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Abstract

We consider the problem of learning an ε-optimal policy in controlled dynamical
systems with low-rank latent structure. For this problem, we present LoRa-PI
(Low-Rank Policy Iteration), a model-free learning algorithm alternating between
policy improvement and policy evaluation steps. In the latter, the algorithm esti-
mates the low-rank matrix corresponding to the (state, action) value function of
the current policy using the following two-phase procedure. The entries of the
matrix are first sampled uniformly at random to estimate, via a spectral method,
the leverage scores of its rows and columns. These scores are then used to extract a
few important rows and columns whose entries are further sampled. The algorithm
exploits these new samples to complete the matrix estimation using a CUR-like
method. For this leveraged matrix estimation procedure, we establish entry-wise
guarantees that remarkably, do not depend on the coherence of the matrix but only
on its spikiness. These guarantees imply that LoRa-PI learns an ε-optimal policy
using Õ( S+A

poly(1−γ)ε2 ) samples where S (resp. A) denotes the number of states
(resp. actions) and γ the discount factor. Our algorithm achieves this order-optimal
(in S, A and ε) sample complexity under milder conditions than those assumed in
previously proposed approaches.

1 Introduction

Reinforcement Learning (RL) methods when applied to dynamical systems with large state and action
spaces suffer from the curse of dimensionality. For example, learning an ε-optimal policy in tabular
discounted Markov Decision Processes (MDPs) with S states and A actions requires a number of
samples scaling at least as SA

(1−γ)3ε2 [17, 36]. Fortunately, many real-world systems exhibit a latent
structure that if learnt and exploited could drastically improve the statistical efficiency of RL methods
[25, 38]. In this paper, we are interested in developing methods to leverage low-rank latent structures.
These structures have attracted a lot of attention recently, see e.g. [22, 11, 15, 28, 16, 45, 39, 2, 29,
40, 32, 35, 37, 34]. Here, we consider a structure where the (state, action) value functions of policies,
viewed as S ×A matrices, are low-rank. This structure has been empirically motivated and studied
in [35, 34, 43, 33]. The hope is that when exploiting it optimally, learning an ε-optimal policy would
only require O( S+A

(1−γ)3ε2 ) samples. Such an improvement would also imply significant statistical
gains in MDPs with continuous state and action spaces. If these spaces are of dimensions d1 and
d2, under natural smoothness conditions and using an appropriate discretization [35], the sample
complexity would indeed be reduced from 1

εd1+d2+2 (without structure) to 1
εmax(d1,d2)+2 .
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In this paper, we present LoRa-PI (Low Rank Policy Iteration), a model-free algorithm that learns
and exploits an initially hidden low-rank structure in MDPs. Unlike existing algorithms, LoRa-PI
does not require any prior information on the structure. Yet, the algorithm offers the promised
statistical gains: its sample complexity essentially exhibits an order-optimal dependence in S, A and
ε (i.e., S+A

ε2 ).

Contributions. Our algorithm LoRa-PI relies on approximate policy iteration [4]. As such, it
alternates between policy evaluation and policy improvement steps. The design and performance
analysis of these two steps constitute our main contributions.

1. Leveraged matrix estimation with entry-wise guarantees. LoRa-PI sequentially updates a candidate
policy whose (state, action) value function has to be estimated. This function can be seen as an S×A
matrix that we consider to be low rank. The policy evaluation step then boils down to a novel low-rank
matrix estimation procedure. We have two main constraints for this procedure. (i) To be sample
efficient, the matrix should be estimated from noisy observations of only a few of its entries. (ii)
For RL purposes (when integrated to LoRa-PI), the procedure should offer entry-wise performance
guarantees. We present LME (Leveraged Matrix Estimation), a low-rank matrix estimation algorithm
that meets these constraints. LME does not require knowledge of a priori unknown parameters of
the matrix (such as its rank, condition number, spikiness, or coherence), and it is the first algorithm
enjoying non-vacuous entry-wise guarantees even for coherent matrices.

Method Err. Guarantees Sampling Assumption Complexity
LME (ours) entry-wise adaptive bounded spikiness α2(S +A)/ϵ2

Algorithm 1 [35] entry-wise apriori fixed anchors anchors apriori known α2(S +A)/ϵ2

LR-EVI (Thm 9 [34]) entry-wise unif. anchors incoherence µ2α2(S +A)/ϵ2

NNM [9] (Thm 21 [34]) entry-wise unif. anchors incoherence µ2α2(S +A)/ϵ2

Two-phase MC [7] exact recovery adaptive noiseless not applicable

Table 1: Comparison of methods with entry-wise guarantees. For brevity, the factors (1− γ)−1, κ
and d are omitted. NNM: nuclear norm minimization, MC: matrix completion.

More precisely, LME guarantees an entry-wise estimation error within ε using only
Õ
(
κ4α2 (S+A)+α2

(1−γ)3ε2

)
samples, where α and κ denote the spikiness and the condition number of

the matrix, respectively. Note that in particular, this sample complexity does not depend on the
coherence of the matrix. Its dependence in S, A and ε cannot be improved. To reach this level of
performance, LME relies on an adaptive sampling strategy. It first estimates, via a spectral method, the
so-called leverage scores of the matrix. These scores quantify the amount of information about the
matrix available in the different rows and columns. The algorithm then exploits the leverage scores to
adapt its strategy and in turn, drive the sampling process towards more informative entries.

2. Design and sample complexity of LoRa-PI. Our RL algorithm LoRa-PI is a policy iteration
algorithm that relies on LME to perform policy evaluation steps. The algorithm inherits the advantages
of LME. In contrast to existing algorithms, it is parameter-free and its performance can be analyzed
and guaranteed under mild assumptions on the (state, actions) value functions. In particular, the
corresponding low-rank matrices do not need to be incoherent. We establish that LoRa-PI learns
an ε-optimal policy using Õ

(
κ4α2 (S+A)+α2

(1−γ)8ε2

)
samples, where α and κ are upper bounds on the

spikiness and the condition number of the (state, action) value functions.

3. Numerical experiments. We illustrate numerically the performance of our algorithms, LME
and LoRa-PI, using synthetically generated low-rank MDPs. The experiments are presented in
Appendix A due to space constraints.

Notation. We denote the Euclidean norm of a vector x by ∥x∥2. Let M be an m× n matrix. We
we denote its i-th row (resp. j-th column) by Mi,: (resp. by M:,j). We denote its operator norm
by ∥M∥op, it Frobenius norm by ∥M∥F, its infinity norm by ∥M∥∞ = maxi∈[m],j∈[n] |Mij |, and
its two-to-infinity norm by ∥M∥2→∞ = maxi∈m ∥Mi,:∥2. We denote by M† the Moore-Penrose
inverse of M . For given subsets I ∈ [m], J ∈ [n], we denote by MI,J the sub-matrix whose entries
are {Mij : (i, j) ∈ I × J }. Finally, we use a ∧ b = min(a, b) and a ∨ b = max(a, b).
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2 Related Work

Low-rank MDPs. MDPs with low-rank latent structure have been extensively studied recently. We
may categorize these studies according to the type of the underlying low-rank structure and to the
nature of the algorithms used to learn this structure.

The most studied low-rank structure concerns MDPs whose transition kernels and the expected
reward functions are low-rank. For instance, it is assumed that the transition probabilities can be
written as p(s′|s, a) = ϕ(s, a)⊤µ(s′), where ϕ(s, a) and µ(s′) are d-dimensional feature maps
[22, 11, 15, 28, 16, 45, 39, 2, 29, 40, 32]. These work additionally assume that the feature map ϕ (and
similarly for µ) belongs to a rich function classH. In this setting, the typical upper bounds derived
for the sample complexity of identifying an ε-optimal policy scale as poly(A, (1 − γ)−1) log |H|

ε2 .
When no restrictions are imposed on the classH, one can find a low-rank structure such that log |H|
scales as the number S of states [20]. In this case, the aforementioned upper bounds are the same
those for MDPs without structure. We also note that most algorithms using this framework rely on
strong computational oracles (e.g., empirical risk minimizers, maximum likelihood estimators), see
[23, 18, 44] for detailed discussions. In this paper, we do not limit our analysis to low-rank structures
based on a given restricted class of functions, and our algorithms do not rely on any kind of oracle.

The low-rank structure we consider is similar to that in [35, 34] and just assumes that the (state, action)
value functions are low-rank. Actually, [35] considers the case where only the optimal Q-function
is low-rank, say of rank d. As shown in [35], such a structure naturally arises when discretizing
smooth MDPs with continuous state and action spaces. In both papers [35, 34], the authors devise
algorithms with a minimax-optimal sample complexity to identify an ε-optimal policy roughly scaling
as (S +A)/ε2. But the analysis presented in [35] suffers from the following important limitations.
1. First, it is assumed that the learner is aware of a set I (resp. J ) of so-called anchors states (resp.
actions), such that the rank of the matrix QI,J := (Q(s, a))(s,a)∈I×J is the same as that of the
entire matrix Q. Such anchors are however initially unknown (since Q is unknown). Importantly, the
proposed RL algorithms rely on a low-rank matrix estimation procedure whose performance strongly
depends on the smallest singular value σd(QI,J ) of QI,J . The authors circumvent this difficulty
by actually parametrizing their algorithms using σd(QI,J ). But again, the latter is unknown, and it
remains unclear how one can avoid this issue. 2. The second limitation is that the analysis is valid for
small values of the discount factor γ (the authors need to impose an upper bound on γ/σd(QI,J )).
When σd(QI,J ) is small, the analysis is limited to very short horizons. Note that in addition, [35]
assumes that the collected rewards are deterministic, which together with the short horizon issue,
greatly simplifies the learning problem.

To address the first limitation, the authors of [34] propose to sample rows and columns uniformly at
random to get anchors. This solution requires to sample at least dµ2 states and actions (Lemma 10
in [34]) where µ is the (unknown) coherence of the matrix to be estimated. Hence this essentially
amounts to sampling almost the whole matrix for coherent matrices. The authors of [34] also propose
a solution to the second limitation, but at the expense of imposing additional restrictive conditions. In
this paper, we address both limitations and devise RL algorithms that rely on a new low-rank matrix
estimation procedure that works without imposing the incoherence of the matrix and that does not
require knowledge on a priori unknown parameters of this matrix.

Low-rank matrix estimation with entry-wise guarantees. Until recently, most results on low-rank
matrix recovery concerned guarantees with respect to the spectral or Frobenius norms, see e.g. [12]
and references therein. Over the past few years, methods to derive entry-wise guarantees have been
developed. These include spectral approaches [1, 8, 37], nuclear-norm penalization and convex
optimization techniques [9], CUR-based (or Nyström-like) methods [35, 3, 34].

The aforementioned literature provides guarantees not for all low-rank matrices, but for those typically
enjoying additional structural properties such as incoherence. Relaxing the incoherence assumption
is not easy, but can be achieved using adaptive sampling [24, 7, 41]. As far as we are aware, all
results applicable to somewhat coherent matrices provide guarantees with respect to the spectral or
Frobenius norms. In this paper, we develop a first adaptive matrix estimation method with provable
entry-wise guarantees, valid for matrices with well-defined spikiness but not necessarily incoherent.
Refer to [26, 30] and to §3.2 for a detailed discussion about the notion of spikiness.
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3 Preliminaries

3.1 Low-rank Markov Decision Processes

We consider a discounted MDP with finite state and action spaces S and A. These spaces are of
cardinality S and A, respectively. The dynamics are described by the transition kernel p where
p(s′|s, a) denotes the probability to move to state s′ given current state s and that the action a
is selected. The collected rewards are random but bounded by rmax, and r(s, a) is the expected
reward collected when action a is selected in state s. A deterministic Markovian policy π is
described by a mapping from S to A. We denote by V π the state value function of π: for all
s ∈ S, V π(s) = E[

∑∞
t=0 γ

tr(sπt , a
π
t )|sπ0 = s], where sπt and aπt are, at time t, the state and the

action selected under π. Similarly, the (state, action) value function of π is defined by: for all
(s, a) ∈ S × A, Qπ(s, a) = r(s, a) + γ

∑
s′ p(s

′|s, a)V π(s′). Qπ can be seen as a S × A matrix,
referred to as the value matrix of π in the remainder of the paper. Let κπ denote the condition number
of Qπ . Finally, let V ⋆ be the value function of the MDP (the value function of the optimal policy).

The objective is to learn an ε-optimal policy by interacting with the MDP. Such a policy satisfies:
for all s ∈ S , V π(s) ≥ V ⋆(s)− ε. Without any assumption on the structure of the MDP, to identify
such a policy, the learner needs to gather, even with a generative model, a number of samples1 that
scales as SA

ε2(1−γ)3 [17, 36]. The hope is that exploiting an a-priori known structure in the MDP may
considerably accelerate the learning process. In this paper, we focus on a low-rank latent structure.
Formally, we define:
Definition 1 (Rank of a policy, rank of the MDP). The rank dπ of a deterministic policy π is the rank
of its value matrix Qπ . The rank of an MDP is then defined as d = maxπ dπ , where the maximum is
over all deterministic policies.

Throughout the paper, we assume that the MDP is low-rank: its rank d satisfies d≪ (S +A). This
assumption is merely made to simplify the exposition of our results and proof techniques. As we
shall argue in Appendix E, our findings can naturally be extended to MDPs that are only low-rank in
an approximate and well-precised sense.

3.2 Matrix estimation: coherence and spikiness

Our learning algorithm relies on the approximate policy iteration method, and in particular, in each
iteration, it needs to estimate the low-rank value matrix of the current policy. To be sample efficient,
the algorithm will estimate the matrix from the noisy observations of a few of its entries. Recovering
a low-rank matrix from a few of its entries is not always possible (see e.g. [12] for a survey), and
conditions on the degree to which information about a single entry is spread out across a matrix must
be imposed. Examples of such conditions pertain to the coherence [6, 31] or the spikiness [30] of the
matrix.

Matrix coherence. Let Q be a rank-d S × A matrix with SVD UΣW⊤. The coherence of Q is
defined as µ(Q) = max{

√
S/d∥U∥2→∞,

√
A/d∥W∥2→∞}. Q is µ-coherent if µ(Q) ≤ µ. Low

coherence means that the energy of U and W are not concentrated around a few rows and columns.

Matrix spikiness. The spikiness of Q is defined as α(Q) =
√
SA∥Q∥∞/∥Q∥F ∈ [1,

√
SA]. Q is

α-spiky if α(Q) ≤ α. A matrix has low spikiness if the amplitude of its maximal entry is not much
larger than the average amplitude of its entries, in which case, it is intuitively easier to estimate.

Most existing guarantees for low-rank matrix estimation are expressed through the spectral or Frobe-
nius norm of the error matrix. For this type of guarantees, the estimation error scales polynomially
either with the matrix coherence or with its spikiness [12, 30]. The matrix spikiness was introduced
in the matrix completion literature [30] to obtain guarantees under less restrictive conditions than
the incoherence conditions imposed in previous work. Indeed, there are matrices with bounded
spikiness but high coherence (say close to

√
S/d, in which case the aforementioned coherence-based

guarantees are vacuous). In contrast, bounded incoherence provides an upper bound on spikiness
since α(Q) =

√
SA∥Q∥∞/∥Q∥F ≤

√
SA∥U∥2→∞∥Q∥op∥W∥2→∞/∥Q∥F ≤ µ(Q)2d.

1Here a sample refers to an experience (s, a, r, s′), the observation of the collected reward r and the next
state s′, starting with a given (state, action) pair (s, a). Under a generative model, the learner can adapt the
choice of (s, a) for the next observed experience without any constraint.
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For RL purposes, we need to derive entry-wise guarantees for the estimate of the value matrix of some
policy as demonstrated in [35, 37, 21]. Existing upper bounds for the entry-wise estimation error
exhibit a strong dependence in the matrix coherence and its condition number, see e.g. [9, 8, 37]. For
instance, in [9], this dependence comes as a multiplicative factor µ(Q)2α(Q)2κ(Q)2 in the number
of samples required for a given level of estimation accuracy. As far as we are aware, our matrix
estimation method is the first able to yield entry-wise guarantees that do not exhibit a dependence on
the matrix coherence but only on its spikiness (see Table 1). Our algorithm is better by a factor of
µ(Q)2 than algorithms based on uniform sampling (studied in [34]), and requires the same sample
complexity as the algorithm of [35], which has prior knowledge of anchor states. It remains however
unclear whether the dependence of the entry-wise estimation error in the condition number can be
avoided. This last observation guides the design of RL algorithms for low-rank MDPs as we discuss
next.

3.3 Policy vs. Value Iteration: the condition number issue

We aim at devising an algorithm learning an efficient policy with provable guarantees while imposing
conditions on the MDP that are as mild as possible. To this aim, one may think of applying either a
policy iteration approach, as we do, or a value iteration approach.

Policy Iteration. Using this approach, in each iteration, we need to estimate the low-rank value matrix
of the current candidate policy. As mentioned above, the entry-wise error of this estimation procedure
depends on the condition number of the matrix. Note that this matrix belongs to the finite set of (state,
action) value functions of deterministic policies. As shown in [10, 42], this set can be seen as the
vertices of a simple polytope P . Hence to get performance guarantees when applying a PI approach,
it is sufficient to impose an upper bound on the condition numbers κπ for all deterministic policies π,
or equivalently, on the condition numbers of matrices corresponding to the vertices of P .

Value Iteration. Here, we would maintain, in iteration t, an estimate V (t) of the value function
V ⋆, and samples would be used to compute V (t+1), an estimate of T ⋆(V (t)), where T ⋆ denotes
Bellman’s operator. More precisely, starting from V (t), we would estimate the low-rank matrix
Q(t+1) = F(V (t)) defined by for all (s, a), F(V (t))(s, a) = r(s, a) + γ

∑
s′ p(s

′|s, a)V (t)(s′).
Then we would define V (t+1) as the value function of the greedy policy with respect to Q(t+1).
Hence to get provable performance guarantees using a value iteration approach, we would need to
impose an upper bound on the condition number of Q(t) in all iterations t. The main issue is that the
set of matrices {Q(t), t ≥ 1} is stochastic and hard to predict. Indeed, we have no way of confining
the iterates Q(t+1) to the polytope P: as shown in [10], the polytope is not stable by Bellman’s
operator. As a consequence, if we wish to get performance guarantees for a value iteration approach,
we would need to impose an upper bound on the condition number of all possible matrices of the
form F(V ) for some vector V .

In summary, policy iteration approaches offer a theoretical advantage compared to value iteration. It
requires the control of the condition numbers of matrices in a set much smaller than that for value
iteration. This advantage is illustrated in Figure 1 on a toy example of an MDP. Refer to Appendix A
for additional numerical experiments (with larger MDPs).

4 Leveraged Matrix Estimation

In this section, we present Leveraged Matrix Estimation (LME), an algorithm that estimates the value
matrix Qπ of a policy π. The algorithm relies on an active strategy for sampling the entries of the
matrix based on its estimated leverage scores as defined below. This active strategy accelerates the
learning process and allows us to obtain entry-wise guarantees that do not depend on the coherence
of the matrix but on its spikiness only.
Definition 2 (Leverage scores2). Let Q be a rank-d S × A matrix with SVD UΣW⊤. Its left and
right leverage scores ℓ and ρ are defined as ℓs = ∥Us,:∥22/d for all s ∈ S, and ρa = ∥Wa,:∥22/d for
all a ∈ A.

LME only takes as inputs a policy π and a sampling budget T . It proceeds in two phases: first, it uses
half of the sampling budget to estimate the leverage scores of Qπ via singular subspace recovery.

2Our definition of leverage scores is consistent up to a scale factor with that used in the literature [5, 13, 7].
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Figure 1: Consider an MDP with two states and two actions (see Appendix A.1 for details). The 4
black crosses correspond to the value function of the 4 possible policies. When combining policy
iteration with a low rank estimation procedure, we just need to control the condition number of the 4
corresponding value matrices. The red dots correspond to the successive estimates V (t) of V ⋆ when
running value iteration. When applying a value iteration approach, we would need to upper bound the
condition number of all the corresponding matrices Q(t) = F(V (t−1)) for t ≥ 1. For a given V , the
background color in the figure indicates the value of the condition number of F(V ). We see that the
dynamics of V (t) under the value iteration algorithm are such that the trajectory (Q(t), t ≥ 1) has to
go through regions where the condition number is very high. Hence on this example, a value iteration
approach would not work well.

Second, it selects a few anchor rows and columns sampled using the estimated leverage scores, and
uses the remaining budget to sample the entries of these rows and columns. It finally completes the
matrix estimation using a CUR-based method. The full pseudo-code of LME is presented in Appendix
C. Observe that LME is parameter-free: it does not require knowledge of the policy rank dπ , nor upper
bounds on unknown parameters such as κπ or α(Qπ) or µ(Qπ). Throughout this section, when
presenting our guarantees, we will abuse notation and use d, κ and α, instead of dπ , κπ and α(Qπ).

4.1 Preliminaries

LME exploits a natural empirical estimator of Qπ entries at numerous stages. This empirical
estimator is essentially based on Monte-Carlo rollouts with truncation as described next. De-
fine the truncated value matrix at a horizon τ as follows: for all (s, a) ∈ S × A, Qπ

τ (s, a) =
E
[∑∞

t=0 γ
trt(s

π
t , a

π
t )1{t≤τ}

∣∣sπ0 = s, aπ0 = a
]
. By choosing τ appropriately, we may control the

level of the approximation error Qπ
τ −Qπ . We make this observation precise in the following lemma,

proved in Appendix F.1.

Lemma 1. For any ϵ > 0 and any τ ≥ 1
1−γ log

(
rmax

(1−γ)ϵ

)
, we have ∥Qπ −Qπ

τ ∥∞ ≤ ϵ.

In view of the above, to estimate an entry, say (s, a), of Qπ , we will use an empirical estimator based
on trajectories of length τ + 1 of the system under π and starting with (state, action) pair (s, a). In
our algorithms, this length is chosen to get an appropriate accuracy level. Specifically, we choose ϵ
and τ as follows:

ϵ =
rmax

T
and τ =

⌈
1

1− γ
log

(
T

1− γ

)⌉
. (1)

These choices will become apparent from our analysis.

4.2 Phase 1: Leverage scores estimation via spectral subspace recovery

The first phase of LME is devoted to the estimation of the leverage scores of Qπ. To this aim, using
half of the sampling budget T/2, we estimate the singular subspaces of the matrix via a spectral
method.
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Phase 1a. Data collection and the empirical truncated value matrix. As suggested in §4.1, to estimate
individual entries of Qπ, we sample system trajectories of length τ + 1. More precisely, for each
of the N := T/(2(τ + 1)) trajectories, we first sample the starting (state, action) pair uniformly at
random, and then observe the trajectory obtained under the policy π and initiated at this pair. The
data collected this way is D = {(sπk,0, aπk,0, rπk,0, . . . , sπk,τ , aπk,τ , rπk,τ ) : k ∈ [N ]}. Using this data,
we construct an empirical estimate of the truncated value matrix as follows ∀(s, a) ∈ S ×A:

Q̃π
τ (s, a) =

SA

N

N∑
k=1

(
τ∑

t=0

γtrπk,t

)
1{(sπk,0, aπk,0) = (s, a)}, (2)

Phase 1b. Singular subspace recovery. We compute the SVD of the empirical truncated value matrix
Q̃π

τ . We obtain Q̃π
τ =

∑S∧A
i=1 σ̂iûiŵ

⊤
i , where σ̂1, . . . , σ̂S∧A correspond, in decreasing order, to its

singular values and û1, . . . , ûS (resp. ŵ1, . . . , ŵA) to its left (resp. right) singular vectors. Using this
decomposition, we construct our estimate of Qπ as follows:

Q̂π =

S∧A∑
i=1

σ̂i1{σ̂i ≥ β}ûiŵ
⊤
i , (3)

where β > 0 is a threshold that we will precise shortly. We view Q̂π as a biased estimate of Qπ

with controlled bias through τ . We also use β to estimate the rank of Qπ: d̂ =
∑S∧A

i=1 1{σ̂i ≥ β}.
Finally, the estimated left (resp. right) singular subspace is denoted Û = [û1 · · · ûd̂] ∈ RS×d̂

(resp. Ŵ = [ŵ1 · · · ŵd̂] ∈ RA×d̂). In the following proposition, we provide a choice for the
threshold β that yields appropriate guarantees regarding our subspace recovery.
Proposition 1. Let δ ∈ (0, 1) and choose the threshold β as

β =

√
r2maxSA(S +A)

(1− γ)3T
log4

(
(S +A)T

(1− γ)δ

)
+

rmax

√
SA

T
. (4)

Then, provided that3:

T = Ω̃δ

(
r2maxSA

σ2
d(Q

π)

(S +A)

(1− γ)3

)
(5)

we have that events: d̂ = dπ , and for all s ∈ S,

∥Us,: − Ûs,:(Û
⊤U)∥2 ≲

rmax

√
SA

(1− γ)3/2σd(Qπ)

(√
d

T
+ κ∥Us,:∥2

√
S +A

T

)
log2

(
(S +A)T

(1− γ)δ

)
hold with probability at least 1− δ. An analogous result holds for Ŵ .

The precise statement (Theorem 4) and the proof are presented in Appendix B.3 and B.4.

Phase 1c. Leverage Scores Estimation. To conclude, using the recovered subspaces Û and Ŵ , we
estimate the leverage scores as follows ℓ̂ =

∥∥ℓ̃∥∥−1

1
ℓ̃ and ρ̂ =

∥∥ρ̃∥∥−1

1
ρ̃, where:

∀s ∈ S : ℓ̃s = ∥Ûs,:∥22 ∨
d

S
, and ∀a ∈ A : ρ̃a = ∥Ŵa,:∥22 ∨

d

A
. (6)

The performance of the estimation of the leverage scores is summarized in the following theorem,
proved in Appendix B.2.
Theorem 1 (Leverage Scores Estimation). Let δ ∈ (0, 1). Suppose the threshold β is chosen as in
(4). Then, we have that: P(∀s ∈ S, ℓs ≤ 4 ℓ̂s) ≥ 1− δ, provided that

T = Ω̃δ

(
κ2 r

2
maxSA

σ2
d(Q

π)

(S +A)

(1− γ)3

)
,

An analogous result holds for ρ̂.
3To simplify the notation, all our sample complexity guarantees are expressed using Ω̃δ(·), the tilde-notation

may hide poly-log dependencies in δ, S, A, (1− γ)−1, d, κ, α, log(e/ε), and rmax.
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4.3 Phase 2: Leveraged CUR-based Matrix Completion

Before we proceed with the description of the second phase, we briefly recall the so-called CUR
decomposition [19, 27] for low-rank matrices. The decomposition says that for a given rank-d S ×A
matrix Q, there always exists I ⊆ [S], J ⊆ [A], with |I| = |J | = d, such that the sub-matrix QI,J
is full rank and for all entries (i, j), Qij = Qi,J (QI,J )†QI,j . As in [35, 34, 3], we leverage this
decomposition in our matrix estimation procedure, but without any requirement such as knowledge
of I,J for which σd(QI,J ) bounded away from zero or upper bounds on parameters like the matrix
coherence.

Phase 2a. Data collection to estimate the skeleton of the value matrix. We start by sampling
K := 64d log(64d/δ) rows (resp. columns) without replacement according to ℓ̂ (resp. ρ̂) to form
a skeleton of the matrix. These rows and columns are referred to as anchors. We denote the set of
selected rows (resp. columns) by I ⊆ S (resp. J ⊆ A). We use the remaining sample budget T/2
to get samples of the entries of Qπ in the skeleton. To this aim, we use the procedure described in
§4.1, and sample trajectories of length τ + 1. For each entry (s, a) ∈ Ω□ := I × J , we use N1 :=

T/(4(τ + 1)K2) trajectories to compute Q̃π
τ (s, a), an empirical estimate of Qπ(s, a) (see (2)). For

each entry (s, a) ∈ Ω+ := ((S\I)×J )∪(I×(A\J )), we use N2 := T/(4(τ+1)(K(S+A)−2K2)
trajectories. Note that N2 ≤ N1 (this plays a role in the analysis).

Phase 2b. CUR-based completion with Inverse Leverage Scores Weighting. First, using the leverage
scores, and the set of rows I and columns J , we define K×K diagonal matrices L and R as follows:

∀i ∈ I, Lii =
1

min
{
1,
√

Kℓ̂i

} , and ∀j ∈ J , Rjj =
1

min{1,
√
Kρ̂j}

. (7)

Next, starting from the values of Q̃π
τ (s, a) for (s, a) in the skeleton, we perform a CUR matrix

completion to obtain Q̂π: (i) for all (s, a) ∈ (S × J ) ∪ (I × A), we set Q̂π(s, a) = Q̃π
τ (s, a); (ii)

for all (s, a) ∈ (S\I)× (A\J ), we set

Q̂π(s, a) = Q̃π
τ (s,J )R

(
L Q̃π

τ (I,J )R
)†

L Q̃π
τ (I, a). (8)

Note that the use of L and R in (8), referred to as Inverse Leverage Scores Weighting, corresponds
to an importance sampling procedure. It allows us to account for the fact that the skeleton has been
sampled using the (estimated) leverage scores.

The next theorem summarizes the performance guarantees under LME. Its proof is presented in
Appendix C.1.

Theorem 2. Let ε > 0, δ ∈ (0, 1). Given a deterministic policy π, and a sampling budget T , the
algorithm LME ensures that P(∥Q̂π −Qπ∥∞ ≤ ε) ≥ 1− δ, provided that ε ≲ ∥Qπ∥∞ and

T = Ω̃δ

(
(S +A) + α2d

(1− γ)3ε2
(r2maxκ

4α2d2)

)
.

Theorem 2 states that the sample complexity of LME to obtain entry-wise guarantees does not depend
on the coherence µ of Qπ but rather on its spikiness α and condition number κ only. Hence LME
provides entry-wise guarantees even for coherent matrices. In addition, its sample complexity scales
with S, A, γ and ε optimally. Indeed if α, κ = Θ(1) and d≪ S +A, it scales as (S+A)

ε2(1−γ)3 . We also
wish to emphasize that LME is parameter-free, in the sense that it does not require knowledge of the
so-called anchor rows and columns, nor does it require upper bounds on unknown parameters such as
coherence, spikiness, rank or condition number. These properties are desirable for RL purposes.

5 Low-Rank Policy Iteration

In this section, we present and evaluate LoRa-PI (Low Rank Policy Iteration), a model-free variant of
the approximate policy iteration algorithm [4]. It alternates between policy improvement and policy
evaluation steps and uses LME, our low rank matrix estimation procedure for policy evaluation. Refer
to Algorithm 1 for the pseudo-code.
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Algorithm 1: Low-Rank Policy Iteration (LoRa-PI)
Input: sampling budget T , accuracy ε, confidence level δ, discount factor γ, rewards upper

bound rmax, π(1) an initial deterministic policy
Set Nepochs ← (1− γ)−1 log ((4rmax)/((1− γ)ε)), Teval ← T/Nepochs
for t = 1, 2, . . . , Nepochs do

(Approximate policy evaluation). Obtain the value matrix of π(t): Q̂(t) ← LME(π(t), Teval)

(Policy improvement) Improve π(t) using Q̂(t): ∀s ∈ S, π(t+1)(s)← argmaxa∈A Q̂(t)(s, a)
end
Output: Output π̂ = π(Nepochs+1).

The following theorem provides performance guarantees for LoRa-PI. We state the results under
the assumption that for any deterministic policy π, Qπ is α-spiky and has a condition number upper
bounded by κ. The proof of Theorem 3 is presented in Appendix D.

Theorem 3. Let δ ∈ (0, 1) and ε = Õ(∥Qπ(1)∥∞). Under LoRa-PI, we have
P
(
∥V ⋆ − V π̂∥∞ ≤ ε

)
≥ 1− δ, provided

T = Ω̃δ

(
(S +A) + α2d

(1− γ)8ε2
(r2maxκ

4α2d2)

)
.

LoRa-PI combines numerous advantages. (i) It is parameter-free: it does not require the knowledge
of upper bounds on parameters such as the ranks, condition numbers, and spikiness of the value
matrices of policies. This is thanks to LME, which is itself parameter-free. (ii) Its sample complexity
does not depend on the coherence of the value matrices but only on their spikiness; which is an
important improvement over existing algorithms [34]. (iii) LoRa-PI offers performance guarantees
without having access to good anchor states and actions, without assuming that the rewards are
deterministic and that the discount factor is (far too) small, as in [35] (refer to Section 2 for a detailed
discussion). (iv) Its sample complexity has an order-optimal scaling in S, A and ε. (v) Finally, since
LoRa-PI uses policy iteration, its theoretical guarantees can be established under milder assumptions
than if value iteration was used instead (see §3.3).

The dependence of order (1− γ)−8 is far from the ideal minimal dependence of order (1− γ)−3 that
one would typically obtain in RL without low-rank structure. This is an artifact of using a model-free
approach, and more specifically the Monte-Carlo estimator of entries of the value matrices. Avoiding
such high dependence requires further assumptions and a model-based approach. Furthermore, it is
worth mentioning that the guarantees enjoyed by LoRa-PI can be naturally extended to MDPs that
are low-rank only in an approximate sense. We refer the reader to Appendix E for further details.

6 Conclusion

In this work, we considered a class of MDPs where the Q-function, viewed as a state-action matrix,
admits a low-rank representation under any deterministic policy. We devised LoRa-PI, a model-free
learning algorithm based on approximate policy iteration, that provably exploits such low-rank
representation to output a near-optimal policy. Critical to the design and performance guarantee of
LoRa-PI is a novel low-rank matrix estimation procedure referred to as LME. LME is shown to enjoy
a tight entry-wise guarantee while being parameter-free, i.e., it does not require knowledge of the
so-called anchor rows and columns, nor upper bounds on unknown parameters such as spikiness,
coherence, rank, or condition number. More importantly, its sample complexity does not scale with
the coherence but instead with the spikiness of the matrix. This allows us to estimate a wider class
of low-rank matrices with entry-wise guarantees than previous work. Such desirable properties are
what make LME appealing for RL purposes, and in particular what allows us to show that LoRa-PI is
sample-efficient under mild conditions. From a design perspective, LME and its analysis features many
interesting tools and ideas. Notably, (i) we derived instance-dependent row-wise singular subspace
recovery guarantees, and (ii) we combined the use of the so-called leverage scores with a CUR-based
approximation for matrix estimation. We believe such tools and ideas to be of independent interest.
Finally, we provided experimental results that suggest the superior performance of our proposed
algorithms.
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A Numerical Experiments

All experiments in this section were performed on HP EliteBook 830 G8 with an Intel i7 core and
16 GB of RAM. Each experiment’s runtime for individual realizations took at most 2-3 hours, and
reproducing all results is feasible within a day.

A.1 Parameters of the toy example in Figure 1

We considered an MDP with S = A = 2, γ = 0.87, a reward matrix given by

r =

[
−0.46 −0.48
−0.14 0.28

]
,

and the following transition probabilities:

P (s′|s, a = a1) =

[
0.4 0.6
0.15 0.85

]
P (s′|s, a = a2) =

[
0.25 0.75
0.29 0.71

]
We initialized VI with V (0) = [2.86 2.98]

⊤. Note that Vmax = rmax

1−γ = 3.69 and thus V (0) ∈
[−Vmax, Vmax]

2.

For this example, the condition numbers of the Q-functions induced by policies are
16.08, 4.38, 15.29, 12.07, while the maximum condition number during value iteration is ≈ 2497.82.

We stress here that this MDP is full-rank, and the purpose of this example is to demonstrate the
potential instability of VI in the presence of large condition numbers. For low-rank MDPs, this
corresponds to the matrix Qπ having an effectively smaller rank than expected, and estimating all d
singular vectors despite σ1(Q

π)/σd(Q
π)→∞.

A.2 Matrix completion with leveraged anchors

We consider matrix completion with a fixed matrix M⋆ to be estimated, testing four different methods.
First, we test a method based on CUR-approximation with anchors chosen uniformly at random.
Next, we have a method based on the estimation of leverage scores, where, for a given budget of
samples, we use half of them for estimating leverage scores as described in the main text. Then, we
consider a method with oracle anchors, where the anchors are chosen with respect to the true leverage
scores. Lastly, we consider standard SVD decomposition, where we keep only the first d largest
singular values of the matrix.

Figure 2: Matrix completion: matrix M⋆ is of size 1000 × 1000, rank d = 5 and sampled entries
have additive Gaussian noise with σ = 0.01. Number of anchors used was K = 10. All plots are
averaged over 30 simulations and a new random matrix M⋆ was generated in every 5 simulations.

As expected, CUR-based methods depend heavily on the quality of anchor selection. The gap between
leverage-score-based anchors and oracle anchors is slight, even when half the samples are used to
estimate the leverage scores. While SVD shows a smaller Frobenius error, it has higher entrywise
error compared to CUR-based methods with good anchors.

13



A.3 Leverage scores for VI and PI

We demonstrate the importance of choosing anchors based on leverage scores for value iteration
(VI) and policy iteration (PI). We postpone learning of the anchor states to the next subsections and
assume that the true leverage scores of matrices (Q(t))t≥1 are given. For methods with leveraged
anchors, anchors are chosen as those with the highest leverage scores (true leverage scores of Q(t)).
For uniform anchors, anchors are chosen uniformly without repetitions.

(a) Value iteration with anchors. (b) Policy iteration with anchors.

Figure 3: Matrix Q⋆ is obtained from rank d = 5 rewards and transition matrices. Moreover,
S = 70, A = 50, γ = 0.9, and we choose number of anchors K = 15. Observations are noisy with
additive Gaussian noise with σ = 0.01. Plots are averaged over 100 simulations, and new MDPs are
generated every 5 simulations, while the number of samples in an iteration t is 10(1.1)t.

These results highlight that leveraged anchors reduce entrywise error significantly for general matrices.
In contrast, uniform anchors show significant randomness, although the error decreases in expectation
over iterations.

A.4 Low-rank Value Iteration

We evaluate a VI-based variant of Algorithm 1, that we refer to as LoRa-VI. We do not assume prior
knowledge of the matrices, and use samples to estimate leverage scores and matrices (Q(t))t≥1.

Figure 4: LoRa-VI: Q⋆ generated from low-rank r and P of rank d = 4, S = A = 1000, γ = 0.1.
We used K = 10 anchors, V (0) = 0, rewards are noisy with Gaussian noise σ = 0.01. All plots are
averaged over 5 simulations, each consisting of 50 epochs, and the number of samples in an epoch t
is approximately 20(1.05)t(S +A)K.
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Even though we did not theoretically analyze the VI-based method in this work, for the reasons
mentioned in Section 3.3, we note that this method works well in practice for the settings considered
in this study. We consider three methods: VI with leveraged anchors, where we use half of the
experiences to estimate leverage scores and based on them sample the second half in a CUR-like
fashion. Next, we consider VI with uniform anchors, where anchors are chosen uniformly at random
without repetitions. And finally, we consider full-matrix VI, a standard VI approach without any
matrix completion steps, where each entry of the matrix gets observed a certain number of times.

We see in Figure 4 that VI with leveraged anchors achieves the best performance measured in
Frobenius and entrywise norm. On the other hand, VI with uniform-anchors does not recover specific
entries with high values well (as seen in the right figure), but because there are not too many entries
with high values, it achieves decent performance in the Frobenius norm. Finally, even though full-
matrix VI can observe all entries of the matrix, it still lags behind VI with leveraged anchors. We also
want to remind the reader that VI with leveraged anchors uses only half of the available samples for
matrix recovery, while the other half is used for learning the leverage scores.

The algorithm used in the experimental section of [35] closely resembles our LoRa-VI algorithm
when uniform anchors are applied. As a result, the numerical results from [35] can be reproduced
within our framework, which offers a more general and flexible setting.

A.5 Low-rank Policy Iteration

Finally, we experimentally study performance of the proposed algorithm LoRa-PI.

Figure 5: LoRa-PI: Q⋆ generated from low-rank r and P of rank d = 4, S = A = 1000, γ = 0.1,
τ = 5. We used K = 10 anchors, uniformly random initial policy, and noisy rewards with Gaussian
noise σ = 0.01. Plots for PI with anchors are averaged over 3 simulations, while the one for full-
matrix PI is simulated once. Each simulation consisted of 20 epochs, and the number of samples in
an epoch t is approximately 10(1.15)t(S +A)K.

Similarly as in the previous subsection we study performance of three different methods using PI
instead of VI this time, and the observed performance is similar to the one of VI-based methods. In
contrast to the other methods, using leverage scores seems to ensure that Frobenius error behaves
similarly to entrywise error, up to a scaling factor. This might be caused by uniform dispersion of the
estimation error over the entries with large values for PI/VI with leveraged anchors.

The choice of γ = 0.1 is governed by an observation that this value of parameter γ ensures that the
largest singular values of Q⋆ are scaling similarly. In other words, it is a heuristic for ensuring small
κ needed for CUR-like methods. Furthermore, we believe that performance could be improved if a
more tuned way of pseudoinversion is used. Namely, as Q(t) is effectively rank-deficient for many
epochs, it is crucial to implement a stable way of calculating the pseudoinverse of LQ̃(I,J )R, and
make it dependent on the current epoch and the level of the estimation error.

Lastly, we believe that the performance of the proposed methods can be significantly improved
(compared to full-matrix methods) for larger state-action spaces, as well as by implementing a more
advanced way of distributing samples across epochs.
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B Leverage Scores Estimation Analysis

In this section we provide the proof of Theorem 1. The proof relies on a tight instance dependent
row-wise guarantee on the singular subspace recovery which is provided in Theorem 4 together with
a proof. Throughout this section and for brevity, we use the notation

Tτ =
T

τ + 1
, and ᾱ =

rmax

1− γ

√
SA

σd(Qπ)

in the entirety of this section to denote the number of sampled trajectories Tτ , and spikiness-related
parameter ᾱ (recall definition of spikiness α from Section 3.2). Furthermore, recall the truncated
value matrix Qπ

τ defined in Section 4.1, and let us define its corresponding approximation error by
∆ = Qπ

τ −Qπ .

B.1 Instance-dependent row-wise singular subspace recovery

Below, we present Theorem 4, which as highlighted before, is crucial in deriving Theorem 1.

Theorem 4. If Tτ = Ω̃
(
ᾱ2(S +A)

)
and ∥∆∥op ≤ σd(Q

π)/32, then we have that the event: for
every i ∈ [S], j ∈ [A]

∥Ui,: − Ûi,:OÛ∥2 = Õ

[
ᾱ

(√
d

Tτ
+ κ∥Ui,:∥2

√
S +A

Tτ

)
+

√
S +A∥∆∥∞
σd(Qπ)

+ κ∥Ui,:∥2
∥∆∥op

σd(Qπ)

]
,

∥Wj,: − Ŵj,:OŴ
∥2 = Õ

[
ᾱ

(√
d

Tτ
+ κ∥Wj,:∥2

√
S +A

Tτ

)
+

√
S +A∥∆∥∞
σd(Qπ)

+ κ∥Wj,:∥2
∥∆∥op

σd(Qπ)

]
,

holds with probability at least 1− δ, where we define OÛ = Û⊤U and O
Ŵ

= Ŵ⊤W .

Corollary 1. If ∥∆∥∞ ≤ min

{
rmax

1−γ

√
d(S∧A)

Tτ
, σd(Q

π)

32
√
SA

}
and Tτ = Ω̃

(
ᾱ2(S +A)

)
, then w.h.p:

∥Ui,: − Ûi,:(Û
⊤U)∥2 = Õ

[
ᾱ

(√
d

Tτ
+

√
S +A

Tτ
κ∥Ui,:∥2

)]
.

An analogous inequality holds for ∥Wi,: − Ŵi,:(Ŵ
⊤W )∥2.

It is a simple algebraic exercise to show that ϵ = ∥∆∥∞ from (1) satisfies condition of the corollary
above in given regime of Tτ .

B.2 Proof of Theorem 1

Proof. First we consider those states with ∥Us,:∥22 > d
4S . From Corollary 1 we obtain that for these

states and large enough Tτ :

∥Us,: − Ûs,:(Û
⊤U)∥2 ≤ c1ᾱ

(√
d

Tτ
+

√
S +A

Tτ
κ∥Us,:∥2

)
log3/2

(
Tτ (S +A)

δ

)
w.h.p. and for some universal constant c1 > 0. Since ∥Us,:∥2 >

√
d
4S this implies that ∥Us,:∥2 >√

d
4(S+A)κ2 , we can simplify last inequality as follows:

∥Us,: − Ûs,:(Û
⊤U)∥2 ≤ 2c1ᾱ

√
S +A

Tτ
κ∥Us,:∥2 log3/2

(
Tτ (S +A)

δ

)
Next, for Tτ ≥ 50c21ᾱ

2(S + A)κ2 log3
(

Tτ (S+A)
δ

)
, we have: ∥Us,: − Ûs,:(Û

⊤U)∥2 ≤ (1 −
1√
2
)∥Us,:∥2. Finally, using reverse triangle inequality we obtain:

∥Ûs,:∥22 ≥ (∥Us,:∥2 − ∥Us,: − Ûs,:(Û
⊤U)∥2)2 ≥

1

2
∥Us,:∥22
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and thus:

ℓ̃s = ∥Ûs,:∥22 ∨
d

S
≥ ∥Ûs,:∥22 ≥

1

2
∥Us,:∥22

Now we consider states with ∥Us,:∥22 ≤ d
4S . Again, by means of Corollary 1 we get w.h.p:

∥Us,: − Ûs,:(Û
⊤U)∥2 ≤ 2c1ᾱκ

√
d

Tτ

√
S +A

S
log3/2

(
Tτ (S +A)

δ

)
≤
√

d

4S

for Tτ ≥ 16c21ᾱ
2κ2(S + A) log3

(
Tτ (S+A)

δ

)
. Thus we obtain that for all s with ∥Us,:∥22 ≤ d

4S , it
also holds:

∥Ûs,:∥2 ≤ ∥Us,:∥2 + ∥Us,: − Ûs,:(Û
⊤U)∥2 ≤

√
d

S

Since by definition ℓ̃s ≥ d
S , we obtain that ℓ̃s ≥ ∥Us,:∥22 for states with ∥Us,:∥22 ≤ d

4S .

Finally, we show similar inequalities hold for leverage scores ℓ and ℓ̂. Namely, we have:

ℓ̂s =
ℓ̃s

∥ℓ̃∥1
≥ ℓ̃s∑

i:∥Ûi,:∥2
2>

d
S
∥Ûi,:∥22 +

∑
j:∥Ûj,:∥2

2≤
d
S

d
S

≥ ℓ̃s∑S
i=1 ∥Ûi,:∥22 + S d

S

=
ℓ̃s
2d
≥ ∥Us,:∥22

4d
=

1

4
ℓs

where we used first part of the proof for the final inequality.

B.3 Proof of Theorem 4

Proof is based on leave-one-out method used for proving entry.wise guarantees for singular vectors
of SVD estimates. We refer the interested reader to [8] for a comprehensive survey about the method.
Here, we repeat the main arguments of the proof and improve the analysis in the following two ways:

(i) We keep track of approximation error during the whole proof in order to be able to apply it
to approximately low rank matrix Qπ

τ ;
(ii) Instead of showing guarantees in ∥ · ∥2→∞ norm, we prove row/column specific guarantees.

Indeed, note that our guarantees do not depend explicitly on the incoherence parameter µ
but instead the guarantee specific to the row vector Ui,: of the singular subspace U , depends
only on its own incoherence parameter, i.e., ∥Ui,:∥2. This enables us to do leverage score
analysis and obtain Theorem 1.

Leave-one-out method is applied to symmetric matrices, so we first redefine our matrices in this
context. For a matrix Qπ ∈ RS×A with SVD Qπ = UΣW⊤ define symmetrizated matrix Md as
follows:

Md =

[
0 Qπ

(Qπ)⊤ 0

]
=

1√
2

[
U U
W −W

]
︸ ︷︷ ︸

U

[
Σ 0
0 −Σ

]
︸ ︷︷ ︸

Σ

1√
2

[
U U
W −W

]⊤
︸ ︷︷ ︸

U⊤

and similarly define symmetrized matrix M from Qπ
τ , ∆ from ∆, M̂d from Q̂π, and E from

E = Q̃π
τ −Qπ

τ . Note that, using this notation, we have M = Md +∆, with rank d′ = 2d matrix
Md and ∥∆∥∞ = ∥∆∥∞, ∥∆∥op = ∥∆∥op. Assume observation matrix is given by M̃ = M +E =

Md +∆+E and note that M̂d = ÛΣ̂Û⊤ and M̂d = M̃ÛÛ⊤. Thus, in order to prove lemma, it is
sufficient to show:

∥Ui,: − Ûi,:(Û
⊤U)∥2 ≲

(√
d′ + κ∥Ui,:∥2

√
S +A

) rmax

1− γ

√
SA√

Tτσd′(M)
log3/2

(
Tτ (S +A)

δ

)
+

√
S +A∥∆∥∞
σd′(M)

+ κ∥Ui,:∥2
∥∆∥op

σd′(M)
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For now, let us assume that ∥E∥op ≤ σd′(M)/32, and prove that such inequality holds for Tτ large
enough (consequence of Proposition 2).

Define M̃d = Md + E. Fix any i ∈ [S + A] and for any matrix A ∈ R(S+A)×n define seminorm:
∥A∥2,i = ∥Ai,:∥2. Now using that U = MdUΣ−1 = (M̃d −E)UΣ−1, we have:

∥U− ÛÛ⊤U∥2,i ≤
∥M̃dU− Û(Û⊤U)Σ∥2,i

σd′(M)
+
∥EU∥2,i
σd′(M)

To bound the numerator of the first term, note that Û(Û⊤U)Σ = ÛÛ⊤MdU = ÛÛ⊤(M̃ −∆−
E)U. Since Û⊤M̃ = Û⊤M̂d = Σ̂Û⊤, we get

ÛÛ⊤UΣ = ÛΣ̂Û⊤U− ÛÛ⊤(E+∆)U

= M̃ÛÛ⊤U− ÛÛ⊤(E+∆)U

= M̃dÛÛ⊤U+∆ÛÛ⊤U− ÛÛ⊤(E+∆)U

= M̃dÛÛ⊤U+∆(ÛÛ⊤U−U) +∆U− ÛÛ⊤(E+∆)U

Consequently, for (⋆) := ∥M̃dU− Û(Û⊤U)Σ∥2,i we have:

(⋆) ≤ ∥Md(U− ÛÛ⊤U)∥2,i + ∥E(U− ÛÛ⊤U)∥2,i + ∥∆(U− ÛÛ⊤U)∥2,i
+ ∥∆U∥2,i + ∥ÛÛ⊤(E+∆)U∥2,i

Throughout the proof we use Davis-Kahan’s inequality (Corollary 2.8 in [8]): if ∥E∥op < (1 −
1/
√
2)σd′(M), then:

∥U− ÛÛ⊤U∥op ≤
2∥E∥op

σd′(M)

Now, similarly to (39) in [37] and using that ∥AB∥2,i ≤ ∥A∥2,i∥B∥op we obtain:

∥Md(U− ÛÛ⊤U)∥2,i ≤ 4∥U∥2,i∥Σ∥op
∥E∥2op

σ2
d′(M)

∥∆(U− ÛÛ⊤U)∥2,i ≤ 2∥∆∥2,i
∥E∥op

σd′(M)

∥∆U∥2,i ≤ ∥∆∥2,i∥U∥op ≤ ∥∆∥2,i

Using these inequalities together with Lemma 3 and ∥E∥op+∥∆∥op

σd′ (M) ≤ 1/16 we obtain:

(⋆) ≤ 2∥∆∥2,i +
9

2
∥U∥2,i

∥Σ∥op

σd′(M)
(∥E∥op + ∥∆∥op) + 2∥E(U− ÛÛ⊤U)∥2,i + ∥EU∥2,i

which in the end gives

∥U− ÛÛ⊤U∥2,i ≤
2

σd′(M)

(
5∥U∥2,i

∥Σ∥op

σd′(M)
(∥E∥op + ∥∆∥op) + ∥EU∥2,i

+ ∥E(U− ÛÛ⊤U)∥2,i + ∥∆∥2,i
)

(9)

Leave-one-out decomposition: Define matrix M̃ (i) as follows:

M̃
(i)
j,k =

{
M̃j,k, if j ̸= i or k ̸= i

Mj,k, otherwise

and let Û(i) denote matrix of d′ dominant singular vectors of M̃ (i). Then, by triangle inequality we
can write:

∥E(U− ÛÛ⊤U)∥2,i ≤ ∥E(U− Û(i)(Û(i))⊤U)∥2,i + ∥E∥op∥Û(i)(Û(i))⊤U− ÛÛ⊤U∥F
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We bound the last term using Lemma 4 to obtain:

∥E(U− ÛÛ⊤U)∥2,i ≤ 2∥E(U− Û(i)(Û(i))⊤U)∥2,i

+ 6
∥E∥op

σd′(M)

(
∥EU∥2,i + 2∥E∥op(∥U∥2,i + ∥U− Û(Û⊤U)∥2,i)

)
(10)

Substituting (10) into (9) we obtain:

∥U− ÛÛ⊤U∥2,i ≤
12

σd′(M)

(
∥U∥2,i

∥Σ∥op

σd′(M)
(∥E∥op + ∥∆∥op) + ∥EU∥2,i

+ ∥E(U− Û(i)(Û(i))⊤U)∥2,i + ∥∆∥2,i
)

Then we apply Proposition 2 on ∥EU∥2,i and ∥E(U−Û(i)(Û(i))⊤U)∥2,i. We use that ∥U∥F ≤
√
d′

and ∥U− Û(i)(Û(i))⊤U∥F ≤ 2
√
d′. Finally, we use that ∥∆∥2,i ≤

√
S +A∥∆∥∞, the fact that

σd′(M) ≥ σd′(Md)− ∥∆∥op ≥ σd′(Md)(1− 1/32)

and thus ∥Σ∥op

σd′ (M) ≤ 2
∥Md∥op

σd′ (Md)
≤ 2κ.

B.4 Rank estimation guarantee

Recall from Section 4.2 and Proposition 1 that, given the singular values (σ̂i)i of our estimates Q̃π
τ ,

we estimate effective rank as follows: d̂ =
∑S∧A

i=1 1{σ̂i ≥ β} with

β =

√
r2maxSA(S +A)

(1− γ)3T
log4

(
(S +A)T

(1− γ)δ

)
+

rmax

√
SA

T

Here we repeat first part of the Proposition 1 and prove it:

Lemma 2. If T satisfies (5), then estimated rank d̂ satisfies d̂ = dπ with probability at least 1− δ.

Proof. By our assumptions σi(Q
π) > 0 only for i ∈ [dπ], and thus ∀i > dπ : σ̂i ≤ ∥Q̃π

τ −Qπ∥op

and ∀i ≤ dπ : σ̂i ≥ σdπ
(Qπ)− ∥Q̃π

τ −Qπ∥op. Recall that E = Q̃π
τ −Qπ

τ and ∆ = Qπ
τ −Qπ , and

thus:

∥Q̃π
τ −Qπ∥op ≤ ∥E∥op + ∥∆∥op

We bound the second term by ∥∆∥op ≤
√
SA∥∆∥∞ and use that ∥∆∥∞ ≤ rmax

T from Lemma 1. The
first term is upper bounded by Proposition 2. Combining the two, we obtain that ∥Q̃π

τ −Qπ∥op ≤ β
with high probability. Thus, for 2β ≤ σdπ

(Qπ) we are guaranteed to recover the true rank dπ , since
then ∀i ∈ [dπ]:

σ̂i ≥ σdπ (Q
π)− ∥Q̃π

τ −Qπ∥op ≥ 2β − β ≥ β

It is straightforward to check that, if

T = Ω

(
r2maxSA(S +A)

(1− γ)3σ2
d(Q

π)
log4

(
(S +A)T

(1− γ)δ

))
then first term in definition of β is ≤ σdπ (Q

π)/4, and similar conclusion hold for the second term
after noting that rmax

√
SA

σdπ (Qπ) (S +A) ≥ 1.

B.5 Technical lemmas from the proof of Theorem 4

In this section we shortly present concentration results used in the proof of Theorem 4. We refer reader
to Section F.2 for discussion about equivalent noise model and Poisson approximation. Concentration
inequalities proposed are fairly standard (see for example [8]), but as discussed in [37] because
of the sampling pattern, entries of the matrix E are slightly dependent. A way to deal with these
dependencies has been discussed in [37], and we refer to the results from that paper here directly.
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Proposition 2. Let B be a (S +A)× 2d matrix independent of E. Then, we have for all δ ∈ (0, 1),
for all Tτ ≳ (S +A) log3 ((S +A)/δ), both events:

∥E∥op ≲
rmax

1− γ

√
SA

Tτ

√
S +A log3/2

(
Tτ (S +A)

δ

)

∀i ∈ [S +A] : ∥Ei,:B∥op ≲
rmax

1− γ
∥B∥F

√
SA

Tτ
log3/2

(
Tτ (S +A)

δ

)
hold with probability at least 1− δ.

Proof. Follows straightforwardly from proofs of Propositions 26 and 27 in [37] and using noise
equivalent model from Section F.2. Note that we keep the variance term upper bounded by ∥A∥2F
in the proof of Proposition 27 as in [37], and make use of inequality ∥B∥2→∞ ≤ ∥B∥F to obtain
dependence on ∥B∥F in the second inequality.

Lemma 3. If ∥E∥ ≤ σd′(M)/32, then for every i:

∥ÛÛ⊤(E+∆)U∥2,i ≤ 4
∥E∥op + ∥∆∥op

σd′(M)

(
∥U∥2,i∥Σ∥op + ∥∆∥2,i

+ ∥EU∥2,i + ∥M̃(U− ÛÛ⊤U)∥2,i
)

Proof. Under condition ∥E∥ ≤ σd′(M)/32 we have σd′(M̃) ≥ σd′(M)−∥E∥ ≥ σd′(M)/2. Thus,
we have:

∥ÛÛ⊤(E+∆)U∥2,i = ∥M̂dÛΣ̂−1Û⊤(E+∆)U∥2,i = ∥M̃ÛΣ̂−1Û⊤(E+∆)U∥2,i

≤ ∥M̃Û∥2,i∥Σ̂−1∥op∥Û⊤∥op∥E+∆∥op∥U∥op ≤ ∥M̃Û∥2,i
∥E+∆∥op

σd′(M̃)

≤ 2
∥E∥op + ∥∆∥op

σd′(M)
∥M̃Û∥2,i (11)

Using Davis-Kahan’s inequality [8] we have:

∥M̃Û∥2,i = ∥M̃Ûsgn(Û⊤U)∥2,i
≤ ∥M̃ÛÛ⊤U∥2,i + ∥M̃Û∥2,i∥sgn(Û⊤U)− Û⊤U∥op

≤ ∥M̃ÛÛ⊤U∥2,i + 16∥M̃Û∥2,i
∥E∥2

σd′(M)2

≤ ∥M̃ÛÛ⊤U∥2,i +
∥M̃Û∥2,i

2

implying that ∥M̃Û∥2,i ≤ 2∥M̃ÛÛ⊤U∥2,i. Furthermore, we have:

∥M̃ÛÛ⊤U∥2,i ≤ ∥M̃U∥2,i + ∥M̃(U− ÛÛ⊤U)∥2,i
≤ ∥U∥2,i∥Σ∥op + ∥(E+∆)U∥2,i + ∥M̃(U− ÛÛ⊤U)∥2,i

where we have used that MU = UΣ. Substituting this expression back into (11) finishes the
proof.

Lemma 4. Under assumptions ∥∆∥op ≤ σd′(M)/32 and ∥E∥op ≤ σd′(M)/32, we have with high
probability for every i:

∥Û(i)(Û(i))⊤U− ÛÛ⊤U∥F ≤
6

σd′(M)

(
∥EU∥2,i + ∥E(U− Û(i)(Û(i))⊤U)∥2,i

+ 2∥E∥op(∥U∥2,i + ∥U− Û(Û⊤U)∥2,i)
)
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Proof. Proof follows similar steps as Step 2.2 in the proof of Theorem 4.2 in [8], but we repeat it
here for the sake of completeness and focus on differences in the proof caused by ∆ matrix. First,
we use that U is an orthogonal matrix (∥U∥op = 1) and Davis-Kahan’s inequality to obtain:

∥Û(i)(Û(i))⊤U− ÛÛ⊤U∥F ≤ ∥Û(i)(Û(i))⊤ − ÛÛ⊤∥F ≤ 2
∥(M̃ − M̃ (i))Û(i)∥F

σd′(M̃ (i))− σd′+1(M̃ (i))

Note that under the assumption ∥∆∥op ≤ σd′(M) analysis of singular values stays the same as in [8],
since, for example:

σd′(M̃ (i)) ≥ σd′(M)− ∥E(i)∥op ≥ σd′(M)

(
1− 1

32

)
σd′+1(M̃

(i)) ≤ σd′+1(M) + ∥E(i)∥op ≤ ∥∆∥op + ∥E∥op ≤ σd′(M)/16

Thus, we can lower bound denominator in the inequality above by σd′(M)/2. Now, term in the
numerator can be written as:

(M̃ − M̃ (i))Û(i) = Ei,:Û
(i) + (E:,i −Ei,iei)Û

(i)
i,:

and bounded in the same way as in [8]:

∥(M̃ − M̃ (i))Û(i)∥F ≤ ∥EÛ(i)∥2,i + ∥E:,i −Ei,iei∥2∥Û(i)∥2,i
≤ ∥EÛ(i)∥2,i + 2∥E∥op∥Û(i)((Û(i))⊤U)∥2,i

where we used that ∥((Û(i))⊤U)−1∥2 ≤ 2 under our assumptions. Finally, we obtain:

∥ÛÛ⊤U− Û(i)(Û(i))⊤U∥F ≤
4

σd′(M)
(∥EÛ(i)∥2,i + 2∥E∥op∥Û(Û⊤U)∥2,i

+ 2∥E∥op∥ÛÛ⊤U− Û(i)(Û(i))⊤U∥F)

and under condition ∥E∥op ≤ σd′(M)/32 we obtain result claimed in the lemma.

B.6 Nuclear norm minimization for leverage scores estimation

The authors of [34] leveraged the guarantees for nuclear norm minimization from [9] to learn Q
matrices. However, several factors make the application of nuclear norm minimization theoretically
challenging in our context:

• Approximate low-rank structure. As our algorithm is based on policy iteration, our
estimates Qπ

τ are only approximately low-rank. The result from [9] rely on non-convex opti-
mization, leaving it unclear how this approximation error affects the final guarantees of the
algorithm. In contrast, a more straightforward analysis using singular value decomposition
allows us to explicitly express our bounds in terms of the approximation error.

• Coherence-free subspace recovery. In our subspace recovery result (Theorem 4), we can
bound the subspace error ∥Ui,: − Ûi,:OÛ∥2 in relation to ∥Ui,:∥2. It is uncertain whether
current guarantees for nuclear norm minimization can achieve a similar outcome, which
might instead depend on maxi∈[S] ∥Ui,:∥2. We believe this would introduce dependency on
the incoherence constant into the sample complexity of our algorithm.
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C Leveraged Matrix Estimation Analysis

In this appendix, we provide the proof of Theorem 2 corresponding to sample complexity guarantee
enjoyed by LME. First, we provide the pseudo-code of LME:

Algorithm 2: Leverage Matrix Estimation (LME)
Input: Deterministic policy π, sampling budget T
Set T1 ← T/2, T2 ← T/2

Set ϵ = rmax

T , τ ← 1
(1−γ) log

(
T

1−γ

)
as in (1)

(Phase 1). Leverage Scores Estimation:
(Phase 1a.) Data Collection & Emprirical Truncated Value matrix.
Sample uniformly at random T1/(τ + 1) trajectories of length τ + 1 using policy π and
gather them in D

Use the collected dataset D, to construct Q̃π
τ as in (2)

(Phase 1b.) Singular Subspace Recovery
Set the threshold β as in (4)
Compute the SVD of Q̃π

τ and threshold with β as described in (3) to obtain d̂, Û , Ŵ and Q̂π

(Phase 1c.) Leverage Scores.
Set the left (resp. right) leverage scores ℓ̂ ( resp. ρ̂) as described in (6).

(Phase 2.) CUR-based Matrix Estimation with Leverage.
(Phase 2a.) Data Collection with Leverage & Empirical Truncated Value Matrix:
Set K ← 64d̂ log(64d̂/δ)
Sample K rows (resp. columns) I ⊂ S (resp. J ⊂ A) without replacement according to the

leverage scores ℓ̂ (resp. ρ̂)
Set N1 ← T2

2(τ+1)K2 , N2 ← T2

2(τ+1)(K(S+A)−2K2)

For all (s, a) ∈ Ω□ (resp. (s, a) ∈ Ω+) sample N1 (resp. N2) trajectories of length τ + 1
using policy π and construct the

empirical estimate Q̃π
τ (s, a) based on these trajectories

(Phase 2b. CUR-based Matrix estimation)
Set the matrices L and R as in (7)
Construct Q̂π using a CUR-based approach as in (8)

Output: Q̂π .

C.1 Proof of Theorem 2

Before showing the proof of Theorem 2 we present two intermediate results used in the proof. As an
immediate consequence of Hoeffding’s inequality we have:
Lemma 5. With probability at least 1− δ we have ∀(s, a) ∈ (I × A) ∪ (S × J ):

|Q̃π
τ (s, a)−Qπ(s, a)| ≤ rmax

1− γ

√
2

N
log

(
4K(S +A)

δ

)
+ ∥Qπ

τ −Qπ∥∞

where N = N1 if (s, a) ∈ Ω□ or N = N2 if (s, a) ∈ Ω+.
Theorem 5. Let I and J be such that |I|, |J | = K, and Qπ(I,J ) has rank d. Assume that for
some ε□, ε+ > 0:

a) ∀(s, a) ∈ I × J : |Q̃π
τ (s, a)−Qπ(s, a)| ≤ ε□, and

b) ∀(s, a) ∈ (I × A) ∪ (S × J ) \ (I × J ) : |Q̃π
τ (s, a)−Qπ(s, a)| ≤ ε+.

If ε□ ≤ 1
8cIcJ

σd(Q
π)√

SA
log−2

(
S+A
δ

)
, ε+ ≤ ∥Qπ∥∞ and K ≥ 64d log(64d/δ), then with probability

≥ 1− δ:

∥Q̂π −Qπ∥∞ ≲ ∥Qπ∥∞ε+

√
SA

σd(Qπ)
log2

(
S +A

δ

)
+ ∥Qπ∥2∞ε□

SA

σ2
d(Q

π)
log4

(
S +A

δ

)
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Proof of Theorem 5 is deferred to C.2.

Proof of Theorem 2. First, by Theorem 1 we require at least

T ≳
r2max

(1− γ)3∥Qπ∥2∞
κ2(S +A)

∥Qπ∥2∞SA

σ2
d(Q

π)
log4

(
(S +A)T

(1− γ)δ

)
(12)

number of samples to recover leverage scores of Qπ. During the whole proof of Theorem 2 we
condition on the event where Theorem 1 holds.

Recall that we use N1 = T
4(τ+1)K2 , N2 = T

4(τ+1)(K(S+A)−2K2) and define the following quantities:

ε□ =
rmax

1− γ

√
8

N1
log

(
4K(S +A)

δ

)
, ε+ =

rmax

1− γ

√
8

N2
log

(
4K(S +A)

δ

)
.

Note that by definitions of N1 and N2 we have that ε□ = ε+

√
K

S+A−2K . Next, recall that ∥Qπ
τ −

Qπ∥∞ is upper-bounded by rmax

T from (1). Combining this with Lemma 5 and our definition of
ε□, ε+ we can see that the conditions a) and b) of Theorem 5 are met.

Hence, by Theorem 5 we obtain that ∥Q̂π −Qπ∥∞ ≤ ε if:

ε+ ≲
ε

∥Qπ∥∞
√
SA

σd(Qπ) log
2
(
S+A
δ

) (
1 + ∥Qπ∥∞

√
SA

σd(Qπ) log
2
(
S+A
δ

)√
K

S+A−2K

)
Setting ε+ to be equal to this value we obtain that is sufficient to have:

N2 ≳
r2max

ε2(1− γ)2
∥Qπ∥2∞SA

σ2
d(Q

π)

(
1 +
∥Qπ∥2∞SA

σ2
d(Q

π)

K

S +A− 2K
log4

(
S +A

δ

))
log5

(
d(S +A)

δ

)
Using definition of N2 and rewriting inequality above in terms of T gives the following condition:

T ≳
r2maxd

(1− γ)3ε2
∥Qπ∥2∞SA

σ2
d(Q

π)

(
S +A+ d

∥Qπ∥2∞SA

σ2
d(Q

π)
log5

(
S +A

δ

))
log7

(
(S +A)T

δ(1− γ)

)
Combining this with condition (12) and using the fact that ∥Qπ∥2

∞SA

σ2
d(Q

π)
≤ κ2α2d gives the final

condition:

T = Ω̃δ

[
r2maxκ

2α2 d(S +A)

(1− γ)3

(
κ2

∥Qπ∥2∞
+

d

ε2
+

d2α2κ2

(S +A)ε2

)]
Finally we verify that ε□ and ε+ satisfy conditions from Theorem 5. Note that ∥Qπ∥∞

√
SA

σd(Q) ≥
∥Qπ∥∞

√
SA

∥Qπ∥F
≥ 1, as well as log2

(
S+A
δ

)
≥ 1 for any δ ∈ (0, 1). Thus we obtain that ε+ ≲ ε and

thus, in order to have ε+ ≲ ∥Qπ∥∞ it is sufficient to assume that ε ≲ ∥Qπ∥∞. Using the same
reasoning we have:

ε□ ≲ ε+

√
K

S +A
≲ ε

σd(Q
π)

∥Qπ∥∞
√
SA log2

(
S+A
δ

)√ K

S +A
≲

σd(Q
π)√

SA
log−2

(
S +A

δ

)
whenever ε ≲ ∥Qπ∥∞ and S +A ≳ K.

C.2 Proof of Theorem 5

Note that (LQ̃π
τ (I,J )R)† ̸= R†(Q̃π

τ (I,J ))†L† in general, and thus our estimation is different from
Q̃π

τ (s,J )(Q̃π
τ (I,J ))†Q̃π

τ (I, a) used in [35]. However, weighting estimates by inverse leverage
scores as proposed in Section 4.3 still provides unbiased estimates, in the following sense:
Lemma 6. Assume that |I|, |J | = K and rank(Qπ) = d. Then:

∀(s, a) ∈ S ×A : Qπ(s, a) = Qπ(s,J )R(LQπ(I,J )R)†LQπ(I, a)
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Proof of Theorem 5. The proof follows from the proof of Proposition 13 of [35], to which we refer
the reader for a more detailed exposition. Based on Lemma 6 and following the proof of Proposition
13 in [35] (see (22) and (23) in [35]), we have ∀(s, a) ∈ S ×A and (∗) := |Q̂π(s, a)−Qπ(s, a)|:

(∗) ≤
√
2∥(LQ̃π

τ (I,J )R)†∥op∥L(Q̃π
τ (I, a)Q̃π

τ (s,J )−Qπ(I, a)Qπ(s,J ))R∥F

+ ∥(LQ̃π
τ (I,J )R)† − (LQπ(I,J )R)†∥op∥LQπ(I, a)Qπ(s,J )R∥F (13)

We will repeatedly use result from Lemma 8 and condition on the event when given bounds on
∥L∥op and ∥R∥op hold. We begin by bounding the first term in (13). Using the assumption that
∀(s, a) ∈ I × J : |Q̃π

τ (s, a)−Qπ(s, a)| ≤ ε□ we obtain:

∥L(Q̃π
τ (I,J )−Qπ(I,J ))R∥op ≤ ∥L∥opK∥Q̃π

τ (I,J )−Qπ(I,J )∥∞∥R∥op

≤ cIcJ ε□
√
SA log2

(
S +A

δ

)
.

Combining this inequality with our assumption on ε□ and Corollary 2 with η = 1/4 gives:

∥(LQ̃π
τ (I,J )R)†∥op =

1

σd(LQ̃π
τ (I,J )R)

≤ 1

σd(LQπ(I,J )R)− ∥L(Q̃π
τ (I,J )−Qπ(I,J ))R∥op

≤ 8

σd(Qπ)

Second term in (13) can be bounded as follows:

∥L(Q̃π
τ (I, a)Q̃π

τ (s,J )−Qπ(I, a)Qπ(s,J ))R∥F

≤ ∥L∥op∥Q̃π
τ (I, a)Q̃π

τ (s,J )−Qπ(I, a)Qπ(s,J )∥F∥R∥op

and then use that:

∥Q̃π
τ (I, a)Q̃π

τ (s,J )−Qπ(I, a)Qπ(s,J )∥F ≤
√
|I||J |(2ε+∥Qπ∥∞ + ε2+)

Combining this result with Lemma 8 we get:

∥L(Q̃π
τ (I, a)Q̃π

τ (s,J )−Qπ(I, a)Qπ(s,J ))R∥F ≤ cIcJ (2∥Qπ∥∞ε+ + ε2+)
√
SA log2

(
S +A

δ

)
Similarly to the proof of Proposition 13 in [35], we bound the third term from 13 using inequality
∥B† −A†∥op ≤ 1+

√
5

2 min{∥A†∥2op, ∥B†∥2op}∥B −A∥op as follows:

∥(LQ̃π
τ (I,J )R)† − (LQπ(I,J )R)†∥op ≤ 64cIcJ

ε□
σ2
d(Q

π)

√
SA log2

(
S +A

δ

)
And the last term from (13) can be bounded as follows:

∥LQπ(I, a)Qπ(s,J )R∥F ≤ ∥L∥op∥Qπ(I, a)Qπ(s,J )∥F∥R∥op

≤ cIcJ
√
SA∥Qπ∥2∞ log2

(
S +A

δ

)
where we used that ∥Qπ(I, a)Qπ(s,J )∥F ≤ K∥Qπ∥2∞.

Combining all derived inequalities we obtain:

∥Q̂π −Qπ∥∞ ≤ 8cIcJ (2∥Qπ∥∞ε+ + ε2+)

√
SA

σd(Qπ)
log2

(
S +A

δ

)
+ 64c2Ic

2
J

SA

σd(Qπ)2
ε□∥Qπ∥2∞ log4

(
S +A

δ

)
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Proof of Lemma 6. First, define matrices DU ,DW ∈ RK×d by DU = LUI,: and DW = RWJ ,:,
and note that DU and DW are not orthogonal. However, we claim and prove in the end of this proof
that:

(DUΣD⊤
W )† = (D⊤

W )†Σ−1D†
U (14)

Moreover, since DU and DW have full column rank, we have that D†
UDU = Id×d and D⊤

W (D⊤
W )† =

Id×d. Thus we have ∀(s, a) ∈ S ×A:

Qπ(s,J )R(LQπ(I,J )R)†LQπ(I, a) = e⊤s UΣD⊤
W (DUΣD⊤

W )†DUΣW
⊤ea

= e⊤s UΣ(D⊤
W (D⊤

W )†)Σ−1(D†
UDU )ΣW

⊤ea

= e⊤s UΣW⊤ea = Qπ(s, a)

Now we proceed with proving (14) following similar argument as in Lemma 1 in [14]. Let SVD of
DU and DW be given by DU = UDU

ΣDU
W⊤

DU
and DU = UDW

ΣDW
W⊤

DW
. First, we use that UDU

and UDW
are orthogonal matrices to get:

(DUΣD⊤
W )† = (UDU

ΣDU
W⊤

DU
ΣWDW

ΣDW
U⊤
DW

)†

= UDW
(ΣDU

W⊤
DU

ΣWDW
ΣDW

)†U⊤
DU

Since DU and DW are matrices with full column rank, all matrices inside of the pseudoinverse are
of size d× d and full rank. Thus, their product is as well full rank and replacing pseudoinverse by
inverse we obtain:

(DUΣD⊤
W )† = UDW

Σ−1
DW

W⊤
DW

Σ−1WDU
Σ−1

DU
U⊤
DU

= (D⊤
W )†Σ−1D†

U

C.3 Concentration results for the proof of Theorem 5

Lemma 7. Assume that p is a probability measure on S such that pi ≥ η
∥Ui,:∥2

2

d for all i ∈ [S] and
some η ∈ [0, 1]. Let I be a set obtained by sampling K entries of S according to p i.e. for any
i ∈ [S] : i ∈ I with probability min{1,Kpi}. Define diagonal matrix L with entries 1

min{1,
√
Kpi}

for i ∈ I and matrix DU ∈ RK×d given by DU = LUI,:. Then, for any δ ∈ (0, 1):

∥D⊤
UDU − Id×d∥op ≤ 2

√
d

Kη
log

(
2d

δ

)
holds with probability at least 1− δ whenever K ≥ 4d

9η log(2d/δ).

Proof. First we argue that case pi >
1
K is simple. Denote by S+ states for which pi ≤ 1

K . Then, we
have:

∥D⊤
UDU − Id×d∥op = ∥U⊤

I,:L
2UI,: − U⊤U∥op

=

∥∥∥∥∥∥
∑

i∈I∩S+

δi(Z
(i))⊤Z(i)L2

i,i −
∑
i∈S+

(Z(i))⊤Z(i)

∥∥∥∥∥∥
op

,

where Z(i) are obtained from U by zeroing all rows except i-th, and δi’s are i.i.d. Bernoulli(Kpi) for
i ∈ S+. Now we can rewrite the first term:∑

i∈S+

δ2i (Z
(i))⊤Z(i)L2

i,i =
∑
i∈S+

1

Kpi
δiU

⊤
i,:Ui,:,

and take expectation over δi’s to get E
[∑

i∈S+
δ2i (Z

(i))⊤Z(i)L2
i,i

]
=
∑

i∈S+
(Z(i))⊤Z(i).

Now, define X(i) = (δi −Kpi)
1

Kpi
U⊤
i,:Ui,: for i ∈ S+. Note that:

∥X(i)∥op ≤
1

Kpi
∥Ui,:∥22 ≤

d

Kη
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by our assumption on p. Moreover, using that Var(δi) = Kpi(1−Kpi) ≤ Kpi we have:

E

∑
i∈S+

X(i)(X(i))⊤

 =
∑
i∈S+

E(δi −Kpi)
2 1

K2p2i
∥Ui,:∥22U⊤

i,:Ui,: ≤
d

Kη

∑
i∈S+

U⊤
i,:Ui,:

implying that ∥E[
∑

i∈[S] X
(i)(X(i))⊤]∥op ≤ d

Kη . Finally, noting that X(i) are symmetric matrices
∀i, we apply matrix Bernstein inequality to obtain:

P(∥D⊤
UDU − Id×d∥op ≥ t) = P

∥∥∥ ∑
i∈[S]

X(i)
∥∥∥

op
≥ t

 ≤ 2d exp

(
−Kη

2d

t2

1 + t
3

)
Setting right hand side equal to δ finishes the proof.

Corollary 2. If anchor states of size at least K ≥ 16d
η log(4d/δ) are chosen according to Lemma 7,

we have with probability ≥ 1− δ:

σd(LQ
π(I,J )R) = σd(DUΣD⊤

W ) ≥ σd(DU )σd(Q
π)σd(DW ) ≥ 1

4
σd(Q

π)

Note that we could use inequality above since DU and DW have full column rank.
Lemma 8. Consider setting of Lemma 7. Then there exist universal constants cI , cJ > 0 such that
with probability at least 1− δ:

∥L∥op ≤ cI

√
S

K
log

(
S

δ

)
, ∥R∥op ≤ cJ

√
A

K
log

(
A

δ

)

Proof. We note that if Li,i = 1 (i.e. Kpi ≥ 1), then obviously the inequality above holds for
S ≥ K, and thus we consider only cases where Li,i =

1√
Kpi

. Now, note that ∥L∥op = ∥Lext∥op,

where Lext =
∑S

i=1 δi
1√
Kpi

eie
⊤
i , and where δi are i.i.d. Bernoulli(Kpi). Next, we have:

E[δi 1√
Kpi

eie
⊤
i ] =

√
Kpieie

⊤
i , and thus:

∥ELext∥op =
√
Kmax

i
pi ≤

√
K

Define Y (i) = (δi −Kpi)
1√
Kpi

eie
⊤
i . We have E[Y (i)(Y (i))⊤] = (1 −Kpi)eie

⊤
i , and hence the

variance term in matrix Bernstein is upper bounded by 1. Lastly by our assumption on p we have for
all i ∈ [S]:

∥Y (i)∥op ≤
1√
Kpi

≤ c

√
S

K

By matrix Bernstein we obtain:

P(∥Lext − ELext∥op ≥ t) = P

∥∥∥ ∑
i∈[S]

Y (i)
∥∥∥

op
≥ t

 ≤ 2S exp

− t2

2

1 + t c3

√
S
K


Equating last term with δ and using that S,A≫ d we obtain statement of the lemma.
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D Sample Complexity Analysis of LoRa-PI

In this appendix, we present the proof of Theorem 3. It is a direct consequence of the performance
guarantee of LME (see Theorem 2) and an error bound on approximate policy iteration, which we
provide in this appendix (see Lemma 9).

D.1 Proof of Theorem 3

Proof of Theorem 3. To start with, we first observe that, according to Lemma 9, LoRa-PI outputs π̂
with ∥V ⋆ − V π̂∥∞ ≤ ε, if it holds that

(i) γt−1∥V ⋆ − V π(1)

∥∞ ≤
2rmaxγ

(Nepochs)

1− γ
≤ ε

2

(ii) ∥Q̂(t) −Q(t)∥∞ ≤
(1− γ)2ε

4
, ∀t ∈ [Nepochs]

where we introduce the notation Q(t) := Qπ(t)

as a shorthand. Now, we note that condition (i) is
satisfied if

Nepochs =

⌈
1

1− γ
log

(
4rmax

(1− γ)ε

)⌉
which is already as chosen in LoRa-PI. Now, in order for (ii) to hold we use Theorem 2. We define
the events:

Et =
{
∥Q̂(t) −Q(t)∥∞ ≤

(1− γ)2ε

4

}
We show that ∩t∈[Nepochs]Et holds with high probability. To that end, it is sufficient to analyse for each
t ∈ [Nepochs], the event Ect conditionally on the event that (∩k∈[t−1]Ek) holds. Indeed, by using the
elementary inequality P(Ec ∪ Bc) ≤ P(Ec|B) + P(Bc) in a recursive manner, we can write

P((∩t∈[Nepochs]Et)
c) = P(∪t∈[Nepochs]E

c
t ) ≤

∑
t∈[Nepochs]

P(Ect | ∩k∈[t−1] Ek) (15)

We will show that for all t ∈ [Nepochs], P(Ect | ∩k∈[t−1] Ek) ≤ δ/Nepochs, which would entail that
P((∩t∈[Nepochs]Et)c) ≤ δ and ensure that ∥V ⋆ − V π̂∥∞ ≤ 1− ε holds with probability at least 1− δ.

Let t ∈ [Nepochs]. Note that by using Theorem 2, we can immediately show that P(Ect | ∩k∈[t−1] Ek) ≤
δ/Nepochs provided that

T

Nepochs
= Ω̃

(
r2maxκ

4α2d2
(
(S +A) + α2d

)
(1− γ)7ε2

log10
(
Nepochs

δ

))
which entails, by definition of Nepochs as chosen in LoRa-PI, an equivalent sample complexity to

T = Ω̃

(
r2maxκ

4α2d2
(
(S +A) + α2d

)
(1− γ)8ε2

log10
(

1

(1− γ)δ
log

(
rmax

(1− γ)ε

))
log

(
rmax

(1− γ)ε

))

= Ω̃

(
r2maxκ

4α2d2
(
(S +A) + α2d

)
log10(e/δ) log(e/ε)

(1− γ)8ε2

)

where we emphasize that Ω̃(·) may hide poly-log dependencies on S, A, (1− γ)−1, d, κ, α, rmax,
log(e/ε), log(e/δ). This the desired sample complexity in Theorem 3.

Note that Theorem 2 also requires that

(1− γ)2ε

4
≤ ∥Q(t)∥∞ (16)
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We show that this is satisfied by the condition ε ≲ ε. First, we show that under this condition, we
have ∥Q(1)∥ ≤ 2∥Q(t)∥∞. Using Lemma 10, and conditionally on the event ∩k∈[t]Ek holding, we
have that for all k < t,

T ⋆(V (k)) ≤ V (k+1) +
2ϵ

1− γ
1 ≤ T ⋆

(
V (k+1) +

2ε(k)

1− γ
1

)
≤ T ⋆(V (k+1)) +

2γϵ

1− γ

where ϵ = (1−γ)2ε
4 , implying, in particular, that

∥Q(k)∥∞ ≤ ∥Q(k+1)∥∞ +
2γ(1− γ)ε

2
.

Summing the above inequalities from 1 to t− 1, together with the fact that t− 1 ≤ Nepochs, gives

∥Q(1)∥∞ ≤ ∥Q(t)∥∞ +
γ(1− γ)(t− 1)ε

2
≤ ∥Q(t)∥∞ +

γε

2
log

(
4rmax

(1− γ)2ε

)
.

In view of this inequality, we note that 2∥Q(t)∥∞ ≥ ∥Q(1)∥∞, if

γε log

(
4rmax

(1− γ)2ε

)
≤ ∥Q(1)∥∞

We can verify that the above condition is implied by:

1

ε
≥ 4γ

∥Q(1)∥∞
log

(
16γrmax

(1− γ)2∥Q(1)∥∞

)
⇐⇒ ε ≤ ∥Q(1)∥∞

2γ log
(

16γrmax

(1−γ)2∥Q(1)∥∞

) (17)

where we used the elementary fact x ≥ 2a log(2a) + 2b =⇒ x ≥ a log(x) + b for all a, b > 0.

Thus, from (17) we conclude that the condition on ε, (16), is satisfied if the following condition
holds:

ε ≤ min

1,
1

2γ log
(

16γrmax

(1−γ)2∥Q(1)∥∞

)
 ∥Q(1)∥∞.

This is the desired condition on ε in Theorem 3. With this we have concluded the proof.

D.2 Error Bound for Approximate Policy Iteration

The following result, a standard variant of Proposition 6.2 in [4], shows that the described approximate
policy iteration is guaranteed to converge within an ϵ-accuracy.

Lemma 9. Let (π(t))t≥1 be a sequence of deterministic policies selected recursively as described in
LoRa-PI, and denote V (t) = V π(t)

for all t ≥ 1. Let ϵ > 0 and suppose that for all t ≥ 1, it holds
that

∥Q̂(t) −Q(t)∥∞ ≤ ϵ.

Then, for all t ≥ 1, we have

∥V ⋆ − V (t+1)∥ ≤ γt∥V ⋆ − V (1)∥∞ +
2ϵ

(1− γ)2
.

The proof of Lemma 9 follows standard arguments, but we provide it for completeness.

Lemma 10. Let π be a deterministic policy, and assume that ∥Q̂π −Qπ∥∞ ≤ ϵ. Assume that policy
π′ is selected greedily with respect to Q̂π , i.e., for all s ∈ S, π′(s) = argmaxa∈A Q̂π(s, a), then

V π ≤ T ⋆(V π) ≤ V π′
+

2ϵ

1− γ
1.
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Proof of Lemma 10. Before we proceed with the proof, let us define the composition of a determinis-
tic policy π′′ and a Qπ function, π′′ ◦Qπ(s) := Qπ(s, π′′(s)). We know that

V π = π ◦Qπ ≤ max
π′′

π′′ ◦Qπ = T ⋆(V π)

where ≤ is applied component-wise. Next, we have

V π ≤ T ⋆(V π) = max
π′′

π′′ ◦Qπ ≤ max
π′′

π′′ ◦ Q̂π +max
π′′

π′′ ◦ (Qπ − Q̂π)

≤ π′ ◦ Q̂π + ϵ1

≤ π′ ◦Qπ + π′ ◦ (Q̂π −Qπ) + ϵ1

≤ π′ ◦Qπ + 2ϵ1

≤ Tπ′(V π) + 2ε1

where Tπ is the Bellman policy evaluation operator. By monotonicity of the operator Tπ, we can
re-iterate

Tπ′(V π) ≤ Tπ′(Tπ′(V π) + 2ϵ1) ≤ T 2
π′(V π) + 2γϵ1.

Thus, we finally obtain

V π ≤ T ⋆(V π) ≤ T k+1
π′ (V π) + 2ϵ

(
k∑

t=0

γt

)
1.

Taking k →∞, we get

V π ≤ T ⋆(V π) ≤ Tπ′(V π) + 2ϵ1 ≤ V π′
+

2ϵ

1− γ
1.

Proof of Lemma 9. We start by noting that, thanks to Lemma 10, we have: for all t ≥ 1,

V (t+1) +
2ϵ

1− γ
1 ≥ T ⋆(V (t)),

where ≥ is applied component-wise. Thus, applying this inequality recursively we obtain

V (t+1) +
2ϵ

1− γ
1 ≥ T ⋆

(
V (t) +

2ϵ

1− γ
1

)
− 2ϵγ

1− γ
1

≥ (T ⋆)2
(
V (t−1)

)
− 2ϵγ

1− γ
1

≥ (T ⋆)t(V (1))− 2ϵ

1− γ

(
t−1∑
k=1

γk

)
1

≥ (T ⋆)t(V (1))− 2ϵ(1− γt)

(1− γ)2
1+

2ϵ

1− γ
1,

which gives at the end

V (t+1) ≥ (T ⋆)(t)(V (1))− 2ϵ(1− γt)

(1− γ)2
1

Thus, we have

V ⋆ − V (t+1) ≤ V ⋆ − (T ⋆)t(V (1)) +
2ϵ(1− γt)

(1− γ)2
1 ≤ (T ⋆)t(V ⋆)− (T ⋆)t(V (1)) +

2ϵ(1− γt)

(1− γ)2
1

Thus, using the contraction property of T ⋆, and that 1− γt ≤ 1, we have

∥V ⋆ − V (t+1)∥∞ ≤ ∥(T ⋆)t(V ⋆)− (T ⋆)t(V (1))∥∞ +
2ϵ

(1− γ)2
≤ γt∥V ⋆ − V (1)∥∞ +

2ϵ

(1− γ)2
.
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E Extension of Guarantees to Approximately-Low Rank MDPs

We consider the setting where the matrix Qπ is approximately low rank. Specifically, we define a
constant ζd such that ζd = ∥Qπ(s, a)−Qπ

d (s, a)∥∞, where Qπ
d is the best d-rank approximation of

Qπ in the operator norm. Note that ζd ≤ σd+1(Q
π) ≤

√
SAζd. In contrast to Theorem 4, where the

additional perturbation term ∆ arises from a controllable quantity (through roll-out length τ ), here
we assume that ζd is fixed in advance and unknown. For simplicity, we omit terms stemming from
the ∆ perturbation, but the results still hold in that setting. Here, we show that if:

ζd = Õ

(
σd(Q

π)min

{ √
d

S +A
,

1

κ
√
SA

})
(A+)

we can obtain similar guarantees for ∥V ⋆ − V π̂∥∞ as in Theorem 3 even in the approximate low
rank setting, with an additive error scaling with Õ( 1

1−γ ζddκ
2α2). Next, we show that our three main

theorems still hold in this setting.

Theorem 1: Leverage scores estimation. We can repeat the arguments from the proof of Theorem
4 to obtain, with high probability, ∀s ∈ [S]:

∥Us,: − Ûs,:OÛ∥2 = Õ

(
ᾱ

(√
d

Tτ
+ κ∥Us,:∥2

√
S +A

Tτ

)
+

ζd
√
S +A

σd(Qπ)
+ κ∥Us,:∥2

σd+1(Q
π)

σd(Qπ)

)
if Tτ = Ω̃

(
ᾱ2(S +A)

)
, and σd+1(Q

π) ≤ σd(Q
π)/64. New terms are highlighted in blue in the

inequality above. A similar inequality holds for the rows of the matrix of right singular vectors W .

Under Assumption A+ and using that σd+1(Q
π) ≤

√
SAζd, we have:

ζd
√
S +A

σd(Qπ)
= Õ

( √
d√

S +A

)
, and κ∥Us,:∥2

σd+1(Q
π)

σd(Qπ)
= Õ (∥Us,:∥2)

indicating that the contributions of the two newly added terms are negligible for leverage score
estimation and that Theorem 1 still holds in this setting.

Theorem 2: Complete matrix estimation. Theorem 5 holds with the same arguments. Instead of
Lemma 5, we have that with high probability: ∀(s, a) ∈ (I × A) ∪ (S × J ):

|Q̃π
τ (s, a)−Qπ(s, a)| ≤ rmax

1− γ

√
2

N
log

(
4K(S +A)

δ

)
+ ζd

Note that our conditions on ζd and σd+1(Q
π) ensure that the conditions on ε□ and ε+ in Theorem 5

(ε□ ≲ σd(Q
π)√

SA
log−2

(
S+A
δ

)
, ε+ ≲ ∥Qπ∥∞) still hold, as:

ζd = Õ

(√
dσd(Q

π)

S +A

)
= Õ

(
∥Qπ∥F

S +A

)
= Õ

(√
SA∥Qπ∥∞
S +A

)
= Õ (∥Qπ∥∞)

Then, the upper bound on ∥Q̂π − Qπ∥∞ from Theorem 5 will include an additive term:
ζd

SA∥Qπ∥2
∞

σ2
d(Q

π)
log4

(
S+A
δ

)
= Õ

(
ζddκ

2α2
)
. Finally, under approximate low-rank structure, Theorem

2 guarantees that with high probability, if ε ≲ ∥Qπ∥∞ and T = Ω̃δ

(
(S+A)+α2d
(1−γ)3ε2 (r2maxκ

4α2d2)
)

,

we have ∥Q̂π −Qπ∥∞ ≤ ε+ Õ
(
ζddκ

2α2
)
.

This aligns with Theorem 14 in [34], where the approximation error scales by terms corresponding to
SA∥Qπ∥2

∞
σ2
d(Q

π)
in our setting, as both methods use CUR-like matrix recovery.

Theorem 3: Guarantee for LoRa-PI. Based on the approximate policy iteration theorem, which
claims:

(1− γ)∥V ⋆ − V π̂∥∞ ≤ 2rmaxγ
Nepochs + 2 max

t∈[Nepochs]
∥Q̂(t) −Qπ(t)

∥∞.

we observe that the error from approximate low rank propagates through the second term, yielding an
additive error of magnitude 1

1−γ ζddκ
2α2 to the error of Theorem 3.
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F Miscellaneous Results

In this section, we provide some of the observations and results about the truncated value matrix.
More specifically, we present the proof to Lemma 1, and a discussion on the variance proxy of the
truncated discounted sum of rewards.

F.1 Truncated Value Matrix

Proof of Lemma 1. We know that Qπ satisfies the following identity: for all (s, a) ∈ S ×A,

Qπ(s, a) = E

[ ∞∑
t=0

γtrπt

∣∣∣∣(sπ0 , aπ0 ) = (s, a)

]

= Qπ
τ (s, a) + γτE

[ ∞∑
t=τ+1

γt−τrπt

∣∣∣∣(sπ0 , aπ0 ) = (s, a)

]
.

Furthermore, note that∣∣∣∣∣E
[ ∞∑
t=τ+1

γt−τrπt

∣∣∣∣(sπ0 , aπ0 ) = (s, a)

]∣∣∣∣∣ ≤ rmax

∞∑
t=0

γt =
rmax

1− γ
.

and thus

∥Qπ
τ −Qπ∥∞ ≤

γτrmax

1− γ
≤ rmax

1− γ
exp(−τ(1− γ)).

where we used that γ ≤ exp(γ − 1) for γ ∈ (0, 1). Setting the right hand side of the last inequality
equal to ϵ we obtain statement of the lemma.

F.2 Equivalent Noise Model

Recall definition of Q̃π
τ from (2):

Q̃π
τ (s, a) =

SA

N

N∑
k=1

(
τ∑

t=0

γtrπk,t

)
1{(sπk,0,a

π
k,0)=(s,a)}, ∀(s, a) ∈ S ×A.

Consider one of N sampled trajectories with index k starting from (sπk,0, a
π
k,0) = (s, a), and note that∣∣∣∣∣

τ∑
t=0

γtrπk,t

∣∣∣∣∣ ≤ rmax

1− γ
.

Moreover, since Qπ
τ is given by:

Qπ
τ (s, a) = Eπ

[ ∞∑
t=0

γtrt1{t≤τ}
∣∣sπ0 = s, aπ0 = a

]
,

we have

E

[
τ∑

t=0

γtrπk,t1{(sπk,0,a
π
k,0)=(s,a)}

∣∣∣∣(sπk,0, aπk,0) = (s, a)

]
= Qπ

τ (s, a)1{(sπk,0,a
π
k,0)=(s,a)}

In other words, each term inside of the outer loop in definition of Q̃π
τ is uniformly bounded and equal

to Qπ
τ (s, a)1{(sπk,0,a

π
k,0)=(s,a)} in expectation. Thus we can view estimate Q̃π

τ (s, a) equivalently as:

Q̃π
τ (s, a) =

SA

N

N∑
k=1

(Qπ
τ (s, a) + ξs,a,k)1{(sπk,0,a

π
k,0)=(s,a)}
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where ξs,a,k are i.i.d. across k, and |Qπ
τ (s, a) + ξs,a,k| ≤ rmax

1−γ , implying that ξs,a,k are 2rmax

1−γ -
subgaussian random variables.

Next note that the number of times N(s, a) =
∑N

k=1 1{(sπk,0, aπk,0) = (s, a)} that we sample entries
are random variables with multinomial distribution, since P((sπk,0, aπk,0) = (s, a)) = 1

SA and∑
(s,a) N(s, a) = N . This weak dependence between the entries can be dealt with using the Poisson

approximation argument (see Section C.2 in [37]). Essentially, this enables us to rewrite matrix Q̃π
τ

as a matrix with i.i.d. entries. Namely, we have for all (s, a):

Q̃π
τ (s, a) =

SA

N

Y (s,a)∑
k=1

(Qπ
τ (s, a) + ξs,a,k)

where Y (s, a) are i.i.d. Poisson random variables with parameter E[Y (s, a)] = N
SA . The fact that

the two noise models are equivalent is depicted in Lemma 20 in [37] claiming that probability of an
event under the multinomial model can be upper bounded by

√
T times probability of the same event

under the Poisson model. Practically, this adds a multiplicative factor of T in our probabilistic claims.
For more thorough exposition of this issue check Section C.2 in [37].
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