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Abstract

Assessing corporate environmental sustainabil-001
ity with Table Question Answering systems002
is challenging due to complex tables, special-003
ized terminology, and the variety of questions004
they must handle. In this paper, we introduce005
GRI-QA, a benchmark designed to evaluate006
Table QA approaches in the environmental do-007
main. Using GRI standards, we extract and008
annotate tables from non-financial corporate re-009
ports, generating question-answer pairs through010
a hybrid LLM-human approach. The bench-011
mark includes eight datasets, categorized by012
the types of operations required, including op-013
erations on multiple tables from multiple doc-014
uments. Our evaluation reveals a significant015
gap between human and model performance,016
particularly in multi-step reasoning, highlight-017
ing the relevance of the benchmark and the018
need for further research in domain-specific019
Table QA. Code and benchmark datasets020
are available at https://anonymous.4open.021
science/r/gri_qa-EA6F/.022

1 Introduction023

Sustainability accounting is crucial to global regu-024

latory efforts for corporate environmental trans-025

parency. Initiatives like the European Green026

Deal (European Commission, 2024) and the United027

Nations’ sustainability agenda (SDGS, 2024) re-028

quire publicly listed companies to disclose environ-029

mental data through non-financial reports adhering030

to consolidated standards, such as the Global Re-031

porting Initiative (GRI) framework (GRI, 2024).032

These reports provide crucial information, in par-033

ticular within many and large tables, to determine034

whether companies are adopting responsible envi-035

ronmental practices or engaging in greenwashing,036

i.e., overstating their sustainability achievements037

to appear more environmentally responsible than038

they truly are (Nemes et al., 2022; Moodaley and039

Telukdarie, 2023; de Freitas Netto et al., 2020).040

However, automatically analyzing non-financial 041

reports introduces many challenges due to (1) the 042

format and structure of the tables, which lack 043

standardization across companies and often fea- 044

ture hierarchical layouts combining top and side 045

headers, (2) specialized terminologies, as environ- 046

mental tables frequently include industry-specific 047

terms which, combined with performance metrics 048

with varying measurement conventions compli- 049

cates their interpretation, and (3) the nature and 050

variety of the questions posed by analysts, which 051

can range from simple value extraction to complex 052

calculations involving multiple elements within the 053

same table, across tables within the same document, 054

or even across tables from different documents. 055

These challenges highlight the need for models 056

capable of understanding complex table structures, 057

applying context-aware reasoning, and combining 058

general semantic knowledge with domain exper- 059

tise. While similar datasets exist in other sectors, as 060

highlighted in Section 2, an environmental domain- 061

specific benchmark is still missing and could repre- 062

sent a significant step forward. Such a benchmark 063

would be valuable for both domain specialization 064

in table question answering (QA) models and for 065

its technical features, requiring reasoning across 066

varying numbers of tables, an uncommon aspect in 067

other datasets. 068

To address this gap, we introduce GRI-QA, a 069

new Table QA benchmark on environmental tables 070

extracted from corporate reports, with questions 071

categorized according to the GRI standard. GRI- 072

QA was designed through a methodology that re- 073

quires input from domain experts (Section 3) to 074

reflect the specific information needs in the sector. 075

Figure 1 shows the question types present in GRI- 076

QA and provides an example of question-answer 077

using two tables containing BMW and Allianz CO2 078

emissions statistics from the 2023 non-financial re- 079

port. These question types feature extractive ques- 080

tions that require straightforward data retrieval, and 081
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Figure 1: Examples of tables with related questions in the GRI-QA benchmark. The colored boxes on the tables
indicate the input values considered to compute the respective answer. The answers may span multiple tables.

hierarchical questions which require disambiguat-082

ing terms based on the table’s hierarchical struc-083

ture. GRI-QA contains calculated questions that084

can be relational, focusing on understanding nu-085

merical relationships between table entries, such086

as comparisons (blue box in the Figure), superla-087

tives (yellow box), or rankings (purple box). It also088

includes quantitative questions, which demand pre-089

cise computations (i.e., sums, averages, or percent-090

age variations in pink boxes in the Figure) using091

numerical data. Moreover, GRI-QA proposes multi-092

step questions which require to process multiple093

operations on (multiple) tables from (multiple) doc-094

uments (fuchsia boxes). Some of these questions095

may require a textual value as an answer, as in the096

example for the multi-step superlative question.097

To assess the benchmark’s complexity, we098

evaluated several state-of-the-art tabular question-099

answering systems and GPT models. The experi-100

mental results in Section 4 highlight a significant101

performance gap between humans and models, par-102

ticularly in multi-step and multi-table reasoning.103

While GPT-based models with CoT prompting104

achieve strong results on simpler tasks, they still105

struggle with more complex ones, especially when106

dealing with multi-table scenarios. Financial mod-107

els show promise but exhibit greater variability108

depending on the dataset. These findings under-109

score the benchmark’s relevance and suggest the110

need for further research, particularly in addressing111

complex, multi-step and multi-table questions.112

In summary, our contributions are threefold: (1)113

we introduce GRI-QA, a publicly available bench-114

mark designed for Question Answering on envi- 115

ronmental tables from corporate reports, including 116

multi-table and multi-document reasoning; (2) we 117

propose a methodology to create the benchmark 118

with the support of domain experts; and (3) we 119

evaluate state-of-the-art Table QA models on GRI- 120

QA, highlighting their limitations and outlining 121

directions for future research. 122

2 Related Work 123

2.1 Table question answering 124

In recent years, Table QA has become a promi- 125

nent research area, driving the development of var- 126

ious approaches. Most methods rely on tabular 127

language models (Badaro et al., 2023) and large 128

language models (Sui et al., 2024; Zhang et al., 129

2024a; Xie et al., 2023; Zhu et al., 2024; Wang 130

et al., 2024b), which enable a deep understanding 131

of queries, tables, and their relations. To improve 132

the performance of these methods across diverse 133

scenarios and domains, several benchmarks have 134

been introduced, with key statistics summarized 135

in Table 1. Many of the proposed datasets are 136

based on tables extracted from Wikipedia and focus 137

on different methods of answer generation, such 138

as direct answer generation (e.g., WTQ Pasupat 139

and Liang, 2015, NQ-Tables Herzig et al., 2021), 140

SQL query generation (e.g., WikiSQL Zhong et al., 141

2017, SPIDER Yu et al., 2018), free-form text gen- 142

eration (e.g., FeTaQA Nan et al., 2022), and multi- 143

hop question answering using both tabular and tex- 144

tual contexts (e.g., OTT-QA Chen et al., 2021a, 145
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Dataset Domain Data type Task Num. Hier. Multi-table

WTQ (Pasupat and Liang, 2015) Wikipedia Table Table QA ✗ ✗ ✗
NQ-Tables (Herzig et al., 2021) Wikipedia Table Table QA ✗ ✗ ✗
WikiSQL (Zhong et al., 2017) Wikipedia Table Text-to-SQL ✓ ✗ ✓
Spider (Yu et al., 2018) Wikipedia Table Text-to-SQL ✓ ✗ ✓
BIRD (Li et al., 2023) Kaggle Table Text-to-SQL ✓ ✗ ✓
FeTaQA (Nan et al., 2022) Wikipedia Table Table QA ✗ ✗ ✗
HybridQA (Chen et al., 2020) Wikipedia Table & Text Hybrid Table QA ✓ ✗ ✗
OTT-QA (Chen et al., 2021a) Wikipedia Table & Text Hybrid Table QA ✓ ✗ ✗
TAT-QA (Zhu et al., 2021) Finance Table & Text Hybrid Table QA ✓ ✓* ✗
Fin-QA (Chen et al., 2021b) Finance Table or Text QA ✓ ✓* ✗
PACIFIC (Deng et al., 2022) Finance Table & Text Conversational TQA ✓ ✓* ✗
ConvFinQA (Chen et al., 2022) Finance Table or Text Conversational QA ✓ ✓* ✗
DocFinQA (Reddy et al., 2024) Finance Table & Text Long-document QA ✓ ✓* ✗
AIT-QA (Katsis et al., 2022) Airlines Table Table QA ✓ ✓ ✗
HiTab (Cheng et al., 2022) Stat. reports, Wiki Table Table QA ✓ ✓ ✗
MMQA-QA (Wu et al., 2025) Wikipedia Relational Table Table QA ✓ ✗ ✓
MultiTabQA (Pal et al., 2023a) Wikipedia Relational Table Table QA ✓ ✗ ✓
MultiHiertt (Zhao et al., 2022) Finance Table Hybrid Table QA ✓ ✓* ✓

GRI-QA (ours) Environment Table Table QA ✓ ✓ ✓

Table 1: Comparison of Table QA benchmarks. “Num.” refers to questions requiring numerical reasoning and “Hier.”
to hierarchical questions. The symbol ✓* refers to hierarchical questions that have not been explicitly annotated.

Hybrid-QA Chen et al., 2020). Alongside these146

general-purpose datasets, several domain-specific147

datasets have also been introduced, focusing on148

areas such as finance, airlines (e.g., AIT-QA Kat-149

sis et al., 2022), and a combination of several do-150

mains (e.g., HiTab Cheng et al., 2022, TableLLM-151

bench Zhang et al., 2024b, TableInstruct-QA Zhang152

et al., 2024a, TableBench Wu et al., 2024, FLARE-153

QA Xie et al., 2023). The datasets in the finan-154

cial domain are particularly challenging because155

they require advanced numerical reasoning (e.g.,156

FinQA Chen et al., 2021b), analyzing long corpo-157

rate documents (e.g., DocFinQA Reddy et al., 2024,158

ConvFinQA Chen et al., 2022) and solving hybrid159

QA scenarios where both text and table content160

need to be aligned (e.g., TAT-QA Zhu et al., 2021,161

PACIFIC Deng et al., 2022).162

A common limitation of these benchmarks is163

their focus on queries involving either single tables164

(in most cases) or multiple tables with fixed rela-165

tional schemas, as in MMQA (Wu et al., 2025),166

MultiTabQA (Pal et al., 2023a), and text-to-SQL167

benchmarks (Zhong et al., 2017; Yu et al., 2018;168

Li et al., 2023). The only exception is Multi-169

Hiertt (Zhao et al., 2022), which includes queries170

spanning multiple non-relational tables within the171

financial domain. While similar to GRI-QA in han-172

dling multi-table queries, MultiHiertt extracts the173

tables from a single document, leading to less vari-174

ability in table structures and vocabulary compared175

to those considered in GRI-QA.176

2.2 Environmental data analysis 177

Environmental data analysis encompasses a broad 178

range of tasks as ESG text classification (Xia et al., 179

2024; Mehra et al., 2022; Pavlova et al., 2024; 180

Webersinke et al., 2021; Schimanski et al., 2023, 181

2024), topic detection (Varini et al., 2020; Nu- 182

gent et al., 2021), claim detection and verifica- 183

tion (Stammbach et al., 2022; Diggelmann et al., 184

2020), question answering (Luccioni et al., 2020), 185

and greenwashing detection (Nemes et al., 2022; 186

Moodaley and Telukdarie, 2023; de Freitas Netto 187

et al., 2020; Mahdavi et al., 2024). 188

The development of these methods is often sup- 189

ported by specialized datasets. An instruction- 190

tuned ESG news classification dataset was intro- 191

duced in Xia et al. (2024) to train the ESGLlama 192

model. Similarly, Schimanski et al. (2024) pro- 193

posed several datasets for pre-training and fine- 194

tuning ESG models1. ClimateBERT (Webersinke 195

et al., 2021) utilizes over 2 million climate-related 196

paragraphs for text classification, while ESG- 197

FTSE (Pavlova et al., 2024) and multilingual ESG 198

issues dataset (Chen et al., 2023) focus on ESG 199

topic categorization. For claim verification, the 200

Environmental Claims dataset (Stammbach et al., 201

2022) and CLIMATE-FEVER (Diggelmann et al., 202

2020) provide labeled claims with supporting evi- 203

dence. Finally, ontologies with environmental stan- 204

dards (Zhou and Perzylo, 2023; Usmanova and 205

Usbeck, 2024) have been developed to improve the 206

organization and accessibility of ESG data. 207

1https://huggingface.co/ESGBERT
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GRI-QA
datasets Question types Count

(#)
GRI (%)

301 302 303 304 305 306 308

extra Extractive (100%) 1503 3.5 24.4 6.1 2.1 50.1 7.6 6.2
hier Extractive hierarchical (100%) 502 3.2 17.9 11.2 0.4 55.6 9 2.8
rel Comparison (40.3%), Superlative (27%), Ranking (32.7%) 248 0.8 30.2 8.1 0 44.8 16.1 0
quant Sum (21.4%), Average (22.6%), Percentage change (56%) 266 1.8 27.6 7.7 0 48.6 14.3 0

step
Multi-Step Superlative (35.5%), Ranking (32.5%),
Sum (10.2%), Average (21.7%) 151 3.6 29.5 13.9 0 38.6 14.5 0

mrel Multi-Table Superlative (38.3%), Ranking (61.7%) 619 0 20 7 0 66.9 6.1 0
mquant Multi-Table Sum (43.1%), Average (56.9%) 197 0 15.2 3.1 0 71.6 10.2 0

mstep
Multi-Table, Multi-Step Superlative (54.4%), Ranking (29.4%),
Sum (2.6%), Average (13.6%) 588 0 34.9 8.5 0 38.4 18.2 0

Table 2: Dataset size, question type frequency and distribution in the GRI topics.

To the best of our knowledge, GRI-QA is also208

the first question-answering benchmark for tabular209

data in the environmental domain and annotated210

with industry standards such as GRI.211

3 The GRI-QA Benchmark212

The GRI-QA benchmark consists of a total of 4089213

questions spanning 204 tables extracted from cor-214

porate English reports2 published in 2023 from215

companies in Germany (19 reports), France (7 re-216

ports), and Italy (4 reports). The questions are log-217

ically organized into eight datasets based on their218

types, as shown in Table 2. In particular, we divide219

the question types into extractive and calculated.220

The extractive questions require the identification221

of relevant span(s) in a table. We distinguish be-222

tween extractive questions that require to directly223

retrieve a value (dataset extra) and hierarchical224

questions (dataset hier) that involve tables where225

the row/column headers (e.g., total amounts) are226

broken down into their components, requiring an227

understanding of these relationships to answer. The228

calculated types of question require performing a229

computation over multiple cells. The computation230

can refer to identifying relationships between cells,231

such as comparison, ranking, and superlative op-232

erations or to generating quantitative results by233

applying sum, average, or percentage calculations.234

In GRI-QA, we also introduce multi-step questions235

whose resolution requires applying a combination236

of relational and quantitative operations to cells in237

the same or in different tables. We call rel, quant,238

and step the datasets with relational, quantitative,239

and multi-step questions on single tables, and mrel,240

mquant, and mstep their variants on multiple ta-241

bles.242

Finally, the questions are annotated using the243

GRI standard. GRI-QA focuses specifically on244

2www.annualreports.com

environmental topics (see Appendix B for a de- 245

tailed description), with their distribution across 246

the datasets shown in Table 2. The distribution of 247

topics across the datasets is unbalanced, reflecting 248

their prevalence in the analyzed corporate reports. 249

The Emissions 305 topic is the most common in 250

the benchmark, while other GRI topics such as 301 251

Materials or 304 Biodiversity are less represented. 252

The construction of GRI-QA consists of two 253

phases: retrieving the tables related to specified 254

GRI topics in corporate reports (Section 3.1) and 255

generating questions based on the extracted tables 256

(Section 3.2). 257

3.1 Phase 1: Table extraction 258

This phase retrieves and extracts relevant tables, 259

i.e., those associated with the GRI topics of inter- 260

est, from corporate documents. The process begins 261

by selecting pages relevant to the target GRI topic 262

g (Page Filtering in Figure 2a), followed by extract- 263

ing the tables they contain (Table Extraction). 264

Page filtering. Non-financial corporate reports are 265

typically large documents (500+ pages) covering a 266

wide range of topics. To reduce the search space, 267

this component identifies sections related to a target 268

GRI topic using an information retrieval method 269

that combines sparse (syntactic) and dense (seman- 270

tic) embeddings, a technique shown to be effective 271

in the BEIR benchmark (Thakur et al., 2021). In 272

particular, given a GRI topic description g and a 273

report page pi,j , where i denotes the reports and j 274

the page number, we compute their similarity score 275

st with 276

sd(pi,j , g) = sim(ed(pi,j), ed(g)) 277

ss(pi,j , g) = sim(es(pi,j), es(g)) 278

st(pi,j , g) = sd(pi,j , g) + λ · ss(pi,j , g) 279

where sim is the cosine similarity, ed, es are re- 280
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Report GRI 
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Correction
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(a) Phase 1: Table extraction

GRI Table 

LLM QA
Generation

Row/Col
Annotation

Single Table
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Template QA
Generation

Template QA
Generation

Multi Table
Row/Col Selection

(b) Phase 2: Question generation

Figure 2: The two phases of our annotation pipeline. boxes contain the operations performed by the annotators.

spectively a dense retriever3 (Wang et al., 2024a)281

and a TF-IDF sparse retriever weighted by λ, and282

sd, ss and st are the dense, sparse and total score.283

If the page content pi,j exceeds the context window284

of ed, we split pi,j into multiple chunks and repeat285

the process. Based on empirical evaluation during286

the annotation phase, we set λ = 0.3 and k = 20,287

which produced favorable results. This process is288

repeated for each corporate report and each GRI289

topic description. The final output identifies the290

pages containing environmental data along with291

their associated GRI topics.292

Table extraction & filtering. We extract tables293

from the retrieved top k relevant pages using the294

Unstructured4 library, combined with Google’s295

Tesseract OCR (Smith, 2007) to accurately recog-296

nize the characters in the cells. The tables are then297

manually corrected for structural and syntactical298

errors, with annotators verifying the coherence of299

assigned GRI topics. Among the total 204 clean ta-300

bles, their dimensions range from 1 to 53 rows and301

2 to 15 columns. Furthermore, 32.06% of tables302

contain at least one hierarchical row index, 16.75%303

have a hierarchical column index, and 20.57% in-304

clude data related to multiple GRI topics.305

3.2 Phase 2: Question generation306

In Phase 2, we generate the questions and answers307

for the GRI-QA datasets from the extracted tables,308

as shown in Figure 2b. First, we use an LLM to309

automatically generate extractive questions for the310

extra and hier datasets. These questions are then311

reviewed by human annotators, who validate them312

and add supplementary annotations, such as the313

corresponding row and column indices. Then, the314

remaining datasets are created using a template-315

based approach. This method selects an operation316

3intfloat/multilingual-e5-large-instruct
4Unstructured Documentation

(e.g., maximum, minimum, sum, percentage) and 317

uses the annotated row and column indices to en- 318

sure the generated queries compare or combine 319

values in a meaningful way, reflecting real-world 320

scenarios. The specific process for each dataset is 321

detailed in the following. 322

Datasets extra, hier. We use an LLM, specifi- 323

cally gpt-4o-mini with a temperature of 0.2, to 324

generate extractive questions from the tables, en- 325

suring contextual accuracy with minor variations 326

in phrasing. The full prompt used is provided 327

in Appendix A. Human annotators verify ques- 328

tion quality and report the row and column indices 329

(idxr, idxc) for the extracted values. Finally, they 330

identify which extra samples require reasoning 331

over hierarchical row structures, contributing to the 332

hier dataset. 333

Datasets rel, quant, step. These datasets contain 334

questions based on operations requiring compar- 335

isons, calculations, or a combination of both. In 336

particular, the rel dataset includes comparative, su- 337

perlative, and ranking operations; the quant dataset 338

includes sum, average, and percentage change; and 339

the step dataset combines these operations. For 340

question generation, similar to Pal et al. (2023b), 341

we use expert-defined templates to structure the 342

questions. Each template is designed for a spe- 343

cific operation and requires access to both the input 344

operands and the computed result. To ensure mean- 345

ingful and reliable datasets, it is crucial that the 346

selected operands are consistent. This consistency 347

is guaranteed by the prior annotation conducted 348

for the extra dataset, which links cells identified 349

by the (idxr, idxc) indices in the extracted tables 350

to relevant GRI topics. Leveraging this annota- 351

tion, we automate the generation of samples for 352

the rel, quant, and step datasets through two al- 353

ternative operand selection strategies. Given an 354

initial operand, row selection identifies randomly 355
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a second operand from a different column within356

the same row. Conversely, column selection iden-357

tifies a second operand from the same column but358

in a different row, ensuring that both values share359

the same GRI topic. The answer is computed by360

executing the operation and by also ensuring con-361

sistency in the compared GRI topics. To maintain362

quality, annotators review the generated question-363

answer pairs, validate their coherence, and manu-364

ally rephrase questions to enhance linguistic vari-365

ability and diversity across the dataset.366

Datasets mrel, mquant, mstep. In the multi-table367

datasets, tables are extracted from different cor-368

porate reports to simulate realistic cross-company369

comparisons. A selection of 2, 3, or 5 tables is370

used to generate questions of varying difficulty.371

Consistency in table selection is ensured using the372

previously generated GRI associations. As with the373

rel, quant, and step datasets, a template-based374

approach is applied to the selected tables to gen-375

erate relational, quantitative, and multi-step ques-376

tions for the multi-table mrel, mquant, and mstep377

datasets. There are, however, two key differences.378

First, questions may require identifying a specific379

company name rather than computing a numerical380

value. Second, due to variations in company size,381

the same indicator may be presented in different382

units (e.g., GJ for small firms, GWh for large ones),383

necessitating implicit unit conversion for meaning-384

ful comparisons in some cases.385

3.3 Quality Control386

The annotation of GRI-QA requires a strong un-387

derstanding of GRI reporting standards and metic-388

ulous accuracy in calculating target values. The389

manual annotation process was conducted by two390

ICT research fellows, under the guidance of a pro-391

fessor specialized in economic and management392

science expert in the topic. To ensure that the anno-393

tators were well prepared for the task, we provided394

1,038 examples that included GRI topics, tables,395

extractive questions and answers, accompanied by396

concise documentation of the GRI standards. This397

preparation allowed the annotators to familiarize398

themselves with the annotation process and resolve399

any uncertainties related to domain-specific termi-400

nology. The annotation process comprised three401

distinct phases. Firstly, the annotators refined the402

structure and content of the automatically extracted403

tables, ensuring that no table contains information404

that uniquely identifies people. Secondly, they an-405

notated the row and column indices for the extra 406

dataset. Finally, they conducted a thorough review 407

of the generated datasets, ensuring consistency be- 408

tween the questions and the answers while improv- 409

ing the variability of the questions. 410

4 Experimental Evaluation 411

We assess the quality of GRI-QA using Table 412

QA models trained on both general, and financial- 413

domain datasets. In the follow, we present the 414

baselines (Section 4.1), metrics (Section 4.2), and 415

discuss the results obtained (Section 4.3). 416

4.1 Baselines 417

As baselines, we select and evaluate state-of-the- 418

art models developed and trained both in general 419

domains and in financial domains close to the ones 420

addressed by GRI-QA. We do not include existing 421

models trained on environmental data (e.g., ES- 422

GLlama), as they are not designed for tabular pro- 423

cessing, making their assessment unfair. 424

General models. We experiment with four mod- 425

els that have not been specifically developed or 426

trained in environmental and financial domains: (i) 427

TaPEx (Liu et al., 2022), a 406M parameters BART- 428

based (Lewis et al., 2020) model trained to predict 429

SQL query results and fine-tuned on textual and 430

tabular inputs; (ii) OmniTab (Jiang et al., 2022), a 431

406M parameters model which incorporates pre- 432

training on synthetic data and demonstrated strong 433

performance on the WTQ dataset (see Table 1); (iii) 434

TableLLAMA (Zhang et al., 2024a), a Llama2 (Tou- 435

vron et al., 2023) 7B model fine-tuned on the Table- 436

Instruct (Zhang et al., 2024a) dataset, achieving 437

state-of-the-art performance on HiTab and FeTaQa 438

(see Table 1); (iv) gpt-4o-mini in Zero-Shot (Rad- 439

ford et al., 2019) and Zero-Shot-CoT (Kojima et al., 440

2024) with temperature of 0. 441

Financial-related models. We consider two mod- 442

els trained on financial data extracted from corpo- 443

rate reports: (i) FinMA (Xie et al., 2023), a Llama2 444

model fine-tuned on several financial tasks, includ- 445

ing Table QA; (ii) TaT-LLM (Zhu et al., 2024), a 446

Llama2 model fine-tuned on TAT-QA, TAT-DQA 447

and FinQA (Table 1). We evaluate FinMA and 448

TaT-LLM with 7B parameters, using the step-wise 449

prompt for TaT-LLM, as indicated by its authors. 450

Human-level performance baseline. We asked 451

three expert users (two professors and one FinTech 452

expert) to answer 400 randomly extracted ques- 453

tions, i.e., 50 from each GRI-QA dataset. The 454
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experts had unlimited time to respond to the ques-455

tions, which were preloaded into an instance of456

the Label Studio platform (see Appendix C for ad-457

ditional information). In Appendix D, we report458

the results obtained by the baselines on the human-459

evaluated samples from the datasets.460

4.2 Metrics461

We use a normalized Exact Match (EM) metric462

to evaluate the performance of the baselines. We463

adapted the DROP (Dua et al., 2019) evaluation464

script to compare the results with the ground truth,465

considering the specific output formats of each466

baseline. For instance, TaT-LLM separates list467

values using a hashtag (e.g., 16.5#16.1), TableL-468

LAMA formats values within angle brackets (e.g.,469

<16.5>,<16.1>). To ensure consistency, we apply470

custom post-processing operations for each model,471

normalizing their outputs before comparison. This472

normalization allows us to use the models within473

their intended prompt settings, minimizing the need474

for significant prompt modifications that could neg-475

atively impact performance (Kojima et al., 2024).476

4.3 Discussion477

The analysis of the experimental results in Table 3,478

broken down into questions requiring a single table479

(Table 3a) or multiple tables (Table 3b), provides480

the following insights.481

Humans make the difference. The accuracy482

achieved by human annotators surpasses all models483

by a significant margin, except in the rel dataset.484

This exception is likely due to the fact that an-485

swering rel questions can be “mechanical” for486

a human, leading to overconfidence. The perfor-487

mance gap between humans and computational488

models is relatively small for single-step questions489

(7.1% on average) but increases substantially for490

step and multi-step datasets (37.2% on average),491

where multiple calculations across different doc-492

uments are required to obtain the correct answer.493

Finally, humans exhibit a lower accuracy variance494

across datasets compared to computational mod-495

els, with a standard deviation of 6.0 in single-table496

questions and 1.7 in multi-table questions.497

Key Takeaway #1. The significant gap between
human and computational performance high-
lights the need for further research, especially in
multi-step and multi-table reasoning tasks.

498

GPT-based models outperform all others. Models499

based on gpt-4o-mini, particularly when using 500

CoT prompting, achieve significantly higher accu- 501

racy than other models. Focusing exclusively on 502

the results related to single table queries, where the 503

models produce the best performances, there is a 504

difference of about 10% and 30% between the GPT 505

base and CoT models respectively with respect to 506

the best performance for the remaining models: 507

54% GPT base and 73% GPT CoT versus 41% for 508

TaT-LLM. TaT-LLM emerges as the best non-GPT 509

model, followed by TableLLAMA with an average 510

accuracy of 31.1%. OmniTab and TaPEx achieve 511

slightly lower performances at 29.3% and 26%, 512

respectively, while FinMA records the lowest accu- 513

racy at 17.3%. The superiority of GPT models is 514

also confirmed in the multi-table question datasets. 515

Key Takeaway #2. GPT models outperform
state-of-the-art tabular QA systems, even spe-
cialized in the financial domain. CoT prompting
further enhances these performances.

516

Financial training does not always generate better 517

results. Excluding GPT-based models and multi- 518

table datasets, we observe that the average accu- 519

racy of general models (28.8%, standard deviation 520

2.6) is similar to that of financial-related models 521

(29.3%, standard deviation 16.9). However, the 522

financial-based model TaT-LLM consistently out- 523

performs TableLLAMA, its general-domain coun- 524

terpart based on the same Llama2 LLM. Mean- 525

while, the second financial-based model in our 526

benchmark, FinMA, achieves the highest non-GPT 527

accuracy on the rel dataset but underperforms 528

compared to general models on the other datasets. 529

This variability, also reflected in the higher standard 530

deviation of financial-based models compared to 531

general ones (16.9 vs. 2.6), suggests that while spe- 532

cialized models can excel in certain tasks, general 533

models tend to be more robust across datasets. 534

Key Takeaway #3. Financial-based models can
outperform general models but exhibit greater
variability depending on the dataset.

535

Not all operations are equally complex. Even 536

within single-table datasets, which result easier for 537

the models in the benchmark, accuracy varies sig- 538

nificantly between datasets. The performance on 539

hier is constantly lower than in extra, ranging 540

from 60.2% to 67% on average, indicating that rea- 541

soning on hierarchical rows is a difficult task for 542
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extra hier rel quant step avg

TaPEx 55.4 46.4 27.4 1.0 0.0 26.0 (25.4)
OmniTab 64.7 55.4 25.4 1.1 0.0 29.3 (30.0)
TableLLAMA 73.1 63.3 17.7 1.5 0.0 31.1 (34.7)
FinMA 25.7 22.9 35.1 2.6 0.0 17.3 (15.3)
TaT-LLM 79.7 74.3 25.4 26.7 0.0 41.2 (34.4)
gpt-4o-mini 86.0 78.5 61.7 43.2 0.7 54.0 (34.1)
gpt-4o-mini CoT 84.2 80.9 92.7 72.6 33.1 72.7 (23.3)

Dataset avg 67.0 60.2 40.8 21.2 4.8 38.8 (26.1)

Human† 89.3 92.0 87.3 90.0 76.7 87.1 (6.0)

(a) Single-table questions.

mrel mquant mstep avg

TaPEx 0.3 0.0 0.2 0.2 (0.2)
OmniTab 1.1 0.0 0.0 0.4 (0.6)
TableLLAMA 4.7 1.0 9.5 5.1 (4.3)
FinMA 1.8 0.0 0.7 0.8 (0.9)
TaT-LLM 5.5 0.0 8.4 4.6 (4.3)
gpt-4o-mini 16.1 1.5 13.6 10.4 (7.8)
gpt-4o-mini CoT 37.2 29.9 35.2 34.1 (3.8)

Dataset avg 9.5 4.6 9.8 8.0 (2.9)

Human† 70 70.3 67.3 69.2 (1.7)

(b) Multi-table questions.

Table 3: Accuracy (EM score) and standard deviation (in brackets) for the GRI-QA benchmark. Bold values indicate
the best results. † indicates the results obtained from 50 randomly extracted samples.

(%) Error for each question type

rel Comparison (4.0%), Superlative (10.5%), Ranking
(8.6%)

quant Sum (22.8%), Average (23.3%), Percentage change
(34.1%)

step Multi-step Superlative (61.0%), Ranking (71.9%),
Sum (64.7%), Average (73.1%)

mrel Multi-Table Superlative (51.2%), Ranking (70.3%)
mquant Multi-Table Sum (73.0%), Average (74.0%)
mstep Multi-Table, Multi-Step Superlative (55.2%), Rank-

ing (77.2%), Sum (80.0%), Average (80.0%)

Table 4: Percentage of gpt-4o-mini CoT errors per
question type.

computational models (Katsis et al., 2022), while543

humans generalize better. Accuracy on calculated544

questions is even worse, with quantitative questions545

appearing more complex than relational ones, both546

in single- and multi-table datasets. Multi-step ques-547

tions finally show the worst performances, with548

GPT models reaching around 30% accuracy only549

when using CoT prompting.550

Key Takeaway #4. Hierarchical and quantita-
tive questions are moderately challenging, while
multi-step questions pose the highest complex-
ity. CoT’s “divide and conquer” approach helps
improve multi-step reasoning.

551

More documents, more complexity. Accuracy552

drops significantly when operands come from dif-553

ferent documents. This is evident when comparing554

the results on calculated operation datasets rel,555

quant, and step with their multi-document coun-556

terparts, mrel, mquant, and mstep, where operands557

are drawn from tables in different documents. Ta-558

ble 4 shows the error breakdown for the types of559

questions in the datasets for the gpt-4o-mini CoT560

model. Ranking questions appear to be the most af-561

fected by the multi-table setting, showing a 61.7% 562

increase in error rate between rel and mrel, while 563

the increase for the superlative questions is less 564

marked (40.7%, from 10.5% to 51.2%). Sum and 565

average questions in the quant dataset behave sim- 566

ilarly, with both showing an increase in error rates 567

of about 67%. The mstep dataset may exhibit an 568

anomaly, achieving an overall higher accuracy than 569

step. This can be explained by the presence of 570

questions expecting company names as answers 571

instead of numerical values, which are easier for 572

baseline models to handle. When excluding these 573

questions, the accuracy of gpt-4o-mini CoT on 574

mstep drops to 23.5%. 575

Key Takeaway #5. Accuracy drops when
operands span multiple documents.

576

5 Conclusion 577

We presented GRI-QA, a new single- and multi- 578

table question answering benchmark on environ- 579

mental data. GRI-QA is composed of eight datasets 580

that focus on different types of questions, providing 581

a new challenging test bed to assess the quality of 582

Table QA models. Furthermore, GRI-QA provides 583

a set of questions on multiple non-relational tables 584

belonging to different corporate reports, a setting 585

only partially explored in previous works. The 586

results show that while current models are profi- 587

cient in extractive questions, they fail in calculated 588

questions, which require performing computations 589

over multiple cells. This gap is further increased 590

in multi-step and multi-table questions, where the 591

only model obtaining non-negligible accuracy is 592

gpt-4o-mini CoT. We made the datasets and the 593

annotation pipeline publicly available, to promote 594

and support further research in the area. 595
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6 Limitations596

The paper does not present a new custom baseline597

model capable of addressing GRI-QA. We moti-598

vate this decision by the fact that (i) GRI-QA is599

supposed to provide a test benchmark rather than600

training data, and (ii) the number of samples would601

likely be insufficient to fine-tune existing models602

and be competitive with larger foundation models603

such as gpt-4o-mini. However, it would still be604

interesting to leverage GRI-QA, or its data collec-605

tion pipeline, to improve the performance of small606

LLMs (e.g. 7B models) or define new prompting607

techniques to improve foundation LLMs. More-608

over, although we tried to make the dataset creation609

pipeline as automated as possible, a lot of human610

effort is still needed. As a result, while GRI-QA611

contains a significant number of questions, it is lim-612

ited in the number of corporate reports considered.613

We plan to address these limitations in future work.614

OpenAI models accessed via API calls are615

known to provide non-deterministic outputs even616

when setting the temperature to 0. This behav-617

ior is aggravated in Chain-of-Thought prompting,618

where the selection of different tokens may lead to619

different reasoning paths and outputs. As a con-620

sequence, the Chain-of-Thought results shown in621

Table 3 and Figure 7 may slightly differ between622

different runs.623

7 Risks624

A potential risk with the use of GRI-QA is the625

growing focus on models that maximize accuracy,626

while disregarding computational effort and energy627

consumption (see Appendix D). Although these628

models can help environmental practitioners extract629

relevant information from corporate reports, they630

can also contribute to environmental impact.631

Another issue concerns the sources of corporate632

reports considered in this study. Our paper con-633

siders only French, German and Italian companies634

with reports written in English (see Section 3). As635

a result, GRI-QA can disadvantage practitioners636

analyzing companies located in other geographical637

regions, as well as stakeholders relying on different638

languages.639

8 Use of AI assistants640

When writing this paper, we used AI assistants,641

such as ChatGPT and Writefull, to improve the642

flow of writing and the vocabulary of the initial643

drafts we manually wrote. Each suggestion has644

been manually validated by the authors. Further- 645

more, we used gpt-4o-mini to help us debug our 646

code. 647
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A Examples of prompts 1011

Examples of prompts are shown for: (1) the cre- 1012

ation of the extra dataset (Figure 3); (2) generating 1013

the tests shown in Table 3a and Table 3b (Figure 4); 1014

(3) generating the tests shown in Table 3a and Ta- 1015

ble 3b using the chain-of-thought technique (Fig- 1016

ure 5). 1017

B GRI 300 topics and disclosures 1018

Table 5 shows the descriptions of the GRI cate- 1019

gories, topics and disclosures. GRI-QA focuses on 1020

tables related to topics from category 300. 1021

C Labeling Interface 1022

Figure 6 shows the Label Studio interface used 1023

to obtain the human results shown in Table 3 and 1024

Table 6. The text inside Figure 6 are the guidelines 1025

we provided to the annotators. 1026

D Supplementary results 1027

Table 6a and Table 6b directly compare the results 1028

obtained by three human annotators on 50 samples 1029

extracted from each dataset of GRI-QA, with the 1030
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results obtained using the baseline models on the1031

complete datasets. To ensure a fair comparison, in1032

Table 6 we re-evaluate the baseline models on the1033

dataset samples, showing similar results to the ones1034

obtained in Table 3a and Table 3b.1035

Figure 7 shows the accuracy breakdown in multi-1036

table datasets as the number of tables increases.1037

Figure 7 shows the energy consumption of each1038

model tested. Even though TaT-LLM, FinMA1039

and Table-LLAMA share the same Llama2 back-1040

bone, TaT-LLM leads to higher energy consump-1041

tion due to its step-wise prompting. The results for1042

gpt-4o-mini, in both Zero-Shot and Zero-Shot1043

CoT prompting, are omitted as the energy con-1044

sumption of API calls cannot be measured.1045
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extra generation prompt

You will be given a table (in HTML) and a GRI description.

Extract the values that can reply to the given description. Then, select one of the values and
generate an unambiguous question that can be replied by the value. By unambiguous question we
mean that, based on the table, the question can have only one answer. Hence, make sure to include
the correct column header in the question.

As output, provide a Python dictionary that has the questions as keys and the extracted values are
the values of the dictionary. Do not write anything else. Do not provide any Markdown formatting.

Table: {table}
GRI description: {description}
Question:

Figure 3: Prompt to generate the samples of extra.

GPT prompt template

You must answer the following question given the provided table.

If the question is boolean, write exclusively a ’yes’ or ’no’ answer. If the question asks for a list of
values, separate them with a comma. Write the numerical values with exactly 2 decimal values.
Do not write anything else. Do not write any Markdown formatting.

Question: {question}
Table: {table}
Answer:

Figure 4: GPT prompt template used for the tests in Table 3a and Table 3b.

GPT CoT prompt template

You must answer the following question given the provided table.

First write your reasoning. Then, in the end, write "The final answer is:" followed by the answer.
If the question is boolean, write exclusively a ’yes’ or ’no’ answer. If the question asks for a list of
values, you must answer with a list of values separated with a comma. Write the numerical values
with exactly 2 decimal values. Do not write any Markdown formatting.

Question: {question}
Table: {table}

Let’s think step-by-step.

Figure 5: GPT CoT prompt template used for the tests in Table 3a and Table 3b.
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Topics Disclosures Descriptions

301
(Materials)

301-1 Materials used by weight or volume
301-2 Recycled input materials used
301-3 Reclaimed products and their packaging materials

302
(Energy)

302-1 Energy consumption within the organization
302-2 Energy consumption outside the organization
302-3 Energy intensity
302-4 Reduction of energy consumption

302-5
Reductions in energy requirements
of products and services

303
(Water and Effluents)

303-1 Interactions with water as a shared resource
303-2 Management of water discharge-related impacts
303-3 Water withdrawal
303-4 Water discharge
303-5 Water consumption

304
(Biodiversity)

304-1
Operational sites owned, leased, managed in,
or adjacent to, protected areas and areas of
high biodiversity value outside protected areas

304-2
Significant impacts of activities,
products and services on biodiversity

304-3 Habitats protected or restored

304-4
IUCN Red List species and national conservation list
species with habitats in areas affected by operations

305
(Emissions)

305-1 Direct (Scope 1) GHG emissions
305-2 Energy indirect (Scope 2) GHG emissions
305-3 Other indirect (Scope 3) GHG emissions
305-4 GHG emissions intensity
305-5 Reduction of GHG emissions
305-6 Emissions of ozone-depleting substances (ODS)

305-7
Nitrogen oxides (NOx), sulfur oxides (SOx),
and other significant air emissions

306
(Waste)

306-1 Waste generation and significant waste-related impacts
306-2 Management of significant waste-related impacts
306-3 Waste generated
306-4 Waste diverted from disposal
306-5 Waste directed to disposal

308
(Supplier Environmental

Assessment)

308-1
New suppliers that were screened
using environmental criteria

308-2
Negative environmental impacts in the supply chain
and actions taken

Table 5: Summary of GRI 300 topics and disclosures
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Figure 6: Label Studio annotation interface (www.labelstud.io), along with the textual guidelines provided to the
annotators to answer the questions.

GRI-QA avg
extra hier rel quant step

TaPEx 54 36 32 2 0 24.8 (23.3)
OmniTab 52 48 28 0 0 25.6 (25.1)
TableLLAMA 74 54 22 2 0 30.4 (32.6)
FinMA 22 26 22 4 0 14.8 (11.9)
TaT-LLM 86 70 24 25 0 41.0 (35.7)
gpt-4o-mini 90 80 56 44 2 54.4 (34.6)
gpt-4o-mini CoT 84 80 98 70 31 72.6 (25.3)

Human 89.3 92.0 87.3 90.0 76.7 87.1 (6.0)

(a) Single-table questions.

GRI-QA avg
mrel mquant mstep

TaPEx 0 0 0 0.0 (0.0)
OmniTab 0 0 2 0.7 (1.2)
TableLLAMA 6 0 0 2.0 (3.5)
FinMA 2 0 0 0.7 (1.2)
TaT-LLM 6 0 20 8.7 (10.3)
gpt-4o-mini 14 2 20 12.0 (9.2)
gpt-4o-mini CoT 40 30 38 36.0 (5.3)

Human 70 70.3 67.3 69.2 (1.7)

(b) Multi-table questions.

Table 6: Accuracy (EM score) on 50 samples extracted from each GRI-QA dataset.

GRI-QA avg
mrel mquant mstep

2 tables 56.6 58.7 43.7 53.0
3 tables 34.3 20.8 32.7 29.3
5 tables 19.5 0.0 25.5 15.0

Table 7: EM scores of gpt-4o-mini CoT for multi-
table questions in the mrel, mquant and mstep
datasets.

Figure 7: Total energy consumption (kWh) of each
model on the extra dataset, measured using an
NVIDIA L40S.
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