline metric R/R*. In sub-section we finally
propose a simulation algorithm to estimate machine cost based on model size parameters. Leverag-
ing the R/R* metric, the observed scaling laws, and the cost simulation algorithm, we are able to
reliably estimate online machine costs and revenue gains from offline model configurations.

3.1 EFFECTIVE SURROGATE METRIC FOR ONLINE REVENUE

Traditional offline metrics (e.g., OPA (Wang et al.| [2024), Recall, and NDCG) used for online ad-
vertising retrieval often ignore the revenue difference of the ground-truth ads and treat them equally.
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This naturally creates a gap between offline metrics and online revenue. To mitigate this gap, we
propose a novel metric named R/R* based on Dy;.qip,. The R/ RZ‘Z.) for impression ¢ in Dy, can

be formulated as Eq[2}

Z(P}V;u,» [ m; ] * ech;r)
SNPY[: my ] ecpm?!’)

R/R(;(m) = 2)

where P/iw,,) and P‘i denote the hard permutation matrices (Grover et al.,2019) sorted by M)

and v; respectively. M (") denotes the prediction vector of model M for the i-th impression of
D¢rain- When the input vector length is n, the hard permutation matrix is an n X n square matrix.
The notation [: m;:] denotes the operation of taking the first m rows of the matrix. ecpm,; is a row
vector that represents the expected revenue of each ad of the i-th impression. R/R* is the average
of R/ R’(*i) on Dyypain. m is a hyper-parameter of R/ R*.

R/ R* aligns better with online revenue mainly because it explicitly considers the commercial value
(eCPM) of each ad, directly reflects the goal of maximizing revenue, and reduces the gap between
offline evaluation and online performance. If the following assumptions are met, we can prove
that the R/R* and online revenue have a linear relationship. The proof is in the Appendix [B.1]

Assumption 3.1 The training data Dyiyqiy and online data are independent and identically dis-
tributed.

Assumption 3.2 The improvement in R/ R* for a single pathway is proportional to the improvement
in R/ R* of the entire stage ensemble’s output set. It can be formulated as:

AR/RZnsemble(m) = O‘AR/R:ingle(m) (3)
where R/ R, gle are R/RY, ccmbie the R/ R* for single pathway and entire stage, respectively. o is

a constant.

Assumption 3.3 Only the top-m ads from the retrieval stages will be selected by the post-stages
_ eCPM?

= Z(pi/l(i7.)[:m;:]*ecpm?)
normalized contribution of the j-th ad (on the top-m sets sorted by retrieval stages) of the i-th
impression. We assume that [3] and p] are invariant across different impressions, depending only on
the position j.

as the

for exposure; the exposure probability of ad? is pg . We define ,Bg

Assumption 3.4 The ranking stage predicts CPMs that are consistent with the true per-impression

revenue. Moreover, for each impression i, the sum of the top-M predicted CPMs (denoted as Pvi. [:
m;:] x ecpm™) is statistically independent of the retrieval model’s performance metric R/ R’("i).

In a mature advertising system, we think Assumption Theorems and holds approxi-
mately true. Assumption [3.2] also holds approximately true for pathways with dominant weights.
Therefore, the R/R* of the Learning-to-rank pathway (with dominant weight) and the revenue of
online advertising systems should be approximately linearly related. To verify the effectiveness of
R/R*, we also conduct extensive online A/B test experiments. We deploy several different models
to empirically study the relationship between online revenue and offline metrics, which differ in fea-
ture engineering, surrogate loss, model structure, and model size. Table [I| shows the experimental
results. It is evident that R/R* exhibits the strongest linear correlation with online revenue,
with an R? of 0.902, indicating that ?/R* is a more advanced offline metric. Note that m is
2 in the experiment of Table [I| Due to space limitations, more experimental details are shown in

Appendix Sections [B.2]and

3.2 ScALING LAWS OF FLOPs AND OFFLINE METRIC

In this section, we investigate whether there exist scaling laws for different model architectures be-
tween computational effort and online revenue under the setting described in Section [2| Thanks to
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Table 1: Linear correlation analysis between online revenue and four offline ranking metrics across
two stages (Pre-ranking and Matching). R? measures the goodness of fit (higher is better), while
average deviation (Avg. Dev) and maximum deviation (Max. Dev) reflect the fitting errors (lower is
better). Best results are bolded.

Scenario Correlation Measures Offline Metrics
R/R* NDCG Recall OPA
Pre-rankin R% 4t 0902 0.793 0.509 0.140
g Avg. Dev| 0.243 0.311 0.534 0.634
Max. Dev] 0.483 0.819 1.139  1.690
Matchin R? 7 0.725 0.315 0.504 0.259
g Avg. Dev] 0.287 0.626 0452 0.558
Max. Dev] 1.082 1.712 1.100 1.515

the strong linear correlation between R/R* and online revenue, we can transform the identification
of the scaling laws from costly online A/B tests to efficient offline experiments. We train multiple
models with different model sizes offline, and then collected their converged R/R* metrics and cal-
culated the FLOPs for each model to examine the existence of scaling laws for mainstream model
architectures (i.e., Transformer (Vaswani et al., 2017), MLP (mlp, 1958), and DSSM (Huang
et al., 2013)) under two different scenarios (denoted as Scene; and Scenes) in our system. Specif-
ically, we examine whether the collected data follows the Broken Neural Scaling Law (BNSL), a
statistical framework proposed by (Caballero et al.(2023)) and empirically validated across numerous
deep learning tasks in computer vision and natural language processing. BNSL is formulated as
shown in Eq[4}

FLOPS ¢\ (—cxt,
n YU/ fiy(=eixti) 4)

t
R/R* =a+ (bx FLOPs~®) [ J(1 + (

i=1
where a,b,cq,c;, f; are learnable parameters and ¢ is hyperparameter of BNSL. ¢ characterizes the de-
grees of freedom of BNSL, and in practice, we typically take it as 6. The scaling factor is the FLOPs,
and the dependent variable is our proposed offline metric R/R*. We use basin-hopping (Wales and
Doyel, [1997) to fit the BNSL.

Due to space limitations, we present the results and analysis for MLP models in Scene; as a repre-
sentative example in the main text. Figure[3]illustrates the fitted BNSL curve, along with the original
data points. The x-axis represents the scaling factor (FLOPs), and the y-axis represents the depen-
dent variable (R/R*). Each data point corresponds to a model of a different size, with the number
of layers and units per layer annotated in the figure. The R? value of the curve fitting is 0.996,
indicating a strong correlation between the predicted values and the observed data points. This
provides compelling empirical evidence that a Broken Neural Scaling Law governs the scal-
ing behavior of MLP models in the typical online advertisement retrieval scenario (see Section [2).
We observe consistent scaling behaviors across other scenarios and architectures. Such a scaling
law enables us to predict model performance under different computational budgets and better un-
derstand efficiency-performance trade-offs. Comprehensive experimental setups and results for
Transformer, DSSM, and MLP across both Scene; and Scene, are provided in Appendix [C|
along with an additional discussion on scaling laws in NLP and online advertising systems.

Thanks to the strong linear relationship between R/R* and online revenue, we can establish a pre-
diction from FLOPs to online revenue. To further validate whether the accuracy of the FLOPs-
to-revenue estimation meets the needs of model development and iteration, we deploy two MLP
models for 7 days, each with 10% of online traffic. The FLOPs for these models are 1.26 x 1019 and
2.29 x 10'°, respectively. Based on the scaling law, the estimated online revenue gains are 0.33%
and 0.62%, while the actual online revenue increases are 0.38% and 0.69%, respectively. In our sce-
nario, this accuracy is more than sufficient for guiding model development and iteration. The MLP
network has the same size configuration [1024, 512, 512, 512, 1] for both models, while the dimen-
sions of the input features are 5128 and 10128, respectively. That is, the scaling law—originally
learned by scaling model width under fixed input size—remains accurate even when model scale
is increased through dimension expansion of input features, highlighting the robustness and gener-
alization of the FLOPs-to-revenue estimation. Notably, the estimation errors of these two models
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Figure 3: Scaling Performance regarding the FLOPs and R/R* of MLP models under Scene;. The
size of the MLP network and the deviation between the fitted curve and the true values (referred to
as the “error”) are annotated in the figure. The R? value of the curve fitting is 0.996. [1024, 256,
256, 256, 1] indicates an MLP model with 5 layers, where the output sizes are 1024, 256, 256, 256,
and 1, respectively. The total dimensions of input features for all models are 3328.

are smaller than the average error of figure fal This may be because the models in figure [a] were
deployed for one day, while these two models were deployed for 7 days, which means the observa-
tions of figure fa] would have higher variance. This observation also suggests the effectiveness and
robustness of our proposed offline metric R/ R*.

3.3 MAPPING MODEL SETTINGS TO MACHINE COST

For real-world model deployment, we need the scaling law of revenue and computation cost (i.e.,
machine cost), rather than the relationship of revenue and FLOPs. Our ultimate goal is to build
an end-to-end offline framework that maps model configurations to both revenue and machine cost,
enabling ROI-aware model design without online A/B testing. The revenue side of this mapping
is addressed in Section Sections and we establish a robust scaling law from Model —
FLOPs — R/R* — Revenue, where FLOPs are analytically computed from model architecture
(e.g., using TensorFlow’s t £ . profiler). However, the cost side cannot be similarly bridged via
FLOPs: actual machine cost depends heavily on environment-specific factors—such as hardware,
software stack, and system optimizations—making the FLOPs-to-cost relationship highly non-linear
and unpredictable across platforms. Thus, a direct FLOPs — Machine Cost mapping is infeasible
for general use.

To overcome this, we introduce model size parameters (e.g., layer dimensions) as a more stable
intermediate proxy. While FLOPs and model size are closely related, the latter better captures the
structural footprint that system-level machine cost estimators rely on. Hence, we shift to a Model
— Size Parameters — Machine Cost pathway, where the key challenge is estimating cost from
size without online deployment. We discuss two paradigms for this mapping: (1) expert-driven
estimation based on system optimization experience, and (2) offline simulation-based estimation.

The first approach relies on domain experts to empirically correlate model size with machine cost.
For example, [Fang et al.(2024)) estimated machine costs for standard Transformer models on A100
GPUs using PyTorch. However, in industrial advertising systems, custom training/serving frame-
works (e.g., first-layer optimizations in Section [D.I)) and heterogeneous machine configurations
introduce complex, non-standardized dependencies, limiting the generalizability and accuracy of
expert-based estimation.
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The second approach—offline simulation—offers a more systematic, reproducible, and scalable
solution. Given a model architecture and its size parameters, we can generate its meta file offline.
As detailed in Algorithm I] (Appendix [D.2)), our Machine Cost Estimation Tool (MCET) takes such
meta files as input and simulates the computational footprint to estimate the required number of
machines. Using a single GPU, MCET can estimate the machine count for a model within 30 min-
utes, without actual deployment. By combining this with unit machine pricing, we obtain accurate
cost projections. Notably, for training cost estimation, synthetic labels are used to complete the
forward/backward pass simulation. This approach enables rapid, reliable machine cost evaluation
during model iteration, significantly reducing both time and risk in deployment planning.

4  APPLICATIONS IN MODEL DESIGNING AND RESOURCE ALLOCATION

In this section, we demonstrate two real-world applications of the scaling laws established in Sec-
tion [3f ROI-constrained model design and multi-scenario resource allocation. These applica-
tions enable cost-aware, data-driven model development without extensive online testing.

To facilitate exposition, we define the following notations:

» SP: The size parameters of a model. For MLPs and DSSMs, SP = [ag, a1, . - ., a,] specifies
layer dimensions (e.g., input/output sizes). For Transformer-based models, SP includes embed-
ding dimension, number of layers, attention heads, and feed-forward network (FFN) size. metasp
denotes the meta file generated from the model configured with SP.

» F(SP): The FLOPs of the model with SP, computed analytically or via profiling tools.
* BNSL: The mapping from FLOPs to R/R*, following the form in Equation
* (: The linear mapping from R/R* to online revenue, calibrated from historical A/B tests.

* M CET' Our Machine Cost Estimation Tool, which takes metasp as input and simulates system-
level resource demands to estimate machine cost, denoted as M C ET (metasp).

The functions G, BNSL, F, and M CET are derived from Sections and[3.3] respectively.

4.1 ROI-CONSTRAINED MODEL DESIGNING

Industrial systems require that any model deployment achieves a minimum return on investment
(ROI) threshold A, typically set by business stakeholders. We formalize this as:

G(BNSL(F(SP)) _ |

ROT= MCET (metagp) )
Our goal is to maximize revenue under this constraint:
max G(BNSL(F(SP)))
G(BNSL(F(SP))) (6)

>\

MCET (metasp)

While G o BN SLo F is monotonically increasing in SP, M C ET is non-monotonic due to system-
level effects (e.g., kernel fusion, memory access patterns), making the problem non-convex. Ana-
Iytical solutions or binary search are infeasible.

We solve Eq. [6] via grid search over plausible SP configurations. MCET evaluations are the most
time-consuming part, but are still feasible to run offline for grid search. Using 10 GPU machines,
we evaluate about 1,000 configurations in about two days (details in Appendix [D.3).

Case Study 1: Pre-ranking Model Optimization. For the MLP-based pre-ranking model, we
identify the optimal SP* = [16128,1024, 512,512,512, 1] under our threshold \*, improving over
the baseline [3328, 1024, 256, 256, 256, 1]. This yields a +0.85% online revenue gain. Such an
improvement is considered significant in our advertising scenario.

Case Study 2: Matching Pathway Optimization. Guided by scaling laws for Transformer models,
we introduced a lightweight Transformer-based pathway in the Matching stage, under the constraint
of fixed machine cost and ROI > \*. This change led to a +1.0% increase in overall revenue.
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This approach replaces costly trial-and-error with systematic, offline optimization, enabling rapid
iteration on model designs. Without the scaling law, it would be nearly impossible to test the ROI
of hundreds of model configurations through online deployment. The time and resource costs of
deploying so many models would far outweigh the incremental revenue from the optimized model
derived using the scaling law.

4.2 MULTI-SCENARIO RESOURCE ALLOCATION

Industrial online advertising systems often deploy different models across scenarios—such as
matching, pre-ranking, and ad placements—each with distinct traffic patterns and business objec-
tives. To maximize overall revenue under a fixed total machine budget, we propose a scaling-law-
driven framework for multi-scenario resource allocation, ensuring ROI > 1 per scenario.

Let there be t scenarios with a shared machine budget B. Our goal is to allocate resources across
scenarios to maximize total revenue without exceeding B, while maintaining ROl > 1 in each.
This leads to the optimization problem in Eq.

t—1
max G(BNSL(F(SP;))
{SP:}HZ) ; ( )

t—1
s.L. ZMCET(metaspi) <B (7

=0
G(BNSL(E(SP) |
MCET (metagp,) —

Vi€ {0,...,t—1}

where SP; denotes the model configuration (e.g., layer sizes) in scenario i, and M CET(-) esti-
mates machine cost from the model’s meta file. This problem can be solved using the same grid
search approach as described in sub-section The computational complexity scales linearly with
t compared to the single-scenario case (Eq. 8), dominated by MCET evaluations.

Case Study 3: Matching vs. Pre-ranking. We treat these two stages as separate scenarios (¢t = 2).
Despite the initially suboptimal allocation, our method achieves a +2.8 % online revenue gain under
the same machine budget, with all scenarios satisfying ROI > 1.

Case Study 4: Two Heterogeneous Ad Placements. We further validate our framework on two
distinct ad placements (i.e., Scene; vs. Scenes) with different user engagement patterns. Applying
the same optimization, we observe a +0.45% increase in total revenue, demonstrating the general-
izability of our approach across diverse scenario types.

For large t, exhaustive grid search becomes infeasible. In such cases, we can employ heuristic
search (e.g., Bayesian optimization) or restrict scaling to proportional changes of a base model.
This framework enables automated, data-driven resource allocation across complex multi-scenario
systems, reducing reliance on manual tuning. Further details are provided in Appendix [D.4]

5 CONCLUSION

We have presented a systematic study of scaling laws in online advertisement retrieval systems,
addressing the high cost and inefficiency of online experimentation in industrial settings. By intro-
ducing an offline metric R/R* and a machine cost estimation method, we propose a lightweight
paradigm that transforms costly online trials into efficient offline analyses. This paradigm enables
accurate modeling of the relationship between machine cost and online revenue—mediated by model
configurations—across diverse model architectures. We also conduct extensive experiments to val-
idate the existence of scaling laws under different model architectures (i.e., MLP, DSSM, Trans-
former) and scenarios in an online advertisement retrieval system. With our proposed paradigm,
we demonstrate practical applications in ROI-constrained model design and multi-scenario resource
allocation, achieving a substantial 5.1% improvement in online revenue, validated via A/B testing.
The framework supports data-driven decision-making and accelerates model iteration in production
environments. Limitations and future directions are discussed in Appendix
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A RELATED WORK

A.1 NEURAL SCALING LAWS

The neural scaling laws, widely recognized in Natural Language Processing and Computer Vision
areas, establish predictable relationships between model performance and key factors such as model
size, dataset size, computational cost, and post-training error rates. Hestness et al.(2017) introduced
a unified scaling law applicable to machine translation, image classification, and speech recognition,
noting that different tasks exhibit distinct scaling coefficients. Kaplan et al.2020) further elaborated
on these laws, defining them through four parameters: model size (number of parameters), dataset
size (number of tokens), computational cost (FLOPs), and training loss (perplexity per token). These
relationships were empirically validated, including during the training of GPT-3 (Brown, [2020).
Subsequently, Hoffmann et al.(2022)) presented the Chinchilla Scaling Law, which differs somewhat
from (Kaplan et al.| 2020) because of their different training setups. In addition to estimating the
training loss of the model, [Isik et al.(2024) further verified that there also exist scaling laws between
the downstream task metrics and the model parameters. |Caballero et al.(2023) found that many
scaling behaviors of artificial neural networks follow a smoothly broken power law (BNSL), verified
on various NLP and CV tasks, covering a wide range of downstream tasks and model structures.

In the recommendation area, Shin et al.(2023) and |Zhang et al.(2024) studied on whether there
exist scaling laws for recommendation models and primarily provided qualitative conclusions. [Fang
et al.(2024) first proposed a quantitative scaling law in the recommendation area, which describes
the relationship between the amount of training data, the size of model parameters, and an offline
metric for query-document retrieval. Based on this scaling law, the optimal amount of data and
model parameter allocation can be solved under a given total training resource. However, obtaining
a multivariate scaling law requires a large number of experiments, and the offline metrics might
not be a good indicator for online metrics, these make it somewhat difficult to apply in real-world
industrial applications. In this paper, we focus on how to obtain the scaling law function between
the model’s scalable hyper-parameters (such as the FLOPs) and the online revenue (the primary goal
of the advertising system) with only a small amount of experimental cost.

A.2 MODELS AND EVALUATION FOR ONLINE ADVERTISEMENT RETRIEVAL

Online advertising systems often adopt a cascade ranking framework (Wang et al., 2011} |Chen et al.,
2017; |Gallagher et al., 2019; |Qin et al., [2022; |Wang et al., 2025). The cascade ranking usually
includes two types of stages, namely retrieval and ranking. The retrieval stages take a set of terms as
input and supply the top-k predicted terms to the next stage, which mainly focuses on order accuracy.
The ranking stages in advertising systems should focus on not only the order accuracy but also the
calibration accuracy (Huang et al., [2022; Sheng et al., [2023}; |[Zhao et al., 2024; Dai et al.| [2025)).
These lead to some technique differences in the retrieval and ranking stages, such as optimization
objectives, surrogate losses, and design of evaluation metrics. In this work, we focus on the retrieval
stages of online advertising systems.

The retrieval stages select the top-k set for the next stage, typically including multiple ranking path-
ways. In the retrieval stages, which normally refers to the “Matching” or “Pre-rank” stage in indus-
trial systems, the models often adopt a twin-tower (Huang et al., 2013} |Covington et al., [2016) or
MLP (mlp}, 1958} Hornik et al.,|1989} [Zhu et al., 2018; Wang et al., [2020; |2024; |2025)) architecture.
Some systems may also adopt more complex architectures like transformer and its variants (Vaswani
et al.,|2017; |Pancha et al.| |2022; Rajput et al., [2023}; |[Zhai et al., 2024; Han et al.| 2025} Deng et al.,
2025} |Zhou et al.| |2025azb)). In terms of objective design, industrial systems usually aim to estimate
CTR (He et al.| 2014} Zhou et al., 2018; [2019) and exposure probability of ads, and use learning-
to-rank methods (Burges et al.l [2005; Wang et al.| 2018} |Jagerman et al., [2022; [Wang et al., 2024;
2025)) to learn the results of ranking models. For evaluation of retrieval tasks, researchers commonly
use OPA, NDCG, and Recall (Swezey et al., [2021} Zangerle and Bauer, 2022; |Bauer et al., 2024;
Wang et al.| 2024} 2025). However, existing metrics often have complex relationships with online
revenue; thus, we propose R/R*, which exhibits a strong linear relationship with online revenue, to
reduce the experimental cost of identifying the scaling laws for industry scenarios.

14



Under review as a conference paper at ICLR 2026

B MORE ANALYSIS AND EXPERIMENT DETAILS OF THE OFFLINE METRIC
R/R*

B.1 THEORETICAL ANALYSIS ON THE RELATIONSHIP BETWEEN R/R* AND ONLINE
REVENUE

Here we give the proof that the R/R* metric is linearly correlated with online revenue under the
assumptions Theorems [3.1] to [3.4] stated in Section 3.1} The proof proceeds in two steps: first, we
show that the ensemble R/R* is linearly related to revenue on Dy;.q;,; second, we show that R/ R*
of the model of one pathway and the revenue on D;,,;, have a linear relationship; finally, we extend
this result to online revenue via Assumption [3.1]

Step 1: The Proof of the Linear Relationship between Ensemble R/R* and Revenue on D;,4;y,.

Let pf denote the exposure probability of ad af (the likelihood it is selected for display). The total
revenue can be expressed as:

N n
Revenue = Z Z pg . eCPMg .

i=1 j=1

; : St J eCPM; j
By Assumption the normalized contribution 8; = Z(ij“ e recpmT) and p; depends only

on position j, denoted as 37 and p/, respectively. Let C; = S (Py[: m;:]  ecpm?) (the top-m
eCPM sum under ground-truth ranking). We rewrite revenue as:

N n

Revenue = Z C;- Zp]ﬂj . Z Pl eCPMT
i=1 j=1

Here, >0 Py [ msi] - eCPM! corresponds to the numerator of R/ R} (m), and 3. Py, [: m;:

] eCPMiT (that is, C};) corresponds to the denominator. Thus:

Revenue = (Z C;-R/R;(m ) Zp763

=1

Under Assumption the term C; is independent of R/R} (since it depends only on the ranking
stage’s predictions). Therefore, the revenue becomes:

N 1 X L
Revenue = (Z C’i> . (NZR/Rf(m)> : ijﬁj
i=1 j=1

i=1

®)
ZPW -E(C) - R/R*(m)

This shows that revenue is linearly proportional to the average R/R*(m) over Dyyqin. Note that
R/R*(m) = % Zfil R/R}(m), and (Z?zl 2 Bj) can be treat as a constant for different i.

Step 2: Extension to a Single Pathway under the Multi-pathway Architecture. From Step 1, we
have established that the ensemble R/R? ... (m) is linearly related to revenue:

Revenue = 7 - R/ Ry qempie (M),

for some constant y > 0.

To analyze the relationship between a single pathway and revenue, consider the change in revenue
when only pathway £ is modified. Let AR/ R, () be the improvement in pathway k’s R/R”,
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and assume all other pathways remain unchanged. By Assumption [3.2] for a dominant pathway, the
corresponding improvement in the ensemble is:

AR/R; (m) =a-AR/R} (m).

ensemble single, k

Substituting into the revenue equation:

ARevenue = o -y - AR/ R ().

This implies that the change in revenue is directly proportional to the change in R/ Rngte, w(m),
with proportionality constant « - . Therefore, for a dominant pathway (where wy, ~ 1), the linear
relationship between R/ Rpete, (m) and revenue holds. This completes the derivation for a single

pathway within the multi-pathway architecture.

Step 3: Extension to Online Revenue. By Assumption 3.1} Dy, and online data are i.i.d. Thus,
the linear relationship derived on Dy,.,;, directly extends to online revenue. Therefore, the linear
relationship between R/R* and online revenue holds for individual pathways as well.

Conclusion: Combining the above results, we conclude that R/R* is linearly correlated with on-
line revenue under the given assumptions. This justifies its use as a surrogate metric for offline
evaluation.

B.2 MORE EXPERIMENT DETAILS AND THE VISUALIZATION OF THE CORRELATION
BETWEEN ONLINE REVENUE AND OFFLINE METRICS

Due to the limitations on experimental traffic, we can only run up to 5 A/B test groups simul-
taneously, which means some experimental groups were launched on different days. The online
experiments corresponding to each model use at least 5% of the traffic. We collect each model’s
online revenue from the A/B test platform and offline metrics from the training log.

In the main text, we only show some correlation measures (e.g., R?) of the linear correlation between
online revenue and offline metrics. Here we give the visualization results of the original detailed data
of online revenue and offline metrics. Figure @ and Figure [5] shows the visualization results for the
Pre-ranking and Matching stages of our system, respectively.

To protect commercial secrets, we applied a linear transformation to the original data, and the y-
axis represents the relative increase in revenue rather than the absolute value. These operations do
not affect the conclusions regarding the linear relationship. Each point in these figures represents
data from one day of a model being live. Note that all pairwise differences between points are
statistically significant (p < 0.05), which is tested by the online A/B platform.

We also observe that, in terms of the correlation between offline metrics and online revenue, the
pre-ranking stage generally exhibits higher correlation coefficients compared to the matching stage.
This may be attributed to the fact that, although both stages adopt a multi-pathway architecture, the
matching stage involves a larger number of pathways. As a result, no single pathway dominates as
strongly as in the pre-ranking stage. In the multi-pathway architecture, improvements in any individ-
ual pathway are more likely to be "covered” or offset by other pathways. This observation suggests
that, in order to maintain a strong correlation between offline metrics and online performance, it is
crucial to preserve dominant pathways with dominant weight within multi-pathway architectures.

B.3 HYPER-PARAMETER SENSITIVITY ANALYSIS OF R/R*

In offline evaluations, only a limited number of ads are dumped for analysis, with 10 ads sam-
pled per page view (PV, namely impression). Among these, 6 slots are reserved for fine-ranked
ads, which are the only ones for which eCPM information is available. Consequently, we can
only assess R/R*@Qm for m ranging from 1 to 6. For the pre-ranking stage, the linear corre-
lation coefficients (R2) between these offline metrics and online revenue are reported as follows:
R/R*(1) = 0.891, R/R*(2) = 0.902, R/R*(3) = 0.900, R/R*(4) = 0.892, R/R*(5) = 0.887,
and R/R*(6) = 0.830. For the Matching stage, the corresponding linear correlation coefficients
(R?) are as follows: R/R*(1) = 0.666, R/R*(2) = 0.725, R/R*(3) = 0.699, R/R*(4) = 0.695,
R/R*(5) = 0.698, and R/R*(6) = 0.706.

These results indicate that there indeed exists a reasonable m that achieves a high linear correlation
with online revenue. Specifically, among the evaluated metrics, R/R* demonstrates the highest
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Figure 4: Relationships between evaluation metrics and online revenue in the Pre-ranking stage of
our system. Each subplot shows the correlation with R2, average deviation, and maximum deviation.

correlation when m = 2, with a correlation coefficient of 0.9020 and 0.725 for the Pre-ranking and
Matching stages, respectively. Moreover, it is noteworthy that the R/ R* metric incorporates ad rev-
enue information (eCPM) into the calculation of offline metrics, a feature not present in traditional
metrics such as NDCG (Normalized Discounted Cumulative Gain) or Recall. Traditional metrics
primarily focus on ranking accuracy and recall rates without directly accounting for the actual rev-
enue generated by ads. Consequently, R/R* exhibits a stronger correlation with revenue across
various values of m compared to traditional metrics. We believe that the design of the R/ R* metric
holds significant reference value for the development of offline metrics in cascade ranking systems,
especially those aimed at sorting based on a single value such as advertising revenue.

C MORE DETAILS AND DISCUSSIONS OF SCALING LAWS BETWEEN FLOPS
AND R/R*

C.1 EXPERIMENTAL SETUP
C.1.1 TRAINING SETUP FOR MLPs AND DSSMs

Regarding the features: We adopt both sparse and dense features to describe the information of
users and ads in the online advertising system. Sparse features are those whose embeddings are
obtained from embedding lookup tables, while dense features are the raw values themselves. The
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Figure 5: Relationships between evaluation metrics and online revenue in the Matching stage of
our system. Each subplot shows the correlation with R2, average deviation, and maximum deviation.

sparse features of the user primarily include the action list of ads and user profile information (e.g.,
age, gender, and region). The action list mainly consists of action types, frequencies, target ads, and
timestamps. The sparse features of the ads primarily include the IDs of the ad and its advertiser.
The user’s dense features mainly consist of embeddings produced by other pre-trained models. The
dense features of the ads primarily include statistical features information, and multimodal features
generated by multimodal models.

Regarding the MLP models: The MLP consists of 5 layers, where each hidden layer is com-
posed of batch normalization, linear mapping, and a PReLLU (He et al.,|2015)) activation function in
sequence. The output layer is a pure linear layer. Parameters are initialized using the He initializa-
tion (He et al.,|2015). We apply a log1p transformation as in (Qin et al., | 2021) for all statistical dense
features. All sparse and dense features are concatenated together and fed as input to the model.

Regarding the DSSM models: The DSSM consists of a user tower and an item tower. Each
tower employs an MLP architecture and has 4 layers. Each hidden layer is composed of batch
normalization, linear mapping, and a PReLU activation function. The output layer of the user tower
employs only a linear mapping. The output layer of the item tower employs a linear mapping and an
L2-normalization. The initialization strategy and feature processing methods are the same as those
described for the MLP model.

Our model is trained online using a distributed training framework with synchronous training. We
use Adagrad (Duchi et al., 2011) as the optimizer with a learning rate of 0.01 and an epsilon value
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of 1e-8. The training dataset comprises approximately 200 billion samples (i.e., user-ad pairs) and
20 billion impressions. The largest model, shown in Figure (3| was trained over 10 days using 60
A10 GPUs. The training tasks consume a data stream named Dggream-train, pProcessing samples in the
order they are generated. To ensure that all ads within the same impression are processed together
for learning-to-rank training, the system groups ads by impression and performs shuffling at the
impression level within small time windows.

C.1.2 TRAINING SETUP FOR TRANSFORMERS

To conduct transformer-based experiments, we follow recent practices in generative recommenda-
tion (Rajput et al., [2023} |Zhai et al., [2024} |Han et al.| 2025} |Deng et al., 2025} |Zhou et al.| 2025a3b))
and adapt them to our advertising platform. We first extract multimodal embeddings using Qwen-VL
2.5 (Bai et al.| [2025). To better align these multimodal embeddings with user behavioral signals in
recommendation, we fine-tune and transform the embeddings following the QARM framework (Luo
et al.| 2024). Subsequently, we generate semantic IDs for all items using Res-kmeans.

We adopt a decoder-only architecture based on the open-source implementation of Qwen3 (Yang
et al.l 2025). Following Deng et al.| (2025); Zhou et al.| (2025ajb), we treat all impression logs
as positive samples and employ full softmax loss for pre-training. The pre-trained model is then
post-trained using a reward model derived from the online ranking system. Specifically, we use
the production-grade ad ranking model as the reward model and apply an off-policy reinforcement
learning strategy: the post-training data (including rewards) are collected from the live system,
rather than generated by the model itself via inference. Since the reward model produces list-wise
feedback, we employ the ARF (Wang et al.| 2024) loss for post-training.

On the input side, item features consist solely of semantic IDs. For users, the input sequence includes
behavioral sequences—such as clicks and conversions—represented by semantic IDs, along with
user profile features (e.g., age, gender, context). The user profile features are placed at the beginning
of the input sequence as a ’prompt” to condition the model’s predictions.

To ensure full model convergence, all Transformer models are trained on live production data for 25
consecutive days, and R/ R* is evaluated on the subsequent day’s data. For pre-training, we perform
incremental batch training using daily-updated datasets, which facilitates efficient data compression
similar to the approach in HSTU (Zhai et al., 2024). We denote this pre-training dataset as Dpye-grain-
For post-training, we initialize from the latest pre-trained checkpoint and perform streaming training
using the same data stream (i.e., Dgyeam-train) @ described in Appendix@}

Due to the significantly larger model size of our largest Transformer compared to MLP and DSSM
models, we apply downsampling on Dpre_train a1d Dpostirain to ensure that the daily training data of
each scene can be fully processed within 24 hours using 64 flagship GPUs. We use the AdamW
optimizer with a learning rate of 0.0001, weight decay of 0.01, 8; = 0.9, 83 = 0.999, and € =
le—8. For evaluation, R/R* is computed over Dgyeam-train, Where the predicted eCPM for each ad is
obtained directly from the reward model’s output score.

C.2 MORE EXPERIMENTAL RESULTS OF SCALING LAWS ON DIFFERENT MODEL
ARCHITECTURES

In addition to the key results presented in the main text, we provide extended experimental validation
of scaling laws across multiple model architectures and system stages. We examine MLP and DSSM
models across two business scenarios, confirming consistent scaling behavior between FLOPs and
R/R*. We further validate the existence of such scaling laws for Transformer-based architectures
in the same industrial advertisement retrieval settings.

Here, we present additional results for the pre-ranking stage in Scenes using the MLP architecture,
as shown in Figure[6] We also include results for the matching stage in Scene; and Scenes using the
DSSM model, corresponding to Figure[7]and Figure 8] respectively. For Transformer-based models,
we show the scaling curves on the matching stage in Scene; and Scenes in Figure[9]and Figure 10}
respectively.

These results further support the existence of a broken neural scaling law in real-world industrial
retrieval systems across diverse architectures. Importantly, this does not imply that the BNSL pa-
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Figure 6: Scaling Performance regarding the FLOPs and R/R* of MLP models under Scenes. The
size of the MLP network and the deviation between the fitted curve and the true values (referred to
as the “error”) are annotated in the figure. The R? value of the curve fitting is 0.992. [1024, 512,
512, 1] indicates an MLP model with 4 layers, where the output sizes are 1024, 512, 512, and 1,
respectively. The total dimensions of input features for all models are 3328.
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Figure 7: Scaling Performance regarding the FLOPs and R/R* of DSSM models under Scene;.
The size of the tower in DSSM and the deviation between the fitted curve and the true values (re-
ferred to as the “error”) are annotated in the figure. The R? value of the curve fitting is 0.998. [1024,
512, 512, 64] indicates each tower of DSSM with 4 layers, where the output sizes are 1024, 512,
512, and 64, respectively. The total dimensions of input features for the user and item towers are
1760 and 1568, respectively.

rameters are identical across architectures; rather, it means that within each architectural family,
performance scales predictably with FLOPs in the observed FLOPs range.

20



Under review as a conference paper at ICLR 2026

[2048, 1024, 1024, 128], error=0.
0.74 -
24,512,512, 64], error=0.001
0.73 - 00, 400, 400, 32], error=0.001
0.72 - [512, 256, 256, 321, error=0.000
: 1400, 200, 200, 321, error=0.000
L 07 [256, 128, 128, 16], error=0.000
o
© 0.70 4
0.691  §1128, 64, 64, 8], error=0.000
0.68 -
0.67 A @ Data
[64, 32, 32, 4], error=0.000 — it
0.0 0.5 1.0 1.5 2.0 2.5

FLOPs (10%°)

Figure 8: Scaling Performance regarding the FLOPs and R/R* of DSSM models under Scenes.
The size of the tower in DSSM and the deviation between the fitted curve and the true values (re-
ferred to as the “error”) are annotated in the figure. The R? value of the curve fitting is 0.999. [1024,
512, 512, 64] indicates each tower of DSSM with 4 layers, where the output sizes are 1024, 512,
512, and 64, respectively. The total dimensions of input features for the user and item towers are
1760 and 1568, respectively.
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Figure 9: Scaling Performance regarding the FLOPs and R/R* of Transformer models under
Sceney. The size of Transformer models and the deviation between the fitted curve and the true

values (referred to as the “error”) are annotated in the figure. The R? value of the curve fitting is
0.984.

C.3 DiscuUSsSION: COMPARISON WITH SCALING LAWS IN NLP

The scaling behaviors observed in our industrial advertisement retrieval system share formal simi-
larities with those in NLP: both exhibit power-law relationships between model size (or FLOPs) and
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Figure 10: Scaling Performance regarding the FLOPs and R/R* of Transformer models under
Scenes. The size of Transformer models and the deviation between the fitted curve and the true
values (referred to as the “error”) are annotated in the figure. The R? value of the curve fitting is
0.992.

performance within certain computational ranges, enabling predictable performance trends. How-
ever, the practical application, scope, and implications of scaling laws differ significantly due to the
distinct operational constraints of advertising systems.

A key difference lies in the direction of extrapolation. In NLP, scaling laws are typically used to
extrapolate upward—predicting large-scale performance from small-scale experiments. In contrast,
in advertising retrieval, it is often feasible to run large models on small traffic slices and then infer
their behavior at smaller, deployable scales. This "downward inference” is enabled by the ability
to safely test high-cost models offline or on limited traffic, making scaling laws a practical tool for
ROI-driven model selection.

Another critical distinction is the range of computation explored. As exemplified by our exper-
iments on the MLP architecture, the maximum FLOPs tested (1.43 x 10%°) is approximately 20
times that of our online base model. While this range is far narrower than those in large-scale NLP
studies (Kaplan et al.| [2020; Hoffmann et al.| 2022), it is sufficient for industrial deployment. This
limitation arises not from methodological constraints, but from the economic reality of ROI opti-
mization: beyond a certain point, the diminishing marginal returns implied by power-law scaling
make further increases in model size unjustifiable. Even if performance continues to improve, the
cost-benefit ratio becomes unfavorable.

Therefore, in the advertising domain, the value of scaling laws lies not in enabling ever-larger mod-
els, but in guiding efficient resource allocation and model design within practical budgets. We argue
that future breakthroughs will likely stem not from scaling within existing paradigms, but from ar-
chitectural or foundational innovations—what we term paradigm innovations—that shift the scaling
curve itself. This perspective is further discussed in Appendix [E]

D MORE DETAILS ABOUT THE APPLICATIONS OF SCALING LAW

D.1 DETAILS ABOUT INFRA SETTINGS FOR ONLINE TRAINING AND SERVING
Figure [ T]illustrates the pipeline of online training and online serving in our advertising system and

the details of “first-layer optimization” mentioned in section [3.3] The advertising system records
logs in real-time for each ad exposure, including the features and labels of the training samples.
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The downstream training engine reads training data from Kafka storage in real-time and performs
online training to optimize the model. Every 20 minutes, the training engine exports the latest model
parameters to HDFS for secure storage. Meanwhile, the prediction server periodically polls HDFS
to check for new model parameters and updates the local model parameters when a new version is
available.

First-layer optimization is an optimization technique designed for MLP models. This technique
transforms the computation of the first layer from F F'N (concat(embyser, embaq)) (referred to as
F Lygive) to FFN(embyser) + FFN(emb,q) (referred to as F'Loy). The transformation yields
equivalent results but significantly reduces computational overhead. This optimization is applied to
the pre-ranking models of our advertising system, where each impression involves evaluating 1500
candidate ads. In this context, for each impression, there is one user embedding (embys.,-) and
1500 ad embeddings (emb,q). The operations concat and + are broadcast operations, meaning they
can be applied element-wise across arrays of different shapes. Here, the term “concat” refers to a
logical operation with broadcasting properties, which in practice can be implemented using a com-
bination of tf.tile and tf.concat in TensorFlow. By adopting the optimized form F'Ly, we can save
a substantial amount of computation. To further enhance efficiency, we have developed a scheduled
precomputation service called the “Embedding Producer.” This service caches the F'F'N (emb,q)
values for all valid ads. It is a CPU-based service that is triggered by model update events and the
insertion of new ads. This caching mechanism ensures that the precomputed values are readily avail-
able, reducing the computational overhead of the pre-ranking models. However, it also introduces
a more complex relationship between the model’s FLOPs and the associated machine costs. We
use a TensorRT-based service architecture to deploy the model for online serving. To accelerate the
computation during inference, we adopt half-precision floating point format (FP16) for each layer.

For the training procedure of Pre-ranking models, we have also implemented the first-layer opti-
mization. We use single precision floating point format (FP32) for training and saving the MLP and
DSSM models. We use FP16 for training Transformer models. For training and serving DSSM and
Transformer models in Matching stages, we incorporate several standard engineering optimizations
to improve efficiency. These include model quantization, user tower computation compression, and
caching of precomputed item tower embeddings. These techniques significantly reduce both the la-
tency and the overall computational overhead during online training and serving. The inner product
of the user and ad tower is directly calculated by brute force for online serving, and no approximate
search algorithm such as FAISS is employed.

For both training and serving, we use T4 or A10 GPUs, with each GPU machine equipped with 128
CPU cores. Both the training and serving frameworks are developed based on TensorFlow (Abadi
et al., 2016)) or PyTorch (Paszke et al., 2019). Notably, the GPU models used for the experiments
in Appendix [C.1.2] differ from those used in standard online deployment. In Appendix [C.1.7] to
evaluate the performance of larger Transformer models, we utilize state-of-the-art, flagship-class
GPUs rather than the T4 or A10 GPUs typically used in production. Due to company policies,
certain detailed hardware specifications remain confidential and are not disclosed.

D.2 AN DETAILED ILLUSTRATION OF MCET

In this section, we provide a detailed illustration of the Machine Cost Estimation Tool (MCET),
which is implemented based on Algorithm [I] The MCET is designed to estimate the computation
cost of deploying machine learning models without the need for actual online deployment. This tool
is particularly useful in scenarios where rapid iteration and cost-effective deployment are critical,
such as in large-scale advertising systems.

The core idea of MCET is to simulate the execution of models on a specified hardware configuration
and measure their performance in terms of Queries Per Second (QPS) under a given response time
limit. By leveraging these simulations, MCET can estimate the number of machines required to
serve each model while meeting the desired performance constraints. This approach eliminates the
need for costly and time-consuming online deployment, providing a reliable and efficient alternative
for cost estimation.

The algorithm begins by initializing a base model M, and simulating its execution on the specified
hardware configuration M#. The QPS of the base model QQP.Sy is measured under the response
time limit Tjm;i. Using this measurement, the total QPS capacity of the base model setup is cal-
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Figure 11: The pipeline of online training and serving, and details of the first layer optimization for
Pre-ranking models.

culated as QP S = Teqy X QPSy, where reqq is the number of machines allocated to the base
model.

Subsequently, the algorithm iterates over the remaining models, loading their meta files and sim-
ulating their execution on the same hardware configuration. For each model, the QPS QPS; is
measured under the same response time limit, and the required number of machines reg; is calcu-

lated as req; = %. The results are stored in a list and returned as the final output.

The MCET tool, which implements this algorithm, allows us to estimate the machine requirements
for tens of models within a short time frame. For instance, using a single machine with a single GPU,
we can estimate the required number of machines for a single TensorFlow meta-file within half an
hour. This capability significantly reduces the time and cost associated with model deployment and
iteration.

Furthermore, by combining the estimated machine requirements with the unit price of the specified
hardware configuration, we can accurately calculate the expected machine cost. This approach is
applicable to both training and serving cost estimation, with the algorithm being executed using the
meta files specific to each process. For training cost estimation, labels are randomly constructed to
simulate the training environment.
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Algorithm 1 Cost Estimation by Offline Simulation Testing

Input: The number n of models (denoted as n), and meta files of the models (denoted as
{meta;|0 < i < n}). One specified machine MH for online serving. The machine num-
ber reqq of the online base model M. The desired response time limit 7j;p;.

Output: The estimated machine number of each model for online serving, denoted as {reg;|1 <
i<mn}.

1: Initialize an empty list results to store the results.

Simulate the execution of the base model M using the specified hardware configuration MH.

Measure the QPS (Q P.Sy) of the base model M, under the given response time limit 7y, with

the input being randomly initialized, fixed-length tensors.

Calculate the total QPS capacity of the base model setup: QP Sy = Teqg X QPSy.

fori =1ton —1do

Load the meta file meta; of the i-th model.

Simulate the model’s execution using the specified hardware configuration MH.

Measure the QPS (QP.S;) of the i-th model under the given response time limit Tjj;, with
the input being randomly initialized, fixed-length tensors.

9:  Calculate the required number of machines for the i-th model: req; =

10:  Append the result reg; to the results list.
11: end for
12: return results

A A

QP Sl
QPS; -

i

In summary, MCET provides a standardized, reproducible, and efficient method for estimating com-
putation costs, enabling rapid and cost-effective model deployment in real-world applications.

D.3 ROI-CONSTRAINED MODEL DESIGNING

Regrading Case Study 1: We set an upper limit on the model FLOPs to 143M and set the step
size of the grid search as 16 and 128 for the feature embedding dimensions and the unit number of
MLP layers, respectively. This larger step size is chosen because smaller increments have minimal
impact on the total FLOPs and result in negligible increases in expected revenue according to the
scaling law. The feature embedding dimension (emb_dim) in the grid search starts at 16. The input
size of MLP models is determined by multiplying the emb_dim by the number of sparse features,
which is 200 in our experiments, plus an additional 128-dimensional dense feature. For the MLP
layers (excluding the output layer, which is fixed at 1), the number of units starts at 128, with the
constraint that the number of units in any layer does not exceed the number of units in the previous
layer. The size of the first layer outputs does not exceed 1024, because this is the storage limit of
the embedding producer. Additionally, we enforce that the number of units in any layer (except the
output layer) is at least 1/20 of the number of units in the previous layer, as the reason discussed
in appendix We used 10 T4-GPU machines to perform a grid search over approximately 1000
configurations and found an approximate optimal solution in about two days.

Regrading Case Study 2: We observe from the fitted data points that models in the 0.05B to
0.1B parameter range offer favorable cost-performance trade-offs. Leveraging the scaling law for
Transformer-based models, we therefore conduct a grid search within this interval with a step size of
0.01B. Ultimately, a 0.08B-parameter model was deployed. Given that the model size is moderate,
we are able to use A10 GPUs for both training and serving. Notably, the scaling law we fit remains
in terms of FLOPs and R/ R*. When the average number of tokens per query is known, there exists
a straightforward relationship between model parameter count (in billions) and FLOPs.

D.4 MULTI-SCENARIO RESOURCE ALLOCATION

Regrading Case Study 3: As mentioned, we adopted an MLP model for the Pre-ranking stage and
a DSSM model for the Matching stage. Through offline experiments, we obtained the key functions
(including G, BN SL, etc.) in the scaling laws for both the Matching and Pre-ranking stages using
our proposed paradigm. Due to the different model architectures, their machine costs vary in the
same size. We used the machine cost estimation tool to additionally measure the machine costs
of the DSSM model at different sizes. Similarly to the estimation of the MLP model, we solved
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the estimated machine costs of approximately 1000 different sizes of DSSM models based on the
algorithm[T|using 10 T4-GPU machines for about 2 days.

Regrading Case Study 4: For Scene; and Sceneq, we perform proportional scaling of the base
models in both the Pre-ranking and Matching stages. The scaling ratio ranges from 0.1 to 3.0 with
a step size of 0.1. Based on the grid search results and the overall ROI across stages, we ultimately
decide to reduce the model size in Scene; by 10% and increase the model size in Scenes by 50%.

E LIMITATIONS AND FUTURE WORK

E.1 OPTIMAL MODEL DESIGNING WITH GIVEN FLOPS

One remaining question is how to give optimal unit distributions of layers under a given FLOPs.
Typically, in advertising models, the size of the bottom layer is the largest, gradually decreasing in
the upper layers. We believe that as long as the difference in the number of units between adjacent
layers is within a reasonable range, the performance impact should be negligible. To explore this, we
conducted preliminary experiments, such as testing a model with the size [3328, 1024, 32, 32, 32,
1]. We found that when the unit allocation is unreasonable, the model performance significantly de-
grades compared to a reasonable one. Our empirical experience suggests that, except for the output
layer, the difference in the number of units between adjacent layers should not exceed 20. Models
designed following this principle generally conform to the BNSL. More in-depth conclusions are
left for future work and are beyond the scope of this paper.

E.2 Jow LAWS IDENTIFICATION AND APPLICATION

Obtaining joint laws considering multiple factors, such as data, model size, and computational re-
sources, is significantly more costly in industrial advertising settings than obtaining single-variable
scaling laws. Developing a cost-effective method for deriving joint laws is therefore an important
area for future investigation.

An especially promising direction for application is to model the joint law between model size
and the computational quota allocation across stages in a cascade ranking system. Such a law
could help answer critical questions: How should we rebalance ranking, pre-ranking, and matching
stage budgets when scaling up the overall model? At what point does increasing model size in one
stage yield diminishing returns due to bottlenecks in another? By formalizing these interactions,
joint laws can deepen our understanding of cascade systems and guide principled, globally optimal
configuration decisions with only a given budget.

E.3 BEYOND COMPUTE SCALING

Although our optimization framework has achieved an overall 5.1% improvement in ad revenue,
a substantial portion of this gain arises not from breakthroughs in model architecture, but from
correcting historically suboptimal resource allocation and coarse-grained manual tuning. Our results
indicate that, unlike in NLP, simply scaling up computation alone is unlikely to bring similar levels
of success to the advertising domain for models such as MLP, DSSM, or Transformer.

Therefore, the next major leap in performance will likely require more disruptive innovations. One
path is architectural rethinking—designing models with inherently better scaling efficiency, such as
sparse, modular architectures (Liu et al.,2024). Another is a data-centric paradigm shift: leveraging
large language models or product-level innovations to improve the quality, semantic richness, and
diversity of training signals. In this view, ”scaling” must evolve beyond model size to include the
scaling of data intelligence. Only through such foundational changes can we hope to achieve the
kind of sustained, huge progress seen in NLP domains.

F REPRODUCIBILITY STATEMENT

Our experiments are conducted on an industrial online advertising platform. Due to company poli-
cies, we are unable to release the raw data or certain proprietary code. However, we have made
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substantial efforts to ensure the reproducibility and transferability of our methodology and findings.
Specifically:

* The Lightweight Scaling Law Identification Framework: In Section[3.1] we provide a detailed
definition and computation procedure for the R/R* metric. Additionally, Algorithm [I{and Ap-
pendix [D.2] fully describe the Machine Cost Estimation Tool (MECT), allowing researchers to
adapt our framework to other systems or domains.

* Empirical Validation of Scaling Laws: To support the reproducibility of our scaling law obser-
vations for models such as MLP, DSSM, and Transformer in advertisement retrieval, we provide
comprehensive experimental setups in Appendix

» Applications of Scaling Laws: For the practical applications discussed in the paper, we document
the full setup in Sectionf|and Appendix [D] This includes infrastructure specifications for training
and serving, formulation of the optimization problems, and solution procedures.

We hope these materials significantly lower the barrier for reproducing and extending our work in
both academic and industrial settings.

G LLM USAGE STATEMENT

We used large language models (LLMs) as a general-purpose writing assistance tool during the
preparation of this paper. Specifically, we leveraged LLLMs to improve the clarity, grammar, and
fluency of the manuscript. All technical content, including research ideas, methodology, analysis,
and conclusions, was developed solely by the human authors. The LLM was not involved in research
design, data interpretation, or scientific decision-making. We have reviewed and verified all text
generated or modified with the help of the LLM to ensure accuracy and originality. The use of the
LLM does not constitute authorship, and the responsibility for the integrity of the work rests entirely
with the listed authors.
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