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ABSTRACT

Gradient-based meta-learning relates task-specific models to a meta-model by
gradients. By this design, an algorithm first optimizes the task-specific models by
an inner loop and then backpropagates meta-gradients through the loop to update
the meta-model. The number of inner-loop optimization steps has to be small
(e.g., one step) to avoid high-order derivatives, big memory footprints, and the
risk of vanishing or exploding meta-gradients. We propose an intuitive teacher-
student scheme to enable the gradient-based meta-learning algorithms to explore
long horizons by the inner loop. The key idea is to employ a student network to
adequately explore the search space of task-specific models (e.g., by more than ten
steps), and a teacher then takes a “leap” toward the regions probed by the student.
The teacher not only arrives at a high-quality model but also defines a lightweight
computation graph for meta-gradients. Our approach is generic; it performs well
when applied to four meta-learning algorithms over three tasks: few-shot learning,
long-tailed classification, and meta-attack.

1 INTRODUCTION

Humans can quickly learn the skills needed for new tasks by drawing from a fund of prior knowledge
and experience. To grant machine learners this level of intelligence, meta-learning studies how
to leverage past learning experiences to more efficiently learn for a new task (Vilalta & Drissi,
2002). A hallmark experiment design provides a meta-learner a variety of few-shot learning tasks
(meta-training) and then desires it to solve previously unseen and yet related few-shot learning tasks
(meta-test). This design enforces “learning to learn” because the few-shot training examples are
insufficient for a learner to achieve high accuracy on any task in isolation.

Recent meta-learning methods hinge on deep neural networks. Some work learns a recurrent neural
network as an update rule to a model (Ravi & Larochelle, 2016; Andrychowicz et al., 2016). Another
line of methods transfers an attention scheme across tasks (Mishra et al., 2017; Vinyals et al., 2016a).
Gradient-based meta-learning gains momenta recently following the seminal work (Finn et al., 2017).
It is model-agnostic meta-learning (MAML), learning a global model initialization from which a
meta-learner can quickly derive task-specific models by using a few training examples.

In its core, MAML is a bilevel optimization problem (Colson et al., 2007). The upper level searches
for the best global initialization, and the lower level optimizes individual models, which all share the
common initialization, for particular tasks sampled from a task distribution. This problem is hard to
solve. Finn et al. (2017) instead propose a “greedy” algorithm, which comprises two loops. The inner
loop samples tasks and updates the task-specific models by k steps using the tasks’ training examples.
The k-step updates write a differentiable computation graph. The outer loop updates the common
initialization by backpropagating meta-gradients through the computation graph. This method is
“greedy” in that the number of inner steps is often small (e.g., k = 1). The outer loop takes actions
before the inner loop sufficiently explores its search space.

This “greedy” algorithm is due to practical constraints that backpropagating meta-gradients through
the inner loop incurs high-order derivatives, big memory footprints, and the risk of vanishing or
exploding gradients. For the same reason, some related work also turns to greedy strategies, such as
meta-attack (Du et al., 2019) and learning to reweigh examples (Ren et al., 2018b).

1



Under review as a conference paper at ICLR 2021

To this end, it is natural to pose at least two questions. Would a less greedy gradient-based meta-
learner (say, k > 10 inner-loop updates) achieve better performance? How to make it less greedy?

To answer these questions, we provide some preliminary results by introducing a lookahead opti-
mizer (Zhang et al., 2019) into the inner loop. It is intuitive to describe it as a teacher-student scheme.
We use a student neural network to explore the search space for a given task adequately (by a large
number k of updates), and a teacher network then takes a “leap” toward the regions visited by the
student. As a result, the teacher network not only arrives at a high-performing model but also defines
a very lightweight computation graph for the outer loop. In contrast to the traditionally “greedy”
meta-learning framework used in MAML (Finn et al., 2017), meta-attack (Du et al., 2019), learning
to reweigh examples (Ren et al., 2018b), etc., our approach has a “lazy” teacher. It sends a student to
optimize for a task up to many steps and moves only once after that.

Rajeswaran et al. (2019) proposed a less “greedy” MAML, with which this work shares a similar
goal, but our approach improves the gradient-based meta-learning framework rather than a par-
ticular algorithm. Hence, we evaluate it on different methods and tasks, including MAML and
Reptile (Nichol et al., 2018) for few-shot learning, a two-component weighting algorithm (Jamal
et al., 2020) for long-tailed classification, and meta-attack (Du et al., 2019). Extensive results provide
an affirmative answer to the first question above: long-horizon exploration in the inner loop improves
a meta-learner’s performance. We expect our approach, along with the compelling experimental
results, can facilitate future work to address the second question above.

2 “GREEDY” GRADIENT-BASED META-LEARNING

We first review gradient-based meta-learning from the perspective of “search space carving”.

Notations. Let PT denote a task distribution. For each task drawn from the distribution T ∼ PT ,
we have a training set Dtr and a validation set Dval, both in the form of {(x1, y1), (x2, y2), · · · }
where xm and ym are respectively an input and a label. We learn a predictive model for the task
by minimizing an empirical loss LTDtr

(φ) (e.g., cross-entropy) over the training set while using
the validation set to choose hyper-parameters (e.g., early stopping), where φ collects all trainable
parameters of the model. Similarly, we denote by LTDval

(φ) the loss calculated over the validation set.

Meta-learning as “space carving”. Instead of focusing on an isolated task, meta-learning takes
a global view and introduces a meta-model, parameterized by θ, that can improve the learning
efficiency for all individual tasks drawn from the task distribution PT . The underlying idea is to
derive a task-specific model φ from not only the training set Dtr but also the meta-model θ, i.e.,
φ ∈ M(θ,Dtr). We refer toM(θ,Dtr) the “carved” search space for the task-specific model φ,
where the “carving” function is realized as an attention module in (Vinyals et al., 2016a; Mishra
et al., 2017), as a conditional neural process in (Garnelo et al., 2018; Gordon et al., 2020), as a
gradient-based update rule in (Finn et al., 2017; Park & Oliva, 2019; Li et al., 2017; Nichol et al.,
2018), and as a regularized optimization problem in (Rajeswaran et al., 2019; Zhou et al., 2019).

An optimal meta-model θ∗ is supposed to yield the best task-specific models in expectation,

θ∗ ← argmin
θ

ET ∼PT ,Dval∼T LTDval
(φ∗(θ)) subject to φ∗(θ)← arg min

φ∈M(θ,Dtr)
LTDtr

(φ). (1)

One can estimate the optimal meta-model θ∗ from some tasks and then use it to “carve” the search
space,M(θ∗,Dtr), for novel tasks’ models.

Gradient-based meta-learning. One of the notable meta-learning methods is MAML (Finn et al.,
2017), which uses a gradient-based update rule to “carve” the search space for a task-specific model,

MMAML(θ,Dtr) := {φ0 ← θ} ∪ {φj |φj ← φj−1 − α∇φLTDtr
(φj−1), j = 1, 2, · · · , k} (2)

where the meta-model θ becomes an initialization to the task-specific model φ0, the other candidate
models φ1, · · · , φk are obtained by gradient descent, and α > 0 is a learning rate. Substituting it into
equation (1), φk ∈MMAML(θ,Dtr) is naturally a solution to the lower-level optimization problem,
and MAML solves the upper-level optimization problem by gradient descent,

θ ← θ − βET ∼PT ,Dval∼T∇θLTDval
(φk(θ)), (3)
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Figure 1: To compute the meta-gradients∇θ
∑
i L
Ti
Dval

(φi(θ)), MAML (Finn et al., 2017) differen-
tiates through the inner updates, the implicit MAML (Rajeswaran et al., 2019) approximates local
curvatures, while we differentiate through the “lazy” teacher’s one-step “leap”. The exploratory
student may make many steps of inner updates before the teacher’s “leap”.

where β is a learning rate, and φk(θ) indicates the dependency on the meta-model θ. The gradient
must backpropagate through the chain of updates in eq. (2), which has to be short (e.g., k = 1) to
avoid big memory footprints, high-order derivatives, and the risk of vanishing or exploding gradients.

We say MAML is “greedy” in that it descends meta-gradients for the meta-model θ before it runs
adequate updates to the task-specific model φ. As an increasing number of works adopt the gradient-
based “search space carving” for task-specific models (Li et al., 2017; Rajeswaran et al., 2019; Park
& Oliva, 2019; Flennerhag et al., 2019; Yin et al., 2019), they also bear greedy algorithms. Relaxing
the greedy strategy may benefit not one, but a variety of, meta-learning methods and tasks.

3 A “LAZY” APPROACH TO GRADIENT-BASED META-LEARNING

In this section, we describe a “lazy” meta-learning approach, which is readily applicable to different
gradient-based meta-learning algorithms. We first describe the general approach as an improvement
to MAML and then customize it for few-shot learning, long-tailed classification, and meta-attack.

3.1 GENERAL APPROACH

Given a meta-model θ, we “carve” the search space for task-specific models φ ∈ M(θ,Dtr) by a
teacher-student scheme. The key idea is to let a student explore the search space adequately using the
training set of a task-specific model without worrying the length of the update chain because a teacher
will examine the explored regions by the student, followed by a one-step “leap”. Hence, one can
update the meta-model by backpropagating gradients through the teacher’s “leap”, not the student’s
update chain (ignoring that the chain starts from the meta-model). Figure 1 illustrates the main idea.

An exploratory student acts exactly the same as the gradient-based updates in MAML except that it
explores the feasible space by a large number of steps (k > 10), resulting in k + 1 checkpoints of a
task-specific model φ ∈ MMAML(θ,Dtr) = {φj , j = 0, · · · , k}. It is clear from Section 2 that we
cannot backpropagate the meta-gradients through the long chain of checkpoints, φ0, · · · , φk, made
by the exploratory student.

A lazy teacher sits at the initialization φ0 = θ till the student stops. It then takes a “leap” towards
the region explored by the student. The teacher essentially defines another “carved search space” for
the task-specific model φ,

MLAZY(θ,Dtr) := γθ + (1− γ)Rk−b+1...k (4)

where γ ∈ [0, 1]. The regionRk−b+1...k is a convex hull of the last b checkpoints the student visited:

Rk−b+1...k := αk−b+1φk−b+1 + αk−b+2φk−b+2 + · · ·+ αkφk, (5)

where the coefficients {α} are non-negative and their sum equals 1, i.e., αk−b+1 + · · · + αk = 1.
The last b checkpoints presumably cover a high-quality task-specific model φ by a better chance than
the first few checkpoints. We shall experiment with b = 3 and b = 1.
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Any task-specific model φ in this “lazy” spaceMLAZY(θ,Dtr) is determined by the hyper-parameters
γ and αk−b+1, · · · , αk, over which we conduct a grid search to minimize the validation lossLTDval

(φ).
This is similar in spirit to meta-SGD (Li et al., 2017), which uses the validation data to search for the
hyper-parameter of learning rates.

Denote by γ̂θ+ (1− γ̂)φ̂ the task-specific model as a result of the grid search. Notably, it is only one
hop away from the meta-model θ, making it easy to compute meta-gradients. Concretely, the meta-
gradient descent for the meta model θ becomes θ ← θ− βET ∼PT ,Dval∼T∇θLTDval

(γ̂θ+ (1− γ̂)φ̂),
which is apparently more manageable than the gradients in eq. (3) when k > 1.

Algorithm 1 “Lazy” Meta-Learning
Require: A distribution over tasks PT
Require: Learning rates η, β
Ensure: The meta model θ

1: Randomly initialize the meta-model θ
2: while not done do
3: Sample a batch of tasks {T i ∼ PT }
4: for all {T i} do
5: Sample data Dtr and Dval for Ti
6: φi,0 ← θ
7: for j = 1, 2, · · · , k do //student
8: φi,j ← φi,j−1 − η∇φLTiDtr

(φi,j−1)
9: end for

10: Grid-search MLAZY(θ,Dtr) such that
LTiDval

is minimized at γ̂iθ+(1− γ̂i)φ̂i //teacher
11: φi(θ)← γ̂iθ + (1− γ̂i)φ̂i //teacher
12: end for
13: θ ← θ − β∇θ

∑
i L
Ti
Dval

(φi(θ))
14: end while

Algorithm 1 presents our “lazy” approach in
detail. In the outer while-loop, we sample
a batch of tasks {Ti} (Line 3, or L3) and
use them to make a gradient update to the
meta-model θ (L13). All task-specific mod-
els {φi,0} are initialized to the current meta-
model θ (L6). For each task Ti, the student
first runs gradient descent with respect to the
task-specific model φi up to k steps (L8), and
the teacher then takes a “leap” from the initial
meta-model θ according to the checkpoints
visited by the student (L10–11).

Remarks. Our “lazy” teacher is motivated by
the lookahead optimizer (Zhang et al., 2019).
They have some key differences as follows due
to the meta-learning setup. We initialize mul-
tiple task-specific models by the meta-model.
Moreover, we dynamically choose the “leap”
rate γ by a validation set. Finally, the val-
idation data allows us to take advantage of
not one checkpoint, but a region around the
checkpoints visited by the student.

The teacher’s role is similar to the skip connection in ResNet (He et al., 2016). They bridge two
otherwise distant points such that gradients can effectively propagate between them.

We share the same goal, to make MAML less “greedy”, as the recently proposed implicit gradients
(iMAML) (Rajeswaran et al., 2019). iMAML changes the lower-level problem in eq. (1) to an `2-
regularized problem, which lends an analytical expression for the meta-gradient. But it is expensive
to compute and has to be approximated by a conjugate gradient algorithm. The `2 regularization also
falls short in capturing structural relations between a meta-model and task-specific models.

3.2 FEW-SHOT LEARNING, LONG-TAILED CLASSIFICATION, AND META-ATTACK

Since the “lazy” teacher does not change the innermost loop of gradient-based meta-learning — it
instead “leaps” over the chain of updates to the task-specific model φ, we can apply it to different
algorithms. We evaluate it on few-shot learning, long-tailed classification, and meta-attack, in which
meta-learning based methods have led to state-of-the-art results.

Few-shot learning in this paper concerns an N -way-K-shot classification problem. To customize
Algorithm 1 for this problem, we randomly select N classes for each task Ti and then draw from each
class K + 1 examples with labels, K of which are assigned to the training set Dtr and one is to the
validation set Dval. Besides, we choose the hyper-parameter γi by using the task-specific model’s
classification accuracy on the validation set, instead of the loss in L10, Algorithm 1.

There is an interesting “trap” in few-shot learning, identified as over-fitting by memorization (Yin
et al., 2019). The tasks {Ti} drawn from a distribution PT are supposed to be i.i.d., but they could be
correlated in the following scenario. Suppose there exists a global order of all classes. If we maintain
this order among the N classes in each task, the meta-model could over-fit the tasks seen during
meta-training by memorizing the functions that solve these tasks, and it would fail to generalize to
new tasks. Hence, it is important to randomly shuffle the N classes every time we sample them for a
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Algorithm 2 “Lazy” Two-Component Weighting for Long-Tailed Recognition
Require: A training set Dtr whose class frequency is long-tailed, a balanced validation set Dval
Require: Class-wise weights {wy} estimated by using Cui et al. (2019)
Require: Learning rates η, τ , pre-training steps t1, fine-tuning steps t2

1: Train a recognition network, parameterized by θ, for t1 steps by a standard cross-entropy loss
2: for t = t1 + 1, · · · , t1 + t2 do
3: Sample a mini-batch B from the training set Dtr
4: Set εi ← 0,∀i ∈ B, and denote by ε := {εi, i ∈ B}
5: Compute LB(θ, ε) := 1

|B|
∑
i∈B(wyi + εi)Li(θ) //Li is a cross-entropy over the i-th input

6: Update θ̃(ε)← θ − η∇θLB(θ, ε) // The “lazy” teacher, which depends on ε
7: Initialize a student model by setting φ0 ← θ̃(ε)
8: for j = 1, 2, ..., k do
9: Update the student model by gradient descent φj ← φj−1 − η∇φLB(φj−1, ε)

10: end for
11: Grid search for γ s.t. the teacher’s “leap”, γθ̃(ε) + (1− γ)φk, yields high accuracy on Dval
12: Update ε← ε− τ∇εLDval

(γθ̃(ε) + (1− γ)φk)
13: Compute LB(θ, ε) (cf. Line 5) and update θ ← θ − η∇θLB(θ, ε)
14: end for

task (e.g., “dogs” and “cats” are respectively labeled as 0 and 1 in a two-way classification task, and
yet they are shuffled to 1 and 0 in another two-way task).

We will empirically show that our approach is less prone to over-fitting than MAML even without
class shuffling. A possible reason is that we use longer chains of updates (φ0, · · · , φk, k > 10) to
learn the functions that solve the individual tasks, making them harder to memorize.

Long-tailed classification emerges as an inevitable challenge as object recognition makes progress
toward large-scale, fine-grained classes (Van Horn et al., 2018; Weyand et al., 2020), which often
exhibit a long-tailed distribution. To uplift infrequent classes, Jamal et al. (2020) propose to weigh
each training example by two components, a fixed component wy to balance different classes (Cui
et al., 2019) and a trainable component εi. We improve their learning method by a “lazy” teacher,
as described in Algorithm 2. It alternatively optimizes the per-example weight εi (using a balanced
validation set) and a recognition network θ (using the long-tailed training set), in the same spirit as
meta learning (cf. Algorithm 1 vs. L5-12 in Algorithm 2). We insert a “lazy” teacher model to L6, let
it take a “leap” in L12, and then backpropagate the gradient with respect to the per-example weight εi
through the “leap”.

Meta-attack (Du et al., 2019) is a query-efficient blackbox attack algorithm on deep neural networks.
Recent work has shown that one can manipulate an image recognition network’s predictions by
adding very small perturbations to benign inputs. However, if the network’s architecture and weights
are unknown (blackbox), it takes a large number of queries into the network to find a valid adversarial
example. To improve the query efficiency, Du et al. (2019) propose to learn a meta-model from many
whitebox neural networks and then generalize it to blackbox attacks. They train this meta-model by
using the same meta-learning framework as Algorithm 1. Therefore, it is straightforward to improve
their inner loop by our “lazy” teacher; we postpone the detailed algorithm to Appendix B.

4 EXPERIMENTS

We evaluate the “lazy”, long-horizon meta-learning approach by plugging it into different algorithms
with applications to few-shot learning, long-tailed recognition, and meta-attack.

4.1 FEW-SHOT LEARNING

We experiment with four datasets for few-shot learning: Omniglot (Lake et al., 2011), MiniIma-
geNet (Vinyals et al., 2016b), TieredImageNet (Ren et al., 2018a), and CIFAR-FS (Bertinetto et al.,
2018). The experiment protocols and implementation details largely follow MAML (Finn et al.,
2017) and Reptile (Nichol et al., 2018). Please refer to Appendices A.1 and A.2 for more details.
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Table 1: Our approach applied to MAML and Reptile for five-
way few-shot classification on MiniImageNet (Accuracy± 95%
confidence interval over 2000 runs)

Method MiniImageNet

1-shot 5-shot

MAML (Finn et al., 2017) 48.70 ± 1.84 63.11 ± 0.92
“Lazy” MAML (b = 1) 48.26 ± 1.78 64.13 ± 1.90
“Lazy” MAML (b = 3) 48.17 ± 1.84 63.73 ± 1.10

Reptile (Nichol et al., 2018) 49.97 ± 0.32 65.99 ± 0.58
“Lazy” Reptile (b = 1) 51.50 ± 1.00 67.22 ± 0.97
“Lazy” Reptile (b = 3) 52.67 ± 1.01 68.77 ± 0.98

Our approach permits long-horizon
inner updates and involves a con-
vex hull of the last few checkpoints.
In Table 1, we first experiment
with the last b=3 and b=1 check-
points. We test them with two
representative meta-learning algo-
rithms: MAML (cf. Algorithm 1)
and Reptile (replacing Line 13
(L13) in Algorithm 1 with θ ←
θ−β

∑
i(θ−φi(θ))). The intervals

are 0.05 in the grid search (L10),
and the search range for the learn-
ing rate γ is between 0.75 and 0.95.

Table 1 shows that there is no significant difference between b = 3 and b = 1, so we shall employ
b = 1 for the remaining experiments. Moreover, the “lazy” variation improves the vanilla Reptile,
but not MAML, probably because the five-way one/five-shot learning is too simple for MAML to
take advantage of the long-horizon inner updates. We next study many-way few-shot learning tasks,
which are arguably more complex.

4.1.1 MAML VS. “LAZY” MAML FOR MANY-WAY FEW-SHOT LEARNING

We switch to the TieredImageNet dataset since there are only 20 classes in MiniImageNet’s meta-test
set. The left panel of Figure 2 shows the results of MAML and “Lazy” MAML for N -way-five-shot
learning, where N varies in {5, 20, 30, 50}, and the student runs for k = 10, 15, 20, 20 inner steps,
respectively. The “lazy” variation is on par with MAML for the five-way classification, and it
significantly outperforms MAML for 20-way, 30-way, and 50-way five-shot classifications. This
trend indicates that the many-way few-shot learning problems desire more inner updates to the
task-specific models, amplifying the benefit of the “lazy” teacher.
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Figure 2: Left: Mean Accuracy (%) for N -way-five-shot classification on TieredImageNet. Right:
Mean Accuracy (%) for 20-way-one-shot non-i.i.d. (Yin et al., 2019) classification tasks on Omniglot.

4.1.2 “LAZY” MAML IS LESS PRONE TO OVER-FITTING BY MEMORIZATION THAN MAML

The right panel of Figure 2 shows some 20-way-one-shot classification results on Omniglot when we
learn from non-i.id. tasks, i.e., by maintaining a global order of all training classes. This global order
creates a shortcut for meta-learning methods; they may memorize the order from the meta-training
tasks and fail to generalize to meta-test tasks (Yin et al., 2019). We can see that the “lazy” teacher
boosts MAML by a large margin and outperforms TAML (Jamal & Qi, 2019), indicating that it is
less prone to over-fitting by memorization. A plausible reason is that the k = 15 steps taken by the
exploratory student make it harder to memorize than the one-step update in MAML or TAML.

In Appendix A, we present more results of the few-shot learning. Section A.5 investigates the
proposed “lazy” approach with Reptile-style update for N -way-five-shot learning on TieredImageNet.
Section A.4 further compares MAML and “lazy” MAML by their computation memory costs.
Section A.6 contrasts “lazy” MAML and “lazy” Reptile to prior arts on all the four datasets.
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4.2 LONG-TAILED CLASSIFICATION

Following the experiment setup in (Cui et al., 2019) and (Jamal et al., 2020), we use the CIFAR-
LT-100 dataset (Cui et al., 2019) to compare our Algorithm 2 with several long-tailed recognition
methods. Cui et al. (2019) created multiple long-tailed datasets by removing training examples from
CIFAR-100 (Krizhevsky & Hinton, 2009) according to different power law distributions. In each
version, we compute an imbalance factor as the ratio between the sizes of the head class and the tail
class. We run k = 5 steps in the innermost loop of Algorithm 2.

Table 2: Test top-1 errors (%) of ResNet-32 on CIFAR-LT-100 under different imbalance settings.
Method ↓ Imbalance factor→ 200 100 50 20

Standard cross-entropy training 65.16 61.68 56.15 48.86
Class-balanced cross-entropy training (Cui et al., 2019) 64.30 61.44 55.45 48.47
Class-balanced fine-tuning (Cui et al., 2018) 61.78 58.17 53.60 47.89
Learning to reweight (Ren et al., 2018b) 67.00 61.10 56.83 49.25
Meta-weight (Shu et al., 2019) 63.38 58.39 54.34 46.96

Two-component weighting (Jamal et al., 2020) 60.69 56.65 51.47 44.38
Lazy two-component weighting (ours) 58.67 53.46 48.24 43.68

Table 2 shows the test errors (%) under different imbalance factors. We can see that our teacher-
student scheme boosts the original two-component weighting approach (Jamal et al., 2020) under
all the imbalance factors. The results are especially interesting in that Algorithm 2 is not exactly
a meta-learning method, though it shares the same framework as the gradient-based meta-learning
due to the two nested optimization loops. Besides, compared with the other competing methods, our
results establish a new state of the arts for the long-tailed object recognition.

4.3 META-ATTACK

We evaluate the “lazy” meta-attack on MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky &
Hinton, 2009). We follow (Du et al., 2019) for the experiment setup and all training details, including
the network architectures used to generate gradients for input images, the attack models, meta-attack
models, and evaluation metrics for both the datasets, to name a few. The learning rates in the inner
and outer loops are both 0.01. We let the student run k = 8 and k = 10 steps in the innermost loop
for MNIST and CIFAR-10, respectively.

Table 3: Untargeted adversarial attack results on MNIST and CIFAR10. We achieve comparable
success rates and average `2 distortions with other methods by using a smaller number of queries.

Dataset / Target model Method Success Rate Avg. `2 Avg. Queries

MNIST / Net4

Zoo (Chen et al., 2017) 1.00 1.61 21,760
Decision boundary (* et al., 2018) 1.00 1.85 13,630
Opt-attack (Cheng et al., 2019) 1.00 1.85 12,925
AutoZoom (Tu et al., 2018), 1.00 1.86 2,412
Bandits (Ilyas et al., 2019) 0.73 1.99 3,771

Meta-attack (Du et al., 2019) 1.00 1.77 749
Lazy meta-attack (ours) 1.00 1.65 566

CIFAR10 / Resnet18

Zoo (Chen et al., 2017) 1.00 0.30 8,192
Decision boundary (* et al., 2018) 1.00 0.30 17,010
Opt-attack (Cheng et al., 2019) 1.00 0.33 20,407
AutoZoom (Tu et al., 2018) 1.00 0.28 3,112
Bandits (Ilyas et al., 2019) 0.91 0.33 4,491
FW-black (Chen et al., 2018) 1.00 0.43 5,021

Meta-attack (Du et al., 2019) 0.94 0.34 1,583
Lazy meta-attack (ours) 0.98 0.45 1,061

Table 3 shows the results of untargeted attack, namely, the attack is considered successful once it
alters the recognition network’s prediction to any incorrect class. Appendix B includes the results
of targeted attack. In addition to the original meta-attack (Du et al., 2019), Table 3 also presents
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several existing blackbox attack methods for comparison. We can see that meta-attack and our “lazy”
meta-attack yield about the same success rates as the other blackbox attacks. The second-to-the-right
column is about the average `2 distortion an attacker makes to an input, the lower the better. The
rightmost column is about the number of queries an attacker makes into the recognition network, the
lower the better. The “lazy” meta-attack is able to achieve comparable success rates and `2 distortion
rates with the other methods yet by using a smaller number of queries. Both meta-attack and its
“lazy” version significantly outperform the other methods in terms of the query efficiency, indicating
the generalization capability of the meta-attack model from known whitebox neural networks to
unknown blackbox networks.

5 RELATED WORK

Meta-learning has been a long-standing sub-field in machine learning (Schmidhuber, 1987; Thrun &
Pratt, 1998; Naik & Mammone, 1992). Early approaches update a model’s parameters by training
a meta-learner (Bengio et al., 1995; Bengio et al., 1991; Schmidhuber, 1992). This has been well
studied in optimizing neural networks, and one such family of meta-learning learns an optimizer (Ravi
& Larochelle, 2016; Li & Malik, 2016; Andrychowicz et al., 2016). A specialized neural network
takes gradients as input and outputs an update rule for the learner. In addition to the update rule,
Ravi & Larochelle (2016) also learn the weight initialization for few-shot learning. Finally, there are
several approaches (Metz et al., 2019; Wichrowska et al., 2017) for training generic optimizers that
can be applied broadly to different neural networks and datasets.

Under the context of few-shot learning, another family of meta-learning involves metric-learning
based methods (Vinyals et al., 2016a; Snell et al., 2017; Mishra et al., 2017; Koch et al., 2015;
Oreshkin et al., 2018), which learn a metric space to benefit different few-shot learning tasks. The
goal is to find the similarity between two samples regardless of their classes using some distance
metric so that the similarity function can be used to classify the unseen classes at the test stage. Some
recent studies along this line include Matching Networks (Vinyals et al., 2016a), which employs the
cosine similarity, Prototypical Networks (Snell et al., 2017), which uses the Euclidean distance to
compute the similarity, Relation Network (Sung et al., 2017), which uses a relation module as the
similarity function, ridge regression (Bertinetto et al., 2018), and graph neural networks (Satorras &
Estrach, 2018).

More recently, gradient-based meta-learning gains its momentum, and a variety of methods have
been proposed in this vein. The most notable one among them might be MAML (Finn et al., 2017),
where the goal is to learn the network weight initialization so that it can adapt to unseen tasks rapidly.
There have been extensions to improve MAML. Meta-SGD (Li et al., 2017) learns the learning rates
along with the weight initialization. Regularization techniques (Yin et al., 2020; Jamal & Qi, 2019)
are introduced to MAML to mitigate over-fitting. (Park & Oliva, 2019) preconditions on the gradients
in the inner loop by learning a curvature. Despite MAML’s popularity, it is still computationally
expensive and consumes large memory due to the computation of high-order derivatives. The
authors show that the first-order approximation, which neglects the gradients of the inner loop
during meta-optimization, performs about the same as the original MAML. Another first-order meta-
learning method is Reptile (Nichol et al., 2018), which decouples the inner and outer optimization
steps. iMAML (Rajeswaran et al., 2019) provides an approximate solution for meta-gradients by
using an algorithm based on conjugate gradients, and its low-level optimization is similar to Meta-
MinibatchProx (Zhou et al., 2019). The idea is to add an `2 regularizer in the inner loop, allowing the
updated parameters close to the initial parameters.

6 CONCLUSION

We propose a teacher-student scheme for the gradient-based meta-learning algorithms to allow them
run more steps of inner updates to task-specific models while being immune to the risk of vanishing or
exploding gradients. The student explores the tasks-specific model’s feasible space up to many steps,
and the “lazy” teacher takes a one-step “leap” towards the region explored by the student. As a result,
the teacher defines a lightweight computation graph and yet it takes advantage of the adequately
explored checkpoints by the student. This approach is generic; we apply it to different problems,
include few-shot learning, long-tail recognition, and meta-attack and various meta-learning methods.
Experiments verify the benefit of long-horizon inner updates in gradient-based meta-learning.
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APPENDICES

A FEW-SHOT LEARNING

A.1 DATASETS

We experiment with four datasets for few-shot learning: Omniglot (Lake et al., 2011), MiniIma-
geNet (Vinyals et al., 2016b), TieredImageNet (Ren et al., 2018a), and CIFAR-FS (Bertinetto et al.,
2018). The Omniglot dataset consists of handwritten characters from 50 different alphabets and
1623 characters. There are 20 handwritten examples of each character. MiniImageNet contains 100
classes form ImageNet (Deng et al., 2009), which are split to 64, 16, and 20 classes for meta-training,
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meta-validation, and meta-test, respectively. TieredImagNet has 608 classes from ImageNet, which
are grouped into 34 higher-level categories following the ImageNet taxonomy. They are split into
20 meta-training categories, 6 meta-validation categories, and 8 meta-test categories. Due to this
partition scheme, the meta-test classes are less similar to the meta-training classes in TieredImageNet
than in other datasets. CIFAR-FS re-purposes CIFAR-100 (Krizhevsky & Hinton, 2009), splitting its
100 classes into 64, 16, and 20 classes for meta-training, meta-validation, and meta-test, respectively.

A.2 EXPERIMENT PROTOCOLS AND HYPER-PARAMETERS

Our experiment protocols and implementation details largely follow MAML (Finn et al., 2017) and
Reptile (Nichol et al., 2018). In particular, we use a convolutional neural network that comprises
four modules in all the experiments. Each module has 3x3 convolutions, a batch-normalization layer,
2x2 max-pooling, and the ReLU activation, and every convolutional layer contains 64 filters for the
experiments on Omniglot and 32 filters for other datasets. For fair comparison, we also re-implement
some of the existing methods using this network architecture. We report more details for the “Lazy”
Reptile in Table 4. For “Lazy” MAML, we set k = 10 for 1-shot and 5-shot tasks, respectively, on
both MiniImageNet and TieredImageNet.

Table 4: Hyper-parameter details for few-shot learning in ours (Reptile). The “Eval inner batch” row
shows the numbers for both 1-shot and 5-shot settings.

Hyper-parameter Omniglot CIFAR-FS Mini-ImageNet TieredImageNet
Inner learning rate (η) 0.001 0.001 0.001 0.001
Inner iterations (k) 5 8 8 8
Inner batch size 10 10 10 10
Training shots 10 15 15 15
Outer step-size (β) 1.0 1.0 1.0 1.0
Total outer-iterations 100k 120k 120k 130k
Meta batch size 20 20 20 20
Eval. inner iterations 50 50 50 50
Eval. inner batch 5/15 5/15 5/15 5/15

A.3 MANY-WAY CLASSIFICATION

We have presented many-way results on TieredImageNet for “Lazy” MAML in section 4.1.1. Here,
we describe the implementation details for these experiments. We set the inner learning rate (η) to
0.005 and the outer learning rate (β) to 0.001 for all the settings. We let the student run k = 15, 15
and 18 steps for 20-way, 30-way and 50-way, respectively during meta-training.

Figure 3: Left: Memory trade-offs with 4 layer CNN on 20-way-5-shot MiniImageNet task. b).
Computation time (sec per meta-iteration) w.r.t the number of inner gradient steps on 20-way-5-shot
MiniImageNet task.
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A.4 COMPUTATIONAL ANALYSIS

In our evaluation, we also want to answer the following question empirically. How does the memory
and computation requirements of “Lazy” MAML compare with MAML? Figure 3 shows the memory
and compute trade-off for “Lazy” MAML and MAML on 5-shot 20-way MiniImageNet. “Lazy”
MAML decouples the dependency of inner and outer loop by teacher-student scheme which allows it
to define a very lightweight computation graph. The left panel of the figure shows that the memory
of the “Lazy” MAML doesn’t exceed beyond 5 GB for many inner gradient steps while on the
other hand, MAML reaches the capacity of 12 GB after 5 inner steps. The right panel shows the
computation time per iteration with respect to multiple gradient inner steps. The time taken by “Lazy”
MAML doesn’t increase exponentially as compared to MAML which takes more compute time and
reaches the maximum capacity of memory after 5 inner steps.

A.5 ADDITIONAL RESULTS ON MANY-WAY LEARNING

The left panel of Figure 4 compares the results of Reptile and “Lazy” Reptile for N -way-five-shot
learning on TieredImageNet where N varies in {5, 20, 30}. Our approach outperforms Reptile. We
emphasize that not all meta-learning algorithms can be approximated by a first-order version; for
example, it is not immediately clear how to do it for Algorithm 2, the two-component weighting
method for long-tailed classification, in the main text.
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Figure 4: Left: Mean Accuracy (%) for N -way-five-shot classification on TieredImageNet. b). Mean
Accuracy (%) for 20-way-5-shot classification on MiniImageNet.

The right panel of Figure 4 shows some 20-way-5-shot results on MiniImageNet. We can see that
our lazy strategy boosts both MAML and Reptile by a significant margin, which is similar to what
we see in Figure 2 of the main paper. It again indicates that more training data needs more steps of
exploration for a task-specific model and hence magnifies the benefit of our teacher-student scheme
introduced to both MAML and Reptile.

A.6 COMPARISON RESULTS

We compare “our” approach with state-of-the-art meta-learning methods for five-way few-shot learn-
ing problems on four datasets. The results are shown in Tables 5 and 6. For our own approach, we
study both the MAML-style update to the meta-model (ours (MAML), L13 in Algorithm 1) and the
Reptile-style (Nichol et al., 2018) update (ours (Reptile), L14 in Algorithm 1) for MiniImageNet and
TieredImageNet. On Omniglot and CIFAR-FS, we only report ours (Reptile) due to its low computa-
tion cost. Batch normalization with test data yields about 2% improvement over the normalization
with the training data only, and we report the results of both scenarios.

It can be seen that our results are better than or comparable with those of the competing methods. In
general, the improvements by our teacher-student scheme are more significant on 5-shot settings than
on 1-shot settings, verifying the trend in Section 4.1.1 that more training data can better leverage the
exploratory student in our method. Besides, ours (Reptile) outperforms ours (MAML) probably for
two reasons. One is that ours (Reptile) uses more than k shots of training examples per class for a
k-shot learning problem during meta-training, following the experiment setup of Reptile (Nichol et al.,
2018). The other is that the second-order gradients in ours (MAML) make the training procedure
less stable than Reptile. We hypothesize that a many-shot setting would be less sensitive to both
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Table 5: Five-way few-shot classification accuracies (%) on MiniImageNet and TieredImageNet. The
± shows 95% confidence intervals computed over 2000 tasks.

Method BN w/ Mini-ImageNet TieredImageNet

Test 1-shot 5-shot 1-shot 5-shot

MAML (Finn et al., 2017) 7 46.21 ± 1.76 61.12 ± 1.01 49.60 ± 1.83 66.58 ± 1.78
MAML (Finn et al., 2017) 3 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 69.60 ± 1.73
Meta-Curvature (Park & Oliva, 2019) 3 48.83 ± 1.80 62.63 ± 0.93 50.30 ± 1.99 66.14 ± 0.95
iMAML (Rajeswaran et al., 2019) 3 49.30 ± 1.88 - - -
Ours (MAML) 3 48.26 ± 1.78 64.13 ± 1.90 51.03 ± 1.70 70.67 ± 1.72

FOMAML (Finn et al., 2017) 7 45.53 ± 1.58 61.02 ± 1.12 48.01 ± 1.74 64.07 ± 1.72
Reptile (Nichol et al., 2018) 7 47.07 ± 0.26 62.74 ± 0.37 49.12 ± 0.43 65.99 ± 0.42
Meta-MinibatchProx (Zhou et al., 2019) 7 47.81 ± 1.00 63.18 ± 1.00 49.97 ± 0.93 66.60 ± 0.91
Ours (Reptile) 7 48.14 ± 0.94 64.64 ± 0.92 51.15 ± 0.95 68.84 ± 0.90

FOMAML (Finn et al., 2017) 3 48.07 ± 1.75 63.15 ± 0.91 50.12 ± 1.82 67.43 ± 1.80
Reptile (Nichol et al., 2018) 3 49.97 ± 0.32 65.99 ± 0.58 51.34 ± 0.4 68.73 ± 0.40
Meta-MinibatchProx (Zhou et al., 2019) 3 50.08 ± 1.00 66.28 ± 0.98 53.71 ± 1.04 69.78 ± 0.95
Ours (Reptile) 3 51.50 ± 1.00 67.22 ± 0.97 54.41 ± 1.00 72.21 ± 0.94

Table 6: Five-way few-shot classification accuracies (%) on Omniglot and CIFAR-FS. The ± shows
95% confidence intervals computed over 1000 tasks.

Method BN w/ Omniglot CIFAR-FS

Test 1-shot 5-shot 1-shot 5-shot

MAML (Finn et al., 2017) 3 98.70 ± 0.40 99.90 ± 0.10 56.50 ± 1.90 70.50 ± 0.90
iMAML (Rajeswaran et al., 2019) 3 99.16 ± 0.35 99.67 ± 0.12 - -

Reptile (Nichol et al., 2018) 7 95.39 ± 0.09 98.90 ± 0.10 53.12 ± 1.34 69.40 ± 1.30
Ours (Reptile) 7 95.44 ± 0.57 98.92 ± 0.29 54.64 ± 1.30 70.56 ± 1.20

FOMAML (Finn et al., 2017) 3 98.30 ± 0.50 99.20 ± 0.20 - -
Reptile (Nichol et al., 2018) 3 97.68 ± 0.04 99.48 ± 0.06 57.50 ± 0.45 71.88 ± 0.42
Ours (Reptile) 3 98.20 ± 0.38 99.70 ± 0.16 59.36 ± 1.44 74.90 ± 1.28

factors. Indeed, we verified this hypothesis by another five-way-50-shot learning experiment with
ours (Reptile), which yields 76.17± 0.32% on MiniImageNet and is lower than 78.54± 0.70 by ours
(MAML).

B META-ATTACK

Here, we formally present the algorithm of our lazy meta-learning approach to training the meta-
attacker in Algorithm 3. As described in the main paper that the original meta-attack Du et al. (2019)
uses Reptile to train the attacker, so it is straightforward to improve the approach by using a “lazy”
teacher. The inputs to the meta-attacker are images, and the desired outputs are their gradients —
during meta-training, the gradients are generated from different classification models. Instead of the
cross-entropy loss, meta-attack adopts a mean-squared error (MSE) loss in the inner loop, i.e.,

LTiDtr
= ||φ(Xij)− Gij ||22 (6)

where the task Ti is to find adversarial examples for the inputs to the i-th pre-trained classification
network, Xij is an image sampled for the task, Gij are the gradients of the classification network with
respect to (w.r.t.) the image, and φ(·) is a task-specific model whose output is to approximate the
gradients Gij . This model is useful because, given a blackbox classification network, we can use
the task-specific model to predict the gradients of this network w.r.t. an image, followed by gradient
ascent towards an adversarial example (cf. Algorithm 4).

Algorithm 3 presents how to train this meta-attacker by applying our “lazy” teacher to Reptile, and
we then follow Algorithm 4 for attacking blackbox networks Du et al. (2019).
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Algorithm 3 Training algorithm of meta-attack using “lazy” Reptile
Require: A distribution over tasks PT
Require: Input Images X , gradients Gi generated from a classification network serving task T i
Require: Learning rates α, β
Ensure: The meta attacker θ

1: Randomly initialize the meta-attacker θ
2: while not done do
3: Sample a batch of tasks {T i ∼ PT }
4: for all {T i} do
5: Sample data Dtr and Dval for Ti // in the form of {Xij ,Gij}
6: φi,0 ← θ
7: for j = 1, 2, · · · , k do
8: φi,j ← φi,j−1 − α∇φLTiDtr

(φi,j−1)
9: end for

10: γi ← argminγ LTiDval
(γθ + (1− γ)φi,k)

11: φi(θ)← γiθ + (1− γi)φi,k
12: end for
13: θ ← θ − β

∑
i(θ − φi(θ))

14: end while

Algorithm 4 Adversarial Meta-Attack
Require: Test image xo with label t, meta-attacker fθ, target model Mtar, iteration interval j,

selected top-q coordinates
1: for t = 0, 1, 2, · · · do
2: if (t+ 1) mod j = 0 then
3: Perform zeroth-order gradient estimation on top-q coordinates, denoted as It and
4: obtain gt.
5: Fine-tune meta-attacker fθ with (xt,gt) on It by L = |[fθ(xt]It − [gt]It |22.
6: else
7: Generate the gradient map gt directly from meta-attacker fθ with xt,
8: select coordinates It.
9: end if

10: Update [x′]It = [xt]It + λ[gt]It .
11: ifMtar(x

′) 6= t then
12: xadv = x′

13: break
14: else
15: xt+1 = x′

16: end if
17: end for
Ensure: adversarial example xadv .
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B.1 RESULTS UNDER TARGETED ATTACK

In Table 3 of the main paper, we report the results under untargeted attack. Here, we are presenting the
results under targeted attack for both MNIST and CIFAR-10 in Table 7. Similar to untargeted attack,
we achieve comparable results on success rate and average `2 distortion using a smaller number of
queries.

Table 7: Comparison of several methods under targeted attack on MNIST and CIFAR-10. Similar to
the untargeted attack, we reduce the number of queries for meta attack.

Dataset / Target model Method Success Rate Avg. L2 Avg. Queries

MNIST / Net4

Zoo Chen et al. (2017) 1.00 2.63 23,552
Decision Boundary * et al. (2018) 0.64 2.71 19,951
AutoZoom Tu et al. (2018) 0.95 2.52 6,174
Opt-attack Cheng et al. (2019) 1.00 2.33 99,661

Meta attack Du et al. (2019) 1.00 2.66 1,299
Lazy meta-attack (ours) 1.00 2.63 1,108

CIFAR10 / Resnet18

Zoo Chen et al. (2017) 1.00 0.55 66,400
Decision Boundary * et al. (2018) 0.58 0.53 16,250
AutoZoom Tu et al. (2018) 1.00 0.51 9,082
Opt-attack Cheng et al. (2019) 1.00 0.50 121,810
FW-black Chen et al. (2018) 0.90 0.73 6,987

Meta attack Du et al. (2019) 0.93 0.77 3,667
Lazy meta-attack (ours) 0.92 0.69 3,092
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