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ABSTRACT

Graph Neural Networks (GNNs) have become instrumental in modeling graph-
structured data, with applications spanning diverse sectors. Despite their prowess,
challenges such as susceptibility to adversarial attacks, inherent biases, and
opacity in decision-making processes have emerged. While efforts exist to ad-
dress individual trustworthiness facets like robustness, interpretability, and fair-
ness, a comprehensive solution remains elusive. This study introduces UNITE
(UNIversally Trustworthy GNN via subgraph idEntification), a novel end-to-end
framework carefully designed to holistically integrate these dimensions. Unlike
traditional approaches, UNITE leverages the intricate relationships between these
aspects in graph data, presenting optimization goals grounded in information-
theoretic principles. Preliminary experiments on real-world datasets indicate that
UNITE outperforms existing methods, achieving a harmonious blend of inter-
pretability, robustness, and fairness. This work not only addresses the pressing
challenges in GNNs but also sets a new benchmark for trustworthy graph neural
networks, paving the way for their broader adoption in critical domains.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a pivotal methodology for modeling intricate
graph-structured data, garnering widespread application across a myriad of domains. Whether in
bioinformatics networks Kawahara et al. (2017), trading systems Wang et al. (2021), or social anal-
ysis Hamilton et al. (2017), GNNs consistently exhibit exceptional performance in tasks such as
node classification, link prediction, and graph classification. The prowess of GNNs in assimilating
node features, neighboring information, and local graph structures has not only redefined traditional
data analysis paradigms but also catalyzed novel innovations in sectors like finance, healthcare, and
the social sciences.

While GNNs have garnered significant success across a spectrum of applications, recent investiga-
tions have shed light on several critical shortcomings. These include their susceptibility to adversar-
ial attacks and data noise Chen et al. (2018); Luo et al. (2021), potential to inherit or even exacerbate
biases from training data Dai et al. (2018); Jiang et al. (2022b); Spinelli et al. (2021), and an inherent
opacity in their decision-making processes Luo et al. (2020); Ying et al. (2019); Feng et al. (2023).
Such challenges impede the broader adoption of GNNs in sensitive and critical domains like finance
and healthcare. In response, the concept of a trustworthy GNN has been introduced, attracting in-
creasing attention from the research community. In response to the pressing demand for trustworthy
GNNs, a pile of research has been dedicated to enhance the trustworthiness of GNNs from various
perspectives Dai et al. (2022). For robustness, solutions have been proposed to shield GNNs from
adversarial attacks, enhancing their resilience Wu et al. (2019). To advance explainability, methods
have been introduced to elucidate the decision-making processes of GNNs, providing intuitive in-
sights that bridge the gap between complex algorithms and human understanding Ying et al. (2019).
Regarding fairness, techniques have been developed to ensure GNNs operate without manifesting
biases, aligning with ethical norms and societal values Dai & Wang (2021).

While significant advancements have been made in the domain of trustworthy GNNs, the majority
of research has focused on individual facets of robustness, interpretability, or fairness. Notably,
only a handful of studies, such as Miao et al. (2022) and Agarwal et al. (2021), have attempted to
address these dimensions in tandem. As illustrated in Table 1, no existing approach has achieved a
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Table 1: Comparison of Trustworthy Aspects among Different Approaches.

Interpretability Robustness Fairness

Graphair % % ✓

FairDrop % % ✓

NIFTY % ✓ ✓

GSAT ✓ ✓ %

UNITE ✓ ✓ ✓

comprehensive trustworthy GNN that encompasses all three aspects. In real-world applications, a
GNN model that prioritizes only one dimension of trustworthiness often falls short of user expecta-
tions Dai et al. (2022). This observation prompts us to ask:

Is it feasible to develop a universally trustworthy GNN that is interpretable, robust, and fair?

Addressing the question of a universally trustworthy GNN is fraught with challenges. Primarily,
the pathways to achieve robustness, interpretability, and fairness are multifaceted. To navigate this
complexity, we delve into the intricate relationship between these facets within graph data and advo-
cate for subgraph identification as a unified approach to enhance GNN trustworthiness. In addition,
after establishing the optimization goals grounded in information theory, the practical optimization
of these objectives presents its own set of challenges. To this end, we introduce tractable bounds
for the optimization goals and detail a specific GNN architecture to realize them. In summary, our
work presents UNITE, a comprehensive methodology that seamlessly integrates robustness, inter-
pretability, and fairness, setting a new standard for trustworthy GNNs. Our primary contributions
are:

• Unraveling the complex relationship between interpretability, robustness, and fairness in
graph data and showcasing how subgraph identification can serve as a unified approach.

• Introducing UNITE, a holistic framework that provides tractable bounds for optimization
goals and outlines a dedicated GNN architecture.

• Empirically validating our methodology on three real-world datasets, demonstrating its
capability to achieve a balanced and advance performance in interpretability, robustness,
and fairness, outperforming several baselines.

2 PRELIMINARIES

In this section, we lay the foundational concepts that underpin our study, providing clarity on
the notations and methodologies employed. We delve into the structure and attributes of graphs,
the operational mechanics of Graph Neural Networks (GNNs), and the significance of Mutual
Information in understanding relationships within graph data.

Graph. Let us consider a graph G = {A,X, S, Y } consisting of n nodes. The adjacency
matrix A ∈ {0, 1}n×n encodes the relationships between nodes, with Aij = 1 indicating an edge
between nodes i and j. Each node is associated with a d-dimensional feature vector, collectively
represented by the node feature matrix X ∈ Rn×d, where X = [x1, · · · , xn]

T . The vector
S ∈ {0, 1}n captures binary sensitive attributes of nodes, such as gender or race, while Y ∈ {0, 1}n
denotes the binary ground truth labels. Following previous works, we focus on binary sensitive
attributes and binary node classification tasks.

Graph Neural Network (GNN). GNNs are tailored to process graph-structured data, aptly handling
tasks where data entities exhibit intricate interrelationships. A typical GNN model is represented as
f : (A,X)→ Ŷ . The core of GNN operation lies in the aggregation of neighorhood node represen-
tations, expressed as: h(l+1)

i ← q
(
h
(l)
i ,

{
h
(l)
j | j : Aij = 1

})
. Here, h(l)

i denotes the representation
of node i at the l-th layer, and q is a function that combines information from neighboring nodes.
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Through iterative aggregation, GNNs encapsulate both local and overarching graph structures, de-
termining the likelihood of a node’s association with a target class.

Mutual Information (MI). In the realm of machine learning, Mutual Information serves as a pow-
erful metric to quantify the dependency between two random variables. Given two variables X and
Y , their Mutual Information I(X;Y ) is defined as the difference between the individual entropies
and their joint entropy: I(X;Y ) = H(X) +H(Y )−H(X,Y ). Here, H(X) and H(Y ) represent
the entropies of X and Y respectively, while H(X,Y ) denotes their joint entropy. Intuitively, MI
captures the amount of information shared between X and Y . In the context of GNNs, MI can be
instrumental in understanding the relationship between node features and their corresponding labels,
or between nodes and their neighboring structures. A higher MI indicates a stronger dependency,
which can be leveraged to enhance the model’s predictive capabilities.

3 UNIVERSALLY TRUSTWORTHY GNN VIA SUBGRAPH IDENTIFICATION

3.1 ON THE COMMONALITIES OF TRUSTWORTHY GNN VIA SUBGRAPH IDENTIFICATION

In this section, we explore the intertwined nature of interpretability, robustness, and fairness in
GNNs. We argue that achieving these facets of trustworthiness can be unified under the umbrella of
identifying an optimal subgraph within the original graph input.

Interpretability in machine learning seeks to highlight portions of input data that predominantly in-
fluence the output. While this has been studied across various data modalities like tabular Sahakyan
et al. (2021), image Selvaraju et al. (2017), and text Zhao et al. (2023), for GNNs, it translates to
identifying influential subgraphs that significantly contribute to predictions Feng et al. (2023); Ying
et al. (2019); Yuan et al. (2021).

Robustness ensures consistent outputs despite noise or adversarial perturbations. Given that real-
world graphs often contain noise and irrelevant edges, pruning these edges can enhance GNN ro-
bustness Luo et al. (2021); Sun et al. (2022). An optimal subgraph, in this context, is one that retains
essential edges while discarding those that introduce noise or vulnerabilities.

Fairness in GNNs is intricately linked to graph topology. Nodes sharing sensitive attributes, like
age, often connect more frequently, leading to ”topology bias.” In GNNs, node representations are
aggregated from neighbors, exacerbating this bias Jiang et al. (2022a). By identifying and potentially
removing edges that reinforce such biases, we can identify a subgraph that contributes towards a
more fair representation.

In light of these observations, it becomes evident that the goals of interpretability, robustness, and
fairness in GNNs converge towards the identification of an optimal subgraph. This insight forms the
foundation of our approach to achieve a universally trustworthy GNN.

3.2 TRUSTWORTHY SUBGRAPH IDENTIFICATION

Various methods have been proposed to identify optimal subgraphs for different aspects of trust-
worthiness in GNNs. For instance, the combination of Monte Carlo tree search and Shapley value
has been employed to measure subgraph importance Yuan et al. (2021). Additionally, adversarial
learning has been a popular approach to address robustness and fairness in GNNs Dai et al. (2018);
Günnemann (2022). However, these methods often operate in isolation, lacking a unified framework.

In this study, we advocate for the use of mutual information as a constraint to bridge these disparate
methods. Mutual information offers a quantifiable measure of the relationship between variables,
making it an apt choice to unify the requirements of interpretability, robustness, and fairness. By
leveraging mutual information, we aim to consolidate these aspects under a single, cohesive frame-
work, providing a more holistic approach to trustworthy GNNs.

Interpretability. Interpretability in GNNs aims to identify a subgraph GS from the original input
graph G that is most influential in label prediction. Consider the solubility of a molecule: the
presence of the hydroxy group -OH often indicates solubility in water, making it a positive label-
relevant subgraph.
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To quantify the importance of a subgraph, we leverage mutual information, a measure capturing the
dependency between variables. Specifically, we want to maximize the mutual information between
the subgraph GS and the label Y , as formalized by Ying et al. (2019):

max
GS

I (GS ;Y ) , s.t. GS ∈ Gsub(G), (1)

where Gsub(G) represents the set of all subgraphs of G. The mutual information I(GS ;Y ) can be
decomposed as:

I (GS ;Y ) = H(Y )−H(Y |GS) = H(Y ) + EY |GS
(logP(Y | GS)) , (2)

Here, H(Y ) denotes the entropy of label Y , a measure of uncertainty. By maximizing I(GS ;Y ), we
reduce the uncertainty in predicting Y , ensuring accurate predictions given the optimal subgraph.

Interpretability & Robustness. Robustness in GNNs is defined by the model’s resilience against
noisy input data. Ideally, the prediction, denoted as Ŷ , should remain stable despite any task-
irrelevant disturbances in the graph, represented as Gn. Formally, this is expressed as Gn ⊥⊥ Ŷ ,
signifying the independence between the noise Gn and the prediction Ŷ .

Given the learning procedure of GS follows the Markov Chain < (Y,Gn) → G → GS → Ŷ >,
the relationship I(Ŷ ;Y,Gn) ≤ I(GS ;Y ) ≤ I(GS ;Y,Gn) is established. This implies that merely
maximizing I(GS , Y ) does not ensure robustness. Further, we can derive the following relationship:

I
(
Gn; Ŷ

)
≤ I (GS ;G)− I (GS ;Y ) . (3)

The proof for this inequality is detailed in the Appendix A. This relationship underscores the idea
that while maximizing I (GS ;Y ), constraining the information the subgraph GS inherits from G
can reduce the impact of task-irrelevant information on the prediction, thereby bolstering robust-
ness. By integrating Eq. 1 and Eq. 3, we observe that the first two terms form the information
bottleneck Tishby et al. (2000). This bottleneck has been previously identified as a key factor in
achieving interpretability and robustness in GNNs Luo et al. (2021); Miao et al. (2022).

Interpretability & Robustness & Fairness. In the realm of machine learning, fairness aims to mit-
igate biases, especially concerning sensitive attributes. Here, we emphasize group fairness, which
seeks to ensure that individuals within different protected groups receive statistically similar treat-
ments. One common metric for group fairness is statistical (or demographic) parity, which demands
that predictions remain independent of the sensitive attribute. This can be quantified as:

∆SP =
∣∣∣P(

Ŷ = 1 | S = 0
)
− P

(
Ŷ = 1 | S = 1

)∣∣∣ , (4)

where Ŷ = f(G) represents the GNN model’s prediction given input graph G. The goal is to
ensure Ŷ ⊥⊥ S, indicating prediction independence from the sensitive attribute. However, note
that I(GS ;Y ) = I(GS ;Y | S) + I(GS ;Y ;S). This suggests that maximizing I(GS , Y ) might
inadvertently introduce the influence of the sensitive attribute S into the subgraph GS . We can
relate ∆SP to mutual information I (GS ;S) as:

I(GS ;S) ≥ g (π,∆SP (A, S)) , (5)

with π = P(S = 1) and A being any decision algorithm acting on GS . The function g is strictly in-
creasing, non-negative, and convex in ∆SP (A, S). A detailed proof is provided in the Appendix B.

Consequently, a subgraph GS with limited mutual information with S ensures that any decision al-
gorithm based solely on GS will exhibit bounded parity. The constraint for a fair subgraph becomes:

min
GS

I (GS , S) . (6)

In summary, a trustworthy subgraph, when framed in terms of mutual information constraints,
should adhere to:

min
GS

−I (GS ;Y ) + αI (GS ;G) + βI (GS ;S) , s.t. GS ∈ Gsub(G), (7)

where α and β are hyperparameters to balance interpretability, robustness, and fairness.
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4 OPTIMIZATION OBJECTIVE

Graph data, with its inherent non-Euclidean structure, presents unique optimization challenges. Cou-
pled with the computational complexity of mutual information, directly optimizing Eq. 7 becomes a
daunting task. To address this, we detail the process of subgraph generation and introduce tractable
variational bounds for Eq. 7, offering a more feasible approach to the optimization objective.

4.1 SUBGRAPH IDENTIFICATION

To identify the subgraph, we employ a identification neural network, denoted as Φ, which produces
GS = {AS , XS} from the input graph G, i.e., GS = Φ(G). Within this neural network, a crucial
component is the GNN-based encoder, represented as Enc(·). This encoder transforms the input
graph G into a hidden representation H ∈ Rn×rd , effectively capturing the essential features of
nodes in G. The subsequent sections will delve into the specifics of how the subgraph is generated
based on this representation.

Subgraph Edge Masking. To generate the adjacency matrix of the subgraph, we employ a process
that masks out edges deemed irrelevant for the task at hand. Specifically, for each edge in G, we
utilize a multi-layer perceptron (MLP) model, denoted as MLPA, equipped with a sigmoid activation
function. This model processes the hidden representations of the vertices associated with the edge
to compute a probability for retaining that edge.

Subsequently, a mask is sampled for each edge based on a Bernoulli distribution. The final adjacency
matrix for the subgraph, AS , is derived by element-wise multiplication of this mask with the original
adjacency matrix. Mathematically, this procedure is represented as:

M̃Aij
= σ (MLPA (H(i, :), H(j, :))) , MAij

∼ Bern
(
M̃Aij

)
for all Aij = 1, AS = A⊙MA,

(8)
where H(i, :) denotes the i-th row of the hidden representation matrix H , representing the hidden
state of the i-th node. The value M̃Aij

signifies the probability of retaining the edge connecting
nodes i and j, while MAij

is the corresponding mask sampled from the Bernoulli distribution. The
symbol ⊙ represents the Hadamard (element-wise) product.

Subgraph Feature Masking. To generate the feature matrix of the subgraph, we employ a process
that masks out features based on their relevance. Specifically, using the hidden representation H ,
a multi-layer perceptron (MLP) model, MLPX , equipped with a sigmoid activation function, com-
putes a probability matrix, M̃X . A feature mask, MX , is then sampled from a Bernoulli distribution
and applied to the original feature matrix. The mathematical format of this procedure is:

M̃X = σ (MLPX (H)) , MX ∼ Bern
(
M̃X

)
, XS = X ⊙MX . (9)

It’s worth noting that the Bernoulli sampling process in subgraph identification is inherently non-
differentiable. To facilitate end-to-end training of the subgraph identification, we employ an ap-
proximation technique for the Bernoulli sampling. Specifically, we leverage the Gumbel-Softmax
reparameterization trick Jang et al. (2016), a widely-adopted method to approximate discrete dis-
tributions in a differentiable manner. In essence, the distribution of GS generated from G via the
neural network Φ can be represented as GS ∼ Pϕ(GS |G).

4.2 TRACTABLE BOUNDS

Given the objective in Eq. 7, it becomes imperative to derive tractable bounds for the mutual infor-
mation terms. Specifically, we aim to maximize the mutual information I (GS ;Y ) while minimizing
I (GS ;G) and I (GS ;S).

Lower Bound of I (GS ;Y ). To derive a tractable lower bound for I (GS ;Y ), we employ a param-
eterized variational approximation. This approximation allows us to express the mutual information
in a more computationally feasible form:

I (GS ;Y ) ≥ EGS ,Y [log qθ (Y | GS)] +H(Y ), (10)

5



Under review as a conference paper at ICLR 2024

where qθ(·) represents a parameterized variational approximation of the true conditional distribution
P(Y | GS). In this context, we utilize a GNN model for qθ(·), which effectively serves as a predictor.
This predictor ingests the subgraph GS as input and outputs the corresponding label Y . Given that
H(Y ) remains constant, our tractable loss can be articulated as:

min
θ,ϕ
L1 = min

θ,ϕ
−EGS ,Y [log qθ (Y | Pϕ(GS | G))] (11)

Upper Bound of I (GS ;S). To derive a tractable upper bound for I (GS ;S), we employ the Con-
trastive Log-ratio Upper Bound (CLUB) approach Cheng et al. (2020). This method provides an
upper bound as:

I (GS ;S) ≤ ICLUB(GS ;S) :=Ep(GS ,S) [log qω(S | GS)]

− Ep(GS)Ep(S) [log qω(S | GS)] ,
(12)

where qω(·) represents a parameterized variational approximation of the true conditional distribu-
tion P(S | GS). The parameter ω governs this approximation. Essentially, qω(·) acts as a predictor,
taking the subgraph GS as input and producing the sensitive attribute S as output. For this approxi-
mation, we utilize a two-layer GNN model. The proof for the inequality I (GS ;S) ≤ ICLUB(GS ;S)
is detailed in the Appendix ??. The resulting tractable upper bound loss is expressed as:

min
ϕ,ω
L2 = Ep(GS ,S) [log qω(S | Pϕ(GS | G))]− Ep(GS)Ep(S) [log qω(S | Pϕ(GS | G))] . (13)

Upper Bound of I (GS ;G). To derive a tractable upper bound for I(GS ;G), we formulate the
objective as:

min
ϕ,τ
L3 = Ep(GS ,G) [log qτ (G | Pϕ(GS | G))]− Ep(GS)Ep(G) [log qτ (G | Pϕ(GS | G))] . (14)

The function qτ (G | GS) is designed to capture the conditional distribution of G given GS . It is
defined as:

qτ (G | GS) = σ (MLP (Enc (G)⊕ Enc (GS))) ∈ [0, 1], (15)

where Enc(·) represents the encoder function, and ⊕ denotes the concatenation operation. This
design ensures that the function captures the joint characteristics of both G and GS .

In summary, the overall tractable loss for our objective is given by:

min
ϕ,θ,ω,τ

L1 + αL2 + βL3. (16)

5 EXPERIMENT

In this section, we conduct experiments to evaluate the performance of UNITE using three real-
world datasets: NBA, Pokec-z, and Pokec-n. Comprehensive details about these datasets can be
found in the Appendix.

5.1 EXPERIMENTAL SETTINGS

Datasets.

Pokec-z and Pokec-n: Both datasets are subsets of the larger Pokec social network, the leading social
platform in Slovakia. These datasets encompass user features such as gender, age, hobbies, interests,
education, and working field. For our experiments, the region feature is designated as the sensitive
attribute, while the working field serves as the target label for prediction Dai & Wang (2021).

NBA: This dataset, an extension of a Kaggle dataset, comprises information on over 400 NBA bas-
ketball players from the 2016-2017 season. The dataset includes attributes like nationality, age,
salary, and performance statistics. In our study, the player’s nationality is considered the sensitive
attribute, and the task is to predict whether a player’s salary exceeds the median value Dai & Wang
(2021).

Metrics
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Model Utility: For evaluating the prediction performance of node classification tasks, we employ
the Area Under the ROC Curve (AUROC).

Interpretability: We assess interpretability using a fidelity metric inspired by Yuan et al. (2022). Our
fidelity metric is defined as:

Fidelity = AUC
(
ŶG, Y

)
− AUC

(
ŶGS

, Y
)
, (17)

where ŶG represents the model’s prediction with the original graph G as input, and ŶGS
is the

prediction using the subgraph GS . Contrary to traditional post-hoc explanation evaluations, we train
separate neural networks on G and GS . A lower fidelity score indicates better explainability, and it
can be negative if predictions on GS outperform those on G.

Robustness: Robustness is evaluated using AUROC under varying levels of data noise. A model
demonstrating robustness will maintain a high AUROC despite input perturbations Xu et al. (2021).

Fairness: For fairness assessment, we employ the statistical parity metric as detailed in Eq. 4 Beutel
et al. (2017).

Baselines

We evaluate UNITE against several state-of-the-art methods to provide a comprehensive compari-
son. The baselines include:

1. GSAT Miao et al. (2022): An interpretable and generalizable graph learning approach that
employs a stochastic attention mechanism.

2. GSAT+Adv: An extension of GSAT that incorporates an adversarial component to mitigate
the influence of sensitive attribute information.

3. NIFTY Agarwal et al. (2021): A graph contrastive learning method that utilizes fairness-
aware graph augmentations to derive fair and stable representations.

4. Graphair Ling et al. (2022): A method that learns fair representations by leveraging auto-
mated graph data augmentations.

5. FairDrop Spinelli et al. (2021): A heuristic approach that drops edges to enhance fairness
in graph representation learning.

6. GCN and GIN: Standard vanilla GNN models.

5.2 EXPERIMENTS RESULTS

In this section we separately compare the interpretability, robustness and fairness for the baselines
and UNITE.

5.2.1 INTERPRETABILITY & FAIRNESS EVALUATION

We evaluate interpretability and fairness by contrasting UNITE with various baseline methods. For
those baselines capable of generating subgraphs, we compute the fidelity score.

Result Comparison. Table 2 showcases the AUROC, Fidelity, and ∆SP metrics of UNITE relative
to the baselines. The primary insights are:

• In terms of utility, both the standard GCN and GIN, along with their GSAT counterparts,
consistently rank among the top in AUROC scores. For certain datasets, GSAT outperforms
the standard GNN, resulting in a negative Fidelity score. This might be attributed to the
effective filtering of task-irrelevant information by GSAT.

• GSAT registers the highest Fidelity score, with UNITE trailing closely. The GSAT+Adv
variant, however, scores lower in Fidelity compared to GSAT, indicating that adversarial
training might adversely affect utility. FairDrop, which relies on a heuristic for edge re-
moval, records the least Fidelity.

• Regarding fairness, Graphair leads in the ∆SP metric, followed closely by UNITE. It’s
worth noting that while Graphair and NIFTY excel in fairness, they lack interpretability
features. Interestingly, despite its top Fidelity score, GSAT lags significantly in fairness.
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Table 2: Comparisons between our method and baselines in terms of AUROC, Fidelity and Fairness. Best results are in
bold and second best in bold underline.

Vanilla NIFTY Graphair GSAT GSAT+Adv FairDrop UNITE

NBA

GCN
AUROC↑ 0.783 0.759 0.763 0.778 0.760 0.755 0.771

Fidelity↑ - - - 0.005 0.023 0.028 0.012

∆SP ↓ 6.35 3.59 2.89 10.37 3.27 3.21 3.18

GIN
AUROC↑ 0.790 0.762 0.772 0.787 0.753 0.768 0.802

Fidelity↑ - - - 0.003 0.037 0.022 -0.012

∆SP ↓ 9.66 3.82 2.98 12.33 4.02 3.74 3.34

Pokec-z

GCN
AUROC↑ 0.753 0.738 0.755 0.750 0.740 0.733 0.744

Fidelity↑ - - - 0.003 0.013 0.020 0.009

∆SP ↓ 8.37 3.08 3.00 10.48 3.67 4.17 2.98

GIN
AUROC↑ 0.779 0.758 0.761 0.768 0.758 0.751 0.763

Fidelity↑ - - - 0.011 0.021 0.028 0.016

∆SP ↓ 9.93 3.97 3.10 11.19 4.28 5.87 3.37

Pokec-n

GCN
AUROC↑ 0.748 0.733 0.737 0.759 0.738 0.741 0.746

Fidelity↑ - - - -0.011 0.010 0.009 0.002

∆SP ↓ 6.28 3.04 2.71 12.48 3.86 3.18 2.95

GIN
AUROC↑ 0.762 0.744 0.740 0.772 0.753 0.755 0.756

Fidelity↑ - - - -0.010 0.009 0.007 0.006

∆SP ↓ 7.27 5.18 2.88 13.58 4.14 3.47 3.18

Figure 1: AUROC and Sparsity trade-off on three real-world datasets. Upper-left corner (high AU-
ROC, low Sparsity) is preferable.

AUROC and Sparsity Comparison. We also explore the relationship between sparsity and AU-
ROC across the baselines and our method. Sparsity is defined as the ratio of the subgraph GS size
to the original graph G size:

Sparsity =
| GS |
| G |

. (18)

An ideal explanatory subgraph GS should have a low Sparsity score and a high AUROC score. Fig-
ure 1 showcases the Pareto front curves generated by hyperparameter grid search for each method.
The upper-left corner point represents the optimal performance, with the lowest sparsity and highest
AUROC. Results indicate that UNITE offers a competitive AUROC-Sparsity trade-off compared to
GSAT, while other fairness-aware baselines (GSAT+Adv and FairDrop) lag behind.

8



Under review as a conference paper at ICLR 2024

5.2.2 ROBUSTNESS EVALUATION

To evaluate robustness, we subject both our method and the baselines to varying levels of edge noise.
Specifically, we introduce 20%, 40%, and 60% random edges into the original graph during infer-
ence. As observed in Table 3, UNITE may not achieve the highest AUROC score at lower noise rates
(0% and 20%). However, at higher noise rates (40% and 60%), UNITE consistently ranks among
the top performers, underscoring its robustness. Baselines without explicit robustness considerations
(e.g., FairDrop, GCN, GIN, and Graphair) exhibit a decline in AUROC at high noise rates. Although
GSAT, a robustness-aware method, demonstrates good robustness, it faces challenges in fairness, as
discussed in previous section.

Table 3: Comparisons of our method and baselines under varying input edge noise in terms of
AUROC. Best results are in bold and second best in bold underline.

NBA Pokec-z Pokec-n
0% 20% 40% 60% 0% 20% 40% 60% 0% 20% 40% 60%

GCN

Vanilla 0.783 0.773 0.732 0.688 0.753 0.748 0.731 0.711 0.748 0.740 0.726 0.703
NIFTY 0.759 0.750 0.742 0.733 0.738 0.737 0.730 0.721 0.733 0.729 0.719 0.704

Graphair 0.763 0.754 0.738 0.727 0.755 0.740 0.727 0.719 0.737 0.731 0.718 0.701
GSAT 0.778 0.769 0.766 0.759 0.750 0.742 0.738 0.730 0.759 0.751 0.741 0.733

GSAT+Adv 0.760 0.752 0.739 0.722 0.740 0.732 0.720 0.711 0.738 0.725 0.718 0.710
FairDrop 0.755 0.748 0.659 0.618 0.733 0.721 0.712 0.683 0.741 0.729 0.707 0.668

UNITE 0.771 0.769 0.763 0.751 0.744 0.740 0.735 0.729 0.746 0.741 0.733 0.712

GIN

Vanilla 0.790 0.768 0.721 0.618 0.779 0.771 0.751 0.730 0.762 0.757 0.732 0.711
NIFTY 0.762 0.760 0.755 0.721 0.758 0.755 0.747 0.738 0.744 0.739 0.728 0.715

Graphair 0.772 0.765 0.743 0.712 0.761 0.757 0.748 0.729 0.740 0.727 0.713 0.709
GSAT 0.787 0.770 0.761 0.729 0.768 0.765 0.753 0.744 0.772 0.763 0.759 0.730

GSAT+Adv 0.753 0.743 0.731 0.707 0.758 0.751 0.748 0.731 0.753 0.741 0.732 0.710
FairDrop 0.768 0.758 0.673 0.589 0.751 0.749 0.733 0.705 0.755 0.738 0.719 0.692

UNITE 0.802 0.787 0.779 0.731 0.763 0.760 0.757 0.749 0.756 0.750 0.744 0.739

6 ABLATION STUDY

In this section, we delve into ablation studies to discern the impact of the robustness constraint, L2,
and the fairness constraint, L3. We evaluate two variations of UNITE: one without L2, denoted as
”UNITE w/o L2”, and the other without L3, denoted as ”UNITE w/o L3”. We present the results
based on the NBA dataset. Table 4 reveals that when omitting L2, UNITE achieves a commendable
∆SP but at the expense of utility and robustness. Conversely, excluding L3 results in impressive
utility and robustness but compromises fairness. The full UNITE model strikes a balanced and
commendable performance across all three metrics.

Table 4: Ablation study result on NBA dataset. Best results are in bold and second best in bold underline.

AUROC
∆SP ↓0% 20% 40% 60%

UNITE 0.771 0.769 0.763 0.751 3.18
UNITE w/o L2 0.764 0.753 0.741 0.737 2.05
UNITE w/o L3 0.780 0.778 0.770 0.762 9.38

7 CONCLUSION

In this work, we presented UNITE, a pioneering approach to graph neural networks that har-
moniously integrates interpretability, robustness, and fairness. Our methodological framework,
grounded in tractable bounds, offers a systematic way to optimize these objectives concurrently.
Empirical evaluations on datasets like NBA, Pokec-z, and Pokec-n underscored UNITE’s efficacy in
striking a balance, a feat often elusive for many existing methods. While our results are promising,
future work could delve deeper into enhancing the scalability of UNITE and exploring its applica-
bility in other domains. This research paves the way for more holistic and responsible graph neural
network designs in the future.
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A PROOF OF EQ. 3

Given Markov Chain < (Y,Gn) → G → GS → Ŷ >, according to data processing inequity, we
have:

I(Gn; Ŷ ) ≤ I(Gn;GS), (19)

I(G;GS) ≥ I(GS ;Gn, Y ) = I(GS ;Gn) + I(GS , Y ). (20)

Combine Eq. 19 and Eq. 20, we have:

I(Gn; Ŷ ) ≤ I(Gn;GS) ≤ I(G;GS)− I(GS , Y ) (21)

B PROOF OF EQ. 5

For some GS , S ∼ P(GS , S), GS ∈ Gsub, S ∈ {0, 1}, and any decision algorithm A that acts on
GS , we have

I(GS , S) ≥ g (π,∆DP (A, S))
where π = P (S = 1) and g is a strictly increasing non-negative convex function in ∆DP (A, S).
First, we will show that parity of any algorithmA that acts on GS is upper bounded by the variational
distance between conditional distributions, p(GS | S = 1) and p(GS | S = 0).

∆SP (A, S) = | P (Ŷ = 1 | S = 1)− P (Ŷ = 1 | S = 0) |

=

∣∣∣∣∫
GS

dGS P (Ŷ = 1 | GS) p(GS | S = 1)−
∫
GS

dGS P (Ŷ = 1 | GS) p(GS | S = 0)

∣∣∣∣
=

∣∣∣∣∫
GS

dGS P (Ŷ = 1 | GS) {p(GS | S = 1)− p(GS | S = 0)}
∣∣∣∣

≤
∫
GS

dGS P (Ŷ = 1 | GS) |p(GS | S = 1)− p(GS | S = 0)|

≤
∫
GS

dGS |p(GS | S = 1)− p(GS | S = 0)|

= V (p(GS | S = 0), p(GS | S = 1))

where,

V (p(GS | S = 0), p(GS | S = 1)) =

∫
dGS |p(GS | S = 1)−p(GS | S = 0)| = ∥p(GS | S = 1)−p(GS | S = 0)∥

(22)
is the variational distance between p(GS | S = 1) and p(GS | S = 0). Next, we will show that
mutual information, I(GS : S) is lower bounded by a strictly increasing function of variational
distance between p(GS | S = 1) and p(GS | S = 0), and therefore, by transitivity, also lower
bounded by the function of parity of any A.

I(GS : S) = EGS ,S log
p(GS , S)

p(GS)p(S)

= EGS ,S log
p(GS | S)
p(GS)

= (1− π)EGS |S=0 log
p(GS | S = 0)

p(GS)
+ πEGS |S=1 log

p(GS | S = 1)

p(GS)

= (1− π)KL(p(GS | S = 0)∥p(GS)) + πKL(p(GS | S = 1)∥p(GS))

= JSD(1−π,π)(p(GS | S = 0), p(GS | S = 1))

(23)

Last step is due to

p(GS) =
∑
S

p(GS , S) = (1− π)p(GS | S = 0) + πp(GS | S = 1) (24)
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and here JSD(1−π,π)(p1, p2) denotes generalized Jensen-Shannon divergence with mixture weights
(1− π, π). We know that,

KL(p1∥p2) ≥ max

(
log

(
2 + V

2− V

)
− 2V

2 + V
,
V 2

2
+

V 4

36
+

V 6

288

)
= f(V ) (25)

For simplicity, we have used V to denote variational distance V (p1, p2). f is defined in range [0, 2).
We note two important properties of function f that are useful for our proof.

Combining Eq. 23 and Eq. 25, and noting that,

V (p(GS | S = 0), p(GS)) = ∥p(GS | S = 0)− p(GS)∥ = π∥p(GS | S = 0)− p(GS | S = 1)∥
V (p(GS | S = 1), p(GS)) = ∥p(GS | S = 1)− p(GS)∥ = (1− π)∥p(GS | S = 0)− p(GS | S = 1)∥

(26)
we get the required result,

I(GS : S) ≥ (1− π)f(V (p(GS | S = 0), p(GS))) + πf(V (p(GS | S = 1), p(GS)))

I(GS : S) ≥ (1− π)f(πV (p(GS | S = 0), p(GS | S = 1))) + πf((1− π)V (p(GS | S = 0), p(GS | S = 1)))

≥ (1− π)f (π∆SP (A, S)) + πf ((1− π)∆SP (A, S))
(27)

= g (π,∆SP (A, S)) (28)
g is a positive weighted combination of non-negative strictly increasing convex functions and there-
fore also strictly increasing, non-negative, and convex. This completes the proof.

C PROOF OF EQ. 12

To show that I(GS ;S) ≤ ICLUB(GS ;S), we calculate the gap between them:

∆ : = ICLUB(GS ;S)− I(GS ;S)

=Ep(GS ,S)[log p(S | GS)]− Ep(GS)Ep(S)[log p(S | GS)]

− Ep(GS ,S)[log p(S | GS)− log p(S)]

=Ep(GS ,S)[log p(S)]− Ep(GS)Ep(S)[log p(S | GS)]

=Ep(S)

[
log p(S)− Ep(GS)[log p(S | GS)]

]
(29)

By the definition of the marginal distribution, we have p(S) =
∫
p(S | GS)p(GS)dGS =

Ep(GS)[p(S | GS)]. Note that log(·) is a concave function, by Jensen’s Inequality, we have
log p(S) = log

(
Ep(GS)[p(S | GS)]

)
≥ Ep(GS)[log p(S | GS)]. Applying this inequality to equa-

tion (11), we conclude that the gap ∆ is always non-negative. Therefore, ICLUB(GS ;S) is an upper
bound of I(GS ;S). The bound is tight when p(S | GS) has the same value for any GS , which means
variables GS and S are independent.
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