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Abstract

Despite their spectacular progress, language models still struggle on complex rea-
soning tasks, such as advanced mathematics. We consider a long-standing open
problem in mathematics: discovering a Lyapunov function that ensures the global
stability of a dynamical system. This problem has no known general solution, and
algorithmic solvers only exist for some small polynomial systems. We propose a
new method for generating synthetic training samples from random solutions, and
show that sequence-to-sequence transformers trained on such datasets perform bet-
ter than algorithmic solvers and humans on polynomial systems, and can discover
new Lyapunov functions for non-polynomial systems.

1 Introduction

As large language models achieve human-level performance over a broad set of tasks [4, 35, 45],
their capability to reason becomes a focus of discussion and research. There is no single definition
of reasoning, and work in this area encompasses factuality, real world alignment, compositionality,
the discovery and following of rules, &c. Still, mathematics are considered as one of the purest, and
most demanding, forms of reasoning [17]. As such, solving research-level mathematical problems is
a major milestone in demonstrating the reasoning capabilities of language models. Such an advance
in AI would also transform mathematical practice.

There is little research on applying language models to open problems of mathematics. Except a
few papers on combinatorial optimization and graph theory [34, 39], most prior works focus on
problems with known solutions [37, 23, 30, 8]. We believe this lack of results is due to two main
reasons. First, research problems may require specialized work by mathematicians [6] before they
can be handed to language models. Second, most math transformers are trained on sets of problems
and solutions which are hard to generate in the case of open problems, when no generic method for
finding a solution is known.

In this paper, we focus on a long-standing, yet easy to formalize, open problem in mathematics:
discovering the Lyapunov functions that control the global stability of dynamical systems – the
boundedness of their solutions when time goes to infinity with respect to an equilibrium or an orbit. A
famous instance of this problem is the three-body problem: the long-term stability of a system of three
celestial bodies subjected to gravitation. The stability problem was studied by Newton, Lagrange and
Poincaré. Lyapunov discovered that stability is guaranteed if an entropy-like function for the system
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–the Lyapunov function– can be found. Unfortunately, no method is known for deriving Lyapunov
functions in the general case, and Lyapunov functions are only known for a small number of systems.

We propose a new technique for generating training data from randomly sampled Lyapunov functions.
Sequence-to-sequence transformers trained on these datasets achieve near perfect accuracy (99%) on
held-out test sets, and very high performance (73%) on out-of-distribution test sets. We show that
higher accuracies (84%) can be achieved by enriching the training set with a small number (300) of
easier examples that can be solved with existing algorithmic methods. These enriched models greatly
outperform state-of-the-art techniques and human performance on a variety of benchmarks.

Finally, we test the capability of our models to discover yet unknown Lyapunov functions on randomly
generated systems. On polynomial systems, the only ones current methods can solve, our models find
Lyapunov function for 10.1% or systems, vs 2.1% for state-of-the-art techniques. On non-polynomial
systems, where no algorithm is known, our best models discover new Lyapunov functions for 12.7%
of systems. Our research demonstrates that generative models can be used to solve research-level
problems in mathematics, by providing mathematicians with guesses of possible solutions. The
solutions proposed by the black-box model are explicit and their mathematical correctness can be
verified. We believe this research is an AI-driven blueprint for solving open problems in mathematics.

Related works

Most classical methods for finding Lyapunov rely on parameterized families of candidate solutions,
and attempt to derive conditions on the parameters [11, 14]. Additional techniques such as backstep-
ping or forwarding [11, Chap. 12], were introduced to leverage the specifics of particular systems (see
also physics-based methods [44]). These techniques are limited to specific, or simple, systems. The
global Lyapunov functions of polynomial systems that are sums of squares of polynomials of given
degree can be found by computational-intensive algorithmic tools, such as SOSTOOLS [32, 33],
which leverage the fact that the Lyapunov function belongs to a finite-dimensional space.

Methods involving neural networks have been proposed in recent years [7, 15, 12, 24, 25]. They
train feed-forward networks to approximate Lyapunov functions of a given system, and use a
Satisfiability Modulo Theories (SMT) solver as a verifier which proposes potential counter-examples.
This approach, very different from ours, was shown to be successful for several well-studied high
dimensional systems. However, it only finds local or semi-global Lyapunov functions (see Definition
A.3). Since the Lyapunov functions that are found are implicit, it would be hard for mathematicians
to check whether they are global Lyapunov functions or not. Semi-global Lyapunov functions are
useful in many engineering fields such as robotics, where one wants a system to be robust to small
perturbations. In other fields, like epidemics, being resilient to large perturbations is central, and
global Lyapunov functions are required.

Transformers trained on synthetic datasets have been proposed for many problems of mathematics,
including arithmetic [28], linear algebra [10], symbolic integration [22], symbolic regression [5],
Shortest Vector Problem [40], Gröbner basis computation [19] and theorem proving [30]. [8]
investigate a problem related to ours: the local stability of dynamical systems. Different architectures
were used to solve hard problems in combinatorial optimisation [34], and graph theory [39].

2 System stability and Lyapunov functions

The stability of dynamical systems is a hard mathematical question, which intrigued many generations
of mathematicians, from Newton and Lagrange in the 18th century, to Poincaré in the 20th in the
context of the three-body problem. The main mathematical tool for assessing stability was proposed
by Lyapunov, who showed in 1892 that a system is stable if a decreasing entropy-like function –the
Lyapunov function– can be found [20, 11, 26]. Later, the existence of a Lyapunov function was shown
to be a necessary condition for the stability of large classes of systems [29, 27, 18]. Unfortunately,
these very strong results provide no clue on how to find Lyapunov functions, or just proving their
existence for a particular system. In fact, 130 years later, systematic derivations of global Lyapunov
functions are only known in a few special cases, and their derivation in the general case remains a
well-known open problem.

In mathematical terms, we consider the dynamical system
ẋ = f(x), (1)
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Figure 1: Dynamic of a stable system: trajectories
may be complicated but as long as they start in the
red ball they remain in the blue ball.
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Figure 2: Two stable systems and associated Lyapunov
functions discovered by our model. The second, a poly-
nomial system with a non-polynomial Lyapunov func-
tion, was studied in [1].

where x ∈ Rn, f ∈ C1(Rn) and ẋ = dx
dt . We want to know if the system has a stable equilibrium

around a point x∗ such that f(x∗) = 0. We assume, without loss of generality, that x∗ = 0.
Definition 2.1. The system (1) is stable when, for any ε > 0, there exists η > 0 such that, if
∥x(0)∥ < η, the system (1) with initial condition x(0) has a unique solution x ∈ C1([0,+∞)) and

∥x(t)∥ ≤ ε, ∀ t ∈ [0,+∞). (2)

In other words, a system is stable if a solution that begins close to the origin (∥x(0)∥ < η) stays close
to the origin at all time (∥x(t)∥ ≤ ε). Lyapunov proved that the stability is related to the existence of
what is now called a Lyapunov function.
Definition 2.2. The function V ∈ C1(Rn,R+) is said to be a (global) Lyapunov function for the
system (1) if the following condition are satisfied

V (0) = 0, lim
∥x∥→+∞

V (x) = +∞,

V (x) > 0, ∇V (x) · f(x) ≤ 0 for x ̸= 0.
(3)

Theorem 2.3 (Lyapunov 1892). If the system (1) has a Lyapunov function, then it is stable.

In fact, the existence of a Lyapunov function is more powerful and provides additional information.
Theorem 2.4 (LaSalle, 1961). If the system (1) has a Lyapunov function V , then all the solutions of
(1) converge to the largest invariant set of {f(x) · ∇V (x) = 0}.

In many cases this largest invariant set is reduced to {x∗ = 0} and the system is said globally
asymptotically stable (all solutions converge to the equilibrium, see Appendix A).

Most dynamical systems are unstable. For instance, the solutions of the simple system ẋ(t) = x(t)
grow exponentially with time, and the solutions of ẋ(t) = 1 + x(t)2 (x ∈ R) always blow up before
t = π. No Lyapunov functions can be found for these systems.

On the other hand, stable systems can have an infinite number of Lyapunov functions. The system{
ẋ0(t) = −x0(t)

ẋ1(t) = −x1(t)

has V (x) = a0x
2
0 + a1x

2
1 as a Lyapunov function for any choice of a0 > 0 and a1 > 0.

In the general case, there is no systematic way of discovering a Lyapunov function, or even showing
that one exist. Tools exist for small polynomial systems with special “sum of squares” (SOS)
Lyapunov functions, but they need a lot of resources, do not always find a solution, and fail once the
systems involve more than a few variables.

We also consider a related, but easier, problem: finding nontrivial V which are semi-definite positive,
i.e. V verifying V (x) ≥ 0 instead of V (x) > 0 in Equation (3). These functions, called barrier
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functions, form “barriers” that divide Rn into two subspaces. A solution starting inside the barrier
must remains in the same subspace, which is an invariant set of the system [31, 41]. For polynomial
systems, barrier functions are slightly easier to find using SOS solvers.

3 Experimental settings

In this work, we train sequence-to-sequence transformers [38] to predict a Lyapunov function for a
given system, when it exists. We frame the problem as a translation task: problems and solutions
are represented as sequences of symbolic tokens, and the model is trained from generated pairs of
systems and Lyapunov functions to minimize the cross-entropy between the predicted sequence
and the correct solution. We train transformers with 8 layers, 10 attention heads and an embedding
dimension of 640 (ablation studies on different model sizes can be found in Appendix C), on batches
of 16 examples, using the Adam optimizer [21] with a learning rate of 10−4, an initial linear warm-up
phase of 10,000 optimization steps, and inverse square root scheduling. All experiments run on 8
V100 GPU with 32 GB of memory, for 3 or 4 epochs of 2.4 million examples per epoch. Training
time is between 12 to 15 hours per GPU.

Tokenization. Model inputs are systems of the form (ẋi = fi(x1, . . . , xn))i∈{1,...,n}, represented
by the n functions fi. Model outputs are single functions V (x1, . . . , xn). As in [22], functions are
represented as trees, with operators in their internal nodes, and variables or constants as their leaves.
Trees are then enumerated in Polish (pre-order) notation to produce sequences of tokens that can be
processed by the transformer.

All operators and variables are tokenized as single symbols (e.g. ‘cos’ or ‘x1’). Integer constants
are tokenized as sequences of “digits” in base 1000 (e.g. 1024 as the sequence [+, 1, 24]), and
real constants, in scientific notation, as pairs of two integers (mantissa and exponent, e.g. −3.14 as
[-, 314, 10ˆ, -, 2]). For instance:

{
ẋ0 = cos(2.1x0)(x1 + 2)

ẋ1 = sin(3x1 + 2)
is represented as

*

cos

*

2.1 x0

+

x1 2

sin

+

*

3 x1

2

enumerated as the sequences: [∗, cos, ∗, 2.1, x0,+, x1, 2] and [sin,+, ∗, 3, x1, 2], and finally tok-
enized as [*, cos, *, 21, 10ˆ, -, 1, x0, +, x1, 2, SEP, sin, +, *, 3, x1, 2] (using SEP as a separator).

Evaluation. Trained models are evaluated on sets of stable systems. Since systems have an infinite
number of Lyapunov functions, we cannot check the model predictions by comparing them to the
solutions from the test set, and need to use an external verifier. For polynomial systems, we verify that
there exists a small positive polynomial P such that−∇V · f and V −P are sum of squares (SOS) of
polynomials (with P = 0 for barrier functions), using a Python solver based on SumOfSquares [43].
For non-polynomial systems, we also use a verifier based on shgo that checks (3) numerically. To
further ensure correctness we also verify the symbolic solutions using Satisfiability Modulo Theories
(SMT) solvers, relying on dReal [13] for verification through interval analysis. This guarantees that
equations (3) hold, at least in a chosen ball around the origin. The performances of the two verifiers
(numerical solver and SMT) are similar, a comparison is provided in Table 1. Both the SOS and SMT
verifiers sometimes fail to return an answer. In that case, we classify the solution as wrong, even
though it might have been correct. As a result, model accuracies may be underestimated.

Model predictions use beam search with early stopping, normalizing log-likelihood scores by their
sequence length. We report results with beam size 1 (greedy decoding) and beam size 50. With beam
size 50, we consider the model to be correct if one Lyapunov function is found among the 50 guesses.

4 Data generation

Our models are trained and tested on large datasets of pairs of stable systems and associated Lyapunov
functions. Sampling such stable systems raises two difficulties. First, most dynamical systems are
unstable, and no general method exists for deciding whether a system is stable. Second, once a stable
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system is sampled, there is no general technique for finding a Lyapunov function, except in particular
cases. In this paper, we rely on Backward generation [22], sampling solutions and generating
associated problems, for the general case, and forward generation, sampling systems and calculating
their solutions with a solver, for the tractable polynomial systems of small degree.

4.1 Backward generation

Backward generation methods, sampling problems from their solutions, are only useful if the model
can be prevented from learning to reverse the generation procedure, or from “reading” the solutions
in the generated problems. For instance, when training a model to solve the hard problem of finding
the roots of an integer polynomial [9], one can easily generate a polynomial from its roots, i.e. from
the roots 3, 5 and 7, generate the polynomial:

P (X) = 2(X2 + 1)(X − 3)(X − 5)(X − 7).

However, if the model is trained from factorized form of P (X), it will learn to read the roots in the
problem, instead of computing them. On the other hand, the developed and simplified form

P (X) = 2X5 − 30X4 + 144X3 − 240X2 + 142X − 210

offers no clues. A second difficulty of backward generation is that sampling solutions instead of
problems biases the training distribution. A model trained on backward-generated data may not
perform well on a forward-generated test set. Finally, prior work [42] observed that, for hard
problems, backward generation methods sometimes focus on easier sub-problems (see, for instance,
our comment below about choosing f = −∇V in step 2).

We propose a procedure for generating a stable system S from a random Lyapunov function V . The
rationale is the following. Since V must be positive with a strict minimum in 0, and tend to infinity at
infinity ((3)), we first generate V = Vproper + Vcross where Vproper belongs to a class of functions with
a guaranteed strict minimum in zero and Vcross to a larger class of non-negative functions, valued 0 at
the origin, but with no guarantee of a strict minimum (step 1 and Appendix B). From V , we need
to generate f so that the third condition of (3) is met. A naive solution would be f = −∇V since
f · ∇V ≤ 0 would hold. But this would severely limit the systems we create, and turn the Lyapunov
function discovery problem (find V from f ) into an easier integration problem (find V from −∇V ).
Instead, starting from f0 = −∇V , we apply the following transformations:

• multiply each coordinate of f0 by random non-negative functions h2
i (step 4) and call it f̃0.

• generate a random function ϕ =
∑p

i=1 gi(x)e
i(x) (steps 2 and 3), where ei are orthogonal

to∇V (x), and set f = φ+ f̃0. We have ϕ · ∇V = 0 and (ϕ+ f̃0) · ∇V ≤ 0.

These transformations guarantee that all conditions in (3) are met. On the other hand, they allow f to
span a very large set of systems, since any f satisfying∇V (x) · f(x) ≤ 0 can be written as the sum
of a function collinear to∇V (x) and a function orthogonal to ∇V (x).

Specifically, the procedure can be summarized as follows (see Appendix B for more details).

Step 1 Generate a random function V , satisfying V (x) > V (0), ∀x ∈ Rn \ {0}, and
V (x)→ +∞ when ∥x∥ → +∞.
Step 2 Compute the gradient ∇V (x) and denote Hx = {z ∈ Rn | z · ∇V (x) = 0} the
hyperplane2 orthogonal to∇V (x), for any x ∈ Rn.
Step 3 Select 1 ≤ p ≤ n at random and sample p vectors {ei(x)}i∈{1,...,p} from hyperplane
Hx. Generate p real-valued functions (gi)i∈{1,...,p}.
Step 4 Select 1 < k1 ≤ n at random, generate k1 random real-valued functions
(hi)i∈{1,...,k1}, set hi = 0 for k1 + 1 ≤ i ≤ n.
Step 5 Build the n functions

f(x) = −(h2
π(i)(x)(∇V )i(x))i∈{1,...,n} +

p∑
i=1

gi(x)e
i(x),

with π a random permutation of {1, ..., n}.
Step 6 Simplify the functions fi, obscuring patterns from the generative process.

2if ∇V (x) = 0 this is the whole space instead, but this does not change the method.
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SMT Solver SOS Solver
Timeout 10 minutes 60 minutes 10 minutes 60 minutes

Correct Lyap function 82.6 94.1 89.6 95.3
Solver Timeouts 17.4 5.9 10.4 4.7
Incorrect Lyap function 0 0 0 0

Table 1: SMT and SOS timeout and error rates, benchmarked on correct Lyapunov functions.

This method produces a stable system S : ẋ = f(x), with V as its Lyapunov function. The difficulty
of inferring V from S hinges on a careful choice of the vectors ei. For instance, if we naively
select ei as an orthonormal basis ofHx, computed from∇V (x) by Gram-Schmidt orthogonalization,
prefactors like 1/∥∇V (x)∥ appear at step 3, and are unlikely to simplify away at step 6. This provides
the model with a shortcut: reading ∥∇V (x)∥ in S, and using it to recover ∇V and then V , not a
trivial task, but an easier one than discovering Lyapunov functions. To counter this, we relax the
orthonormality condition on ei(x), so that 1/∥∇V (x)∥ never appears, yet keep the ei(x) simple
enough for∇V -specific patterns in

∑
i gi(x)e

i(x) to simplify away at step 6. We also want to ensure
that the ei span all ofHx, or the systems generated will not be diverse enough.

In our experiments, we slightly modify this procedure, by running steps 2 to 6 five times for each
Lyapunov function V created at step 1. As a result, 5 systems are generated that share the same
Lyapunov function (a discussion of this choice can be found in Appendix C.1). From a mathematical
point of view, a Lyapunov function describes a hidden quantity in a system, and we believe that
providing the model with several systems that share this hidden quantity should help it learn the parts
of the system that contribute to this hidden quantity, and therefore learn a Lyapunov function.

This procedure can be tuned to generate specific classes of systems. By choosing V , gi and hi

in particular classes, we can constrain the system functions fi to be polynomials, polynomials of
functions (e.g. trigonometric polynomials), or more general functions (see Appendix B.4 for more).

The Lyapunov functions obtained here are correct by design. Nevertheless, we still performed an
evaluation of the solutions both as a safeguard and to benchmark the failure and timeout rates of the
SMT and SOS solvers on correct solutions, which we report in Table 1.

4.2 Forward generation

Whereas the stability problem is unsolved in the general case, methods exist to calculate Lyapunov
functions of polynomial systems, when they exist and can be written as a sum of squares of polynomi-
als (see Section 1). These algorithms, of polynomial complexity, are very efficient for small systems,
but their CPU and memory requirements explode as the size of the systems grows. We leverage them
to generate forward datasets, as follows.

Step 1 Generate a polynomial system at random
Step 2 Use a routine to find a polynomial sum-of-squares (SOS) Lyapunov function.
Step 3 Keep the system if such function exists, restart from step 1 otherwise.

This approach has several limitations. First, since most polynomial systems are not stable, and the
computation of SOS Lyapunov function involves a complicated search [33], it is slow and limited to
small systems of polynomials with small degree. Second, because not all stable polynomial systems
have polynomial SOS Lyapunov functions [1], it can only generate a subset of stable polynomial
systems.

Finally, SOS routines process the constraints in Equation (3) by solving semi-definite programming
(SDP) problems. This guarantees that V is a sum-of-squares, hence we have V (x) ≥ 0, but not
necessarily V (x) > 0, for x ̸= 0. As a result, these methods can only discover barrier functions.
State-of-the-art methods circumvent this by introducing the stronger constraint V (x) ≥

∑n
i=1 εix

2
i ,

with εi small [32]. V then has a unique minimum in x = 0, which makes it a Lyapunov function, but
this further restricts the class of polynomial systems that the method can solve.

4.3 Datasets

We generate 2 backward and 2 forward datasets for training and evaluation purpose, and one smaller
forward dataset for evaluation purposes (see Table 8 in Appendix B.6 for a list).
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Backward datasets Our main backward set, BPoly, features 1 million non-degenerate polynomial
systems S with integer coefficients, and 2 to 5 equations (in equal proportions). We also create
BNonPoly, a dataset of 1 million non-degenerate non-polynomial systems with 2 to 5 equations. In
this dataset, the coordinates of f are polynomials of general functions, e.g. trigonometric polynomials,
or functions such as 3 cos(x1) + 2x1e

x2 . For such general systems, no method for discovering a
Lyapunov function is known.

Forward datasets All 2 forward datasets are generated using a solver derived from the SumOf-
Squares package in Python, and implementing techniques similar to those used in SOSTOOLS (see
Appendix B.5). All systems in these datasets are non-zero integer polynomials with 2 to 3 equations,
and integer polynomial Lyapunov functions – the only systems these methods can solve. We create
FLyap, a dataset of 100,000 systems having a non-homogeneous polynomial as a Lyapunov function.
We also have a dataset focusing on barrier functions (see the end of section 4.2): FBarr features
300,000 systems having a non-homogeneous polynomial as a barrier function. The small size of
these datasets is due to the computational cost of SOS methods, and the difficulty of discovering
Lyapunov or barrier functions.

To allow for comparison with SOSTOOL, the state-of-the-art method for discovering Lyapunov
functions of polynomial systems, we also generated a test set of 1,500 polynomial systems with
integer coefficients that SOSTOOLS can solve (FSOSTOOLS).

5 Results

Our models trained on different datasets achieve near perfect accuracy on held-out test sets, and very
high performances on out-of-distribution test sets, especially when enriching the training set with
a small number of forward examples. They greatly outperform state-of-the-art techniques and also
allow to discover Lyapunov functions for new systems. These results are detailed below.

5.1 In and out-of-distribution accuracy

In this section, we present the performance of models trained on the 4 datasets. All models achieve
high in-domain accuracy – when tested on held-out test sets from the datasets they were trained on
(Table 2). On the forward datasets, barrier functions are predicted with more than 90% accuracy, and
Lyapunov functions with more than 80%. On backward datasets, models trained on BPoly achieve
close to 100% accuracy. We note that beam search, i.e. allowing several guesses at the solution,
brings a significant increase in performance (7 to 10% with beam size 50, for the low-performing
models). We use beam size 50 in all further experiments.

Accuracy Accuracy
Backward datasets bs=1 bs=50 Forward datasets bs=1 bs=50

BPoly (polynomial) 99 100 FBarr (barrier) 93 98
BNonPoly (non-poly) 77 87 FLyap (Lyapunov) 81 88

Table 2: In-domain accuracy of models. Beam size (bs) 1 and 50.

The litmus test for models trained on generated data is their ability to generalize out-of-distribution
(OOD). Table 3 presents evaluations of backward models on forward-generated sets (and the other
way around). All backward models achieve high accuracy (73 to 75%) when tested on forward-
generated random polynomial systems with a sum-of-squares Lyapunov functions (FLyap). The best
performances are achieved by non-polynomial systems (BNonPoly), the most diverse training set.
The lower accuracy of backward models on forward-generated sets of systems with barrier functions
(FBarr) may be due to the fact that many barrier functions are not necessarily Lyapunov functions.
On those test sets, backward models must cope with a different distribution and a (slightly) different
task. Forward models, on the other hand, achieve low performance on backward test sets. This is
possibly due to the small size of these training set.

Overall, these results seem to confirm that backward-trained models are not learning to invert their
generative procedure. If it were the case, their performance on the forward test sets would be close to
zero. They also display good OOD accuracy.
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Backward datasets FLyap FBarr Forward datasets BPoly

BPoly (polynomial) 73 35 FBarr (barrier) 15
BNonPoly (non-poly) 75 24 FLyap (Lyapunov) 10

Table 3: Out-of-domain accuracy of models. Beam size 50. Columns are the test sets.

5.2 Enriching training distributions for improved performance

To improve the OOD performance of backward models, we add to their training set a tiny number of
forward-generated examples, as in [16]. Interestingly, this brings a significant increase in performance
(Table 4). Adding 300 examples from FBarr to BPoly brings accuracy on FBarr from 35 to 89% (even
though the proportion of forward examples in the training set is only 0.03%) and increases OOD
accuracy on FLyap by more than 10 points. Adding examples from FLyap brings less improvement.

These results indicate that the OOD performance of models trained on backward-generated data can
be greatly improved by adding to the training set a small number of examples (tens or hundreds) that
we know how to solve. Here, the additional examples solve a weaker but related problem: discovering
barrier functions. The small number of examples needed to boost performance makes this technique
especially cost-effective.

Forward Examples added
datasets (1M in training set) FLyap FBarr

No mixture 0 73 35

FBarr 30 75 61
300 83 89

3,000 85 93
30,000 89 95

FLyap 10 75 25
100 82 29

1,000 83 37
10,000 86 38

Table 4: Mixing backward data (BPoly) with a small number of forward examples. Beam size 50.

5.3 Comparing with state-of-the-art baselines

To provide a baseline for our models, we developed findlyap, a Python counterpart to the MATLAB
Lyapunov function finder from SOSTOOLS (see Appendix B.5). We also introduce FSOSTOOLS, a
test set of 1,500 polynomial systems with integer coefficients that SOSTOOLS can solve. We also
tested AI-based tools (see Appendix E for the full list of parameters sweeps we used for each of
these methods), such as Fossil 2 [12], ANLC v2 [15] and LyzNet [25]. These methods achieve low
accuracies on our test sets. This might be due to the fact that these tools are designed to solve a
different problem: discovering local or semi-global Lyapunov function (and potentially finding a
control function), while we target global Lyapunov functions.

SOSTOOL Existing AI methods Models
Test sets findlyap Fossil 2 ANLC LyzNet PolyMixture FBarr FLyap BPoly

FSOSTOOLS - 32 30 46 84 80 53 54
FBarr - 12 18 28 89 - 28 35
FLyap - 42 32 66 83 93 - 73
BPoly 15 10 6 24 99 15 10 -

Table 5: Performance comparison on different test sets. Beam size 50. PolyMixture is BPoly + 300 FBarr.

Table 5 compares findlyap and AI-based tools to our models on all available test sets. A model
trained on BPoly complemented with 500 systems from FBarr (PolyMixture) achieves 84% on FSOS-
TOOLS, confirming the high OOD accuracy of mixture models. On all generated test sets, PolyMix-
ture achieves accuracies over 84% whereas findlyap achieves 15% on the backward generated test
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set. This demonstrates that, on polynomial systems, transformers trained from backward-generated
data achieve very strong results compared to the previous state of the art.

On average Transformer-based models are also much faster than SOS methods. When trying to
solve a random polynomial system with 2 to 5 equations (as used in Section 5.4), findlyap takes an
average of 935.2s (with a timeout of 2400s). For our models, inference and verification of one system
takes 2.6s on average with greedy decoding, and 13.9s with beam size 50.

5.4 Into the wild - discovering new mathematics

Our ultimate goal is to discover new Lyapunov functions. To test our models’ ability to do so, we
generate three datasets of random systems: polynomials systems with 2 or 3 equations (Poly3),
polynomial systems with 2 to 5 equations (Poly5), and non-polynomial systems with 2 or 3 equations
(NonPoly). For each dataset, we generate 100,000 random systems and eliminate those that are
trivially locally exponentially unstable in x∗ = 0, because the Jacobian of the system has an
eigenvalue with strictly positive real part [20]. We compare findlyap and AI based methods with
two models trained on polynomial systems, FBarr, and PolyM(ixture) – a mixture of BPoly and 300
examples from FBarr– and one model trained on a mixture of BPoly, BNonPoly and 300 examples
from FBarr (NonPolyM).

Table 6 presents the percentage of correct solutions found by our models. On the polynomial datasets,
our best model (PolyM) discover Lyapunov functions for 11.8 and 10.1% of the (degree 3 and degree
5) systems, ten times more than findlyap. For non-polynomial systems, Lyapunov functions are
found for 12.7% of examples. These results demonstrate that language model trained from generated
datasets of systems and Lyapunov function can indeed discover yet unknown Lyapunov functions
and perform at a much higher level that state-of-the-art SOS solvers.

Sample SOSTOOL Existing AI methods Forward Backward models
Test set size findlyap Fossil 2 ANLC LyzNet FBarr PolyM NonPolyM

Poly3 65,215 1.1 0.9 0.6 4.3 11.7 11.8 11.2
Poly5 60,412 0.7 0.3 0.2 2.1 8.0 10.1 9.9
NonPoly 19,746 - 1.0 0.6 3.5 - - 12.7

Table 6: Discovering Lyapunov comparison for random systems. Beam size 50. PolyM is BPoly + 300
FBarr. NonPolyM is BNonPoly + BPoly + 300 FBarr.

5.5 Expert iteration

Given the performance on our model in Table 6, we can use the newly solved problems to further
fine-tune the model. Specifically, we create a sample of verified model predictions for polynomial
systems, FIntoTheWild, we add it to the original training sample and we continue training the model.

We test different strategy to finetune the model and we report performance on forward benchmarks
and “into the wild” in Table 7.

n1: Add 20,600 samples from BPoly (20,000), FBarr (50), FLyap (50) and FIntoTheWild (500)
to keep similar proportion used during pretraining

n2: Add 2,000 samples from FLyap (1,000) and FIntoTheWild (1,000) to improve on both
forward benchmark and in the wild

n3: Add 50 samples from FIntoTheWild to show that this indeed helps
n4: Add 1,000 samples from FIntoTheWild
n5: Add 2,000 samples from FIntoTheWild
n6: Add 5,000 samples from FIntoTheWild to see if there are benefits to add more samples

We also retrain a model (n7) from scratch using a mixture of BPoly (1M), FBarr (500), FLyap (500)
and FIntoTheWild (2,000).

We notice that the addition of 1,000 verified predictions to our training set of 1 million improves
performance on the “into to wild” test sets by about 15%, while not affecting the other test sets (n4).
Adding more examples seems to be detrimental, as it decreases the performance on other benchmarks
(n5 and n6). We also notice that finetuning with mixed data from other distributions is not efficient
(n1 and n2) and a small contribution already help to get some improvements (result n3). Finally, it’s
not efficient to pretrain the model from scratch using data from FIntoTheWild (n7).
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Forward benchmark Regenerated IntoTheWild
Strategy FBarr FLyap Poly3 Poly5

Baseline 93 84 11.7 9.6

n1 94 84 10.3 9.6
n2 90 85 12.2 11.3
n3 92 84 12.4 10.1
n4 92 84 13.5 11.9
n5 89 79 13.5 11.9
n6 85 72 13.5 11.9
n7 93 81 12.1 10.0

Table 7: Expert iteration using IntoTheWild correct guesses. The Poly3 and Poly5 test sets are regenerated,
to prevent data contamination.

6 Discussion

We have shown that models can be trained from generated datasets to solve a long-standing open
problem in mathematics: discovering the Lyapunov functions of stable dynamical systems. For
random polynomial systems, our best models can discover Lyapunov functions in five times more
cases than state-of-the-art methods. They can also discover Lyapunov functions of non-polynomial
systems, for which no algorithm is yet known, and were able to re-discover a non-polynomial
Lyapunov function of a polynomial systems discovered by [1] (Appendix F).

The backward generation method introduced in section 4.1 is the key innovation in this paper. The
main problem with such approaches is their tendency to generate training sets with very specific
distributions, which prevent models from generalizing to general instances of the problem. Our models
can generalize out of their training distributions (Table 3), and we can improve their performance by
adding to their training set a tiny number of systems that we know how to solve (Table 5).

While our models exceed the algorithmic state of the art, one might wonder how they compare to
human mathematicians. To this effect, we proposed 75 problems from the FSOSTOOLS dataset
(polynomial systems with 2 or 3 equations) as an examination for 25 first year Masters students in
mathematics, following a course on the subject. Each student was given 3 systems chosen at random
and had a total of 30 min. Their performance was 9.33%, significantly lower than our models (84%).

Our work has a number of limitations. Because there is no known way to tell whether a random system
is stable, we lack a good benchmark on non-polynomial systems. Also, all the systems studied in this
paper are relatively small, at most 5 equations for polynomial systems and 3 for non-polynomial. We
believe that scaling to larger models should help tackle larger, and more complex, systems. Finally,
this work could be extended to take into account the domain of definition of non-polynomial systems.

The broader implications of our work extend into two directions: the capability of transformers to
reason, and the potential role of AI in scientific discovery. While large language models perform at
human level on a broad set of tasks, they are still embarrassingly clumsy on many simple problems
of logic and reasoning, to the point that it was suggested that planning and high level reasoning
may be an inherent limitation of auto-regressive transformer architectures. Our results suggest that
transformers can indeed be trained to discover solutions to a hard problem of symbolic mathematics
that humans solve through reasoning, and that this is enabled by a careful selection of training
examples, instead of a change of architecture. We do not claim that the Transformer is reasoning but
it may instead solve the problem by a kind of “super-intuition” that stems from a deep understanding
of a mathematical problem.

From a mathematical point of view, we propose a new, AI-based, procedure for finding Lyapunov
functions, for a broader class of systems than were previously solvable using current mathematical
theories. While this systematic procedure remains a black box, and the “thought process” of the
transformer cannot be elucidated, the solutions are explicit and their mathematical correctness can be
verified. This suggests that generative models can already be used to solve research-level problems
in mathematics, by providing mathematicians with guesses of possible solutions. While a small
minority of mathematicians is currently using deep-learning tools, we believe generative models have
the potential to foster tremendous progress on a number of research subjects, and may eventually
become a central component in the future landscape of mathematical practice.
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Appendix

A Mathematical definitions

In this Appendix, we recall several mathematical definitions and theorems related to the Lyapunov
function problem. We first introduce the notion of global asymptotic stability (GAS).

Definition A.1. We say that the (equilibrium x∗ = 0 of the) system (1) is globally asymptotically
stable if it is stable and for any x0 ∈ Rn there exists a unique solution x ∈ C1([0,+∞);Rn) to (1)
which satisfies in addition

lim
t→+∞

x(t) = 0. (4)

This notion translates the fact that the equilibrium x∗ = 0 is robust even to large perturbations. This
notion is related to the existence of a Lyapunov function thanks, for instance, to LaSalle Invariance
Principle:

Theorem A.2 (LaSalle Invariance Principle (global)). Assume there exists a Lyapunov function for
the system (1) and let S be the largest subset of {∇V (x) ·f(x) = 0} that is invariant by the dynamics
of (1). If S = {0}, then the system (1) is globally asymptotically stable.

Note that if∇V (x) · f(x) < 0 for any x ̸= 0 then necessarily S = {0}. Because finding a (global)
Lyapunov function is a challenging mathematical problem, and still an open problem in general,
weaker notions exists.

Definition A.3. The function V ∈ C1(Rn,R+) is said to be a semi-global Lyapunov function for the
system (1) if there exists r > 0 such that the following condition are satisfied

V (0) = 0, V (x) > 0,

∇V (x) · f(x) ≤ 0 for ∥x∥ ≤ r.
(5)

Finding a semi-global Lyapunov function is usually easier than finding a global Lyapunov function.
A semi-global Lyapunov function is enough to show that the equilibrium x∗ = 0 is robust to small
perturbations which, for several engineering applications, is enough. More specifically,

Definition A.4. We say that the (equilibrium x∗ = 0 of the) system (1) is locally asymptotically
stable if it is stable and if there exists r > 0 such that for any ∥x0∥ ≤ r there exists a unique solution
x ∈ C1([0,+∞);Rn) to (1) which satisfies in addition

lim
t→+∞

x(t) = 0. (6)

Similarly to global Lyapunov function, the existence of a semi-global Lyapunov function is useful to
ensure local asymptotic stability

Theorem A.5 (LaSalle Invariance Principle (local)). Assume there exists a semi-global Lyapunov
function V , and let S be the largest subset of {∇V (x) · f(x) = 0} invariant by the dynamics of (1).
If S = {0} then the system (1) is locally asymptotically stable.

B Generation procedure

B.1 Function generation

To generate random functions we sample random trees with unary and binary internal nodes, and
then randomly select operators for these nodes, and variables and integers for leaves (as in [22,
8]). Our binary operators are the four operations and the power function. Unary operators are
exp, log, sqrt, sin, cos, tan.

To generate polynomials, we randomly sample a given number of monomials, with integer or real
coefficients. The number of monomials, range of the coefficients, and the powers and number of
terms of each monomial, are randomly selected between bounds, provided as hyperparameters.
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B.2 Backward generation

We build globally stable systems by first generating a Lyapunov function V at random, and then
building a dynamic system which has V as a Lyapunov function. The procedure is:

Step 1a: We generate V as V = Vcross + Vproper where Vproper belongs to a given class of positive defi-
nite function and Vcross belongs to a larger class, but of non-negative functions only with Vcross(0) = 0.
More specifically, we generate

Vcross(x) =

m∑
i=1

p2i (x), (7)

with m a random integer, and pi random functions verifying pi(0) = 0. The nature of functions
pi depends on the systems we want to generate (polynomial or not). Clearly Vcross(x) ≥ 0 and
Vcross(0) = 0. We similarly generate

Vproper(x) =

n∑
i=1

αi,jx
βi

i x
βj

j , (8)

with n a random integer, βi random positive integers and A = (αi,j)(i,j)∈{1,...,n}2 a random positive
definite matrix, with a given probability of being diagonal. As a consequence, Vproper is strictly
minimal in x = 0. When generating barrier functions, we can optionally set Vproper = 0.

Step 1b: In this step, we increase the class of functions that can be sampled for Vcross and Vproper by
several transformations:

1. Composition of Vproper with probability p1,c, replace

Vproper(x)← I(Vproper(x)) (9)

with I selected at random from a pre-defined set of increasing-functions (Appendix B.4),
2. Product Vproper with probability p1,m, replace

Vproper(x)← (Vproper(x)− Vproper(0))g(h(x)), (10)

with g selected at random from a pre-defined set of positive-functions (Appendix B.4),

h a sub-expression of Vproper, i.e. h(x) =
q∑

i=1

ασ(i),σ(j)x
βσ(i)

σ(i) x
βσ(j)

σ(j) , for q ≤ n and σ a

permutation of {1, . . . , n}.
3. Composition of Vcross: for every i ∈ {1, ...,m}, with probability p2, replace

p2i (x)← bi(ξi + pi(x)), (11)

with bi a real function that is bounded from below with a minimum (not necessarily unique)
in ξi and chosen at random from a pre-defined set of bounded-functions (Appendix B.4).
Recall that pi are the functions appearing in Vcross.

Step 1c: Gathering the functions Vproper and Vcross together, we define the Lyapunov function
(candidate) V (x) = Vcross(x) + Vproper(x). Overall, we have

V (x) =

[
I

(
n∑

i=1

αi,jx
βi

i x
βj

j

)
− I(0)

]
g

(
q∑

i=1

ασ(i),σ(j)x
βσ(i)

σ(i) x
βσ(j)

σ(j)

)
+

m∑
i=1

bk(ξk + pk(x)),

where I is the identity with probability 1−p1,c, g is the constant function 1 with probability 1−p1,m
and bk(x) = x2 with probability 1− p2. Such a Lyapunov function satisfies

V (x) > V (0), ∀x ∈ Rn \ {0}. (12)

Indeed,

V (0) =

m∑
i=1

bk(ξk)

and V (x) > bk(ξk) for any x ∈ Rn \ {0}, since g is a positive function, I is increasing and
(αi,j)i,j∈{1,...,n} is positive definite.
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Step 2: In this step we create the random vectors orthogonal to ∇V that will be useful in the
generation of the system f (see Section 4.1). Taking advantage of the form of the condition (3), for
any x ∈ R, denote

Hx = {z ∈ Rn | z · ∇V (x) = 0}
the hyperplane orthogonal to ∇V (x). Then, for a random p ∈ {1, ..., n}, generate p random
real-valued functions (gi)i∈{1,...,p}, and p vectors {ei}i∈{1,...,p} from this hyperplane as follows:

eij =


Aτ2(i) if j = τ1(i)

−Aτ1(i) if j = τ2(i)

0 otherwise,
(13)

where A = ∇V (x) and Aj refers to the j − th component of the vector and τ1 and τ2 random
functions from N\{0} into {1, ..., n}, such that τ1(i) ̸= τ2(i). This implies that for any i ∈ {1, ..., n}

∇V (x) · ei = (∇V (x))τ1(i)(∇V (x))τ2(i) − (∇V (x))τ2(i)(∇V (x))τ1(i) = 0. (14)

Note that, so long ∇V (x) ̸= 0, one can use this process to construct a generative family ofHx, and
the ei span the wholeHx. If ∇V (x) = 0 thenHx = Rn.

Step 3: Generate at random k1 real-valued functions (hi)i∈{1,...,k1}, where 1 ≤ k1 ≤ n is chosen at
random. Set hi = 0 for k1 < i ≤ n.

Step 4: Build the system

f(x) = −
(
h2
π(i)(x)(∇V (x))i

)
i∈{1,...,n} +

p∑
i=1

gi(x)e
i(x), (15)

with π a random permutation of {1, ..., n}.

Overall, the function f satisfies

∇V (x) · f(x) = −

(
n∑

i=1

h2
π(i)(x)(∇V (x))2i

)
≤ 0, (16)

hence V is a Lyapunov function of the system ẋ(t) = f(x(t)).

Step 5: Expand and simplify the equations of f (using Sympy), in order to eliminate obvious patterns
due to the generation steps (that the model could recognize and leverage), eliminate duplicated
systems in the training set, and limit the length of training sequences. All polynomial systems are
expanded into normal form.

B.3 Backward generation modes

Polynomial generation: we generate polynomial systems with sum-of-square Lyapunov functions to
allow for easy comparison with existing methods such as SOSTOOLS [32, 33]. In this case, all Pi

are polynomials with no zero-order term and p1,c = p1,m = p2 = 0. Also, fi and gi are polynomials
(Appendix B.1). We generate fi with a degree lower or equal to half the maximal degree of gi and
a maximal value of coefficients of the order of the square root of the maximal value of gi. Since
the fi are squared in the final system, this allows f2

i and gi to have the same order, and prevents
the transformer from inferring unwanted additional information by looking at the higher degree
monomial.

Generic generation: Pi is generated as Pi(x) = Qi(x)−Qi(0), where Qi(x) is a random function
generated as per Appendix B.1 and fi and gi are also generated as per Appendix B.1. Optionally the
functions can be generated as polynomials of non-polynomial operators taken from a pre-defined set
of operators.

Other generation modes: we have other generation modes corresponding to interesting particular
cases: gradient flow systems, systems where the 2-norm (resp. a weighted 2-norm) is a Lyapunov
function, etc.
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B.4 Generation design parameters

Our generator allows us to generate generic stable systems and yet to have a large control on the
distribution. For polynomials, for instance, we have a control on the maximal and average degree,
number of monomials, power and number of variables of the monomials, coefficients, etc. We can
also specify whether the coefficients are integers, floats, with which precision. Overall we have a
total of 36 generation hyper-parameters that influence the distribution of the synthetic data created.
The main generation design parameters are:

• int_base: encoding base for integers
• max_int: Maximum integer value
• precision: Float numbers precision
• prob_int: Probability of sampling integers vs variables (for non-polynomial expressions)
• min_dim: minimal number of equations in the system
• max_dim: maximal number of equations
• max_degree: maximal degree of polynomial terms in a Lyapunov function
• n_terms: maximal number of terms in polynomials for the Lyapunov function
• nb_ops_proper: maximal number of operators in Vproper (non polynomial generation)
• nb_ops_lyap: maximal number of operators in Vproper (non polynomial generation)
• operators_lyap: list of operators to be considered (non polynomial generation)
• polynomial_V: if true generated expressions are polynomials of (potentially non-polynomial)

operators
• pure_polynomial: generate polynomial systems only
• cross_term: Vcross = 0 if False.
• max_nb_cross_term: bound on m in Vcross

• proba_diagonal: with this probability, the positive definite form of Vproper is imposed to be
diagonal

• only_2_norm: if True, the Lyapunov function is the 2-norm.
• strict: if True, generates a strict Lyapunov function (i.e. ∇V · f < 0)
• proper: if set to false, Vproper = 0 and V is only a barrier function.
• float_resolution_poly: float resolution of the polynomials generated by gener-

ate_bounded_polynomial.
• generate_gradient_flow: When set to True, the backward generation only generates gradient

flows systems.
• gen_weight: exponential weight which bias the sampling of k1 and p, the number of

components of non-zero hi and gi.
• max_order_pure_poly: maximal polynomial order of hi

• max_n_term_fwd: maximal number of terms in each equations in the fwd generation
• SOS_checker: if True, uses a SOS verifier to evaluate the candidate Lyapunov function (if

False uses the verifier based on shgo)
• SMT_checker: if True, uses an SMT verifier to evaluate the candidate Lyapunov function (if

False uses the verifier based on shgo)
• multigen: number of different system generated per Lyapunov function.
• increasing_func: the set of increasing functions used in the generation (see Step 1b). Default

is {exp, ln(1 + x2),
√
1 + x}.

• positive_func: the set of positive functions used in the generation (see Step 1b). Default is
{exp, 1 + cos(x), 1 + sin(x)}.

• bounded_func: the set of bounded functions used in the generation (see Step 1b). Default is
{cos, sin}.

B.5 Forward SOS solver

SOSTOOLS is one of the most famous toolbox for sum-of-square optimization, in particular for
finding SOS Lyapunov functions [32, 33]. It is natively available in MATLAB and relies on an
underlying SDP solver that can be chosen. In Python an analogous toolbox is the package SumOf-
Squares [43] which relies on the same principle, however does not have specific functionalities for
Lyapunov functions. As a consequence we implemented these functionalities in our codebase based
on the MATLAB implementations in SOSTOOLS. We implemented a function SOS_checker, which
takes in input a system of equations in sympy and a candidate Lyapunov function and checks SOS
conditions on V (x) and −∇V (x) · f(x), and a function findlyap, analogous to the findlyap
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function in SOSTOOLS, which takes a system of equations in sympy and either returns a function
satisfying SOS conditions on V (x) and −∇V (x) · f(x), returns false if no such function exists, or
returns none if it fails to provide an answer. SumOfSquares relies itself on picos [36] and we use the
default solver cvxopt [3].

B.6 List of datasets

Dataset Description Size Resources
(000) (CPU.hours)

BPoly Backward polynomial systems, non-zero 1,000 210
BNonPoly Backward non-polynomial systems, non-zero 1,000 220

FBarr Forward, non-homogeneous polynomial barrier functions 300 9,670
FLyap Forward, homogeneous polynomial Lyapunov functions 100 4,620
FSOSTOOLS Forward, SOSTOOLS solved systems 1.5

Table 8: Datasets generated. Backward systems are degree 2 to 5, forward systems degree 2 to 3. All forward
systems are polynomial.

C Additional results

C.1 Impact of multigeneration

In the backward generation procedure, after sampling one random V , it is possible to generate any
number of different systems fi such that V is the Lyapunov function for each of the systems fi. We
call the maximal number of system generated per Lyapunov function the multigen parameter. The
actual number of systems generated per Lyapunov function is chosen at random for each Lyapunov
function between 1 and multigen. In Section 5 we reported results using multigen equal to 5. Here
we report the in-domain and out-of-domain performance of the models trained on backward BPoly
datasets of size 1 million varying the parameter multigen.

In-domain OOD
Multigen BPoly FLyap

1 95 58
5 100 73
10 100 75
25 100 76
50 100 70

100 100 68
Table 9: In-domain and out-of-domain accuracy of models. Beam size 50.

Table 9 shows that generating a moderate amount of different systems with the same Lyapunov
function actually improves the model capability to generalize out-of-domain. This suggests that
the model is learning, at least partially, to separate the parts of the system which contribute to the
Lyapunov function. Above a certain multigen threshold, model performances start to decline. This
may be due to the low diversity present in the dataset, i.e. the limited number of different Lyapunov
functions the model is trained on (the total number of systems in the training set remains constant so
the total number of Lyapunov function decreases with the value of the parameter multigen).

C.2 Performance of smaller transformer models

In Section 5 we report results using a transformer with 8 encoder and decoder layers, 10 attention
heads and an embedding dimension of 640. We also trained smaller models with 6 encoder and
decoder layers, 8 attention heads and an embedding dimension of 512. Tables 10, 11 report the main
results. Results are in line with what we showed in section 5
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In-domain OOD In-domain OOD
Backward datasets FLyap Forward datasets BPoly

BPoly (polynomial) 100 70 FBarr (barrier) 97 13
BNonPoly (non-poly) 85 71 FLyap (Lyapunov) 86 11

Table 10: In-domain and out-of-domain accuracy of models. Beam size 50.

Forward Mixing Into the wild
datasets proportion FBarr FLyap Poly3 Poly5

No mixture 0% 31 70 2.3 1.6

FBarr 0.01% 60 72 2.5 1.7
0.1% 93 72 9.2 6.4

FLyap 0.01% 29 73 2.8 1.6
0.1% 19 76 2.9 1.7

Table 11: Performance of mixing backward data (BPoly) with a small number of forward examples on
forward benchmark and “into the wild”. Beam size 50.

D Comparison of SOS, SMT and shgo

We compare our model performance when we employ them to discover new Lyapunov function.
We report performances with dReal SMT and SOS verifiers for Poly and dReal SMT and shgo for
NonPoly distributions, respectively. Table 12 shows that SMT results are slightly lower, because of
timeouts (which we report in Table 13, but comparable. Note that the performances on polynomial
systems were already theoretically guaranteed thanks to the former SOS verifier.

Model (by training distribution) FBarr BPolyMixture NonPolyMixture

Poly3 10.5/11.7 11.1/11.8 10.6/11.2
Poly5 6.5/8.0 8.7/10.1 8.4/9.9
NonPoly 8.3/12.7

Table 12: Results of SMT with SOS and shgo verifiers for Poly and NonPoly systems, respectively.

Test sets Into the wild
Timeout 10 minutes 120 minutes

Correct Lyap function 87.3 92.2
SMT Timeouts 10.8 5.8
Incorrect Lyap function 1.9 2.0

Table 13: SMT timeout and error rates. Most SMT failures are due to timeout.

E AI method sweep

To report the AI-based tools results on the seven benchmarks (BPoly, BNonPoly, FLyap, FBarr, Poly3,
Poly5, NonPoly) we did a hyperparameter sweep. To get the best hyperparameter setting, we sweep
on FLyap and then fix these hyperparameters for the different datasets. In bold we show the chosen
parameters, selected to maximize the correctness on FLyap, subject to the 20 minutes timeout.

Lyznet [25]

• lr = [3 · 10−5, 10−4, 3 · 10−4]
• points = [100,000, 300,000, 1,000,000]
• layer width = [(2,20), (3,6), (6,2)]
• epoch = [1, 5, 25]
• net type = [None, Poly]
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Fossil 2.0 [12]

• iters = [10, 50, 250]
• activations = [(x2), (x2,x2), (sigmoid), (sigmoid, sigmoid), (poly4), (poly4, poly4)]
• hidden neurons = [6, 10, 20]
• data = [500, 1000, 2000]
• lr = [0.01, 0.03, 0.1]

ANLC v2 [15]

• iters = [10, 50, 250]
• activations = [(x2, x, x), (x2, x2, x), (x2, x2, x, x), (x2, x2, x2, x)]
• hidden neurons = [6, 10, 20]
• max data = [500, 1000, 2000]
• lr = [0.01, 0.03, 0.1]

F Some examples

To understand the model performance and compare against the SOSTOOL performance, we manually
inspect some systems with 2 or 3 equations where the following conditions hold: (1) the Jacobian of
the system has the maximum eigenvalue with real part equal to 0 (i.e. tools like the spectral mapping
theorem cannot decide on the stability), (2) no weighted 2-norm functions can be a Lyapunov function,
(3) findlyap times out after 4 hours. We show some examples below.

F.1 A polynomial system with non polynomial solution

System

{
ẋ0 = −x0 + x0x1

ẋ1 = −x1

It’s known that there is no polynomial Lyapunov function for this system [2]. Our poly models and
findlyap failed, as expected. Nonetheless, one of our non-poly models with beam search of beam
size 100 proposed V (x) = ln(1 + 5x2

0) + x2
1 similar to the one that was recently found in [2].

It’s clear that V (0) = 0 and V (x) > 0 for all x ̸= 0. Also

V (x) · f(x) = −10x
2
0 + 10x2

0x1 − 2x2
1(1 + 5x2

0)

1 + 5x2
0

=
−5x2

0 − 5x2
0x

2
1 − 5(x0 − x0x1)

2 − 2x2
1

1 + 5x2
0

≤ 0

(17)

as desired.

F.2 A system that has no diagonal Lyapunov function

System

{
ẋ0 = 2x2

1

ẋ1 = −10x1

Model inference: Our model recovers V (x) = 10x2
0 + 2x0x

2
1 + 3x4

1 + 6x2
1.

Clearly V (0) = 0 and V (x) = 9(x0)
2 + (x0 + x2

1)
2 + 2(x2

1)
2 + 6x2

1 > 0 for all x ̸= 0. Also
∇V (x) · f(x) = −x2

1(116x
2
1 + 120) ≤ 0.

Non existence of a Diagonal Lyapunov function: Suppose for the sake of contradiction that there
exists a function V1 which satisfies 3 and can be expressed as

V1(x) =

n∑
i=1

aix
i
0 +

m∑
j=1

bjx
j
1.
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Clearly V1(0) = 0. Given that V1(x0, 0) > 0 for x0 ̸= 0, it follows that n is even and an > 0. Also

we know that ∇V1(x) · f(x) = 2

n∑
i=1

iaix
i−1
0 x2

1 − 10

m∑
j=1

jbjx
j
1 ≤ 0 for all choices of (x0, x1). If

we let x1 = 1 we obtain∇V1(x) · f(x) = 2

n∑
i=1

iaix
i−1
0 − 10

m∑
j=1

jbj . This expression can be seen

as a polynomial g(x0) with real coefficients and odd degree n− 1. The leading coefficient, 2nan, is
positive because an > 0 and n ≥ 1. This means that lim

x0→+∞
g(x0) = +∞, meaning that there exists

an x0 such that g(x0) > 0. This contradicts 3.

F.3 A system with 3 equations and a higher degree

System


ẋ0 = −7x5

0 − 4x3
0x

2
1 − 5x3

0

ẋ1 = 7x4
0 − 3x1 − 2x2

ẋ2 = −8x2
0 − 9x2

Model inference: Our model recovers different solutions. Here we show two of them

V1(x) = 4x4
0 + 10x2

0x
2
1 + 2x2

0x1 + 10x2
0x

2
2 − 4x2

0x2 + 20x2
0 + 10x2

1x
2
2 + 4x2

1 − 2x1x2 + 8x4
2 + 4x2

2,

V2(x) = 2x4
0 + 2x2

0x
2
1 + 3x2

0 + 2x2
1 + x2

2.

We checked with SumOfSquares that V1 > 0, V2 > 0,∇V1 · f ≤ 0 and∇V2 · f ≤ 0.

F.4 Other examples

System Lyapunov function{
ẋ0 = −5x3

0 − 2x0x
2
1

ẋ1 = −9x4
0 + 3x3

0x1 − 4x3
1

V (x) = 6x6
0 + 7x4

0 + x3
0 + 10x2

0 + 8x2
1{

ẋ0 = −x5
0 − 4x3

0 − 9x0x
4
1 + 3x0x

3
1

ẋ1 = −3x4
0x

2
1 − 10x3

0x1 + 3x0x
2
1 − 7x3

1

V (x) = x4
0 + 9x2

0 + 3x2
1

ẋ0 = −3x3
0 + 3x0x2 − 9x0

ẋ1 = −x3
0 − 5x1 + 5x2

2

ẋ2 = −9x3
2

V (x) = x4
0 + 7x2

0x
2
2 + 3x2

0 + 4x0x
2
2 + 3x2

1 + 2x4
2 + 10x2

2


ẋ0 = −8x0x

2
1 − 10x4

1

ẋ1 = −8x3
1 + 3x2

1 − 8x1

ẋ2 = −x2

V (x) = 4x2
0 − 2x0x

2
1 + 6x4

1 + 4x2
1 + x2

2

Table 14: Some additional examples generated from our models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction summarize the results of section
"Main results".
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, in the discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: This paper is mostly experimental, the only theoretical results is the stability
of specific systems and we do verify the assumptions and state the theorem we use about
Lyapunov functions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we detail the experiments, the parameters and the data generator. The
code will eventually be provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code and datasets are currently pending approval from some of the authors’
institution for being open-sourced. They should be by the conference dates.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify the main training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We provide the number of elements in each sets, as well as the accuracies in
percentage. Having error bars is not adapted when dealing with the infinite dimensional
spaces of functions involved.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the type of compute workers, the type of GPU, the memory, and
the GPU and CPU time needed for training the models and generating the datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper is about training neural networks to find solutions to mathematical
problems. As such, it’s societal aspects (safety, security, discrimination, surveillance,
deception and harassment, environment, human rights, Bias and fairness) are either irrelevant
or respect the NeurIPS Code of Ethics. The only data coming from human sources are
answers to mathematics exercises from 25 students as part of one of their course. All
students were all offered the choice of allowing or not the use of these data for the purpose
of research, the answers of students who agreed were then anonymized and aggregated.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]
Justification: While there is no direct societal impact, there is an impact on the research in
mathematics and science in general and we mention it.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The models are small language models trained to solve a specific mathematical
question.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: With the exception of common Python’s packages for which we only give the
name, we cite the specific packages we are relying on, when relevant. No data or model
from another source is used.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released yet.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: The data coming from human sources are only an element of the discussion
and not the main point of the paper. The framework and instructions are given as well in the
discussion.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [Yes]
Justification: The only data coming from human sources are answers to mathematics
exercises from 25 students as part of one of their course. All students were all offered the
choice of allowing or not the use of these data for the purpose of research, the answers of
student who agreed were then anonymized and aggregated. This was done in coordination
with the administration of the mathematics department.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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