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ABSTRACT1

Most large language models (LLMs) for music generation2

rely on strong tokenization, discretizing audio into fixed,3

uniform units. While effective for producing stylistically4

coherent outputs, such models struggle with genres like5

IDM and Glitch, where irregularity is central to the aes-6

thetic. Inspired by tokenizer-free trends in NLP, we inves-7

tigate the potential of an alternative framework combining:8

(1) a Dynamic Chunking mechanism that segments audio9

based on content similarity rather than fixed grids, and (2)10

the L-Score, a learnable complexity metric spanning tim-11

bral, rhythmic, and structural dimensions.12

Preliminary results indicate that while the model cap-13

tures some spectral features, it fails to produce rhyth-14

mic control—instead, it generates chaotic rather than de-15

liberately irregular patterns. This limitation motivates16

future work on modeling controlled deviance in mu-17

sic generation—moving beyond statistical complexity to-18

ward learnable representations of aesthetic misdirection19

and expectation violation. (Our code is available at:20

https://anonymous.4open.science/r/112233)21

1. INTRODUCTION22

Technological innovation provides the tools for musical23

evolution, but cultural forces determine its creative tra-24

jectory. While technologies like synthesizers facilitated25

the rise of electronic music, their application is frequently26

a site of cultural negotiation. Intelligent Dance Music27

(IDM) serves as a prime example. Leveraging the same28

technologies as mainstream House and Techno, IDM con-29

sciously subverts the functional regularity of four-on-the-30

floor rhythms, instead embracing irregular time signatures,31

audio glitches, and non-linear forms. The genre’s name32

is not an assertion of superiority but an ironic critique of33

its commercial counterparts’ aesthetic predictability. Thus,34

IDM demonstrates how the cultural impulse of resisting35

homogeneity reappropriates technological means to ex-36

pand aesthetic possibilities.37

Today, large language models (LLMs) for music gener-38

ation present a similar technological moment, marked by39
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both creative potential and the risk of aesthetic flattening.40

These models demonstrate strong stylistic fluency, produc-41

ing music aligned with established genres. While this en-42

ables coherent composition at scale, it also promotes uni-43

formity, driven not only by training data but by how musi-44

cal structure is tokenized.45

Contemporary approaches across both symbolic and au-46

dio domains rely on discrete, uniform segmentation of mu-47

sical content. In the symbolic domain, event-based rep-48

resentations like REMI [1] and MuMIDI [2], subword to-49

kenization [3] techniques, and ABC notation adaptations50

such as MuPT [4] all impose regular structural assump-51

tions. Similarly, in the audio domain, neural codecs dis-52

cretize waveforms into acoustic tokens for autoregressive53

models. For instance, MusicGen [5] adopts EnCodec [6],54

while MusicLM [7] uses SoundStream for quantization.55

Even recent frameworks like CLAMP [8], which abstracts56

music into bar-level units, or JASCO [9], which aligns57

symbolic and acoustic tracks, maintain this fundamental58

dependence on grid-based organization.59

IDM’s aesthetic force emerges not from randomness,60

but from the intentional disruption of structural expecta-61

tions. The genre relies on irregular time signatures, asym-62

metric phrase structures, and non-linear temporal develop-63

ment that resist conventional grid-based organization. In-64

spired by this challenge, we ask whether the concept of65

dynamic chunking can be transferred to the audio domain,66

enabling LLMs to reason about music in a manner analo-67

gous to IDM artists—through a deliberately anti-linear ap-68

proach to structure. Our investigation focuses on two core69

components:70

1. A Dynamic Audio Chunking Framework for71

Weak Tokenization: Inspired by tokenizer-free72

NLP models [10, 11], we investigate a genera-73

tive architecture where segmentation is learned di-74

rectly from audio features, enabling musically-75

aware, content-driven units rather than fixed tempo-76

ral grids.77

2. A Learnable Objective for Cognitive Complex-78

ity: We introduce the L-Score, a multi-dimensional79

complexity metric that spans timbral, rhythmic, and80

structural axes. By encouraging the model to match81

target distributions of L-Score, we aim to replace82

conventional notions of "pleasantness" with a learn-83

able proxy for listener challenge and aesthetic ten-84

sion.85



2. METHOD86

Our architecture combines a U-Net-inspired en-87

coder–decoder with a Dynamic Audio Chunking module88

and a Transformer encoder, forming a hierarchical89

local-to-global modeling pipeline well-suited to IDM.90

2.1 U-Net for Local Feature Extraction.91

We adopt a 3-layer U-Net-style convolutional backbone to92

extract time-frequency features from input spectrograms.93

The encoder progressively downsamples and compresses94

local information via strided convolutions, capturing tran-95

sient patterns, percussive events, and glitch artifacts. The96

decoder mirrors this structure with upsampling and skip97

connections, ensuring that fine-grained local details are98

preserved during reconstruction. This structure allows the99

model to effectively model localized rhythmic and spectral100

features—a hallmark of IDM aesthetics.101

2.2 Dynamic Chunking for Semantic Segmentation.102

To handle IDM’s non-metric and unpredictable tempo-103

ral structure, we introduce a DynamicChunkingLayer104

that adaptively segments sequences based on learned con-105

tent similarity. Operating on the U-Net encoder output106

X ∈ RB×T×D (with batch size B, time steps T , and107

feature dimension D), the layer discovers variable-length108

chunks aligned with perceptual discontinuities such as sud-109

den kicks, silences, or glitchy transitions. The full process110

is illustrated in Figure 1, and comprises three stages:111

(1) Boundary Detection via Cosine Similarity. We112

project frame-wise features into learnable query and key113

spaces:114

Q = XWq, K = XWk (1)

st = cosine_similarity(Qt+1,Kt) (2)

pboundary,t = 1.0− st (3)

Here, lower similarity implies a likely perceptual115

boundary—e.g., a transition from glitch to silence or a116

micro-cut.117

(2) Differentiable Boundary Sampling. Using118

Gumbel-Softmax, we sample boundary indicators while119

maintaining differentiability:120

ℓt = [pboundary,t, 1− pboundary,t] (4)

bt = Gumbel-Softmax(ℓt, τ) (5)

(3) Chunk-wise Pooling. Identified chunks are mean-121

pooled into embeddings, reducing sequence length while122

retaining semantic coherence:123

ct = cumsum(bt,0) (6)

Oi =
1

|{t : ct = i}|
∑
t:ct=i

Xt (7)

This transformation condenses irregular temporal124

structures—such as micro-phrases and fragmented mo-125

tifs—into discrete chunk-level representations.126

Figure 1. Dynamic Audio Chunking pipeline. Cosine sim-
ilarity guides boundary prediction, Gumbel-Softmax sam-
pling enables differentiable segmentation, and mean pool-
ing produces compressed chunk embeddings.

2.3 Transformer for Global Structure Modeling.127

The resulting chunk embeddings are passed to a Trans-128

former encoder, which models long-range dependencies129

across segments. This enables the model to learn high-130

level temporal relationships such as motif repetition, struc-131

tural contrast, and cross-time thematic links, which are cru-132

cial to IDM’s layered and often non-linear form.133

2.4 Local-to-Global Modeling Pipeline.134

In summary, the architecture builds a local-to-global hi-135

erarchy: convolutional layers extract frame-level features,136

chunking segments these into musically coherent events,137

and the Transformer attends across chunks to model global138

structure. This layered composition is especially suited to139

IDM, which relies on intricate local textures (e.g., micro-140

glitches) as well as overarching structural aesthetics (e.g.,141

rhythmic illusion, abrupt transitions, and broken repeti-142

tion).143

The complete flow is illustrated in Figure 2.144

3. L-SCORE: A COMPLEXITY-GUIDED145

TRAINING FRAMEWORK146

To guide the generative process towards producing au-147

dio with specific, desirable characteristics of Intelligent148

Dance Music (IDM), we introduce the L-Score, a multi-149

dimensional complexity vector. Instead of relying solely150

on reconstruction accuracy, our training framework uses151

the L-Score to impose a statistical prior on the complex-152

ity of the generated audio, preventing mode collapse and153

enhancing musical structure.154



Figure 2. Overview of the model architecture. The model
utilizes a U-Net structure where the core bottleneck mod-
ule (within the purple dashed box) consists of three com-
ponents: Dynamic Chunking, a Transformer, and a Fea-
ture Upsampling/Un-chunking layer. The output from the
encoder is processed by this bottleneck module and then
reconstructed into the final output spectrogram by the de-
coder, which is aided by skip connections.

3.1 L-Score Definition155

The L-Score is a four-dimensional vector, L ∈ R4, where156

each component quantifies a distinct aspect of musical157

complexity. The components are:158

• Timbral Complexity (LT ): Measured by the spec-159

tral entropy of the generated spectrogram. This met-160

ric captures the richness and variability of the sound161

texture. As it is computed directly on the spectro-162

gram, this component is fully differentiable and can163

be backpropagated through.164

• Rhythmic Density (LRD): Defined as the number165

of detected onsets per second in the reconstructed166

audio waveform. This component measures the167

overall rhythmic activity.168

• Rhythmic Irregularity (LRI ): Calculated as the169

standard deviation of the inter-onset intervals (IOIs).170

This metric quantifies the predictability and com-171

plexity of the rhythm, distinguishing between regu-172

lar, metronomic patterns and more syncopated, com-173

plex ones.174

• Structural Complexity (LS): Assessed using the175

off-diagonal self-similarity of a chroma-based fea-176

ture representation. This component measures the177

degree of repetition and variation in the harmonic or178

melodic structure over time.179

The latter three components (LRD, LRI , LS) are com-180

puted on the reconstructed audio waveform and are there-181

fore non-differentiable. They guide the training process182

through the distribution loss described below.183

3.2 L-Score Distribution Loss184

Rather than forcing the model to match a single, fixed com-185

plexity target, which could stifle creativity, we encourage186

it to generate audio whose complexity profile matches the187

statistical distribution of the training dataset. We define the188

L-Score Distribution Loss (LL−Score) as the L1 distance189

between the statistics (mean and standard deviation) of the190

L-Scores from a generated batch and the pre-computed tar-191

get statistics from the entire dataset.192

Let µtarget and σtarget be the target mean and stan-193

dard deviation vectors of the L-Score, and let µbatch and194

σbatch be the corresponding statistics for a batch of gener-195

ated samples. The loss is formulated as:196

LL−Score = λµ||µbatch−µtarget||1+λσ||σbatch−σtarget||1
(8)

where λµ and λσ are hyperparameters balancing the two197

statistical moments. This approach ensures that the gener-198

ated audio exhibits a similar range and average complexity199

as the source material, promoting diversity and structural200

integrity.201

3.3 Curriculum Learning Strategy202

Directly optimizing for both reconstruction and L-Score203

loss from the beginning of training can be unstable, as204

the model may receive conflicting gradients before it has205

learned to produce coherent audio. To mitigate this, we206

employ a curriculum learning strategy. The total loss func-207

tion is a weighted sum of a reconstruction loss (Lrecon,208

e.g., L1 loss on the spectrogram) and the L-Score loss:209

Ltotal = wreconLrecon + wLLL−Score (9)

The training is divided into two phases:210

1. Phase 1: Reconstruction Focus. For an initial211

number of epochs, we set wL = 0 and wrecon = 1.212

In this phase, the model learns to faithfully recon-213

struct audio from the latent representation, establish-214

ing a stable foundation for generation.215

2. Phase 2: Complexity Guidance. Following the ini-216

tial phase, we gradually introduce the L-Score loss217

by linearly annealing its weight wL from 0 to its fi-218

nal value over a set number of epochs. Concurrently,219

wrecon can be held constant or annealed. This allows220

the model to first learn the basics of audio generation221

before being guided towards the more abstract and222

complex stylistic targets defined by the L-Score.223

This curriculum-based framework stabilizes training224

and enables the model to effectively learn both the content225

and the complex structural properties of the target musical226

style.227

4. EXPERIMENTS228

4.1 Dataset229

We use the Freeloop [12] dataset for our experiments. To230

curate a corpus aligned with our research focus, we se-231

lected all tracks tagged with the keywords "IDM" and232

"glitch". This filtering process yielded a specialized dataset233

of 373 tracks that embody the unconventional rhythmic234

and textural characteristics relevant to our study. The235



dataset was subsequently partitioned into training, valida-236

tion, and test sets following a 70/15/15 split. This resulted237

in 261 tracks for training, 56 for validation, and 57 for test-238

ing.239

4.2 Implementation Details240

The experiments were conducted using an implementation241

of the Music Transformer, built with PyTorch and leverag-242

ing the Hugging Face transformers library [13].243

5. EXPERIMENTAL RESULTS AND DISCUSSION244

Our model was trained using a curriculum learning strat-245

egy, which proved effective for stable training. The pro-246

cess completed over 50 epochs without numerical instabil-247

ity, achieving a final test loss of 1.79. The curriculum con-248

sisted of two phases: an initial 10-epoch warmup focused249

solely on reconstruction (L-Score weight at 0.0), followed250

by a 40-epoch guidance phase where the L-Score weight251

was gradually increased as the reconstruction weight was252

annealed to 0.1.253

We evaluated the final model’s performance by quanti-254

tatively comparing the L-Score of generated audio against255

predefined targets and by qualitatively analyzing its musi-256

cality. The key results are summarized in Table 1.257

L-Score Dimension Target Uncon Seed

Timbral Complexity 0.4 0.409 0.502
Rhythmic Density 0.8 2.962 6.667
Rhythmic Irregularity 0.6 0.739 0.067
Structural Complexity 0.5 0.496 0.571

Table 1. Comparison of Target L-Scores with Generated
Audio. Values that closely match the target are in bold.
Values that critically fail to match are in italics.

5.1 Quantitative Analysis258

As shown in Table 1, the model demonstrates partial suc-259

cess in aligning with the complexity targets. In the uncon-260

ditional generation setting, both timbral complexity (0.409261

vs. 0.4) and structural complexity (0.496 vs. 0.5) closely262

match the predefined targets. This suggests that our L-263

Score loss and curriculum strategy can effectively guide264

these specific spectral and structural attributes of the gen-265

erated audio.266

However, the results also reveal a critical failure in con-267

trolling rhythmic features. The rhythmic density in both268

unconditional (2.962) and seed-based (6.667) generation269

is dramatically higher than the target of 0.8. This indicates270

that our current loss function is insufficient for regulating271

the temporal characteristics of the output, leading to rhyth-272

mically oversaturated and chaotic results.273

5.2 Qualitative Analysis and Key Limitations274

The quantitative shortcomings of our method manifest as275

perceptual and musical limitations, which we highlight as276

critical directions for future research.277

1. Limited Perceptual Coherence and Musicality:278

While the model matches certain statistical targets, the279

generated audio often lacks the aesthetic nuance and com-280

positional intent characteristic of human-authored IDM.281

Outputs are frequently perceived as overly dense or noisy,282

suggesting that statistical complexity alone does not guar-283

antee musical coherence.284

2. Insufficient Rhythmic Control: The most promi-285

nent failure mode lies in the model’s inability to regulate286

rhythmic density. Generated audio tends to exhibit uncon-287

trolled bursts of micro-events, resulting in chaotic textures288

rather than the precise, deliberate irregularity that defines289

IDM’s rhythmic identity.290

3. High Dependence on Seed Material: Uncondi-291

tional generations show significant degradation in structure292

and coherence compared to seed-conditioned outputs. This293

suggests the model operates more effectively as a transfor-294

mation layer than a generative composer, relying heavily295

on structural priors from the input.296

In sum, while our framework shows initial promise in297

targeting spectral and structural properties, its limitations298

in rhythmic control and generative autonomy underscore299

the challenge of modeling anti-functional musical aesthet-300

ics. These findings invite further exploration into architec-301

tures that balance content-awareness with controlled devi-302

ation, particularly in genres that deliberately resist regular-303

ization.304
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