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ABSTRACT

Recent advances in multimodal time series learning underscore a paradigm shift
from analytics centered on basic patterns toward advanced time series understand-
ing and reasoning. However, existing multimodal time series datasets mostly
remain at the level of surface alignment and question answering, without reaching
the depth of genuine reasoning. The absence of well-defined tasks that genuinely
require time series reasoning, along with the scarcity of high-quality data, has
limited progress in building practical time series reasoning models (TSRMs). To
this end, we introduce Time Series Reasoning Suite (TSR-SUITE), which for-
malizes four atomic tasks that span three fundamental capabilities for reasoning
with time series: (1) perception, acquired through scenario understanding and
causality discovery; (2) extrapolation, realized via event-aware forecasting; and
(3) decision-making, developed through deliberation over perception and extrap-
olation. TSR-SUITE is the first comprehensive time series reasoning suite that
supports not only thorough evaluation but also the data pipeline and training of
TSRMs. It contains more than 23K samples, of which 2.3K are carefully curated
through a human-guided hierarchical annotation process. Building on this foun-
dation, we introduce TIMEOMNI-1, the first unified reasoning model designed
to address diverse real-world problems demanding time series reasoning. The
model is trained in multiple stages, integrating a mixture of task scenarios, novel
reward functions, and tailored optimizations. Experiments show that TIMEOMNI-1
delivers strong out-of-distribution generalization across all tasks and achieves a
high rate of valid responses. It significantly improves causality discovery accuracy
(64.0% vs. 35.9% with GPT-4.1) and raises the valid response rate by over 6%
compared to GPT-4.1 on the event-aware forecasting task. Our code is available at
https://anonymous.4open.science/r/TimeOmni-1.

1 INTRODUCTION

Time series data underpin a wide range of real-world systems, including energy, transportation,
finance, and healthcare (Lu & Xu, 2024; Liu et al., 2023b; Guan et al., 2023; Lan et al., 2025).
Comprehending real-world time series extends beyond mere pattern recognition, it necessitates multi-
step reasoning to identify external factors driving temporal changes and to support downstream tasks
that inherently build upon upstream pattern understanding and extrapolation (Kong et al., 2025b).
For instance, effectively scheduling energy demand requires integrating external knowledge such
as extreme weather events, inferring causal mechanisms, anticipating event-driven variations, and
ultimately supporting downstream decisions (MacKinlay, 1997; Liang et al., 2025). However, most
existing time series approaches remain centered on basic pattern analytics and fall short in addressing
such complex reasoning requirements, restricting their effectiveness in scenarios that demand a deeper
understanding of context and robust decision-making support.

Large language models (LLMs) have recently demonstrated impressive multi-step reasoning abilities
across text, code, and mathematics (Wei et al., 2023; Shao et al., 2024). This potential for time series
reasoning, however, remains largely untapped. The primary obstacle is the scarcity of large-scale
multimodal time series alignment, instruction, and labeled chain-of-thoughts data during pretraining,
which hinders the development of corresponding time series reasoning abilities. This capability
gap is further evidenced on even leading LLMs (e.g., GPT-4.1) by recent benchmark (Merrill et al.,
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2024; Chow et al., 2024). Furthermore, time series specific architectures such as Time-MoE (Shi
et al., 2024) and Moirai (Woo et al., 2024) remain largely confined to forecasting tasks and lack the
generalized reasoning capabilities required for broader applications. These gaps underscore the urgent
need for dedicated time series reasoning models (TSRMs) that advance time series understanding,
strengthen reasoning, and facilitate temporal analytics and knowledge generation, paving the way
toward general-purpose time series intelligence.

However, two key limitations hinder the development of TSRMs: (1) The scarcity of high-quality
data to support general-purpose reasoning over time series. Early efforts, such as constructing
TSQA datasets (Kong et al., 2025a), remain largely at the level of surface time series question
answering and suffer from insufficient input context. Moreover, the formulation of time series
reasoning tasks in existing multimodal datasets has not been systematically studied, leaving them
unable to capture genuine reasoning depth with time series data. (2) The lack of a validated and
feasible pathway for effective time series reasoning across tasks. It remains unclear which tasks
genuinely demand reasoning capabilities over time series, as this question has not been systematically
studied. This gap, combined with data scarcity, has confined existing research to narrow, task-specific
settings. Many current approaches are trained independently for each task or even each dataset;
for example, TimeMaster (Zhang et al., 2025b) employs six distinct models for six datasets. Such
fragmentation hinders the transfer of reasoning capabilities across tasks and leaves the development
of general-purpose time series reasoning an open challenge. These challenges naturally raise a pivotal
question: How can we take a solid step toward fully incentivizing reasoning capabilities in LLMs over
time series, so they can tackle complex real-world problems that inherently demand such reasoning?

Answering this question first drives us to tackle the challenge of data scarcity. Based on the limitations
of existing time series QA datasets, we argue that time series reasoning tasks should adhere to two
key principles. First, they should reward genuine reasoning rather than superficial pattern matching
by systematically incorporating multi-step reasoning tasks and complete reasoning chains. Second,
they should ensure context sufficiency to enable unambiguous answering or response generation,
thereby strengthening the model’s reasoning capacity and generalization across diverse scenarios.
Guided by these principles, we formalize four atomic tasks that genuinely require reasoning with time
series and introduce TSR-SUITE, which covers three fundamental time series reasoning capabilities:
(1) perception, acquired through scenario understanding and causal discovery, reveals key temporal
patterns; (2) extrapolation, realized via event-aware forecasting, predicts future trends and anomalies;
and (3) decision-making, developed through perception and extrapolation, supports informed, adaptive
actions. Building on this foundation, we present TIMEOMNI-1, the first generalized reasoning model
for time series. The central premise is that effective time series reasoning requires internalizing
fundamental temporal priors. To this end, TIMEOMNI-1 first injects the above three capabilities
identified by TSR-SUITE into LLMs through supervised fine-tuning (SFT) as priors. We then design
novel time series task-grounded rewards to cultivate genuine reasoning from these priors via policy
optimization. Finally, to validate that these capabilities represent complementary facets of general
time series reasoning, we unify all task capabilities within a single model with joint training.

Our contributions lie in three aspects:

1. New Datasets and Testbed. We introduce TSR-SUITE, the first comprehensive time series rea-
soning suite that formalizes four core tasks spanning three capabilities: perception, extrapolation,
and decision-making. It contains more than 23K samples, of which 2.3K are carefully curated
through a human-guided hierarchical annotation process. The suite serves not only as a testbed
for thorough evaluation but also as a foundational data pipeline for training TSRMs.

2. New Models. We present TIMEOMNI-1, the first generalized reasoning model on time series
data. It unifies diverse reasoning tasks within a two-stage curriculum: Stage 1 employs supervised
fine-tuning with human-guided reasoning traces to inject temporal priors across the three key
capabilities: perception, extrapolation, and decision-making; Stage 2 leverages reinforcement
learning with novel task-grounded rewards to go beyond mimicking priors to robust reasoning.

3. Comprehensive Evaluation and Key Insights. TIMEOMNI-1 achieves Top-2 performance
under both in-distribution (ID) and out-of-distribution (OOD) testbeds. Notably, it surpasses
GPT-4.1 by 40.6% (ID) and 28.1% (OOD) in causal discovery accuracy while maintaining high
valid-response rates across all tasks. Further experiments provide the first evidence that joint
training across diverse time series reasoning tasks yields mutual gains across capabilities.
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2 RELATED WORK

Large Time Series Models. Early efforts primarily aimed to endow time series models with zero-
shot capability, mitigating domain-specific limitations when large-scale time series data were scarce.
Time-LLM (Jin et al., 2024) sought to transfer the generalization ability of LLMs into the time
series domain. Prior developments of time series models are discussed in Appendix B. With the
increasing availability of large-scale time series datasets, training time series foundation models
(TSFMs) from scratch emerged as the mainstream approach (Woo et al., 2024; Ansari et al., 2024;
Shi et al., 2024). These models demonstrated promising zero-shot performance but still fell short of
supporting multi-task and multimodal capability. With the advent of multimodal models (Alayrac
et al., 2022; OpenAI et al., 2024a) and reasoning-centric models (OpenAI et al., 2024b; Guo et al.,
2025), the intersection of time series and LLMs has re-emerged at the forefront. Broadly, existing
approaches can be categorized into two main groups. The first are time series language models
(TSLMs), which primarily adapt the language modeling paradigm to temporal data, emphasizing
representation learning and simple time series QA without reasoning (Xie et al., 2025; Kong et al.,
2025a; Zhang et al., 2025a; Yang et al., 2025). The second are time series reasoning models
(TSRMs), distinguished by their attempt to employ RL to cultivate genuine reasoning ability rather
than pattern matching, and by their use of explicit reasoning to improve accuracy while providing
interpretable, step-by-step explanations that enhance trustworthiness (Wang et al., 2025; Tan et al.,
2025b; Luo et al., 2025). However, this line of research is still in its infancy: the definition and
necessity of reasoning remain vague, existing QA datasets are of limited quality, and most current
works restrict themselves to single-task experiments under the R1-paradigm (Guo et al., 2025),
without yet establishing a general-purpose reasoning framework for time series analogous to LLMs.

Reasoning with Large Language Models. Generative LLMs offer greater flexibility and general-
ization than traditional deep learning models, making them effective in complex tasks that require
multi-step reasoning (Wei et al., 2023; Kojima et al., 2022). However, reasoning errors can propa-
gate and degrade performance in some cases. To address this, Lightman et al. (2023) introduces a
step-level reward mechanism into both data construction and model fine-tuning to enhance reasoning.
DeepSeek-R1-Zero (Guo et al., 2025) shows that RL using only format and final answers can also
improve reasoning. And it has expanded to math, code, translation, and multimodal tasks (Zhang
et al., 2025d;c; Feng et al., 2025; Huang et al., 2025; Zhan et al., 2025; Liu et al., 2025). However,
LLM-based reasoning for time series remains underexplored due to data scarcity.

3 METHODOLOGY

Problem Definition. We define time series reasoning as the process in which reasoning model (RM)
pθ first generate a sequence of intermediate rationales R = (r1, . . . , rK) and then produce a final
answer y, conditioned on (1) observed time series inputs X = {x(m)

1:T }Mm=1 and (2) auxiliary context
C (e.g., task instructions or external knowledge). Formally:

(R, y) ∼ pθ(R, y | X,C) = pθ(R | X,C) pθ(y | R,X,C). (1)

This formulation covers both discrete-output tasks, where y is a categorical option, and sequence-
output tasks, where y is a numerical sequence, under a unified reasoning framework. To standardize
outputs, RMs must generate rationales R within <think></think> tags, followed by the final
answer y enclosed in an <answer></answer> block. In contrast, non-reasoning models directly
predict y ∼ pθ(y | X,C) without rationales, producing only the <answer></answer>.

3.1 FORMULATING REASONING-CRITICAL TIME SERIES TASKS

Limitations of Existing QA Tasks. We use Time-MQA (Kong et al., 2025a), the largest existing time
series question answering (TSQA) dataset, to highlight two limitations. (1) Many questions are overly
simple and straightforward, where invoking reasoning leads to over-thinking. At the aggregate level,
as shown in Figure 1(a), the accuracy gap between stronger models (GPT-4.1) and smaller baselines
(Qwen2.5-14B) is marginal, and in some cases reversed, indicating that additional reasoning capacity
brings no benefit. Furthermore, all models achieve accuracy above 75%, highlighting that the tasks
are not sufficiently challenging. At the instance level, as illustrated by the True/False QA from Time-
MQA in Figure 1(b), the question can be directly answered by non-reasoning models, while reasoning
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(a)

The data point 2015.71 is significantly
higher compared to others in its immediate
neighborhood in the series. True or False?

True.

<think>The question is about whether the point 2015.71
is significantly higher compared to its immediate
neighbors in the provided series. The series is
\[2001.46, 2003.03, 2007.93, 2007.22, 2004.84, 2005.13,
2003.1, 2003.81, 2007.36, 2015.71, 2008.7, 1986.59].
The value of interest, 2015.71, is at index 9 (0-
based). Its immediate neighbors are 2007.36 (previous)
and 2008.7 (next). Comparing: 2015.71 − 2007.36 = 8.35,
and 2015.71 − 2008.7 = 7.01. Both are relatively large
differences compared to typical fluctuations in the
series (mostly 2000–2008 range). So yes, 2015.71 is
clearly higher than its immediate neighbors. Hence the
answer is True.</think>

Over Thinking

<answer>True</answer>
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(c)

Analyze the series for volatility. Which of
the following best describes the volatility
of this segment? a) Highly volatility b)
Moderately volatility c) Low volatility

Ambiguous Task Design:
Lacking Clear Volatility Thresholds

Models Are Guessing the Boundary of Volatility

<think>Early part stays
around -0.3 to -0.1, later
part shifts to positive
values up to +0.32. There
is a trend, but no abrupt
extreme spikes. Standard
deviation would be
moderate, probably \~0.2.
</think>

<think>The values move
smoothly from slightly
negative toward
positive without sharp
jumps; the swings are
modest and fairly
contained within ±0.3.
Best characterized as
low volatility.</think>

<answer>b)Mod.</answer> <answer>c)Low</answer>

(d)

Figure 1: Limitations of existing TSQA dataset (Kong et al., 2025a). (a) The marginal performance
gap between RMs and NRMs. (b) Reasoning on simple TSQA leads to over-thinking. (c) Insufficient
context leads to a performance plateau. (d) Ambiguous options forcing models to guess.

complicates the process. (2) Questions often lack sufficient input information, either in the time series
X or the context C, which prevents well-grounded answers and introduces ambiguity. As shown in
Figure 1(c), even advanced models plateau below 65% accuracy and show no gains after SFT. To
investigate this, we conducted a human evaluation, which revealed numerous ambiguous cases caused
by missing context. As exemplified in Figure 1(d), the options are not clearly distinguished (e.g., no
explicit thresholds for high, moderate, and low volatility), forcing the model to guess rather than
reason. Consequently, errors reflect chance rather than insufficient time series reasoning ability (see
Appendix C for detailed analysis of existing TSQA datasets). To address these issues, we propose
two design principles for formulating time series QA tasks that require genuine reasoning.

Principle 1 — QA-pairs must reward reasoning. A reasoning model MRM explicitly generates
rationales R before producing the answer y, whereas a non-reasoning baseline MNRM directly outputs
y. To determine whether a task requires reasoning, RMs should (significantly) outperform non-
reasoning models (NRMs): S̄(MRM) ≫ S̄(MNRM), where S̄(·) denotes the mean score across tasks
(e.g., accuracy for categorical prediction tasks or regression metrics for regression tasks).

Principle 2 — QA-pairs must ensure context sufficiency. Both the time series input X and auxiliary
context C constitute the basis for reasoning. Unlike coding and mathematical problem solving, where
a well-posed problem typically admits a unique solution (Imani et al., 2023), time series problem
solving is especially sensitive to the sufficiency of X and C. Let K denote the number of ambiguous
options. Even an ideal reasoner with infinite reasoning capacity (RC → ∞) will be forced to guess
if X or C is underspecified (e.g., missing thresholds for distinguishing high vs. low variance), while
it should substantially exceed random guessing once X and C are sufficient:

lim
RC→∞

P (correct | X,C)

{
≈ 1

K , if X or C is underspecified,
≫ 1

K , if X and C are sufficient.
(2)

Therefore, ensuring context sufficiency is a critical design principle for formulating reasoning-critical
time series tasks, as it prevents ambiguity and enables reasoning to be applied meaningfully.

Reasoning-Critical Tasks. The two principles motivate us to directly address the unique challenges
of time series reasoning (ensuring QA requires reasoning and context sufficiency). To this end,
we design a suite of tasks that form a progressive pathway covering three fundamental time series
reasoning capabilities: (1) perception, (2) extrapolation, and (3) decision-making.

As shown in Figure 2, the foundation of time series reasoning capabilities is perception, where the
model first recognizes temporal patterns and then uncovers their underlying causes. This includes
Task 1: Scenario Understanding, which focuses on single-series attribution by linking fluctuations
to generative scenarios or external events (e.g., higher temperatures leading to increased ice-cream
sales). It also encompasses Task 2: Causality Discovery, which extends attribution to the multi-
series setting, requiring the model to compare trends across sequences and identify causal relations
(e.g., upstream discharge influencing downstream flow). Together, these tasks ensure the model not
only observes time series but also interprets them in a context-aware and causal manner. Task 3:
Event-aware Forecasting requires the model to build on its perception ability to extrapolate future
trajectories under explicit event perturbations. Accurate extrapolation depends on leveraging intrinsic
temporal knowledge to analyze external events and infer their impact on temporal dynamics. Finally,
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Task 1: Scenario Understanding Task 2: Causal Discovery
Please identify the scenario that most
likely created the given time series.

2

1

.

Series length check.

Magnitude & unit sanity.

Final elimination & plausibility.

Does the discharge at one hydrometric
station causally influence the other?

A. Monthly humidity over two years;
spikes July–November.

Task3: Event-Aware Forecasting
Based on the events and series,
please predict for next 12 hours.

Identify the baseline patterns
and trend.
Estimate the incremental impact
of any events.
Combine the baseline and event
effects.

1

33
[2, 20, 21, 23, 19, 18,
16, 22, 31, 45, 63, 83]

Task4: Decision Making
Using the observed Load series, plan
tomorrow’s battery charge–discharge.

Trend Consistency:
Closely aligned trends.
Key Fluctuation Alignment:
Major peaks and dips align.
Direction of Causality:
Mean discharges:EVBS < YEVG.

1

33

B. Yes. Series1 → Series2.

Forecast the next 24-hour load.

Principles for evaluating
strategies.
Cost calculation and strategy
comparison.

1

33
C. Hour 1 charging, hour 8 charging,
hours 18-19 discharging.

.

5

2 2 2

Figure 2: Illustrative examples of the four reasoning-critical time series tasks in TSR-SUITE.

Task 4: Decision Making represents the culmination of this chain. Building on the perception
of temporal patterns (Task 1), causal relations (Task 2), and extrapolation (Task 3), the model
must integrate these to select actions (Task 4) that maximize downstream utility (e.g., maximizing
profits). By following the progressive capabilities of perception, extrapolation, and decision-making
in formulating reasoning-critical tasks, we ensure that reasoning is an intrinsic requirement. Solving
these tasks demands explicit reasoning from the outset, unlike conventional analytical tasks such as
interpolation, where models often succeed through implicit fitting without reasoning.

3.2 TSR-SUITE

To mitigate the scarcity of data in the field, we construct Time Series Reasoning Suite (TSR-SUITE),
the first unified dataset suite tailored for time series reasoning. Unlike prior benchmarks designed
purely for evaluation, TSR-SUITE is built as a training-and-evaluation suite that supports TSRMs
development. The dataset spans 10 diverse domains and contains 23,605 curated QA pairs. Among
them, 2,339 samples are annotated through a human-guided hierarchical annotation process. Detailed
statistics for each task are provided in Appendix D.2. As shown in Figure 3(a), the data organization
comprises three components as follows.

Raw Data Collection. Guided by the “perception–extrapolation–decision-making” pathway underly-
ing our four tasks, we systematically collect publicly available time series data across 10 domains.
Figure 3(a) provides an overview of the domain distribution, see Appendix D.1 for data source details.

Task Formulation. To align with our task design and support RL, we standardize the QA format
across tasks. Specifically, Tasks 1, 2, and 4 are framed as discrete-output selection problems, while
Task 3 is formulated as a sequence-output forecasting task, as shown in Figure 2. Each task adopts
a customized data construction pipeline and is extensible to support further scaling with new input
series. A key improvement over prior datasets is that our dataset, with over 23K QA pairs, is
sufficiently large to support both training and evaluation (e.g., CiK with 355 samples (Williams et al.),
TSAIA with 1,054 samples (Ye et al., 2025)), rather than serving solely as a testbed.

Hierarchical Chain-of-Thoughts. Existing time series QA datasets typically provide only la-
bels (Kong et al., 2025a), overlooking the fact that LLMs lack temporal priors for time series
reasoning. To fill the gap, we design a hierarchical annotation pipeline involving an LLM Analyzer,
Human Reviewers, and an LLM Rewriter (Figure 3(b)). (1) Human-guided solvable annotation.
Instead of asking the LLM analyzer to directly solve the problems, we guide it with structured tem-
plates to elicit consistent reasoning, and we retain correctly solved samples as Step-1 CoT data. (2)
Context sufficiency verification. For questions answered incorrectly in the first step, human experts
use a customized evaluation interface (see Appendix D.4) to examine whether the provided context is
sufficient to disambiguate the answer. If a question is solvable by human reviewers, expert-written
reasoning chains are subsequently polished by the rewriter to follow our structured templates, and the
resulting samples are collected as Step-2 CoT data. Task 3 (Event-aware Forecasting) is treated
as a special case: unlike tasks with unique answers, forecasting outputs cannot perfectly match the
ground truth due to inherent noise in real-world time series data. Human reviewers examine the
cases and select 400 samples with relatively low mean absolute error (MAE). As a result, annotated
predictions in Task 3 may not coincide exactly with the ground truth, but they capture plausible and
well-justified reasoning. Additional analysis of Task 3 is provided in Appendix D.3.
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Figure 3: Overview of data and training pipeline. (a) Construction of TSR-SUITE, including domain
distribution and sample statistics. (b) Hierarchical CoT annotation pipeline with outputs from each
step for all tasks. (c) Two-stage training of TIMEOMNI-1: Stage 1 injects temporal priors via SFT;
Stage 2 refines reasoning with task-grounded reward signals under RL.

3.3 TIMEOMNI-1

Developing time series reasoning poses unique challenges compared to other domains. Pretrained
LLMs lack temporal priors, as they are not largely exposed to time series data during pretraining. To
bridge this gap, we propose a two-stage training paradigm: (1) injecting temporal priors to anchor
the model in a temporal knowledge space, and (2) refining these priors for robust reasoning through
task-grounded rewards (Figure 3(c)). All experiments in this section use in-distribution (ID) testbeds.

Stage 1: Injecting Time Series Reasoning Priors. Human-guided reasoning priors instruct LLMs on
how to decompose time series tasks into meaningful components. These traces narrow the exploration
space to focus on three key capabilities (i.e., perception, extrapolation, and decision-making) instead
of drifting toward commonsense heuristics or generic algebraic QA. We inject this knowledge through
supervised fine-tuning (SFT). Implementation details of SFT are provided in Appendix F.1.

Finding 1: Time series reasoning ability need not be innate; it can be effectively cultivated via
supervised fine-tuning on a small set of high-quality, curated reasoning traces.
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Figure 4: Stage 1 boosts accu-
racy; Base model at chance.
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Figure 5: Human-guided tem-
plates are critical for priors.

Base models without temporal pri-
ors collapse to chance-level accu-
racy when questions require fun-
damental temporal understanding
(e.g., Task 2: 21.6% vs. 33.3% ran-
dom guess in Figure 4). Injecting
reasoning traces, even with <1K
seeds, boosts Task 2 accuracy by
46.1% after Stage 1, with compara-
ble gains across other tasks. This
prove that time series reasoning is
not inherent to LLMs but can be
systematically established through
temporal priors.

Finding 2: Human-guided traces establish decomposition priors critical for time series reasoning.

Without guidance, LLMs tend to produce unstable, generic math-style reasoning traces that incon-
sistent across samples and fail to capture temporal dependencies. In contrast, when prompted with
human-guided templates, the pretrained LLMs generates structured traces that explicitly follow de-
composition strategies and achieve substantially higher accuracy. As shown in Figure 5, on GPT-4.1,
human-guided templates improve zero-shot consistency accuracy from 28.7% to 71.1% on Task 2,
with improvements also observed across all four tasks. These further confirm that pretrained LLMs
lack temporal priors and must be enhanced through Stage 1 training.
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Stage 2: Refining Reasoning with Task-grounded Rewards. While Stage 1 provides priors, they
remain insufficient for robust reasoning. Stage 2 employs reinforcement learning (RL) through group
relative policy optimization (Shao et al., 2024) to turn mimicking priors into stable and generalizable
reasoning behaviors (Figure 3(c)). Implementation details of RL stage are provided in Appendix F.2.

TASK1 
 (ACC )

TASK2 
 (ACC )

TASK4 
 (ACC )

TASK3 
 (MAE )

0

20

40

60

80

100

AC
C 

%

Base
Onlystage2
Stage1+Stage2

0

5

10

15

20

25

30

M
AE

Figure 6: Stage 2 RL alone
fails without Stage 1 priors.

Here we focus on designing task-grounded, outcome-based re-
wards for time series reasoning, with full definitions provided
in Appendix G. Each sample receives a reward composed of
format verification and task correctness. Rformat enforces the
<think></think><answer></answer> schema. For cor-
rectness, we distinguish task types: for Tasks 1, 2, and 4, Rdiscrete ∈
{0, 1} denotes exact-match accuracy (1 if correct, 0 otherwise). For
Task 3, we add a counting bonus Rcount = 0.1 if the predicted se-
quence length matches the required horizon. This structural reward is
essential since LLMs still struggle with counting. For example, our
Stage I checkpoint achieves only 55.7% success on sequence length.
In addition, we use an exponential decay to map the unbounded
MAE into a normalized range, which compresses arbitrarily large
MAE toward zero to ensure higher rewards for smaller MAE.

Finding 3: Reinforcement learning works reliably only once the base model is anchored with
fundamental temporal priors, which prevent collapse into spurious exploration.

Applying Stage 2 directly to a base model yields only marginal or even negative improvements
(as shown in Figure 6, with a 5.3% drop on Task 4), since the rewards cannot distinguish genuine
temporal knowledge from exploration within the pretraining corpus space. In contrast, when preceded
by Stage 1, the same rewards refine temporal priors and progressively develop into robust reasoning.

Joint Training for Time Series Reasoning. Unlike prior single-task (or single-dataset) pipelines (Tan
et al., 2025a; Zhang et al., 2025b), we investigate whether unifying perception, extrapolation, and
decision-making objectives through joint training yields mutual benefits. We design the following
two complementary experimental settings to systematically study the synergistic gains among the
three reasoning capabilities.

Finding 4: Joint training turns perception, extrapolation, and decision-making from silos into
complementary capabilities, supporting a train-once, use-across-tasks paradigm for TSRMs.

Capability 
 Transfer

0

10

20

30

40

AC
C 

%

+6.3

Base  Task4
C1  Task4
C1+C2  Task4

(a)

Capability 
 Supplement

20

30

40

50

60

AC
C 

%

+7.0

C3  Task4
C2+C3  Task4
C1+C2+C3 
  Task4

(b)

TASK1 
 (ACC )

TASK2 
 (ACC )

TASK4 
 (ACC )

TASK3 
 (MAE )

0

20

40

60

80

100

AC
C 

%

Single-task training
Multi-task joint training

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
M

AE

(c)
Figure 7: Joint training results: (a) Zero-shot capability transfer
from precursor tasks (C1: Perception, tasks 1, task 2; C2: Ex-
trapolation, task 3) to decision-making; (b) Supervised capability
supplement by progressively incorporating tasks (C3: Decision-
Making); (c) Joint training outperforms single-task training.

Progressive Capability Trans-
fer. This evaluates whether
precursor reasoning capabil-
ities transfer to downstream
decision-making in a zero-
shot manner. We evaluate
three conditions on the ID
decision-making testbed: (1)
base model without precursor
training, (2) model trained only
on perception tasks, and (3)
model trained on both percep-
tion and extrapolation tasks.
As shown in Figure 7(a), accu-
racy on decision-making tasks
increases from 25.5% to 26.2%
and further to 31.3%, indicat-
ing that precursor capabilities
enhance downstream reasoning even without direct supervision.

Progressive Capability Supplement. This assesses supervised joint training by gradually incorporating
precursor tasks. We compare: (1) training solely on decision-making, (2) joint training on extrapola-
tion and decision-making, and (3) full joint training across four tasks covers all three capabilities.
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Decision-making accuracy rises from 40.9% to 45.7% and peaks at 47.9%, as shown in Figure 7(b),
confirming that progressively supplementing related tasks creates complementary learning benefits.

Scaling to All Tasks. Building on the above complementary settings, we compare single-task training
against joint training across all four tasks. As shown in Figure 7(c), joint training consistently
outperforms single-task training on the ID testbed. These results support a “train-once, use-across-
task” paradigm for time series reasoning, where joint training effectively captures intrinsic connections
within the temporal reasoning capabilities without task interference.

4 EXPERIMENTS

Evaluation Metrics. We observe that different models vary significantly in instruction-following
ability, sometimes generating repetitive or malformed outputs. To ensure fair comparison, we adopt
the standardized system prompt shown in Appendix E.2 and apply regular expressions to extract
answers. We report the Success Rate (SR), which is the proportion of model outputs that yield a valid
and extractable answer. All subsequent evaluation metrics are computed only on these valid cases,
ensuring that performance reflects time series reasoning ability rather than instruction-following
compliance. For discrete-output tasks (Scenario Understanding, Causality Discovery, Decision
Making), we use Accuracy (ACC) via exact match. For the sequence-output task (Event-aware
Forecasting), we use Mean Absolute Error (MAE) to assess forecasting precision. Higher ACC and
lower MAE indicate better performance. The hyperparameters used are provided in Appendix H.

Baselines. We compare TIMEOMNI-1 against up-to-date models in two categories: (1) Time series
language models: Time-MQA (Kong et al., 2025a) (fine-tuned 7B-8B models tailored for TSQA),
ChatTS (Xie et al., 2025) (fine-tuned 14B model for time series understanding), and Time-R1 (Luo
et al., 2025) (TSRMs for classical forecasting). (2) General-purpose LLMs: two GPT-4.1 variants
as proprietary representatives, and five open-source LLMs (7B to 70B) for comprehensive evaluation.

4.1 MAIN RESULTS

As shown in Table 1, TIMEOMNI-1 consistently ranks among the top-2 models across all time
series reasoning tasks. Notably, it exceeds GPT-4.1 by 40.6% (ID) and 28.1% (OOD) on causal
discovery. While achieving comparable accuracy on scenario understanding, TIMEOMNI-1 surpasses
GPT-4.1 by a wide margin on tasks requiring deeper temporal priors (e.g., decision-making). Existing
time series specialized models, however, exhibit weaker instruction-following ability than general
LLMs (consistently lower SR). For example, ChatTS achieves 0% SR on the event-aware forecasting
task; upon inspection, we found it fails to produce the required numeric sequences, generating

Table 1: Model comparison on four tasks, reporting ACC for Tasks 1, 2, and 4, MAE for Task 3,
together with SR under ID and OOD testbeds. All metrics are computed only on valid responses.
“–” denotes SR below 10%, where results are omitted for lack of statistical significance and therefore
we choose not to report them. Red: the best, Blue: the 2nd best.

Method Base LLMs
Scenario Understanding Causality Discovery Event-aware Forecasting Decision Making

ID OOD ID OOD ID OOD ID OOD

ACC SR% ACC SR% ACC SR% ACC SR% MAE SR% MAE SR% ACC SR% ACC SR%
Proprietary Models
GPT-4.1-2025-04-14 85.5 100.0 87.8 100.0 28.7 99.9 35.9 100.0 13.79 97.4 170.78 76.1 25.5 100.0 27.8 100.0

GPT-4.1-Nano 66.2 97.5 62.6 98.7 29.8 98.6 28.0 98.4 18.98 92.8 170.78 76.1 28.9 99.5 34.1 97.8
Open-Source Models

Llama-3.1-70B-Instruct 56.4 100.0 59.6 100.0 23.4 100.0 28.9 99.9 24.67 92.8 238.98 97.0 20.3 96.8 17.7 97.4
Mistral-Small-3.1-24B-Ins 64.8 100.0 69.2 100.0 24.6 100.0 25.8 100.0 17.28 72.0 120.97 43.4 44.7 100.0 42.9 100.0

Llama-3.1-8B-Instruct 36.6 46.5 32.1 46.8 - 3.7 - 1.9 27.68 52.91 186.80 29.8 7.4 28.7 16.2 42.9
Mistral-7B-v0.3 40.5 92.2 34.7 87.6 29.0 86.0 26.9 82.6 - 5.3 - 0.0 24.3 94.2 16.7 96.7

Qwen2.5-Instruct-7B 48.5 100.0 42.8 100.0 21.6 99.8 26.3 100.0 23.28 53.1 146.12 55.46 25.5 100.0 24.9 100.0
Time Series Language Models

Time-MQA Llama3-8B 32.2 29.5 25.1 32.6 30.1 44.3 31.2 37.2 - 1.4 - 0.4 12.0 13.3 11.6 15.8
Time-MQA Mistral-7B-v0.3 15.1 21.5 27.8 22.1 8.4 50.2 4.0 52.2 - 0.2 - 0.0 5.4 36.1 10.0 47.3
Time-MQA Qwen2.5-7B 25.0 14.0 37.5 22.7 29.5 33.0 30.5 32.0 19.76 12.2 - 6.5 23.8 58.0 26.4 44.3

ChatTS - 6.0 - 6.9 18.2 30.1 18.6 26.7 - 0.0 - 0.0 5.8 27.1 11.1 27.1
Time Series Reasoning Models

Time-R1 Qwen2.5-Instruct-7B 30.9 94.0 34.0 92.5 30.2 53.8 31.4 48.9 17.61 38.7 - 6.3 27.8 95.7 32.2 93.1
Ours

TIMEOMNI-1 Qwen2.5-Instruct-7B 90.7 97.5 87.7 98.3 69.3 99.8 64.0 99.8 14.30 93.8 145.53 82.3 47.9 100 58.9 100
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only free-form text. This highlights a critical limitation of existing time series task-specific models:
over-specialization compromises generalization ability.

4.2 MORE ANALYSIS
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Figure 8: Performance on gen-
eral reasoning benchmarks.

General Reasoning Capability. We evaluate whether our time se-
ries specialization diminishes general reasoning ability. We compare
the base model, Stage 1 SFT model, and TIMEOMNI-1 on three gen-
eral reasoning benchmarks: DROP (Dua et al., 2019), GPQA (Rein
et al., 2024), and ReClor (Yu et al., 2020), which focus respectively
on numerical reasoning, graduate-level knowledge reasoning, and
logical reasoning. As shown in Figure 8, TIMEOMNI-1 improves
average accuracy by 16.5% over the base model and 1.3% over the
Stage 1 model. This indicates our approach not only maintains but
also enhances general reasoning capabilities while specializing in
time series tasks, avoiding the instruction-following degradation
observed in other specialized models.

Ablation on Training Stage. We evaluate two configurations: (1)
Stage 1 models, including NRMs via answer-only fine-tuning (ANS-
SFT) and RMs via CoT fine-tuning (CoT-SFT); (2) Stage 1+ Stage 2 models (CoT-SFT+RL), which
first activates reasoning via CoT-SFT and then applies RL. We analyze performance under multi-
task joint training. As shown in Table 2, complete two-stage training (CoT-SFT+RL) delivers the
most balanced performance, ranking Top-2. In causal discovery, CoT-SFT reaches 67.7% accuracy
compared to only 30.5% for ANS-SFT, showing that answer-only supervision merely fits answer
distributions without fostering reasoning. On decision-making, the CoT-SFT vs. ANS-SFT gap
narrows from 10.1% (ID) to 5.5% (OOD), further confirming that ANS-SFT fails to foster reasoning,
whereas CoT-SFT establishes transferable reasoning skills that are consolidated by RL in Stage II.

Ablation on Training Strategy. We compare single-task fine-tuning against multi-task joint training
under identical training budgets. As shown in Table 2, multi-task joint training often enhances
performance across all tasks and training stages. On the ID testbed, the jointly trained CoT-SFT+RL
model (TIMEOMNI-1) achieves accuracy gains of 8.2%, 1.8%, 2.46 (MAE), and 7.0% across the
four tasks compared to single-task training. Together with Figure 7, which demonstrates progressive
capability transfer and supplement, these results validate that joint training effectively integrates
temporal reasoning capabilities, reinforcing the “train-once, use-across-tasks” paradigm.

Table 2: Comparison across training stages and training strategies. Red: the best, Blue: the 2nd best.

Training Stage Training Strategy
Scenario Understanding Causality Discovery Event-aware Forecasting Decision Making

ID OOD ID OOD ID OOD ID OOD

ACC SR% ACC SR% ACC SR% ACC SR% MAE SR% MAE SR% ACC SR% ACC SR%
Base Model Qwen2.5-Instruct-7B 48.5 100.0 42.8 100.0 21.6 99.8 26.3 100.0 23.28 53.1 146.12 55.5 25.5 100.0 24.9 100.0

ANS-SFT Single-task 77.5 100.0 73.9 100.0 35.7 100.0 33.8 100.0 23.87 39.7 150.42 0.6 20.2 100.0 24.2 100.0
Multi-task Joint 80.5 100.0 76.6 100.0 30.5 100.0 34.6 100.0 13.23 48.3 156.78 38.9 51.0 100.0 58.2 100.0

CoT-SFT Single-task 73.9 100.0 85.6 83.9 66.3 96.0 61.8 92.4 15.10 64.6 157.21 34.5 39.4 98.40 47.3 94.87
Multi-task Joint 89.8 88.0 85.8 88.2 67.7 98.8 61.1 97.0 15.53 71.8 151.41 55.7 40.9 100.0 52.7 100.0

CoT-SFT+RL Single-task 82.5 100.0 87.0 98.7 67.5 99.6 61.7 99.0 16.76 79.2 169.88 66.0 40.9 100.0 63.6 99.6
Multi-task Joint 90.7 97.5 87.7 98.3 69.3 99.8 64.0 99.8 14.30 93.8 145.53 82.3 47.9 100.0 58.9 100.0

5 CONCLUSION

In this paper, we introduce TSR-SUITE, which addresses the scarcity of reasoning-critical time
series data. It formalizes four tasks across three fundamental capabilities for time series reasoning:
perception, extrapolation, and decision-making. On this basis, we present TIMEOMNI-1, the
first generalized, unified model for time series reasoning. It first injects temporal priors through
supervised fine-tuning. Then, reinforcement learning with task-grounded rewards guides the model
beyond mimicking priors toward robust reasoning. Experiments show that TIMEOMNI-1 achieves
top-tier performance while preserving the general reasoning ability of the base model. Finally, we
demonstrate that joint training across diverse reasoning tasks yields mutual gains, supporting a
“train-once, use-across-tasks” paradigm for future time series reasoning models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

Our work focuses solely on scientific challenges and does not involve human subjects, animals, or
environmentally sensitive materials. We foresee no ethical risks or conflicts of interest. We are
committed to upholding the highest standards of scientific integrity and ethical conduct to ensure the
validity and reliability of our findings.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide: Detailed hyperparameters for multiple training stages (Ap-
pendix H); All system prompts used in annotation, training, and evaluation (Appendix E). Our
source code for TSR-SUITE construction and TIMEOMNI-1 training is available at: https:
//anonymous.4open.science/r/TimeOmni-1.
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A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we only employed large language models as auxiliary tools
for non-substantive tasks. Their applications were limited to assisting in code debugging, checking
grammar and formatting consistency, and improving the fluency of written text. The research design,
experimental analysis, and conceptual contribution were independent of the LLMs output. All
scientific insights and conclusions presented in this work are solely attributable to the authors.

B FURTHER RELATED WORK

Time series analysis has underpinned applications in finance, energy, transportation, healthcare,
among others, over the past decade (Lu & Xu, 2024; Liu et al., 2023b; Guan et al., 2023; Lan
et al., 2025). Most existing studies still concentrate on a single specific task, such as forecasting,
classification, anomaly detection, and imputation (Guan et al.; Zhao et al.; Zheng et al.; Jiaheng
et al.). These systems are typically task-specific and lack generality across tasks. Attempts such
as TimesNet (Wu et al., 2023) and UNITS (Gao et al.) replace the output layer and loss to reuse
a common backbone across tasks, but the resulting models still exhibit limited out-of-distribution
(OOD) robustness. Transfer-learning approaches (Ismail Fawaz et al.; Wang et al.) and pre-trained
models (Li et al., 2023) seek to mitigate OOD shifts; however, empirical evaluations typically remain
domain-specific (e.g., different districts of one city) rather than achieving genuine transfer from
domain A to domain B. A growing line of work further argues that a core bottleneck in time series
analytics lies in the lack of integration with supplementary textual knowledge (Williams et al.;
Ge et al., 2025), yet current models remain modality-locked, being unable to ingest such event
information in textual form. In addition, most existing models adopt fixed output formats and depend
on black-box computation, providing limited interpretability, even though some efforts rely on
attention map (Liu et al., 2024), causal inference (Wang et al., 2024a), or visualization of hidden
representations (Wang et al., 2024b; Cai et al., 2024; Yi et al., 2024) to offer implicit explanations.
Such latent interpretability, however, is often difficult for non-experts to understand or trust.

In contrast to these models, TSR-SUITE mitigates domain-specific brittleness by curating cross-
domain, reasoning-critical time series data and expanding the task space beyond surface QA. And
TIMEOMNI-1 improves reasoning accuracy and OOD generalization at scale across diverse domains
through multi-task joint training. Finally, TIMEOMNI-1 yields step-by-step rationales that decompose
temporal priors, event effects, and decision criteria, turning black-box predictions into transparent,
reproducible reasoning.

C LIMITATIONS OF EXISTING TIME SERIES REASONING DATASETS

As a supplement to the Section 3.1, we also conducted additional experiments on existing datasets
to assess how these limitations affect reasoning performance (shown in Figure 9): (1) Reasoning
necessity. Across most tasks, Time-MQA, pre-trained LLMs, and fine-tuned TS-LLMs do not exhibit
clear performance separation, indicating that the difficulty distribution lacks sufficient granularity to
discriminate model capabilities. Moreover, CoT-based SFT does not outperform ANS-based SFT,
suggesting that explicit reasoning is not required to solve these tasks. In fact, when tasks can be
addressed through surface-level pattern matching, extra reasoning capacity yields only marginal gains.
Therefore, we should construct dataset with calibrated difficulty gradients that genuinely require
reasoning to solve. (2) Context sufficiency. For anomaly detection, current datasets lack relevant
contextual information, forcing models to decide solely from the input sequences. As a result, both
Time-MQA and pre-trained LLMs achieve only 50–60% accuracy, barely above random selection.
After training, performance of ANS-based SFT improves by more than 20% on the ID subset, whereas
CoT-based gains are less than half of that, indicating that improvements primarily come from directly
mapping encoded sequence features to anomalous outcomes, rather than reasoning about the causes
of anomalies. Consequently, for TSR with LLMs, we should prioritize providing sufficient context to
support reasoning, rather than pushing models to overfit of time-series signals.
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Figure 9: Evidence for the necessity of reasoning and the sufficiency of context on Time-MQA dataset:
multiple-choice and true/false tasks saturate in in-distribution settings, while the anomaly-detection
task exhibits apparent guessing under out-of-distribution shift.

D DATASET DETAILS

D.1 RAW DATA SOURCE

Task 1: Scenario Understanding. We collect diverse time series data across different scenarios
from the work of Merrill et al. (2024). The out-of-distribution (OOD) test set is constructed based on
the original domains of the time series data: specifically, samples from the Agricultural, Education
and Healthcare domains are used as OOD test data.

Task 2: Causality Discovery. We perform causal discovery on river discharge time series from the
CausalRivers dataset (Stein et al., 2025), aiming to uncover causal relationships from observational
data. Ground-truth causal directions are determined according to river flow: the amount of water
measured at an upstream station directly influences the amount measured downstream at a later
time, and we thus consider such relations causal; if two rivers are not connected, we consider them
non-causal. For the OOD test set, we split by geographical regions: training and in-distribution (ID)
test data are taken from Eastern Germany, while the OOD test set is sourced from Bavaria.

Task 3: Event-aware Forecasting. We use a human mobility dataset as the primary training scenario,
specifically taxi drop-off data near the Barclays Center in New York City. We collect the raw time
series together with aligned events from Liang et al. (2024); Ge et al. (2025). For the OOD test set,
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we adopt electricity load time series paired with weather events from the EWELD dataset (Liu et al.,
2023a).

Task 4: Decision Making. To evaluate decision-making with counterfactual reasoning ability (i.e.,
reasoning about the outcomes of unobserved actions), we adopt a sandbox environment based on real
building load data. Specifically, we use the CityLearn dataset (Nweye et al., 2023), which provides
building load profiles and battery charge/discharge operations under a dynamic pricing scheme. Given
48 hours of historical building load and peak-valley pricing information, models are required to
determine charge/discharge strategies for the next 24 hours. For the OOD test set, we select two
buildings whose load patterns differ significantly from those in the training and ID test sets.

For all four tasks, we construct clear data pipelines, as detailed in Section 3.2, thereby facilitating
future dataset expansions and task extensions.

D.2 DATA STATISTICS

This section provides the detailed quantitative breakdown of TSR-SUITE, complementing the high-
level overview in Section 3.2. Table 3 lists the number of samples available for each reasoning task,
stratified by their use in the two-stage training (Stage 1 SFT and Stage 2 RL) as well as in-distribution
(ID) and out-of-distribution (OOD) testbed. The data confirms a substantial scale for SFT (Stage 1)
and an even larger set for RL (Stage 2), ensuring robust learning and generalization evaluation for
each task.

Task #Stage 1 Train #Stage 2 Train #ID Test #OOD Test
Scenario Understanding 609 5104 200 899
Causality Discovery 778 6044 800 800
Event-aware Forecasting 400 2780 418 476
Decision Making 552 3284 188 273

Table 3: Detailed sample count statistics for the four time series reasoning tasks in TSR-SUITE
across training stages and testbed.

D.3 TASK 3 (EVENT-AWARE FORECASTING) SPECIAL NOTES

Table 4: MAE(↓) of CoT-SFT with different chain construction on Task 3.

ID OOD

LLM Analyzer Generated 15.10 157.2
Ground Truth Guided 24.53 395.56

Unlike multiple-choice tasks, where correct answers are explicitly listed among options, Task 3
requires forecasting future sequence within a fixed output window. This open-ended formulation
significantly increases the difficulty of constructing coherent reasoning chains and prevents the LLM
Analyzer from perfectly predicting results that are fully aligned with the ground truth. However,
instead of guiding the generation of reasoning chains using the ground truth, we allowed the LLM
Analyzer to generate predictions based on its own understanding. In our experiments, reasoning
chains generated with ground-truth hints consistently resulted in worse CoT based SFT performance
compared to those produced directly by the LLM Analyzer as shown in Table 4. This result also aligns
with recent findings (Zhao et al., 2025; Gao et al., 2025; Li et al., 2025), which suggests that the most
effective training data are instances slightly beyond a model’s current ability but not prohibitively
difficult. Furthermore, ground-truth–guided chains tend to obscure the task’s inherent difficulty and
deviate from the base model’s natural data distribution. Therefore, we examine the cases and select
400 samples with relatively low MAE chains generated by the LLM Analyzer without relying on
ground-truth hints as supervision for Stage 1 training to balance difficulty and quality.
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D.4 HUMAN EVALUATION INTERFACE

As described in Figure 3, when the LLM Analyzer (GPT-4.1 in our case) fails to solve a sample in
Step 1, the instance proceeds to Step 2. In this step, human reviewers use the interface shown in
Figure 10 to examine whether the provided context is sufficient to disambiguate the answer. If the
question is solvable by human reviewers, their reasoning chains are further polished by the LLM
Rewriter to follow our structured templates, and the resulting samples are collected as Step 2 CoT
data.

Figure 10: Screenshot of the human evaluation interface used in Step 2 of Hierarchical CoT Annota-
tion.

E PROMPT USED IN THIS PAPER

E.1 HUMAN-GUIDED REASONING TEMPLATE FOR HIERARCHICAL COT ANNOTATION.

As detailed in Section 3.2, our hierarchical annotation pipeline relies on structured reasoning templates
to ensure consistency and quality in the Chain-of-Thought (CoT) generation process. These templates
serve as explicit guidelines for the LLM Analyzer in the initial solving phase, as well as for human
experts during verification and the LLM Rewriter in the refinement phase. The templates defined in
this section are specifically designed for CoT annotation only. They provide a systematic framework
for breaking down each reasoning task into logical steps, ensuring that all annotated traces follow
a consistent structure while capturing the essential temporal reasoning processes. This approach
guarantees that the resulting CoT data maintains high quality and facilitates effective model learning.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Human-guided Reasoning Template for Task1: Scenario Understanding

Step 1. Series length check
Observed length={L}. Expected per option: A{exp len A}; B{exp len B}; C{exp len C};
D{exp len D}. Retain option(s) whose expected length ≈ L.

Step 2. Magnitude & unit sanity
Value range={min}–{max}. Typical ranges: A{range A}; B{range B}; C{range C};
D{range D}. Eliminate options whose units/ranges mismatch.

Step 3. Shape & temporal pattern
Note trends/seasonality/spikes: {key patterns}. Compare to option narratives: A{match or not};
B{match or not}; C{match or not}; D{match or not}. Keep best-matching narratives.

Step 4. External-event alignment
Identify clear events (e.g., single-day surge, mid-series drop): {events}. Which option explicitly
explains this?

Step 5. Final elimination & plausibility
Remaining candidates: {remaining}. Choose the scenario that satisfies all of length, magnitude,
pattern, and event consistency.

Step 6. Double-check length consistency
Confirm {tentative choice} expected length =={L}? → {yes/no}. If “no”, revert to next best
candidate; else accept. Final choice: {chosen option}.

Human-guided Reasoning Template for Task2: Causality Discovery

Step 1. Trend Consistency
Check whether the two series demonstrate structurally consistent trends, such as shared “stable
→ rise → fall” shapes, both rise/fall at similar points (within ±1–2 time steps), and flat/stable
periods aligned in time. It’s OK for their absolute values to differ — match shape, not magnitude.
Red Flag: If one rises while the other stays flat or falls → Stop in the option: are not causal.
Be perceptually flexible. Flatness doesn’t require perfect constancy — as long as fluctuations
are very small relative to the scale of the full time series, they can still be considered flat.

Step 2. Key Fluctuation Alignment
Check whether the two time series have notable peaks, dips, or inflection points at the same or
nearly the same time.
You must ensure: Spikes/dips occur within ±1–2 steps (which means ≤24 hours lag if sampling
is 12h). For time series with low overall discharge (maybe near 0), even modest changes can
be meaningful if they represent a clear pattern change relative to baseline. If peaks differ
by ≥3 steps, it’s too much lag to infer causality → the two time series are not causal. Do
not confuse visually similar shapes with causality if key changes happen at clearly different times.

Step 3. Direction of Causality
Only perform this step if both Step 1 and 2 pass. Use the domain principle: ”Small rivers flow
into big rivers” — not the reverse.
Rule: If ‘mean(A) < mean(B)‘, then ‘A → B‘. If ‘mean(B) < mean(A)‘, then ‘B → A‘.
Notes: If Step 1 or 2 fails, skip Step 3. Timing matters: 3 steps of lag (36h) is already too much.
Matching is about structure and timing, not numbers.
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Human-guided Reasoning Template for Task3: Event-aware Forecasting

Step 1. Identify the baseline patterns
You should first identify the baseline patterns and trend from the historical series.

Step 2. Estimate the impact of any events
Next, estimate the incremental impact of any special events (pre-event buildup, during-event lift,
post-event dispersal) as an overlay on the baseline.

Step 3. Combine the baseline and event effects
Finally, given the current context, combine the baseline and event effects to generate the forecast
sequence.

Human-guided Reasoning Template for Task4: Decision Making

Step 1. Forecast the next 24-hour load
Use the historical 48-hour load pattern to generate a forecast for tomorrow’s 24-hour load. Pay
special attention to the peak-price hours and estimate the likely loads during those hours.

Step 2. Principles for evaluating strategies
Charging should take place during off-peak hours when electricity price is low. Discharging
should take place during peak hours when electricity price is high and forecasted load is
significant. Avoid charging during peak hours or discharging during off-peak hours, as these
operations increase cost instead of saving it.

Step 3. Cost calculation and strategy comparison
For each strategy, compute the expected saving using:

Saving =
∑

h∈peak

min
(
L̂(h), P dis

max

)
· (ppeak − pvalley)

where L̂(h) is the forecasted load at hour h, P dis
max is the maximum discharging power, and ppeak,

pvalley are the peak and valley electricity prices. Select the strategy with the highest saving.

E.2 SYSTEM PROMPT FOR TRAINING AND EVALUATION

This section presents the system prompts used in the ablation study on training stages (Section 4.2).
The prompts are categorized into two types: Chain-of-Thought(CoT) prompts that require models
to generate reasoning traces before answers, and Answer-only(ANS) prompts that directly output
final answers without explicit reasoning.

For Tasks 1, 2, and 4, the CoT prompts enforce a structured output format where models must provide
step-by-step reasoning within <think> tags before the final answer in <answer> tags. The ANS
prompts for these tasks skip the reasoning step and output only the final answer. For Task 3, the
prompts are adapted to accommodate sequence predictions while maintaining the same CoT/ANS
distinction. These prompts ensure consistent evaluation across different training configurations:
ANS-SFT uses ANS prompts, CoT-SFT uses CoT prompts, and CoT-SFT+RL uses CoT prompts
during both training stages.

System Prompt of CoT for Task1, 2 and 4

Output Format:
<think>Your step-by-step reasoning process that justifies your answer</think>
<answer>Your final answer(Note: Only output a single uppercase letter of the correct op-
tion)</answer>
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System Prompt of CoT for Task3

You should think the impact of the event first, then output the predicted sequence.

Output Format:
<think>Your step-by-step reasoning process</think>
<answer>[Your predicted sequence]</answer>

System Prompt of ANS for Task1, 2 and 4

Output Format:
<answer>Your final answer(Note: Only output a single uppercase letter of the correct op-
tion)</answer>

System Prompt of ANS for Task3

You should output the predicted sequence directly.
Output Format:
<answer>[Your predicted sequence]</answer>

F IMPLEMENTATION DETAILS OF THE TRAINING STAGES

F.1 STAGE 1: SUPERVISED FINE-TUNING (SFT)

SFT is a process where a pre-trained model is further trained on a labeled dataset to adapt it for a
specific task. This is achieved by minimizing the negative log-likelihood of the output given the input
data. In the context of time series reasoning, the model learns to generate intermediate rationales
and final answers based on observed time series data and auxiliary context. Specifically, based on
a carefully curated dataset D = {(Xi, Ci, Ri, yi)}Ni=1, the model’s parameters θ are updated by
minimizing the loss function:

L(θ;D) = − 1

N

N∑
i=1

log πθ((R
′
i, y

′
i)|(Xi, Ci)) (3)

where R′
i and y′i are the predicted rationale and final answer, respectively. And for the i-th example,

Xi and Ci represent the observed time series and auxiliary context.

F.2 STAGE 2: REINFORCEMENT LEARNING (RL)

In reinforcement learning, we employ the group relative policy optimization (GRPO) algorithm (Shao
et al., 2024) to refine our post-SFT model using carefully designed reward functions. Given an input
pair (X,C), GRPO samples N rationale-answer trajectories {(Ri, yi)}Ni=1 from the policy model πθ,
and organizes them into groups {Gb}Bb=1. The reward for trajectory i ∈ Gb is computed as

Âi = R(Ri, yi)−
1

|Gb|
∑
j∈Gb

R(Rj , yj), (4)

where R combines both the correctness of the answer and the quality of the response format. The
policy is then updated using the following objective:

LGRPO(θ) =
1

N

N∑
i=1

[
min

(
πθ(Ri, yi | X,C)

πθrefer(Ri, yi | X,C)
Âi, (5)

clip
(

πθ

πθrefer

, 1− ϵ, 1 + ϵ

)
Âi

)
− β DKL

(
πθ ∥ πθrefer

)]
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Here, πθrefer indicates the post-SFT model. ϵ and β are hyperparameters that control the clipping
threshold of the PPO update and the weight of the Kullback-Leibler (KL) divergence penalty,
respectively.

G TIME SERIES TASK-GROUNDED REWARD DESIGN

All samples are required to follow a basic format reward Rformat, which checks whether outputs com-
ply with the schema <think>...</think><answer>...</answer>. For discrete-output
tasks (scenario understanding, causality discovery, decision-making), correctness is directly measur-
able by

Rdiscrete =

{
1, ŷ = y,

0, otherwise.
(6)

For sequence-output task (event-aware forecasting), we define a continuous reward based on the
exponential decay of mean absolute error (MAE):

MAE =
1

T

T∑
t=1

∣∣ŷt − yt
∣∣, (7)

Rsequence =

{
0, if len(ŷ) ̸= len(y),

exp(−α · MAE) +Rcount, if len(ŷ) = len(y),
(8)

together with a horizon-matching bonus Rcount = 0.1. And the final per-sample reward integrates all
components as:

Ri = λRformat + (1− λ)Rtask, (9)
where Rtask refers to Rdiscrete for discrete-output tasks and Rsequence for sequence-output task. We set
λ = 0.1 in all experiments.

H TRAINING CONFIGURATION

Our training process follows a two-stage procedure, consisting of supervised fine-tuning (SFT)
followed by reinforcement learning (RL). For the SFT stage, we begin by fine-tuning the Qwen2.5-
7B-Instruct (Team, 2024) with full-parameter updates for a total of 1 epoch, utilizing DeepSpeed
ZeRO-3 (Rasley et al., 2020) for efficient training. The fine-tuning is performed in BF16 precision
with FlashAttention-2 enabled to accelerate attention operations. The maximum sequence length is
set to 8192, and the per-device batch size is 1, with gradient accumulation of 32. The optimization
procedure uses a peak learning rate of 1.0 × 10−5 with a cosine learning rate scheduler and the
warm-up ratio as 0.1. All training is carried out using the LLaMA-Factory repository (Zheng et al.,
2024) on a system equipped with a single NVIDIA H200-140G GPU. In the RL stage, we continue
training from the Stage 1 checkpoint using the verl repository (Sheng et al., 2024) and FSDP (Zhao
et al., 2023) under BF16 precision. The maximum sequence length is reduced to 2048, and training is
performed across 8 NVIDIA A100-80G GPUs. The training batch size is 128, with RL minibatches
of size 32 and per-GPU micro-batches of 8. Gradient clipping is applied with a maximum global
norm of 3.0, and a KL-penalty coefficient of 0.04 is used to regulate the model. For rollouts, 8
trajectories are collected per update, with a sampling temperature of 0.7. The learning rate is set to
1.0× 10−6, and training continues for 3 epochs.

I CASE STUDY

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Task1 (Scenario Understanding) example with options and reasoning process.

Task1: Scenario Understanding

User You are given a time series. Please identify the scenario that most likely created it.
[39, 58, 51, 45, 40, 39, 57, 45, 45, 34, 40, 32.64, 62, 92, 37, 31, 29.52, 46, 69, 79, 43, 51,
50, 50, 56, 45, 57, 32, 35, 55, 38, 41, 38, 54, 33, 48, 54, 40.45, 30.31, 56, 49, 37.41, 45, 39,
49, 31.52, 47, 51, 33, 53, 38.49, 33, 30, 35.52, 41, 32.61, 52, 44, 29.68, 41, 32.44, 46.5, 49,
48, 38, 46, 38, 49, 45, 52, 47, 45, 39, 47, 44.47, 28, 36, 39, 27.67, 43, 37, 41, 52, 50, 37,
30, 30, 27.4, 33, 40, 35.51, 38, 35.43, 38, 37, 42, 28.49, 27, 47, 32.45, 30, 42, 36.39, 29.62,
27, 29.55, 32, 46, 44, 29.42, 26.72, 32, 44, 34.61, 37, 45, 45, 38.44, 42, 50, 34, 47.5, 51,
30, 31.56, 34, 42, 45, 39, 30, 42, 34, 50, 27.33, 38, 41.55, 32.43, 40, 40, 50, 39, 33.53, 26,
25.73, . . . , 27, 30, 22.59, 38, 33, 26.58, 23.48, 32.62, 40, 20.33, 27.4, 33.44, 35.42, 33.34,
31, 38, 34, 21, 21, 38, 36].

0 50 100 150 200 250 300

30

40

50

60

Options:
A. ATM daily cash withdrawals over a year with an annual festival (365 daily samples).
B. Weekend music festival causing a surge in noise levels (96 hourly samples).
C. Hourly restaurant food orders during a 2-week local food festival (336 hourly samples).
D. NYC daily taxi pick-ups over a year with a subway strike (365 daily samples).

TIMEOMNI-1
<think>
1) Length check.
Observed length is 336. Options expect: A= 365, B= 96, C= 336, D= 365. Only C
matches exactly.
2) Magnitude sanity.
Values span ≈ 15–92, reasonable for hourly food orders in a busy restaurant (C). NYC
daily taxi rides (D) are typically in the thousands; A and B already fail length.
3) Shape/pattern.
Fluctuating baseline with intermittent surges (e.g., 92) and no single prolonged
spike—consistent with repeated demand bursts during a local festival (C).
4) Event alignment.
A 2-week festival plausibly produces multiple hourly peaks across days (C), rather than
one annual or weekend-only spike (A/B), and not daily-year scale (D).
5) Double-check.
2 weeks × 24 hours = 336 ⇒ consistent with (C).
</think>
<answer>C</answer>
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Table 6: Task2 (Causal discovery) example with options and reasoning process.

Task2: Causal Discovery

User You are given two time series related to river discharge measurements, expressed in m3/s.
Through causal discovery methods, we aim to identify potential causal relationships
between different measuring stations from time-series data alone. The time series of A463
is: [4.12, 3.8, 3.44, 3.11, 2.97, 2.85, 2.79, 2.76, 2.63, 2.74, 2.69, 2.77, 2.75, 2.79, 2.97, 3,
3.09, 3.18, 3.24, 3.16, 3.16, 3.37, 3.37, 3.54, 3.56, 3.51, 3.43, 3.37, 3.37, 3.21, 3.12, 3.07,
3.16, 3.12, 3.16, 3.15, 2.95, 3, 2.95, 2.84, 2.75, 2.74, 2.74, 2.74, 2.74, 2.74, 2.6, 2.56, 2.56,
2.53, 2.54, 2.52, 2.33, 2.33, 2.33, 2.4, 2.61, 2.9, 3.22, 3.45, 3.58, 3.95], the time series of
4PRY is [7.55, 7.31, 7, 6.78, 6.5, 6.2, 6.08, 6, 6, 5.91, 5.82, 5.78, 5.84, 5.92, 5.88, 5.89,
5.82, 6, 6.25, 6, 5.94, 5.9, 5.9, 5.89, 5.89, 6, 6, 5.9, 5.74, 5.81, 5.67, 5.55, 5.35, 5.29, 5.14,
5.11, 5.18, 5.12, 5.11, 5.07, 4.89, 4.81, 4.82, 4.7, 4.69, 4.61, 4.67, 4.58, 4.45, 4.55, 4.42,
4.44, 4.32, 4.28, 4.37, 4.53, 4.5, 4.62, 4.84, 5, 5.43, 5.74]. Please identify the causal
relationships between the two measurement stations? The data is collected every 12 hours
from 2020-01-01 to 2020-01-31 totally 62 points each series.

2020-01-01
00:00

2020-01-10
00:00

2020-01-20
00:00

2020-01-31
00:00

4

6

Di
sc

ha
rg

e 
(m

³/s
) A463

4PRY

Options:
A. A463 is the cause and 4PRY is the effect
B. A463 and 4PRY are not causal.
C. 4PRY is the cause and A463 is the effect

TIMEOMNI-1
<think>
1) Trend consistency (perceptual matching).
• Both A463 and 4PRY start with a gradual decrease over the first 10–12 points.
• Both show a rise around point 15–20, peaking at similar positions (A463 rises from 2.7

to 3.5, 4PRY from 5.8 to 6).
• Both then decline after their peaks, with a secondary smaller rise around point 45–50

(A463: 2.5 to 3.9; 4PRY: 4.3 to 5.7).
• The overall shapes match: both series are “decline → flat → rise → fall → rise” with

similar timing.
• No major segment where one rises while the other falls or stays flat.
2) Key fluctuation alignment (peak synchrony).
• Major peaks occur nearly simultaneously (points ∼19–20: A463 ≈ 3.37; 4PRY ≈ 5.9).
• Secondary peaks/dips are aligned within 1–2 steps.
• No meaningful lag (> 2 steps) between corresponding changes.
3) Direction of causality (hydrologic magnitude heuristic).
• Mean level: mean(A463) < mean(4PRY) (A463 mostly 2.5–3.5; 4PRY mostly 4.5–

6.5).
• Hydrology rule-of-thumb: smaller tributaries feed larger channels ⇒ upstream (smaller)
→ downstream (larger).

</think>
<answer>A</answer>
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Table 7: Task3 (Event-aware forecasting) example with reasoning process.

Task3: Event-aware forecasting

User Over the past 48 hours (from 2015-05-29 00:00:00 to 2015-05-30
23:00:00), hourly taxi pickups were:
[26, 22, 9, 6, 1, 6, 3, 8, 11, 18, 11, 28, 22, 22, 26, 33, 44, 49, 76, 91, 85, 53, 69, 133, 116,
64, 28, 7, 8, 7, 1, 3, 12, 10, 22, 22, 35, 51, 37, 59, 57, 61, 50, 87, 54, 72, 56, 49].
Significant event in this window:
2015-05-29 17:00 BROOKLYN BOXING: Amir Khan vs. Chris Algieri &

Fortuna vs. Vasquez.
In the next 24 hours: 2015-05-31 19:30 Ed Sheeran.

Day1 Day2 Day3
0

75

150

Ta
xi

 P
ick

-u
ps

Event1: BROOKLYN BOXING

Event2: Ed Sheeran

TIMEOMNI-1
<think>
1) Identify Baseline Patterns and Trends.
The data covers two days (48 hourly values). There is a clear daily pattern: low pickups
overnight (midnight–6am), rising through morning, peaking late afternoon/evening. On
both days, there is a pronounced spike around 17:00–20:00, likely due to the boxing event.
After the spike, pickups drop sharply, then gradually decrease into the night.
2) Estimate Event Impact.
The 2015-05-29 17:00 boxing event caused a large surge: 17: 44, 18: 49, 19: 76, 20:
91, 21: 85, 22: 53, 23: 69, then post-event dispersal 0–3h: 133, 116, 64, 28; well above
baseline (∼20–30/h).
3) Context for Next Day.
Next event: 2015-05-31 19:30 Ed Sheeran concert. Expect similar pre-event buildup,
a sharp spike during/after, then decline. No other events.
4) Forecast Sequence.
Use the prior non-event pattern as baseline and overlay an event-shaped spike at the concert
time: Overnight (0–6) low (1–8); Morning (7–11) rising (8–18); Early afternoon (12–16)
moderate (18–33); Pre-event (17–18) increase (33–44); Event spike (19–21) large (76–91);
Post-event (22–23) decline (53–69).
5) Finalize Sequence.
For each hour, use baseline + event effect if applicable.
</think>
<answer>[
7, 5, 3, 2, 1, 2, 4, 7, 10, 13, 15, 18, 20, 22, 25, 30, 35, 44, 49, 76, 91, 85, 53, 69

]
</answer>
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Table 8: Task4 (Decision-making) example with reasoning process.

Task4: Decision-making

User You manage a home energy storage system with battery capacity 18 kWh, current
state-of-charge (SoC) 5 kWh, max charging power 5 kW, max discharging power 10 kW.
Historical 48-hour hourly load (kWh) from 2023-07-10 00:00 to 2023-07-11 23:00 is
given. Tomorrow’s 24-hour pricing: off-peak $0.22/kWh (hours 0–14, 20–23), peak
$0.54/kWh (hours 15–19). Based on historical usage, predict tomorrow’s load and select
the optimal 24-hour battery strategy from Options A–D (hour indices 0–23).

0.22

0.54

Pr
ice

 ($
/k

W
h)

0h 24h 48h 72h
0.0

2.5

5.0

Lo
ad

 (k
W

h)

Observed
Forecast

Charge (h=1,2)
Discharge (h=15,17)

Options:
A. Charge: { 5, 11 }; Discharge: { 2, 18 }
B. Charge: { 1, 2 }; Discharge: { 15, 17 }
C. Charge: { 2, 10 }; Discharge: { 18, 19 }
D. Charge: { 11, 14 }; Discharge: { 16, 18 }

TIMEOMNI-1
<think>
1) Load forecast.
Mirror the most recent day (hours 24–47) as tomorrow’s profile:
[1.42, 3.16, 2.06, 1.03, 1.81, 1.02, 0.71, 0.34, 0.62, 0.75, 0.87, 2.44, 3.71, 1.98, 4.86
, 1.37, 1.00, 0.65, 2.40, 0.40, 2.32, 2.51, 1.59, 0.76].
2) Prices & principle.
Off-peak: hours 0–14, 20–23 ($0.22/kWh). Peak: hours 15–19 ($0.54/kWh). Charge in
off-peak, discharge in peak to maximize spread ∆p = 0.54− 0.22 = 0.32 $/kWh.
3) Feasibility & SoC constraints.
Capacity 18 kWh; initial SoC 5 kWh; max charge 5 kWh/h; max discharge 10 kWh/h.
• A: Discharge at hour 2 (off-peak) ⇒ violates principle ⇒ exclude.
• B: Charge {1,2} (off-peak) ⇒ SoC: 5→10→15; Discharge {15,17} (peak).
• C: Charge {2,10} ⇒ SoC: 5→10→15; Discharge {18,19} (peak).
• D: Charge {11,14} ⇒ SoC: 5→10→15; Discharge {16,18} (peak).
4) Discharge amounts & savings (bounded by load and 10 kWh/h).
Peak-hour loads (forecast):
h15= 4.86, h16= 1.37, h17= 1.00, h18= 0.65, h19= 2.40.

• B: discharge at {15,17}⇒ 4.86+1.00 = 5.86 kWh; saving = 5.86×0.32 = $1.8752.
(If discharging also at h16 is allowed as listed, then 4.86 + 1.37 + 1.00 = 7.23 kWh
⇒ $2.3136.)

• C: {18,19} ⇒ 0.65 + 2.40 = 3.05 kWh ⇒ $0.976.
• D: {16,18} ⇒ 1.37 + 0.65 = 2.02 kWh ⇒ $0.6464.
All satisfy SoC bounds (start 5 kWh, charge to 15 kWh, discharge ≤ available).
</think>
<answer>B</answer>
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