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Abstract

We address the problem of visual storytelling,
i.e., generating a story for a given sequence
of images. While each story sentence should
describe a corresponding image, a coherent
story also needs to be consistent and relate
to both future and past images. Current ap-
proaches encode images independently, disre-
garding relations between images. Our ap-
proach learns to encode images with differ-
ent interactions based on the story position
(i.e., past image or future image). To this
end, we develop a novel message-passing-like
algorithm for ordered image attention (OIA)
that collects interactions across all the im-
ages in the sequence. Finally, to generate the
story’s sentences, a second attention mecha-
nism picks the important image attention vec-
tors with an Image-Sentence Attention (ISA).
The obtained results improve the METEOR
score on the VIST dataset by 1%. Further-
more, a thorough human study confirms im-
provements and demonstrates that order-based
Interactions significantly improve coherency
(64.20% vs. 28.70%).

1 Introduction

Visual Storytelling (VST) (Park and Kim, 2015;
Huang et al., 2016) — the task of generating a story
based on a sequence of images — goes beyond a
basic understanding of visual scenes and can be
applied in many real-world scenarios, e.g., to sup-
port the visually impaired. Moreover, VST reflects
on the creative ability of intelligent systems. Al-
though similar in concept to other cognitive tasks
such as image captioning and visual question an-
swering, VST differs as it requires to reason over a
sequence of images while simultaneously ensuring
coherence across multiple generated sentences. To
achieve this, VST methods need to address two
major challenges: the first is visual and relates to
grounding the story’s text to the images. The sec-
ond is linguistic and relates to the quality of the
story. Both challenges can be described in terms of

coherency: the story should be coherent by itself,
and coherent with the images.

Prior research on VST started to address the
aforementioned challenges. Early works expand
captioning (Vinyals et al., 2014; Xu et al., 2015;
Chen and Zitnick, 2015), focusing sentence gener-
ation mainly on the current image. This limits the
ability to incorporate complex semantic informa-
tion, which is necessary for visual reasoning. Prior
work also makes limited use of temporal depen-
dence and history, e.g., sentences that have already
been generated are not used. Consequently, the
output lacks narrative consistency and is prone to
linguistic errors such as repetitiveness and incoher-
ence (Modi and Parde, 2019). To mitigate these
issues, later works strive to generate more meaning-
ful stories via adversarial and reinforcement learn-
ing (Wang et al., 2018; Huang et al., 2018), which
remain delicate to train.

Importantly, images are not independent. For
example, if the first image in a sequence shows a
protest, the model may want to focus on signs in
later images. Conversely, if the last image shows
a ring on a finger, then the model should pay at-
tention to wedding-related objects and activities in
the preceding images. This is important for VST
because sentences are created per image but are
part of a story. Hence, objects that the model is
focusing on in one image should be conditioned on
the selection in other images.

To do this we develop a novel model which (1)
implicitly reasons over objects, activities, and their
temporal dependencies in each image; and which
(2) improves the coherency of the narrative. To rea-
son over objects and activities in each image, i.e.,
to understand their dependencies and their tempo-
ral ordering, we introduce ordered image attention
(OIA). As illustrated in Fig. 1, for each image, OIA
accumulates representation information from ob-
jects detected within the corresponding image into
an attended image representation. Importantly, ac-
cumulation factors depend on whether the image
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Figure 1: We propose Ordered Image Attention (OIA) to encourage coherency. In each row, we show the spatial attention
maps. On the graph on the left, each colored edge indicates how an object is involved in a specific interaction. A yellow edge
indicates a preceding interaction and a blue edge indicates a subsequent interaction. By collecting directional interactions, we
can identify significant objects throughout the story. In total, five attention maps are calculated, one for each image. The border
of attended images indicates how important an image is according to the Image-Sentence Attention (ISA). E.g., red indicates a
high attention score, meaning the image is essential for generating that sentence. Our model performs this step for all five images
simultaneously, creating 25 attention maps that are fed into the decoder to create the sentences sequentially.

precedes or succeeds the image for which we are
currently generating the sentence, which permits to
establish an order. The attended image representa-
tions are subsequently summarized into a context
embedding via an Image-Sentence Attention (ISA)
unit, before being used for sentence decoding.

In addition, to alleviate common linguistic mis-
takes like repetitiveness and to promote coherence
in the story, we incorporate information from the
story generated up to the current sentence into the
sentence generation decoder. Specifically, the de-
coding strategy decays the probability of a word if
it has already been used in the story. The decoder
also maintains a separate prior over the output prob-
ability distribution, independent from the language
generation unit. This prior is based on counts of the
words that were already predicted in the story. Both
the prior, and the Recurrent Neural Net (RNN) de-
coder output are combined to predict the next word
in the sentence.

Empirical results on the challenging VIST
dataset demonstrate that the proposed method gen-
erates stories with an improved narrative quality.
The method outperforms prior state-of-the-art by
1% on the METEOR score. Examples of stories
generated by the approach are shown in Fig. 1. We
also present a user study demonstrating the advan-
tage of the model in terms of coherency (64.20%
vs. 28.70%).

2 Related Work

Vision+Language has been an active area of re-
search for many years, addressing tasks such as

image/video captioning, paragraph generation, and
visual question answering. We briefly review those
related areas in the following.

2.1 Visual Storytelling

Huang et al. (2016) introduce the visual story-
telling task. Visual storytelling is similar to caption-
ing. Thus, early methods adapted captioning mech-
anisms, introducing context between story sen-
tences (Gonzalez-Rico and Pineda, 2018). Follow-
ing, Kim et al. (2018b) used a seq2seq (Sutskever
et al., 2014) approach built on a decoding sampling
strategy to reduce repetition. Here, we use a dy-
namic data-driven approach where each word is
penalized differently based on its average count.
Next, Wang et al. (2018) discuss the difficulty of
learning stories with imaginary details that do not
appear in the imagery. To that end, an adversarial
reward system is used to improve the output sto-
ries. Several works use a reinforcement learning
approach based on the interrelationships between
images (Huang et al., 2018). Recently, state-of-
the-art results were obtained by generating scene
graphs for each image in the sequence (Wang et al.,
2019). Following, Li et al. (2019) and Zhang et al.
(2020) rely on preprocessing to ground visual ele-
ments. Yang et al. (2019) and Hsu et al. (2020) en-
rich the data with an external word common-sense
knowledge graph.Wang et al. (2019) model rela-
tions within the image with scene graphs, which
requires expensive annotations. Hong et al. (2020)
also uses scene graphs with global embeddings to
achieve coherence. In contrast, we model ordered
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Figure 2: Our architecture for Visual Storytelling synthesis.

interaction for coherence. A recent study by Yu
et al. (2021) employed large-scale pre-trained mod-
els for visual storytelling using auxiliary adaptation
loss. Our research aims to establish a novel visual
storytelling model that models ordered interactions
without external knowledge.

Recently, Yu et al. (2021) employ large pre-
trained models to visual storytelling via auxiliary
adaptation loss. Our research focuses on creating a
novel visual storytelling model instead of training
strategies, loss functions, and pre-trained models.
Encoding ordered images improves the coherence
between sentences, one of the main challenges of
visual storytelling.

2.2 Image Captioning

Barnard et al. (2003) first explored annotating im-
ages with text. Since then, image/video captioning
has seen a surge of research activity. Initial work
utilized pre-trained image embeddings from a CNN
network. The success of attention mechanisms for
language translation quickly transferred to image
captioning as well (Xu et al., 2015). Later work
leveraged advances in object detection and pro-
posed a bottom-up/top-down attention approach to
attend to specific objects in the image instead of
fixed spatial regions (Anderson et al., 2017). Differ-
ent from image captioning, for visual storytelling,
both story coherency and visual grounding are im-
portant.

2.3

Multimodal problems are characterized by input
data that comes from different domains, e.g., vi-
sual and linguistic. This raises two challenges: 1)
how to model interactions between different do-
mains, and 2) how to manage the large input data.

Multimodal Attention

Considering those challenges, attention has been
a prominent tool as it models interactions to se-
lect the important elements. In early work, Xu et al.
(2015) used interaction-based attention with the im-
age at each caption generation step. This idea was
later extended to visual question answering (Xu
and Saenko, 2016). To imitate multi-step reason-
ing, Yang et al. (2015) stacked attention modules
sequentially. Later, many works concentrated on
better vector-fusion modeling (Fukui et al., 2016;
Kim et al., 2017; Ben-Younes et al., 2017; Yu et al.,
2018). Importantly, Lu et al. (2016) suggested
attending to the visual and textual modalities sep-
arately. Afterward, Kim et al. (2018a) proposed a
bilinear module that efficiently generates attention
for every pair. Following Lu et al. (2016), Schwartz
et al. (2017, 2019) suggested a general framework
that extends attention to any number of utilities via
local and interaction-based factors. We improve
upon those ideas by suggesting an ordered attention.
This ensures that interaction modeling is affected
by the image position in a sequence.

3 Method

The goal of visual storytelling is to generate a
story, composed of N ordered sentences {y;|1 <
s < N}, given an ordered sequence of images
I = {I4]1 < s < N}. Each sentence ys =
(Ys,05 - - - Yst, - - - ) is composed of words y ¢+ € Y
from vocabulary ).

The order in which the images are given is essen-
tial as it defines the plot line of the story. The story
should be focused, i.e., each sentence should be
related to the remainder of the story. Importantly,
the sentences should form a coherent body of text
describing the set of images, and not only a set of
related information. For instance, the story “The
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Figure 3: Illustration of Ordered Image Attention. Each node
represents an image attention belief. For each sentence, we
connect all the images with the sentence-corresponding image.
The relative position to this image determines whether the
connection is modeled with the Wy,q factor (for preceding
images) or the Wy,q factor (for subsequent images; see Egs. [8-
10]). We infer the attention belief by collecting interactions
and local object information within the image see Eqgs. [2-4]).
We use scalars to calibrate the importance of each factor. In
total, we generate 25 attention maps, one per image for every
sentence.

church was beautiful. The bride and groom walk
down the aisle. The cake was amazing.” 1is less
coherent than: “We went to the church for the wed-
ding today. The bride and groom were excited for
the day. Both cut the cake together” Overview:
To address this challenge, we develop the model
illustrated in Fig. 2. It infers conditional probabili-
ties p'(Ys,t|ys,1—1, ¢s) for the ¢t-th word ys; € ) in
sentence ¥, given the previous word y ;1 and the
context embedding c; for sentence s. The context
embedding c; summarizes region representations
r; 1 of all K object regions across all IV images I;
(z € [1, N], k € [1, K]) via Ordered Image Atten-
tion (OIA) (Sec. 3.1) and Image-Sentence Atten-
tion (ISA) (Sec. 3.2). Specifically, when generating
sentence s, OIA computes an attended image rep-
resentation a; for every image I; by attending to
the K region representations 7; j, (Sec. 3.1). These
attended image representations a; are subsequently
summarized into the context embedding c, via an
image-sentence attention (Sec. 3.2).

Below we first discuss computation of the at-
tended image representation a; (Sec. 3.1), before
detailing computation of the context embedding
¢s (Sec. 3.2) and computation of the conditional
probabilities p’(ys.+|yst—1, ¢s) (Sec. 3.3).

Ordered Image Attention (OIA) is designed to
1) form a structure across ordered images and to
2) select the relevant objects per image. For this
we model preceding and subsequent interactions
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Figure 4: Illustration of ISA. The attention selects the attended
image representation per sentence. We model interactions be-
tween attended images of the same sentence to compute each
image’s importance. Note, each node represents a sentence
attention belief over the attended images.

separately using different attention factors. We
calibrate each factor’s importance with trainable
scalars, which forms a graph of dependencies be-
tween the images. For each sequence of N images,
the model infers a total of N2 attention maps, one
per image for each sentence. We detail this module
next.

3.1 Ordered Image Attention (OIA)
3.1.1 Attention Belief

For each image I; = {r;1,...7; x } we consider a
set of K regions, represented by their feature vec-
tors 7; . € R?, where d is the objects’ embedding
dimension. Suppose we are currently generating
sentence ys (1 < s < N). To do this we first
compute an attended image representation a; as
follows

K
ai = biriks 1)
k=1

where b;k > 0 is the attention belief highlight-
ing the importance of the k-th object in the i-th
image when generating the s-th sentence. Impor-
tantly, for every image I; we require b; ; tobea
valid probability distribution, i.e., we also enforce
S b, =1Vs, i,

1,

The object attention belief b7, is dependent on
all the input data, i.e., other objects and images. To
avoid complex computation, we factorize the belief
b; ;. into two pairwise dependencies that preserve
the order, and a local term. For the pairwise terms

we use ,u?ﬁdi, which is a message from a preced-

ing image [;, or Mg“fi, which is a message from
a subsequent image ;. We also use p;,; for self-
messages. Additionally, we include a local factor
WU, (r; 1) that considers the object representation.
Unlike the messages mentioned before, the local
factor does not rely on interactions with other ob-
jects. We aggregate all the messages along with the
local factor as illustrated in Fig. 3. For normaliza-
tion we employ a softmax.

Formally we compute the attention belief b; , by



distinguishing three cases. If ¢ = s we have

bl o< exp(afVWi(rik) + i pisi(rip) +  (2)
Z O‘%J“l;zdz (rije) + Z %JM?SZ (Tik))-
j<i j>i
Ifi < s we use
bir o< exp(agWi(rix) + (3)
o ittiosi (i) + @ 1355 (ri k).
If i > s we obtain
bip o< exp(afWi(rik) + )

ai,z‘#im(ri,k) + af,sﬂg‘fi(ri,k»

In all three cases o}, o7 ;, o ; € R are scalars used
to calibrate the importance of different messages
for a given sentence. These scalars form a depen-
dency structure between images for each of the gen-
erated sentence indices. Intuitively, when we gen-
erate the first sentence, the attention belief might
depend more on subsequent images, to correctly
identify the story event, e.g., a wedding, a parade,
etc. Thus, the scalars will promote interaction with
later images. An analysis of these scalars is pro-
vided in the appendix. Next, we define the different
types of messages.

3.1.2 Pairwise Messages and Factors

A message aggregates interaction scores from an

image to an object. The three messages ,u?ﬁdw ,ug‘gll
and f1;—;(r; 1) are computed as follows:
K
bwd ¢

1525 (i k) Z Uowd(Tiks k), (5)

k'=1

fwd (
/’LJW—)’L Ty k Z \I/fwd Tik> T3, k), and  (6)
k'=1

MZ—M Ti, k Z \I’l i Tz ky T, k’) (7)

k=1

Importantly, these messages collect three dif-
ferent types of order-dependent interaction fac-
tors: (1) A backward image interaction, namely
Whwd (75 rj’k/). This interaction models relations
to the preceding j-th image in the sequence. (2) A
forward image interaction, namely Wewa (7 &, 75,1 )-
This interaction models relations to the subsequent
j-th image in the sequence. (3) The self interaction
factor, namely U, ;(7; 1, 75 5 ), Which takes into ac-
count interactions between objects within the im-
age. We formally define the different factors next.

Interaction factors: A commonly used practice to
capture interactions across attention mechanisms is
to first embed the elements into a joint Euclidean
space followed by a dot-product (Vaswani et al.,
2017; Schwartz et al., 2017; Gao et al., 2019;
Schwartz et al., 2019). While we follow the same
practice, we define three types of interaction fac-
tors to preserve the order. Consider two objects,
r;k € I; from the sentence-corresponding image
and 7 € I; from the interacting image. We de-
scribe three types of interactions: for interactions
with subsequent images (i.e., j > i) we use

Lwar; k ) < Riwar; i )
| Liwdari k|2 | Rrwarjpll2/)
)

Uiwd (i ks T k) = (

For interactions with preceding images (i.e., j < 1)
we use

wadri k lzbde k!
I ]7
@bwd(’ ik T j,k’) - (

Hwade‘,kHz) (’wadrjvk/”?
&)

For interactions within the image (i.e., j = i) we
have

-
U, (s s i) = < Li ik ) < R iripy > ‘
R | Liimi k|2 | Riiri pr |2

(10
Note, Lfwd; Rewds Lowd, Rowd, Lii, Rii € RI*4
are trainable shared weights across the entire im-
age sequence. Also, the object from the sentence-
corresponding image will always be on the left side
of the factor equation. Thus, the factor embeddings
preserve the order.
Local factor: Differently from the previous inter-
actions the following factor captures how important
an object is based solely on the object representa-
tion. Given an object r; ;. € I;, we define the local
factor as,

Wi(rip) = v ReLU(Vryp), (11)

where v € RY, V' € R%*4 are trainable weights.

3.2 Image-Sentence Attention (ISA)

In a next step we summarize the attended image
representations a; produced by OIA to compute
the context embedding c; for the sentence s that
we wish to generate. For this we use the Image-
Sentence Attention (ISA) unit. It picks the relevant
image context for generating the specific sentence.
Formally we obtain the context embedding via

N

§ : 7 s
== bs,iaiv

=1

(12)



Method M B-1 B-2 B-3 B-4 R C Img Feat
AREL[31] 35.0 63.8 39.1 232 14.1 29.5 94 FC
KS[34] 352 66.4 39.2 23.1 12.8 29.9 12.1 FC
HSRL[12] 352 - - - 12.3 29.5 8.4 Spatial
StoryAnchor[38] 355 65.1 40.0 234 14.0 30.0 9.9 FC
SGVST[30] 35.8 65.1 40.1 23.8 14.7 29.9 9.8 F-RCNN
SGEmb[10] 35.6 62.2 38.7 .23.5. 14.8 30.2 8.6 F-RCNN
Ours 36.8+0.1 68.4+0.7 42.7+0.3 25.2+02 153+0.2 30.2+0.1 10.1£0.2 F-RCNN

Table 1: Quantitative results on the VIST dataset for METEOR, BLEU-1.. .4, ROUGE-L and CIDEr. The primary metric
is METEOR. The ‘Img Feat’ column describes the pretrained image features. All models utilize a ResNet (He et al., 2015)
backbone except CS&T which employs an Inception v3 model (Szegedy et al., 2015). FC and Spatial refer to features extracted
from the penultimate layer and the preceding one accordingly. F-RCNN are bottom up features (Anderson et al., 2017).

where attention factors

~

b o exp (65 0i(a7) + s oftess (@), (13)

and where &, &5 s € R are scalars. To avoid spu-
rious correlations between sentences, we consider
only self interactions and a local factor. This is
illustrated in Fig. 4. The self-message of the at-
tended image representation a; is

N
fisss(af) = ) W(af, a3).
j=1

(14)

Finally, the self and local factors are defined with
a different set of weights following Eq. (10) and
Eq. (11) respectively.

3.3 Story Decoding

The goal at each timestep of decoding is to com-
pute the conditional probability p(ys¢|ys¢—1,¢s)
where y,; € )Y is the t-th word in sentence y,, Y
is the vocabulary and c; is the context embedding
detailed in Sec. 3.2. For this we use a GRU recur-
rent unit, tasked with generating probabilities over
the vocabulary conditioned on the context embed-
ding ¢, and the previously generated token y;—1:

p(ys,t = w’ys,t—hcs) X

eXp(Bs,t * GJu (ys,t—la hs,t—ly Cs)
+(1 - /Bs,t) : fw(¢s,t>)a

where g, is the output of a GRU unit for the
word w. We set the GRU hidden dimension to
d. hsi—1 € R? is the hidden state at timestep
t — 1 for sentence s. f : RVl — RIYl is a learned
prior over the vocabulary based on a bag-of-words
prior histogram ¢, which we describe in the
next paragraph. The purpose of f is to reduce
text repetitions. f,, denotes the value of f for a
word w. We also incorporate a calibration gate

Bst : RY — [0, 1] for functions f and g using

15)

Bst =0 (v; tanh(Gghs, + GWi(dsy))) . (16)

Here, G, € R**? and G 7€ RY*4 are trained pro-
jections of the GRU hidden state and the bottleneck
layer respectively, vg € RY are learned weights
and o is the sigmoid function. W7 is obtained from
the prior as discussed next.

Bag-of-words (BOW) prior: Remembering his-
tory during storytelling permits to stay on topic
and advance the story in the desired direction. Al-
though quite intuitive, mimicking this ability is not
trivial. E.g., most approaches for VST generate all
the sentences in parallel. Converting the parallel
sentence generation into a sequential one implies a
major computational overhead during training.

To address this, we propose a simple yet effec-
tive learnable framework that does not require se-
quential training while still exploiting information
found in prior sentences. The history is represented
via a bag-of-words histogram ¢ ¢, which includes
all words that have been used until timestep ¢ for
the s-th sentence. During training, we initialize
¢s.t—0 with the ground truth history counts found
in the previous s — 1 sentences. We update the
statistics at each timestep with the predicted word
ys ¢ for s’ < s, and produce the next state of the
counter ¢ ;1. At inference we generate sentences
sequentially and update ¢, with the predicted
words. ¢ is fed through a shallow bottleneck
network to obtain the prior f, composed of two
layers W, € RPYI*7 and Wy e RY*IY! without
activation, where ~ is the bottleneck dimension:

f(d)s,t) = WZ(WI (¢s,t))' (17)
Also note the use of W1 (¢ ) in the gate (Eq. (16)).

Intra-repetition regularization: To regularize
intra-repetitions, we decay the probability of pre-
viously used words during sentence generation. A
critical aspect of this approach is to exclude words
that appear frequently in the language (e.g., was,
were, am). For this we pre-process the training set
to calculate the average story frequency p(w) of

. __ ## appearances of word w
a word w via p(w) T # stories w was used ° The

final count for word w at timestep ¢ is calculated




as ¢y (w) = max[0, (¢s,1(w) — p(w) + 1)]. In-
tuitively, a word will not be penalized before it is
used more than the prior belief average p(w). The
final probability for word w being used is given by

Plyee ZWlei 1.9 gy
T dg 4 (w) +1

where m > 0 is a constant hyper-parameter. A
penalty of 2 proved to work best on the validation
set.

4 Results

Dataset: To train and test the model we use the
VIST dataset. All images were collected from
Flickr albums. All images from a story were taken
from the same album. Each image sequence has
five reference stories. Approximately 2.5 of the
stories are based on human annotations, while the
rest are rewrites. The overall numbers are 40,098
training stories, 4,988 validation stories, and 5,050
test stories.

Evaluation metrics: As suggested by the creators
of VIST, METEOR correlates best with human
judgement. We also report BLEU, ROUGE, and
CIDEr and compare to prior work where available.
The metrics are based on word correspondence
with human references, which is unsuitable for
measuring visual storytelling quantities such as
coherence. For example, the ROUGE and CiDER
scores are almost identical for all the recent years’
baselines. While our experiments indicate statisti-
cally significant improvements across all metrics,
we emphasize that human evaluation are currently
the most reliable way to evaluate visual storytelling
approaches. We conducted those in Sec. 4.2.

P (yst = wlys,t—1,¢s) =

4.1 Quantitative analysis

Comparison to state-of-the-art: In Tab. 1 we
compare the method to recent baselines. Early
methods did not take into account visual-spatial in-
formation (i.e., they employed FC features), which
harms the performance (e.g., 35.5% vs. 36.8% on
METEOR). Wang et al. (2019) utilize image repre-
sentations similar to our approach but do not con-
sider relations between different images, resulting
in a 1% drop on METEOR, showing that ordered
structure encoding with OIA is beneficial. SGVST
and StoryAnchor map images to distinct topics
based on external knowledge. On the other hand,
our approach is trained end-to-end. Furthermore,
our image representations depend on all the im-
ages in a sequence. In contrast, SGVST uses scene
graphs. Such models are pre-trained with an ex-
ternal model for generating scene graphs. Finally,

Model M B4 R C  #Params

attention

w/o OIA 36.0 14.1 300 84 11M

w/o ISA 359 142 299 93 11M

w/o attention 358 136 297 172 11M

no-direction 36.1 145 289 84 12M
decoding

w/o rep. regularization 36.2 14.5 29.8 8.7 13M

w/o count norm 362 146 299 94 13M

w/o BOW prior 362 145 300 9.7 13M

Transformer 36.7 15.7 300 9.9 13M

Ours 36.8 153 30.2 10.1 13M

Table 2: Components ablation analysis.

Local Self Directional M B-4 R C
X v v 36.2 145 300 9.3
v X v 360 144 298 9.2
v v X 355 142 299 8.5
v v v 36.8 153 30.2 10.1

Table 3: Factor ablation analysis.

Yang et al. (2019) enhance the input with an exter-
nal commonsense dataset. CIDEr scores are signifi-
cantly higher, yet this improvement is not reflected
in all metrics. Our work improves the state-of-the-
art METEOR score from 35.8% to 36.8%. This
increase is larger than the 0.8 increase of all ad-
vances since the 2018 VIST challenge (i.e., 35.0%
vs. 35.8%).

Ablation study: In Tab. 2 we conduct an abla-
tion study for two novel components in our model:
1) Attention: In ‘w/o OIA, we replace the OIA
module (Sec. 3.1) with simple averaging of the K
object representations of image I;, resulting in a
0.8% drop on METEOR. Similarly, in ‘w/o ISA;
we replace the ISA unit (Sec. 3.2) with averaging,
leading to a 0.9% drop on METEOR. In ‘w/o at-
tention,” we removed both OIA and ISA, which
dropped the METEOR score to 35.8%. For the
method referred to as ‘no-direction,” we use the
same factor for preceding and subsequent interac-
tion (i.e., Lywd = Lfwq and Rpwqg = Rgwd). Here,
METEOR results drop by 0.7%. Hence, ordered in-
teractions are beneficial. 2) We assess the decoding
components (Sec. 3.3). We first remove the intra-
repetition regularization (i.e., p(w)), which causes
METEOR score to drop by 0.6%. Removing the
popular words count (¢;,t)’ results in a 0.4% drop
on METEOR. The METEOR score drops by 0.4%
when we remove the BOW prior. Last, we replace
the GRU decoding layer with a Transformer, which
did not change results a lot.

In Tab. 3 Further, we assess the necessity of dif-
ferent factors used in OIA. All factors contribute to
the model’s performance and the directional factors
(i.e., Wswa and Wyyg) have the biggest impact.
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Figure 5: Human evaluation to compare properties.

In Tab. 5, we show the ability to reduce repeti-
tions. Text repetitiveness is measured by the rep-
etition rate of non-singleton n-grams within each
story. In our experiment, we use up to 4-grams.
The use of intra-repetition regularization reduces
text repetition (0.14 to 0.04). Combined with the
trainable bag-of-words prior module, we further im-
prove this measure (0.008 vs. 0.14). We also report
sentence repetitiveness, i.e., the average number of
repeated sentences in a story.

4.2 Human Evaluation

Due to the subjective nature of the VST task, a hu-
man evaluation is required. We randomly selected
150 image sequences from the test set and asked
three MTurk annotators to rank them or assess them
with other methods. We use the AREL as a baseline.
Further, our method of generating coherent stories
is tested using a slightly weaker variation of the
method without directionality. Since the most re-
cent baselines are not publicly available, we cannot
compare them to recent approaches. We’ll share
the selected sequences to aid future comparisons.

In Fig. 5b, we assess stories coherency. To
begin, we examine the importance of modeling
direction-aware interactions. In our comparison,
we changed only one aspect of our model. We used
the same factor for preceding and subsequent inter-
actions. We show that on VIST metrics the effect
is relatively small (i.e., no-direction; see Tab. 2).
However, the human-evaluation comparison shows
a significant coherency improvement (64.2% vs.
28.7%), which is not revealed with classical evalu-
ation. Also, a comparison against the AREL base-
line demonstrates a more significant improvement
(70.24% vs. 25.32%).

In Fig. 5a we provide the results when asking
annotators to pick the most human-like story. We
use the majority vote to decide the best model per
story. The generated stories outperform the AREL

Method|Focused Coherent Share Human-like Grounded Detailed

AREL| 3.49 3.18 3.18 3.26 3.32 3.15
Ours | 3.67 352 320 3.56 3.54 3.32
GT 3.72 3.57 3.34 3.64 3.56 3.53

Table 4: Human evaluation results for rating survey (scores
are between 1-5).

Model Text Rep. Sent. Rep.
AREL (Wang et al., 2018) 0.16 0.4
BOG prior Intra-repetition reg. |
No No 0.14 0.33
Yes No 0.10 0.18
No Yes 0.04 0.04
Yes Yes 0.008 0.0

Table 5: Story generation ablation analysis.
baseline (73.87% vs. 22.53%). Surprisingly, in
many cases, the annotators found the generated
stories to be more human-like than the ground truth
stories (41% vs. 48.57%).

To further evaluate the quality of the stories, we
follow the criteria set by the Visual Storytelling
Challenge' and conduct a survey where judges are
asked to rate six categories between 1-5: 1. Fo-
cused: the story contains information that is “natu-
rally” relevant to the rest of the story; 2. Coherence:
the sentences in the story are related and consis-
tent; 3. Share: the inclination to share the story;
4. Human-like: the story was likely written by a
human; 5. Grounded: the story directly reflects
concrete entities in the image; and 6. Detailed: the
story provides an appropriate level of detail. To
obtain the final score, we average the annotators’
scores per sample, followed by averaging across
the entire sample set. From Tab. 4 we observe: the
model improved on all the criteria compared to the
AREL model. Importantly, the generated stories
are comparable to the ground-truth stories, indicat-
ing success in reducing the shortcomings found in
prior methods. Nonetheless, the level of detail is
still lacking, supporting the observation of Holtz-
man et al. (2020) that current decoding strategies
tend to generate well-formed yet somewhat generic
text.

5 Conclusion

We present a novel approach for VST, which en-
courages coherency of generated story. We incor-
porate structure between images with a new atten-
tion method that selects the important objects in an
ordered image sequence. Human evaluation and
quantitative analysis demonstrate that the approach
outperforms existing methods. Further, we perform
ablation analysis to show effectiveness.

1http://visionandlanguage.net/
workshop2018
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In this supplementary material, we provide expla-
nations for the image representations (see Sec. B),
scalars analysis (see Sec. C), and additional quali-
tative results (see Sec. D).

A Training Setup

We extracted the image features using a pre-trained
F-RCNN model with a ResNet152 backbone (He
etal.,2015; Renetal., 2015; Anderson et al., 2017).
We set the number of extracted objects K = 36.
Bounding box coordinates were normalized be-
tween 0 and 1. Words that appear less than 3 times
in the training set are represented by an <UNK>
token. The vocabulary size is 12,210 words. Word
representations were initialized using GloVe em-
beddings (Pennington et al., 2014). We set the de-
cay parameter m = 2 and the image representation
dimension d = 512. We set the dropout parameter
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to 0.3. We use cross-entropy loss to maximize like-
lihood of ground-truth stories. At decoding time we
employ a beam search algorithm, with beam width
set to 3. We use Adam (Kingma and Ba, 2014)
optimizer with a learning-rate of 0.0004, which is
decayed by a factor of 0.8 if the validation score
(METEOR) does not improve after 4 epochs. The
total amount of trainable parameters is 13,092,194,
Training converges after ~20 epochs. Each epoch
needs 20 minutes on an Nvidia V100 GPU.

B Image Representation

An initial pre-processing step represents each of
the input images I; via K regional features r; j, €
R? 1 < k < K. For this we use bottom-up at-
tention features (Anderson et al., 2017). Specif-
ically, for each image I; we first extract the top
K region features ¢;;, € R™. Hereby, e; is
an m-dimensional feature vector extracted from a
pre-trained image classification network (He et al.,
2015) along with their respective bounding boxes
bir € R%, and classes ¢;, € N. The final d-
dimensional representation 7; j, € R?, of each re-
gion is defined by a combination of the extracted
semantic features. Formally,

rik = WrWeeip + Wibi i + Ec(cik)], (19)

where W, € R4 W, € R¥>™ W, ¢ Rx4,
and F. are trainable parameters shared between all
images. We set K = 36 in our proposed model.
Biases and normalization are omitted for readabil-

ity.
C Factors Importance Analysis

In Fig. 6, we illustrate for each sentence, the value
of the importance calibration scalars (i.e., o and
ai s 1n Eq. 2,3, and 4). Intuitively, these values in-
dicate the importance of different image-to-image
messages. We focus our analysis on the sentence-
corresponding image (i.e., ¢ = s in Sec. 3.1). We
observe that the self-message scalars (i.e., t;—;) of
the sentences in the middle of the sequence, i.e.,
sentences (2,3, and 4), are low. This indicates that
the images in the middle of the sequence rely more
on the other images. The beginning and the end-
ing of the story depend more on the local factors.
Notably, the most substantial influence is given to
the following image (i.e., aﬁ’i 4 1)- This means that
while generating the current sentence, the OIA de-
cision is based mostly on the next image. This is
intuitive as it helps to advance the narrative in a
desired direction.
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The clouds compliment the mountain peak. They find a lovely forested mountain witha
lake. The misty clouds rollin and obscure the scene. The height of the mountains can be
seen by the snow covering them. On the road again moving towards another place.
We went to the mountains for a hike. The view of the lake was amazing. The scenery
was breathtaking. We saw some old buildings. The view of the mountain was
spectacular.

Ground
Truth

Ours

Figure 7: Illustration of OIA and ISA attention maps, the
ground-truth story and the final generated story. Each row
corresponds to a story sentence and shows objects OIA
highlights. The attended images’ border specifies the
relevancy to sentence generation, from red (important) to blue
(not important).

: il et S,
The kids had a great time at the pool. The little boy was excited to see the kids. We had a

AREL
great time at the park. We had a great time at the pool. We had a great time at the park.

No
History
With
History

The kids had a great time at the beach. The baby was happy to see the baby. We had a great
time at the park. The had a great time at the pool. We had agreat time at the park.

The family wentto the pool. The baby was very happy. The kids had a great time. The kids
played in the pool. The little girl is having agood time.

Figure 8: An illustration of an image sequence along with
three different stories generated by: (1) AREL baseline (Wang
et al., 2018), (2) No History: a model without intra-repetition
regularization and BOW prior (see Sec. 3.3); and (3) With
History: the final model. Repeated sentences are highlighted
with a yellow colored marker. Repeated words in a sentence
are emphasized in red color.

D Qualitative Results

In Fig. 7 we illustrate the attention maps along
with the generated story. The first sentence, “We
went to the mountains,” sets the theme for the story,
which requires the processing of subsequent im-
ages. Notably, the ISA module picked the subse-
quent images. In contrast, for the second sentence,
the attention focuses mainly on the second image
resulting in a description of the lake observed ex-
clusively in this image. The third sentence relates
to the scenery. Hence the attention focuses on pre-
ceding and subsequent images.

In Fig. 8, we show the ability of the method in re-
ducing repetitions. We observe the AREL baseline
to repeat the same sentences, for example, “...had a
great time at...”. We also observe this repetitiveness
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when we remove the bag-of-words prior and the
intra-sentence regularization (i.e., No History col-
umn). Nevertheless, the method remains on topic,
i.e., family in the pool.

In Fig. 9-12, we show samples used for hu-
man evaluation (see Sec. 4.3 of the main paper).
We present two sequences for the coherence and
human-like categories, where judges preferred our
generated stories, and another two, where the
judges chose the human formulated story.

In Fig. 13, we illustrate the attention output of
the OIA and the ISA modules and show two sto-
ries. The first story is generated using OIA with
direction-based factors. The other story is gener-
ated using the same interaction factors for both past
and future interactions. In the first sequence, our
direction-based model infers the topic of the story,
i.e., “hiking in the woods” and sets the theme in
the first sentence by mentioning the word ‘hike.’
In contrast, our model without direction mentions
park but misses the hiking topic.

In Fig. 14, we show two failure cases. The first
story is incoherent, e.g., the gender switches be-
tween male and female. In the second story, the
model reduces word repetition by using synonyms.
E.g., the sentences, “I had a great time,” “I was a
lot of fun” and “... having a good time” have the
same meaning.



Ours: The girl was having a great time at the party. We had a lot of fun. We were so happy to see each other. The
table was set for the reception. It was a great day.

GT: | went to the wedding last weekend. The tables were beautiful. | had a great time there. The entire family
was there. It was so much fun.

Ours: Today was the day of the wedding. The bride and groom were ready to be married. The cake was amazing. The
bride and groom pose for a picture. The ceremony was beautiful.

GT: Soon to be husband waiting on his bride. Here comes the newlyweds. Very plain birthday cake , looks
delicious. Great photo of the wedding people. They bride is happy.

Figure 9: Sample of a sequence where the coherence-score of our story was rated higher than the human story. Note: the
coherence-score assesses whether the sentences in the story are related and consistent.

AN NAL
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Ours: Today was the day of the organization. There were a lot of people there. The crowd was
ready to start. This is a picture of the game. The cheerleaders had a great time.

GT: The women 's basketball game was today. The team members were seen on the campus before
the game. Everyone got into their uniforms to play. After the game two of the players were seen
shaking hands. The team ended up winning the game.

| WelcomEitolZunit

Ours: It was a cold day. This is a picture of a sign. This is a picture of the building.
After the night , we decided to go to the bar. | had a great time at the location.

GT: A group of friends decided to take a road trip through location location. They stopped in
a town called location. It was n't very lively out , despite being friday night. They walked around
looking for a place to eat. They finally found an open cafe and had some mexican-american grub.

Figure 10: Sample of a sequence where the coherence-score of ground truth story was rated higher than the our story. Note: the
coherence-score assesses whether the sentences in the story are related and consistent.
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Ours: The cake was decorated for the wedding. It was a great day to celebrate. The bride and
groom were very happy. There was a piece of art. The bride had a great time.

GT: | love my beautiful wedding cake. Napkins with our wedding date on them. Everyone
standing waiting on me to come down the aisle. | love the cross ! here i am with my sister

Ours: We went to the city to see the old buildings. The streets were beautiful. There was a
lot of people in the market. There was a lot of food there. There is a variety of fresh vegetables.

GT: | love the architecture of the old city the streets are narrow and everyone drive small
cars local food is very good and very inexpensive all organic fruit and vegetables fruit and
vegetables were cheap and delicious

Figure 11: Sample of a sequence where the human-like-score of our story was rated higher than the human story. Note: the
human-like-score assesses whether a human likely wrote the story.

Ours: The mountains were beautiful. The view from the lake was amazing. The view of the city
was spectacular. The buildings were very tall. The mountains are breathtaking.

GT: So this is where all the beautiful landscape screenshots come from ! is this a place to
live forever , or what ? oh , my gosh , just build me a tiny house and i 'm all here ! and castles -
they have castles , too ! what an impressive mountain !

Ours: The house was covered in snow. The mountains were amazing. The mountain was beautiful.
The trees were covered in snow. We took a picture of a bridge.

GT: We recently headed up to my family 's vacation house in the mountains. In our backyard
there is this beautiful mountain. We often go for walks on the various trails around the house. We
often see a lot of animals and all of their tracks on the trails. At the end of the trail in this
beautiful bridge that goes over a frozen river.

Figure 12: Sample of a sequence where the human-like-score of ground truth story was rated higher than the our story. Note: the
human-like-score assesses whether a human likely wrote the story.
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No Direction: We went to the park. There were a lot of people in the
woods. We took a picture of the trees. We saw some interesting things to see. It
was a great day.

With Direction: We went to the park for a hike. We took a walk through
the woods. We had to take a picture of the trees. There were many interesting
statues in the woods. The view from the top was beautiful.

GT: There was a big sign that the guy passed. The girl also saw it near the big rocks before they took a photo.
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No Direction: The bride and groom were ready for the wedding. The flower
was beautiful. The bride and groom are having a great time. The couple of
friends had a good time. The family was happy to be married.

With Direction: The wedding party was beautiful. There were a lot of
beautiful flowers. The party was a lot of fun. This man and his friend are
having a good time. After the ceremony , we all got togethter for a picture.

GT: The wedding last week was beautiful. | brought a lot of flowers for the bride and groom. All of the friends
and family were there to show their support. | took a ton of pictures while i was there. Everyone was dressed up very
nicely.

Figure 13: Additional qualitative results. Each story is displayed along with 5 images with the attention maps generated by OIA
for each sentence. Additionally, the border of each image indicates the attention score of each image in the image-sentence
attention (ISA) module. Our model with and without order and ground-truth stories are also provided.
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OURS: | was so excited to be at the school yesterday. [male] was very happy to see him. She had a great time. She
did n't want to take a picture with her. [male] is the best of the day.

GROUND TRUTH: Mr. Green is a teacher at a local high school. Mr. Green teaches music. Mr. Green has enjoyed teaching
music for over 30 years. Mr. Green makes sure each of his students thoroughly understands each subject. Mr. Green 's favorite
part of any of his lessons are student questions.

OURS: We went to the party last night. This guy is getting ready to go. | had a great time. | was a lot of fun. The
man and his friends were having a good time.

GROUND TRUTH: A pristine night at the carnival after the opera. It feels good to unwind after such a regal event.
Makes you feel like a kid after all. And really brings out the smiles inside everyone. Before we return to the prim and
proper world we are accustomed to.

Figure 14: Illustration of failure cases.
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