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Abstract

We address the problem of visual storytelling,001
i.e., generating a story for a given sequence002
of images. While each story sentence should003
describe a corresponding image, a coherent004
story also needs to be consistent and relate005
to both future and past images. Current ap-006
proaches encode images independently, disre-007
garding relations between images. Our ap-008
proach learns to encode images with differ-009
ent interactions based on the story position010
(i.e., past image or future image). To this011
end, we develop a novel message-passing-like012
algorithm for ordered image attention (OIA)013
that collects interactions across all the im-014
ages in the sequence. Finally, to generate the015
story’s sentences, a second attention mecha-016
nism picks the important image attention vec-017
tors with an Image-Sentence Attention (ISA).018
The obtained results improve the METEOR019
score on the VIST dataset by 1%. Further-020
more, a thorough human study confirms im-021
provements and demonstrates that order-based022
Interactions significantly improve coherency023
(64.20% vs. 28.70%).024

1 Introduction025

Visual Storytelling (VST) (Park and Kim, 2015;026

Huang et al., 2016) – the task of generating a story027

based on a sequence of images – goes beyond a028

basic understanding of visual scenes and can be029

applied in many real-world scenarios, e.g., to sup-030

port the visually impaired. Moreover, VST reflects031

on the creative ability of intelligent systems. Al-032

though similar in concept to other cognitive tasks033

such as image captioning and visual question an-034

swering, VST differs as it requires to reason over a035

sequence of images while simultaneously ensuring036

coherence across multiple generated sentences. To037

achieve this, VST methods need to address two038

major challenges: the first is visual and relates to039

grounding the story’s text to the images. The sec-040

ond is linguistic and relates to the quality of the041

story. Both challenges can be described in terms of042

coherency: the story should be coherent by itself, 043

and coherent with the images. 044

Prior research on VST started to address the 045

aforementioned challenges. Early works expand 046

captioning (Vinyals et al., 2014; Xu et al., 2015; 047

Chen and Zitnick, 2015), focusing sentence gener- 048

ation mainly on the current image. This limits the 049

ability to incorporate complex semantic informa- 050

tion, which is necessary for visual reasoning. Prior 051

work also makes limited use of temporal depen- 052

dence and history, e.g., sentences that have already 053

been generated are not used. Consequently, the 054

output lacks narrative consistency and is prone to 055

linguistic errors such as repetitiveness and incoher- 056

ence (Modi and Parde, 2019). To mitigate these 057

issues, later works strive to generate more meaning- 058

ful stories via adversarial and reinforcement learn- 059

ing (Wang et al., 2018; Huang et al., 2018), which 060

remain delicate to train. 061

Importantly, images are not independent. For 062

example, if the first image in a sequence shows a 063

protest, the model may want to focus on signs in 064

later images. Conversely, if the last image shows 065

a ring on a finger, then the model should pay at- 066

tention to wedding-related objects and activities in 067

the preceding images. This is important for VST 068

because sentences are created per image but are 069

part of a story. Hence, objects that the model is 070

focusing on in one image should be conditioned on 071

the selection in other images. 072

To do this we develop a novel model which (1) 073

implicitly reasons over objects, activities, and their 074

temporal dependencies in each image; and which 075

(2) improves the coherency of the narrative. To rea- 076

son over objects and activities in each image, i.e., 077

to understand their dependencies and their tempo- 078

ral ordering, we introduce ordered image attention 079

(OIA). As illustrated in Fig. 1, for each image, OIA 080

accumulates representation information from ob- 081

jects detected within the corresponding image into 082

an attended image representation. Importantly, ac- 083

cumulation factors depend on whether the image 084
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Figure 1: We propose Ordered Image Attention (OIA) to encourage coherency. In each row, we show the spatial attention
maps. On the graph on the left, each colored edge indicates how an object is involved in a specific interaction. A yellow edge
indicates a preceding interaction and a blue edge indicates a subsequent interaction. By collecting directional interactions, we
can identify significant objects throughout the story. In total, five attention maps are calculated, one for each image. The border
of attended images indicates how important an image is according to the Image-Sentence Attention (ISA). E.g., red indicates a
high attention score, meaning the image is essential for generating that sentence. Our model performs this step for all five images
simultaneously, creating 25 attention maps that are fed into the decoder to create the sentences sequentially.

precedes or succeeds the image for which we are085

currently generating the sentence, which permits to086

establish an order. The attended image representa-087

tions are subsequently summarized into a context088

embedding via an Image-Sentence Attention (ISA)089

unit, before being used for sentence decoding.090

In addition, to alleviate common linguistic mis-091

takes like repetitiveness and to promote coherence092

in the story, we incorporate information from the093

story generated up to the current sentence into the094

sentence generation decoder. Specifically, the de-095

coding strategy decays the probability of a word if096

it has already been used in the story. The decoder097

also maintains a separate prior over the output prob-098

ability distribution, independent from the language099

generation unit. This prior is based on counts of the100

words that were already predicted in the story. Both101

the prior, and the Recurrent Neural Net (RNN) de-102

coder output are combined to predict the next word103

in the sentence.104

Empirical results on the challenging VIST105

dataset demonstrate that the proposed method gen-106

erates stories with an improved narrative quality.107

The method outperforms prior state-of-the-art by108

1% on the METEOR score. Examples of stories109

generated by the approach are shown in Fig. 1. We110

also present a user study demonstrating the advan-111

tage of the model in terms of coherency (64.20%112

vs. 28.70%).113

2 Related Work114

Vision+Language has been an active area of re-115

search for many years, addressing tasks such as116

image/video captioning, paragraph generation, and 117

visual question answering. We briefly review those 118

related areas in the following. 119

2.1 Visual Storytelling 120

Huang et al. (2016) introduce the visual story- 121

telling task. Visual storytelling is similar to caption- 122

ing. Thus, early methods adapted captioning mech- 123

anisms, introducing context between story sen- 124

tences (Gonzalez-Rico and Pineda, 2018). Follow- 125

ing, Kim et al. (2018b) used a seq2seq (Sutskever 126

et al., 2014) approach built on a decoding sampling 127

strategy to reduce repetition. Here, we use a dy- 128

namic data-driven approach where each word is 129

penalized differently based on its average count. 130

Next, Wang et al. (2018) discuss the difficulty of 131

learning stories with imaginary details that do not 132

appear in the imagery. To that end, an adversarial 133

reward system is used to improve the output sto- 134

ries. Several works use a reinforcement learning 135

approach based on the interrelationships between 136

images (Huang et al., 2018). Recently, state-of- 137

the-art results were obtained by generating scene 138

graphs for each image in the sequence (Wang et al., 139

2019). Following, Li et al. (2019) and Zhang et al. 140

(2020) rely on preprocessing to ground visual ele- 141

ments. Yang et al. (2019) and Hsu et al. (2020) en- 142

rich the data with an external word common-sense 143

knowledge graph.Wang et al. (2019) model rela- 144

tions within the image with scene graphs, which 145

requires expensive annotations. Hong et al. (2020) 146

also uses scene graphs with global embeddings to 147

achieve coherence. In contrast, we model ordered 148
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Figure 2: Our architecture for Visual Storytelling synthesis.

interaction for coherence. A recent study by Yu149

et al. (2021) employed large-scale pre-trained mod-150

els for visual storytelling using auxiliary adaptation151

loss. Our research aims to establish a novel visual152

storytelling model that models ordered interactions153

without external knowledge.154

Recently, Yu et al. (2021) employ large pre-155

trained models to visual storytelling via auxiliary156

adaptation loss. Our research focuses on creating a157

novel visual storytelling model instead of training158

strategies, loss functions, and pre-trained models.159

Encoding ordered images improves the coherence160

between sentences, one of the main challenges of161

visual storytelling.162

2.2 Image Captioning163

Barnard et al. (2003) first explored annotating im-164

ages with text. Since then, image/video captioning165

has seen a surge of research activity. Initial work166

utilized pre-trained image embeddings from a CNN167

network. The success of attention mechanisms for168

language translation quickly transferred to image169

captioning as well (Xu et al., 2015). Later work170

leveraged advances in object detection and pro-171

posed a bottom-up/top-down attention approach to172

attend to specific objects in the image instead of173

fixed spatial regions (Anderson et al., 2017). Differ-174

ent from image captioning, for visual storytelling,175

both story coherency and visual grounding are im-176

portant.177

2.3 Multimodal Attention178

Multimodal problems are characterized by input179

data that comes from different domains, e.g., vi-180

sual and linguistic. This raises two challenges: 1)181

how to model interactions between different do-182

mains, and 2) how to manage the large input data.183

Considering those challenges, attention has been 184

a prominent tool as it models interactions to se- 185

lect the important elements. In early work, Xu et al. 186

(2015) used interaction-based attention with the im- 187

age at each caption generation step. This idea was 188

later extended to visual question answering (Xu 189

and Saenko, 2016). To imitate multi-step reason- 190

ing, Yang et al. (2015) stacked attention modules 191

sequentially. Later, many works concentrated on 192

better vector-fusion modeling (Fukui et al., 2016; 193

Kim et al., 2017; Ben-Younes et al., 2017; Yu et al., 194

2018). Importantly, Lu et al. (2016) suggested 195

attending to the visual and textual modalities sep- 196

arately. Afterward, Kim et al. (2018a) proposed a 197

bilinear module that efficiently generates attention 198

for every pair. Following Lu et al. (2016), Schwartz 199

et al. (2017, 2019) suggested a general framework 200

that extends attention to any number of utilities via 201

local and interaction-based factors. We improve 202

upon those ideas by suggesting an ordered attention. 203

This ensures that interaction modeling is affected 204

by the image position in a sequence. 205

3 Method 206

The goal of visual storytelling is to generate a 207

story, composed of N ordered sentences {ys|1 ≤ 208

s ≤ N}, given an ordered sequence of images 209

I = {Is|1 ≤ s ≤ N}. Each sentence ys = 210

(ys,0, . . . , ys,t, . . . ) is composed of words ys,t ∈ Y 211

from vocabulary Y . 212

The order in which the images are given is essen- 213

tial as it defines the plot line of the story. The story 214

should be focused, i.e., each sentence should be 215

related to the remainder of the story. Importantly, 216

the sentences should form a coherent body of text 217

describing the set of images, and not only a set of 218

related information. For instance, the story “The 219
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Figure 3: Illustration of Ordered Image Attention. Each node
represents an image attention belief. For each sentence, we
connect all the images with the sentence-corresponding image.
The relative position to this image determines whether the
connection is modeled with the Ψbwd factor (for preceding
images) or the Ψfwd factor (for subsequent images; see Eqs. [8-
10]). We infer the attention belief by collecting interactions
and local object information within the image see Eqs. [2-4]).
We use scalars to calibrate the importance of each factor. In
total, we generate 25 attention maps, one per image for every
sentence.

church was beautiful. The bride and groom walk220

down the aisle. The cake was amazing.” is less221

coherent than: “We went to the church for the wed-222

ding today. The bride and groom were excited for223

the day. Both cut the cake together.” Overview:224

To address this challenge, we develop the model225

illustrated in Fig. 2. It infers conditional probabili-226

ties p′(ys,t|ys,t−1, cs) for the t-th word ys,t ∈ Y in227

sentence ys given the previous word ys,t−1 and the228

context embedding cs for sentence s. The context229

embedding cs summarizes region representations230

ri,k of all K object regions across all N images Ii231

(i ∈ [1, N ], k ∈ [1,K]) via Ordered Image Atten-232

tion (OIA) (Sec. 3.1) and Image-Sentence Atten-233

tion (ISA) (Sec. 3.2). Specifically, when generating234

sentence s, OIA computes an attended image rep-235

resentation asi for every image Ii by attending to236

the K region representations ri,k (Sec. 3.1). These237

attended image representations asi are subsequently238

summarized into the context embedding cs via an239

image-sentence attention (Sec. 3.2).240

Below we first discuss computation of the at-241

tended image representation asi (Sec. 3.1), before242

detailing computation of the context embedding243

cs (Sec. 3.2) and computation of the conditional244

probabilities p′(ys,t|ys,t−1, cs) (Sec. 3.3).245

Ordered Image Attention (OIA) is designed to246

1) form a structure across ordered images and to247

2) select the relevant objects per image. For this248

we model preceding and subsequent interactions249

... ...

Figure 4: Illustration of ISA. The attention selects the attended
image representation per sentence. We model interactions be-
tween attended images of the same sentence to compute each
image’s importance. Note, each node represents a sentence
attention belief over the attended images.

separately using different attention factors. We 250

calibrate each factor’s importance with trainable 251

scalars, which forms a graph of dependencies be- 252

tween the images. For each sequence of N images, 253

the model infers a total of N2 attention maps, one 254

per image for each sentence. We detail this module 255

next. 256

3.1 Ordered Image Attention (OIA) 257

3.1.1 Attention Belief 258

For each image Ii = {ri,1, . . . ri,K} we consider a 259

set of K regions, represented by their feature vec- 260

tors ri,k ∈ Rd, where d is the objects’ embedding 261

dimension. Suppose we are currently generating 262

sentence ys (1 ≤ s ≤ N ). To do this we first 263

compute an attended image representation asi as 264

follows 265

asi =
K∑
k=1

bsi,kri,k, (1) 266

where bsi,k ≥ 0 is the attention belief highlight- 267

ing the importance of the k-th object in the i-th 268

image when generating the s-th sentence. Impor- 269

tantly, for every image Ii we require bsi,k to be a 270

valid probability distribution, i.e., we also enforce 271∑K
k=1 b

s
i,k = 1 ∀s, i. 272

The object attention belief bsi,k is dependent on 273

all the input data, i.e., other objects and images. To 274

avoid complex computation, we factorize the belief 275

bsi,k into two pairwise dependencies that preserve 276

the order, and a local term. For the pairwise terms 277

we use µbwd
j→i, which is a message from a preced- 278

ing image Ij , or µfwd
j→i, which is a message from 279

a subsequent image Ij . We also use µi→i for self- 280

messages. Additionally, we include a local factor 281

Ψi(ri,k) that considers the object representation. 282

Unlike the messages mentioned before, the local 283

factor does not rely on interactions with other ob- 284

jects. We aggregate all the messages along with the 285

local factor as illustrated in Fig. 3. For normaliza- 286

tion we employ a softmax. 287

Formally we compute the attention belief bsi,k by 288
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distinguishing three cases. If i = s we have289

bsi,k ∝ exp(αsiΨi(ri,k) + αsi,iµi→i(ri,k) + (2)290 ∑
j<i

αsi,jµ
bwd
j→i(ri,k) +

∑
j>i

αsi,jµ
fwd
j→i(ri,k)).291

If i < s we use292

bsi,k ∝ exp(αsiΨi(ri,k) + (3)293

αsi,iµi→i(ri,k) + αsi,sµ
bwd
s→i(ri,k)).294

If i > s we obtain295

bsi,k ∝ exp(αsiΨi(ri,k) + (4)296

αsi,iµi→i(ri,k) + αsi,sµ
fwd
s→i(ri,k)).297

In all three cases αsi , α
s
i,i, α

s
i,j ∈ R are scalars used298

to calibrate the importance of different messages299

for a given sentence. These scalars form a depen-300

dency structure between images for each of the gen-301

erated sentence indices. Intuitively, when we gen-302

erate the first sentence, the attention belief might303

depend more on subsequent images, to correctly304

identify the story event, e.g., a wedding, a parade,305

etc. Thus, the scalars will promote interaction with306

later images. An analysis of these scalars is pro-307

vided in the appendix. Next, we define the different308

types of messages.309

3.1.2 Pairwise Messages and Factors310

A message aggregates interaction scores from an311

image to an object. The three messages µbwd
j→i, µ

fwd
j→i312

and µi→i(ri,k) are computed as follows:313

µbwd
j→i(ri,k) =

K∑
k′=1

Ψbwd(ri,k, rj,k′), (5)314

315

µfwd
j→i(ri,k) =

K∑
k′=1

Ψfwd(ri,k, rj,k′), and (6)316

317

µi→i(ri,k) =

K∑
k′=1

Ψi,i(ri,k, ri,k′). (7)318

Importantly, these messages collect three dif-319

ferent types of order-dependent interaction fac-320

tors: (1) A backward image interaction, namely321

Ψbwd(ri,k, rj,k′). This interaction models relations322

to the preceding j-th image in the sequence. (2) A323

forward image interaction, namely Ψfwd(ri,k, rj,k′).324

This interaction models relations to the subsequent325

j-th image in the sequence. (3) The self interaction326

factor, namely Ψi,i(ri,k, ri,k′), which takes into ac-327

count interactions between objects within the im-328

age. We formally define the different factors next.329

Interaction factors: A commonly used practice to 330

capture interactions across attention mechanisms is 331

to first embed the elements into a joint Euclidean 332

space followed by a dot-product (Vaswani et al., 333

2017; Schwartz et al., 2017; Gao et al., 2019; 334

Schwartz et al., 2019). While we follow the same 335

practice, we define three types of interaction fac- 336

tors to preserve the order. Consider two objects, 337

ri,k ∈ Ii from the sentence-corresponding image 338

and rj,k′ ∈ Ij from the interacting image. We de- 339

scribe three types of interactions: for interactions 340

with subsequent images (i.e., j > i) we use 341

Ψfwd(ri,k, rj,k′)=

(
Lfwdri,k
‖Lfwdri,k‖2

)>( Rfwdrj,k′

‖Rfwdrj,k′‖2

)
.

(8) 342

For interactions with preceding images (i.e., j < i) 343

we use 344

Ψbwd(ri,k, rj,k′)=

(
Lbwdri,k
‖Lbwdri,k‖2

)>( Rbwdrj,k′

‖Rbwdrj,k′‖2

)
.

(9) 345

For interactions within the image (i.e., j = i) we 346

have 347

Ψi,i(ri,k, ri,k′)=

(
Li,iri,k
‖Li,iri,k‖2

)>( Ri,iri,k′

‖Ri,iri,k′‖2

)
.

(10) 348

Note, Lfwd, Rfwd, Lbwd, Rbwd, Li,i, Ri,i ∈ Rd×d 349

are trainable shared weights across the entire im- 350

age sequence. Also, the object from the sentence- 351

corresponding image will always be on the left side 352

of the factor equation. Thus, the factor embeddings 353

preserve the order. 354

Local factor: Differently from the previous inter- 355

actions the following factor captures how important 356

an object is based solely on the object representa- 357

tion. Given an object ri,k ∈ Ii, we define the local 358

factor as, 359

Ψi(ri,k) = v>ReLU(V ri,k), (11) 360

where v ∈ Rd, V ∈ Rd×d are trainable weights. 361

3.2 Image-Sentence Attention (ISA) 362

In a next step we summarize the attended image 363

representations asi produced by OIA to compute 364

the context embedding cs for the sentence s that 365

we wish to generate. For this we use the Image- 366

Sentence Attention (ISA) unit. It picks the relevant 367

image context for generating the specific sentence. 368

Formally we obtain the context embedding via 369

cs =
N∑
i=1

b̂s,ia
s
i , (12) 370
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Method M B-1 B-2 B-3 B-4 R C Img Feat

AREL[31] 35.0 63.8 39.1 23.2 14.1 29.5 9.4 FC
KS[34] 35.2 66.4 39.2 23.1 12.8 29.9 12.1 FC
HSRL[12] 35.2 - - - 12.3 29.5 8.4 Spatial
StoryAnchor[38] 35.5 65.1 40.0 23.4 14.0 30.0 9.9 FC
SGVST[30] 35.8 65.1 40.1 23.8 14.7 29.9 9.8 F-RCNN
SGEmb[10] 35.6 62.2 38.7 . 23.5. 14.8 30.2 8.6 F-RCNN

Ours 36.8±0.1 68.4±0.7 42.7±0.3 25.2±0.2 15.3±0.2 30.2±0.1 10.1±0.2 F-RCNN

Table 1: Quantitative results on the VIST dataset for METEOR, BLEU-1. . .4, ROUGE-L and CIDEr. The primary metric
is METEOR. The ‘Img Feat’ column describes the pretrained image features. All models utilize a ResNet (He et al., 2015)
backbone except CS&T which employs an Inception v3 model (Szegedy et al., 2015). FC and Spatial refer to features extracted
from the penultimate layer and the preceding one accordingly. F-RCNN are bottom up features (Anderson et al., 2017).

where attention factors371

b̂s,i ∝ exp
(
α̂sΨ̂i(a

s
i ) + α̂s,sµ̂s→s(a

s
i )
)
, (13)372

and where α̂s, α̂s,s ∈ R are scalars. To avoid spu-373

rious correlations between sentences, we consider374

only self interactions and a local factor. This is375

illustrated in Fig. 4. The self-message of the at-376

tended image representation asi is377

µ̂s→s(a
s
i ) =

N∑
j=1

Ψ̂(asi , a
s
j). (14)378

Finally, the self and local factors are defined with379

a different set of weights following Eq. (10) and380

Eq. (11) respectively.381

3.3 Story Decoding382

The goal at each timestep of decoding is to com-383

pute the conditional probability p(ys,t|ys,t−1, cs)384

where ys,t ∈ Y is the t-th word in sentence ys, Y385

is the vocabulary and cs is the context embedding386

detailed in Sec. 3.2. For this we use a GRU recur-387

rent unit, tasked with generating probabilities over388

the vocabulary conditioned on the context embed-389

ding cs and the previously generated token ys,t−1:390

p(ys,t = w|ys,t−1, cs) ∝391

exp(βs,t · gw(ys,t−1, hs,t−1, cs)392

+(1− βs,t) · fw(φs,t)), (15)393

where gw is the output of a GRU unit for the394
word w. We set the GRU hidden dimension to395
d. hs,t−1 ∈ Rd is the hidden state at timestep396

t− 1 for sentence s. f : R|Y| → R|Y| is a learned397
prior over the vocabulary based on a bag-of-words398
prior histogram φs,t, which we describe in the399
next paragraph. The purpose of f is to reduce400
text repetitions. fw denotes the value of f for a401
word w. We also incorporate a calibration gate402

βs,t : Rd → [0, 1] for functions f and g using403

βs,t = σ
(
v>β tanh(Gghs,t +GfW1(φs,t))

)
. (16)404

Here, Gg ∈ Rd×d and Gf ∈ Rγ×d are trained pro- 405

jections of the GRU hidden state and the bottleneck 406

layer respectively, vβ ∈ Rd are learned weights 407

and σ is the sigmoid function. W1 is obtained from 408

the prior as discussed next. 409

Bag-of-words (BOW) prior: Remembering his- 410

tory during storytelling permits to stay on topic 411

and advance the story in the desired direction. Al- 412

though quite intuitive, mimicking this ability is not 413

trivial. E.g., most approaches for VST generate all 414

the sentences in parallel. Converting the parallel 415

sentence generation into a sequential one implies a 416

major computational overhead during training. 417

To address this, we propose a simple yet effec- 418

tive learnable framework that does not require se- 419

quential training while still exploiting information 420

found in prior sentences. The history is represented 421

via a bag-of-words histogram φs,t, which includes 422

all words that have been used until timestep t for 423

the s-th sentence. During training, we initialize 424

φs,t=0 with the ground truth history counts found 425

in the previous s − 1 sentences. We update the 426

statistics at each timestep with the predicted word 427

ys′,t for s′ < s, and produce the next state of the 428

counter φs,t+1. At inference we generate sentences 429

sequentially and update φs,t with the predicted 430

words. φs,t is fed through a shallow bottleneck 431

network to obtain the prior f , composed of two 432

layers W1 ∈ R|Y|×γ and W2 ∈ Rγ×|Y| without 433

activation, where γ is the bottleneck dimension: 434

f(φs,t) = W2(W1(φs,t)). (17) 435

Also note the use of W1(φs,t) in the gate (Eq. (16)). 436

Intra-repetition regularization: To regularize 437
intra-repetitions, we decay the probability of pre- 438
viously used words during sentence generation. A 439
critical aspect of this approach is to exclude words 440
that appear frequently in the language (e.g., was, 441
were, am). For this we pre-process the training set 442
to calculate the average story frequency ρ(w) of 443

a word w via ρ(w) = # appearances of word w
# stories w was used . The 444

final count for word w at timestep t is calculated 445

6



as φ′s,t(w) = max[0, (φs,t(w) − ρ(w) + 1)]. In-446

tuitively, a word will not be penalized before it is447
used more than the prior belief average ρ(w). The448
final probability for word w being used is given by449

p′(ys,t = w|ys,t−1, cs) =
p(ys,t = w|ys,t−1, cs)

π · φ′s,t(w) + 1
, (18)450

where π ≥ 0 is a constant hyper-parameter. A451

penalty of 2 proved to work best on the validation452

set.453

4 Results454

Dataset: To train and test the model we use the455

VIST dataset. All images were collected from456

Flickr albums. All images from a story were taken457

from the same album. Each image sequence has458

five reference stories. Approximately 2.5 of the459

stories are based on human annotations, while the460

rest are rewrites. The overall numbers are 40,098461

training stories, 4,988 validation stories, and 5,050462

test stories.463

Evaluation metrics: As suggested by the creators464

of VIST, METEOR correlates best with human465

judgement. We also report BLEU, ROUGE, and466

CIDEr and compare to prior work where available.467

The metrics are based on word correspondence468

with human references, which is unsuitable for469

measuring visual storytelling quantities such as470

coherence. For example, the ROUGE and CiDER471

scores are almost identical for all the recent years’472

baselines. While our experiments indicate statisti-473

cally significant improvements across all metrics,474

we emphasize that human evaluation are currently475

the most reliable way to evaluate visual storytelling476

approaches. We conducted those in Sec. 4.2.477

4.1 Quantitative analysis478

Comparison to state-of-the-art: In Tab. 1 we479

compare the method to recent baselines. Early480

methods did not take into account visual-spatial in-481

formation (i.e., they employed FC features), which482

harms the performance (e.g., 35.5% vs. 36.8% on483

METEOR). Wang et al. (2019) utilize image repre-484

sentations similar to our approach but do not con-485

sider relations between different images, resulting486

in a 1% drop on METEOR, showing that ordered487

structure encoding with OIA is beneficial. SGVST488

and StoryAnchor map images to distinct topics489

based on external knowledge. On the other hand,490

our approach is trained end-to-end. Furthermore,491

our image representations depend on all the im-492

ages in a sequence. In contrast, SGVST uses scene493

graphs. Such models are pre-trained with an ex-494

ternal model for generating scene graphs. Finally,495

Model M B-4 R C #Params

attention
w/o OIA 36.0 14.1 30.0 8.4 11M
w/o ISA 35.9 14.2 29.9 9.3 11M

w/o attention 35.8 13.6 29.7 7.2 11M
no-direction 36.1 14.5 28.9 8.4 12M

decoding
w/o rep. regularization 36.2 14.5 29.8 8.7 13M

w/o count norm 36.2 14.6 29.9 9.4 13M
w/o BOW prior 36.2 14.5 30.0 9.7 13M

Transformer 36.7 15.7 30.0 9.9 13M

Ours 36.8 15.3 30.2 10.1 13M

Table 2: Components ablation analysis.

Local Self Directional M B-4 R C

× X X 36.2 14.5 30.0 9.3
X × X 36.0 14.4 29.8 9.2
X X × 35.5 14.2 29.9 8.5

X X X 36.8 15.3 30.2 10.1

Table 3: Factor ablation analysis.

Yang et al. (2019) enhance the input with an exter- 496

nal commonsense dataset. CIDEr scores are signifi- 497

cantly higher, yet this improvement is not reflected 498

in all metrics. Our work improves the state-of-the- 499

art METEOR score from 35.8% to 36.8%. This 500

increase is larger than the 0.8 increase of all ad- 501

vances since the 2018 VIST challenge (i.e., 35.0% 502

vs. 35.8%). 503

Ablation study: In Tab. 2 we conduct an abla- 504

tion study for two novel components in our model: 505

1) Attention: In ‘w/o OIA,’ we replace the OIA 506

module (Sec. 3.1) with simple averaging of the K 507

object representations of image Ii, resulting in a 508

0.8% drop on METEOR. Similarly, in ‘w/o ISA,’ 509

we replace the ISA unit (Sec. 3.2) with averaging, 510

leading to a 0.9% drop on METEOR. In ‘w/o at- 511

tention,’ we removed both OIA and ISA, which 512

dropped the METEOR score to 35.8%. For the 513

method referred to as ‘no-direction,’ we use the 514

same factor for preceding and subsequent interac- 515

tion (i.e., Lbwd = Lfwd and Rbwd = Rfwd). Here, 516

METEOR results drop by 0.7%. Hence, ordered in- 517

teractions are beneficial. 2) We assess the decoding 518

components (Sec. 3.3). We first remove the intra- 519

repetition regularization (i.e., ρ(w)), which causes 520

METEOR score to drop by 0.6%. Removing the 521

popular words count (φ′s,t), results in a 0.4% drop 522

on METEOR. The METEOR score drops by 0.4% 523

when we remove the BOW prior. Last, we replace 524

the GRU decoding layer with a Transformer, which 525

did not change results a lot. 526

In Tab. 3 Further, we assess the necessity of dif- 527

ferent factors used in OIA. All factors contribute to 528

the model’s performance and the directional factors 529

(i.e., Ψfwd and Ψbwd) have the biggest impact. 530
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73.88%

22.52%

3.60%

Ours
AREL
Unsure

41.43%

48.57%

10.00%

Ours
GT
Unsure

(a) Human-like property comparison.

64.20%

28.70%

7.10%

70.24%

25.32%

4.44%

w/ Order
w/o Order
Unsure

w/ Order
AREL
Unsure

(b) Coherence property comparison.

Figure 5: Human evaluation to compare properties.

In Tab. 5, we show the ability to reduce repeti-531

tions. Text repetitiveness is measured by the rep-532

etition rate of non-singleton n-grams within each533

story. In our experiment, we use up to 4-grams.534

The use of intra-repetition regularization reduces535

text repetition (0.14 to 0.04). Combined with the536

trainable bag-of-words prior module, we further im-537

prove this measure (0.008 vs. 0.14). We also report538

sentence repetitiveness, i.e., the average number of539

repeated sentences in a story.540

4.2 Human Evaluation541

Due to the subjective nature of the VST task, a hu-542

man evaluation is required. We randomly selected543

150 image sequences from the test set and asked544

three MTurk annotators to rank them or assess them545

with other methods. We use the AREL as a baseline.546

Further, our method of generating coherent stories547

is tested using a slightly weaker variation of the548

method without directionality. Since the most re-549

cent baselines are not publicly available, we cannot550

compare them to recent approaches. We’ll share551

the selected sequences to aid future comparisons.552

In Fig. 5b, we assess stories coherency. To553

begin, we examine the importance of modeling554

direction-aware interactions. In our comparison,555

we changed only one aspect of our model. We used556

the same factor for preceding and subsequent inter-557

actions. We show that on VIST metrics the effect558

is relatively small (i.e., no-direction; see Tab. 2).559

However, the human-evaluation comparison shows560

a significant coherency improvement (64.2% vs.561

28.7%), which is not revealed with classical evalu-562

ation. Also, a comparison against the AREL base-563

line demonstrates a more significant improvement564

(70.24% vs. 25.32%).565

In Fig. 5a we provide the results when asking566

annotators to pick the most human-like story. We567

use the majority vote to decide the best model per568

story. The generated stories outperform the AREL569

Method Focused Coherent Share Human-like Grounded Detailed

AREL 3.49 3.18 3.18 3.26 3.32 3.15
Ours 3.67 3.52 3.20 3.56 3.54 3.32
GT 3.72 3.57 3.34 3.64 3.56 3.53

Table 4: Human evaluation results for rating survey (scores
are between 1-5).

Model Text Rep. Sent. Rep.

AREL (Wang et al., 2018) 0.16 0.4

BOG prior Intra-repetition reg.

No No 0.14 0.33
Yes No 0.10 0.18
No Yes 0.04 0.04
Yes Yes 0.008 0.0

Table 5: Story generation ablation analysis.

baseline (73.87% vs. 22.53%). Surprisingly, in 570

many cases, the annotators found the generated 571

stories to be more human-like than the ground truth 572

stories (41% vs. 48.57%). 573

To further evaluate the quality of the stories, we 574

follow the criteria set by the Visual Storytelling 575

Challenge1 and conduct a survey where judges are 576

asked to rate six categories between 1-5: 1. Fo- 577

cused: the story contains information that is “natu- 578

rally” relevant to the rest of the story; 2. Coherence: 579

the sentences in the story are related and consis- 580

tent; 3. Share: the inclination to share the story; 581

4. Human-like: the story was likely written by a 582

human; 5. Grounded: the story directly reflects 583

concrete entities in the image; and 6. Detailed: the 584

story provides an appropriate level of detail. To 585

obtain the final score, we average the annotators’ 586

scores per sample, followed by averaging across 587

the entire sample set. From Tab. 4 we observe: the 588

model improved on all the criteria compared to the 589

AREL model. Importantly, the generated stories 590

are comparable to the ground-truth stories, indicat- 591

ing success in reducing the shortcomings found in 592

prior methods. Nonetheless, the level of detail is 593

still lacking, supporting the observation of Holtz- 594

man et al. (2020) that current decoding strategies 595

tend to generate well-formed yet somewhat generic 596

text. 597

5 Conclusion 598

We present a novel approach for VST, which en- 599

courages coherency of generated story. We incor- 600

porate structure between images with a new atten- 601

tion method that selects the important objects in an 602

ordered image sequence. Human evaluation and 603

quantitative analysis demonstrate that the approach 604

outperforms existing methods. Further, we perform 605

ablation analysis to show effectiveness. 606

1http://visionandlanguage.net/
workshop2018
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In this supplementary material, we provide expla-747

nations for the image representations (see Sec. B),748

scalars analysis (see Sec. C), and additional quali-749

tative results (see Sec. D).750

A Training Setup751

We extracted the image features using a pre-trained752

F-RCNN model with a ResNet152 backbone (He753

et al., 2015; Ren et al., 2015; Anderson et al., 2017).754

We set the number of extracted objects K = 36.755

Bounding box coordinates were normalized be-756

tween 0 and 1. Words that appear less than 3 times757

in the training set are represented by an <UNK>758

token. The vocabulary size is 12,210 words. Word759

representations were initialized using GloVe em-760

beddings (Pennington et al., 2014). We set the de-761

cay parameter π = 2 and the image representation762

dimension d = 512. We set the dropout parameter763

to 0.3. We use cross-entropy loss to maximize like- 764

lihood of ground-truth stories. At decoding time we 765

employ a beam search algorithm, with beam width 766

set to 3. We use Adam (Kingma and Ba, 2014) 767

optimizer with a learning-rate of 0.0004, which is 768

decayed by a factor of 0.8 if the validation score 769

(METEOR) does not improve after 4 epochs. The 770

total amount of trainable parameters is 13,092,194. 771

Training converges after ∼20 epochs. Each epoch 772

needs 20 minutes on an Nvidia V100 GPU. 773

B Image Representation 774

An initial pre-processing step represents each of 775

the input images Ii via K regional features ri,k ∈ 776

Rd, 1 ≤ k ≤ K. For this we use bottom-up at- 777

tention features (Anderson et al., 2017). Specif- 778

ically, for each image Ii we first extract the top 779

K region features ei,k ∈ Rm. Hereby, ei,k is 780

an m-dimensional feature vector extracted from a 781

pre-trained image classification network (He et al., 782

2015) along with their respective bounding boxes 783

bi,k ∈ R4, and classes ci,k ∈ N. The final d- 784

dimensional representation ri,k ∈ Rd, of each re- 785

gion is defined by a combination of the extracted 786

semantic features. Formally, 787

ri,k = Wr[Weei,k +Wbbi,k + Ec(ci,k)], (19) 788

where Wr ∈ Rd×d, We ∈ Rd×m, Wb ∈ Rd×4, 789

and Ec are trainable parameters shared between all 790

images. We set K = 36 in our proposed model. 791

Biases and normalization are omitted for readabil- 792

ity. 793

C Factors Importance Analysis 794

In Fig. 6, we illustrate for each sentence, the value 795

of the importance calibration scalars (i.e., αsi and 796

αsi,s in Eq. 2,3, and 4). Intuitively, these values in- 797

dicate the importance of different image-to-image 798

messages. We focus our analysis on the sentence- 799

corresponding image (i.e., i = s in Sec. 3.1). We 800

observe that the self-message scalars (i.e., µi→i) of 801

the sentences in the middle of the sequence, i.e., 802

sentences (2,3, and 4), are low. This indicates that 803

the images in the middle of the sequence rely more 804

on the other images. The beginning and the end- 805

ing of the story depend more on the local factors. 806

Notably, the most substantial influence is given to 807

the following image (i.e., αii,i+1). This means that 808

while generating the current sentence, the OIA de- 809

cision is based mostly on the next image. This is 810

intuitive as it helps to advance the narrative in a 811

desired direction. 812
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bottom one to the last sentence (i.e., s = 5)
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Ground 
Truth

The clouds compliment the mountain peak. They find a lovely forested mountain with a 
lake. The misty clouds roll in and obscure the scene. The height of the mountains can be 

seen by the snow covering them. On the road again moving towards another place.

Ours
We went to the mountains for a hike. The view of the lake was amazing. The scenery 

was breathtaking. We saw some old buildings. The view of the mountain was 
spectacular.

Figure 7: Illustration of OIA and ISA attention maps, the
ground-truth story and the final generated story. Each row

corresponds to a story sentence and shows objects OIA
highlights. The attended images’ border specifies the

relevancy to sentence generation, from red (important) to blue
(not important).

AREL The kids had a great time at the pool. The little boy was excited to see the kids. We had a 
great time at the park. We had a great time at the pool. We had a great time at the park.

No 
History

The kids had a great time at the beach. The baby was happy to see the baby. We had a great 
time at the park. The had a great time at the pool. We had a great time at the park.

With 
History

The family went to the pool. The baby was very happy. The kids had a great time. The kids 
played in the pool. The little girl is having a good time.

Figure 8: An illustration of an image sequence along with
three different stories generated by: (1) AREL baseline (Wang
et al., 2018), (2) No History: a model without intra-repetition
regularization and BOW prior (see Sec. 3.3); and (3) With
History: the final model. Repeated sentences are highlighted
with a yellow colored marker. Repeated words in a sentence
are emphasized in red color.

D Qualitative Results813

In Fig. 7 we illustrate the attention maps along814

with the generated story. The first sentence, “We815

went to the mountains,” sets the theme for the story,816

which requires the processing of subsequent im-817

ages. Notably, the ISA module picked the subse-818

quent images. In contrast, for the second sentence,819

the attention focuses mainly on the second image820

resulting in a description of the lake observed ex-821

clusively in this image. The third sentence relates822

to the scenery. Hence the attention focuses on pre-823

ceding and subsequent images.824

In Fig. 8, we show the ability of the method in re-825

ducing repetitions. We observe the AREL baseline826

to repeat the same sentences, for example, “...had a827

great time at...”. We also observe this repetitiveness828

when we remove the bag-of-words prior and the 829

intra-sentence regularization (i.e., No History col- 830

umn). Nevertheless, the method remains on topic, 831

i.e., family in the pool. 832

In Fig. 9-12, we show samples used for hu- 833

man evaluation (see Sec. 4.3 of the main paper). 834

We present two sequences for the coherence and 835

human-like categories, where judges preferred our 836

generated stories, and another two, where the 837

judges chose the human formulated story. 838

In Fig. 13, we illustrate the attention output of 839

the OIA and the ISA modules and show two sto- 840

ries. The first story is generated using OIA with 841

direction-based factors. The other story is gener- 842

ated using the same interaction factors for both past 843

and future interactions. In the first sequence, our 844

direction-based model infers the topic of the story, 845

i.e., “hiking in the woods” and sets the theme in 846

the first sentence by mentioning the word ‘hike.’ 847

In contrast, our model without direction mentions 848

park but misses the hiking topic. 849

In Fig. 14, we show two failure cases. The first 850

story is incoherent, e.g., the gender switches be- 851

tween male and female. In the second story, the 852

model reduces word repetition by using synonyms. 853

E.g., the sentences, “I had a great time,” “I was a 854

lot of fun” and “... having a good time” have the 855

same meaning. 856
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Ours: The girl was having a great time at the party. We had a lot of fun. We were so happy to see each other. The
table was set for the reception. It was a great day.

GT: I went to the wedding last weekend. The tables were beautiful. I had a great time there. The entire family
was there. It was so much fun.

Ours: Today was the day of the wedding. The bride and groom were ready to be married. The cake was amazing. The
bride and groom pose for a picture. The ceremony was beautiful.

GT: Soon to be husband waiting on his bride. Here comes the newlyweds. Very plain birthday cake , looks
delicious. Great photo of the wedding people. They bride is happy.

Figure 9: Sample of a sequence where the coherence-score of our story was rated higher than the human story. Note: the
coherence-score assesses whether the sentences in the story are related and consistent.

Ours: Today was the day of the organization. There were a lot of people there. The crowd was
ready to start. This is a picture of the game. The cheerleaders had a great time.

GT: The women 's basketball game was today. The team members were seen on the campus before
the game. Everyone got into their uniforms to play. After the game two of the players were seen

shaking hands. The team ended up winning the game.

Ours: It was a cold day. This is a picture of a sign. This is a picture of the building.
After the night , we decided to go to the bar. I had a great time at the location.

GT: A group of friends decided to take a road trip through location location. They stopped in
a town called location. It was n't very lively out , despite being friday night. They walked around

looking for a place to eat. They finally found an open cafe and had some mexican-american grub.

Figure 10: Sample of a sequence where the coherence-score of ground truth story was rated higher than the our story. Note: the
coherence-score assesses whether the sentences in the story are related and consistent.
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Ours: The cake was decorated for the wedding. It was a great day to celebrate. The bride and
groom were very happy. There was a piece of art. The bride had a great time.

GT: I love my beautiful wedding cake. Napkins with our wedding date on them. Everyone
standing waiting on me to come down the aisle. I love the cross ! here i am with my sister

Ours: We went to the city to see the old buildings. The streets were beautiful. There was a
lot of people in the market. There was a lot of food there. There is a variety of fresh vegetables.

GT: I love the architecture of the old city the streets are narrow and everyone drive small
cars local food is very good and very inexpensive all organic fruit and vegetables fruit and

vegetables were cheap and delicious
Figure 11: Sample of a sequence where the human-like-score of our story was rated higher than the human story. Note: the
human-like-score assesses whether a human likely wrote the story.

Ours: The mountains were beautiful. The view from the lake was amazing. The view of the city
was spectacular. The buildings were very tall. The mountains are breathtaking.

GT: So this is where all the beautiful landscape screenshots come from ! is this a place to
live forever , or what ? oh , my gosh , just build me a tiny house and i 'm all here ! and castles -

they have castles , too ! what an impressive mountain !

Ours: The house was covered in snow. The mountains were amazing. The mountain was beautiful.
The trees were covered in snow. We took a picture of a bridge.

GT: We recently headed up to my family 's vacation house in the mountains. In our backyard
there is this beautiful mountain. We often go for walks on the various trails around the house. We

often see a lot of animals and all of their tracks on the trails. At the end of the trail in this
beautiful bridge that goes over a frozen river.

Figure 12: Sample of a sequence where the human-like-score of ground truth story was rated higher than the our story. Note: the
human-like-score assesses whether a human likely wrote the story.
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No Direction: We went to the park. There were a lot of people in the
woods. We took a picture of the trees. We saw some interesting things to see. It

was a great day.

With Direction: We went to the park for a hike. We took a walk through
the woods. We had to take a picture of the trees. There were many interesting

statues in the woods. The view from the top was beautiful.

GT: There was a big sign that the guy passed. The girl also saw it near the big rocks before they took a photo.
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No Direction: The bride and groom were ready for the wedding. The flower
was beautiful. The bride and groom are having a great time. The couple of

friends had a good time. The family was happy to be married.

With Direction: The wedding party was beautiful. There were a lot of
beautiful flowers. The party was a lot of fun. This man and his friend are

having a good time. After the ceremony , we all got togethter for a picture.

GT: The wedding last week was beautiful. I brought a lot of flowers for the bride and groom. All of the friends
and family were there to show their support. I took a ton of pictures while i was there. Everyone was dressed up very

nicely.

Figure 13: Additional qualitative results. Each story is displayed along with 5 images with the attention maps generated by OIA
for each sentence. Additionally, the border of each image indicates the attention score of each image in the image-sentence
attention (ISA) module. Our model with and without order and ground-truth stories are also provided.
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Figure 14: Illustration of failure cases.
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