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ABSTRACT

Cross-domain few-shot semantic segmentation (CD-FSS) aims to tackle the chal-
lenge of adapting models from labeled source domains to unseen target domains
with novel classes and limited annotations. Existing methods predominantly rely
on straightforward support-query feature matching, making them vulnerable to do-
main shifts and limiting their generalization. In contrast, vision foundation models
(VFMs) based on Transformer architectures demonstrate exceptional cross-domain
transferability by offering powerful off-the-shelf global contextual priors. To this
end, we propose a novel probabilistic prototype generation network (PPGN), which
integrates global contextual priors from VFMs to enhance prototype representation
learning with probabilistic modeling for CD-FSS. Specifically, PPGN adopts a
dual-encoder architecture that incorporates DINOv2’s capability of global contex-
tual modeling with conventional CNN-based local feature extraction, thus leading
to more comprehensive visual representations. We first design a dynamic proto-
type generator (DPG), which exploits high-confidence response maps from both
branches to guide the generation of discriminative query prototypes, mitigating
the inherent support-query divergence. Next, we propose a mixed-probabilistic
prototype generator (MPG) that performs probabilistic modeling on the hybrid
prototype integrated from heterogeneous feature spaces to enhance prototype gen-
eralization. Finally, an adaptive prediction aggregator (APG) is leveraged to refine
segmentation by recalibrating and integrating multi-stage predictions. Extensive
experiments demonstrate that PPGN achieves state-of-the-art performance on four
CD-FSS benchmarks.

1 INTRODUCTION

In recent years, semantic segmentation has achieved remarkable progress (Minaee et al., 2021),
largely driven by the availability of large-scale pixel-level annotated datasets. However, creating
such annotations is extremely time-consuming and labor-intensive, which poses a significant barrier
to extensive applications. To mitigate this challenge, few-shot semantic segmentation (FSS) (Dong
& Xing, 2018) has emerged as a promising alternative, aiming to learn a model that can segment
novel semantic classes trained with only a few annotated samples. Despite significant advances (Liu
et al., 2020a; Xie et al., 2021a;b; Lu et al., 2021), the practicality of FSS remains limited by the
critical assumption that the source and target domains share an identical data distribution. In reality,
this assumption is often violated due to the prevalence of domain shifts, leading state-of-the-art
FSS models to suffer substantial performance degradation when applied to target domains that
differ markedly from the source (e.g., transferring from PASCAL VOC (Everingham et al., 2010) to
DeepGlobe (Demir et al., 2018)).

To address this limitation, FSS is extended to a new cross-domain few-shot segmentation task (CD-
FSS). In this setting, models are trained on a source domain with abundant pixel-level annotations
(e.g., PASCAL VOC 2012 (Everingham et al., 2010)) and then adapted to a target domain that
exhibits significant distribution shifts and novel class categories (e.g., DeepGlobe (Demir et al.,
2018)), with only a few annotated samples per class. CD-FSS has recently garnered increasing
attention as a critical and challenging extension of conventional FSS, driving the development of
numerous specialized approaches. For instance, some approaches (Fan et al., 2023; Nie et al., 2024;
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Figure 1: Comparison between existing CD-FSS methods and our approach. (a) Conventional
CD-FSS methods typically adopt a single feature encoder and perform segmentation by directly
matching query features with static support prototypes, resulting in limited discriminative capability
and suboptimal performance. In contrast, (b) the proposed PPGN synergizes CNN-based local feature
extraction with DINOv2’s global contextual modeling and rich visual priors, enabling the learning of
more comprehensive and robust visual representations. More importantly, the incorporation of proba-
bilistic modeling over hybrid prototypes (i.e., MPG) significantly enhances feature representation and
generalization, thereby leading to more accurate segmentation.

Kong et al., 2024; Chen et al., 2024b) adopt fine-tuning strategies to rapidly adapt models pre-trained
on source domains to target domains, effectively aligning with the target domain’s feature distribution.
Moreover, some recent works (He et al., 2024; Peng et al., 2025) incorporate foundational vision
models into CD-FSS tasks to achieve global semantic consistency and improve feature representation
learning. More recently, several methods (Tong et al., 2024; Liu et al., 2025b) employ the fast
Fourier transform to convert spatial features into frequency domains, where reorganizing frequency
and amplitude components helps the extraction of domain-invariant information for more accurate
cross-domain transfer.

Although existing methods have shown promising results, several critical challenges remain un-
addressed. First, most CD-FSS approaches rely on a single feature extractor, typically either a
convolutional neural network (CNN) or a transformer, which is insufficient for mining the compre-
hensive visual semantics necessary for robust prototype representations. Second, inherent intra-class
variations between support and query samples often cause feature mismatches, leading to error
propagation during direct prototype-based matching and consequent performance degradation. Most
critically, conventional static prototypes exhibit limited discriminative capacity, rendering them
inadequate for accurately capturing category-specific features. As shown in Fig. 1 (a), traditional
CD-FSS methods often produce erroneous predictions, such as misclassifying foreground regions
(e.g., body of cats) as background (highlighted by the red box).

To address the above issues, we propose a probabilistic prototype generation network (PPGN)
for the CD-FSS task. The proposed method pioneers the integration of semantically rich visual
priors from vision foundation models and introduces probabilistic modeling over prototype features,
generating more discriminative and robust prototype representations, thereby significantly improving
segmentation performance in CD-FSS. Specifically, PPGN synergistically combines the local feature
extraction of ResNet50 (He et al., 2016) with rich global contextual visual priors of DINOv2 (Oquab
et al., 2023) in a dual-branch feature encoder, capturing comprehensive and complementary visual
representations of the object of interest. More importantly, to address the intrinsic feature distribution
divergence between support and query images, we design a dynamic prototype generator (DPG),
which leverages high-confidence maps co-predicted by ResNet-50 and DINOv2 to dynamically
generate more discriminative query prototypes under the guidance of support prototypes. In addition,
considering conventional single static prototypes often fail to accurately capture intraclass variability,
we design a mixed-probabilistic prototype generator (MPG), which applies probabilistic modeling
to hybrid prototypes integrated from heterogeneous feature spaces, thereby enhancing prototype
robustness and generalization. Finally, we introduce an adaptive prediction aggregator (APG) based on
a prototype recalibration strategy to improve prediction performance, which adaptively consolidates
multi-stage predictions to refine the final segmentation output. As illustrated in Fig. 1 (b), PPGN is
capable of learning more discriminative and generalizable foreground prototypes, enabling precise
delineation of target objects (e.g., accurate segmentation of the cats foreground region). In summary,
our contributions can be summarized as follows:
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• To the best of our knowledge, our proposed PPGN is the first framework that systematically
incorporates CNN’s local feature extraction with global context prior features of DINOv2 to
generate discriminative and robust prototypes under probabilistic learning, which establishes
a new paradigm for future research in the CD-FSS community.

• We design a dynamic prototype generator (DPG) that leverages high-confidence response
maps from dual branches to guide query prototype generation, significantly enhancing
prototype discriminability.

• We propose a mixed-probabilistic prototype generator (MPG) that effectively integrates cate-
gory prototypes from heterogeneous feature spaces and incorporates probabilistic modeling
through non-deterministic parameterization, thereby improving prototype generalization.

• Building on a prototype recalibration strategy, we introduce an adaptive prediction aggregator
(APG) that effectively combines multi-stage predictions through adaptive fusion, thereby
enhancing overall model performance.

2 RELATED WORK

Few-Shot Semantic Segmentation. FSS aims to segment objects of interest using only a few
labeled samples, which can be broadly categorized into two types: prototype-based methods and
parameterized methods. Prototype-based methods (Liu et al., 2020b; Li et al., 2021) extract rep-
resentative prototypes from limited samples, classifying new instances by their similarity to each
class prototype for precise pixel-level segmentation. More recently, some studies (Zhang et al., 2019;
2021) highlight that the use of a single prototype typically fails to adequately capture complete
object characteristics. To overcome this issue, recent methods, i.e., PRMMS (Tian et al., 2020)
and ASGNet (Li et al., 2021), explore multi-prototype strategies to achieve holistic object repre-
sentation. On the other hand, approaches (Tian et al., 2020; Min et al., 2021; Lang et al., 2022)
based on learnable parameters generally adopt an encoder-feature processor-decoder architecture.
The model parameters are adaptively optimized during training to capture inter-sample similarity
patterns. Although effective for novel class segmentation within a single domain, these methods face
generalization challenges across domains due to substantial data distribution differences. Overcoming
this domain gap with limited annotations remains a significant challenge.

Cross-Domain Semantic Segmentation. Current research on cross-domain semantic segmentation
primarily encompasses two approaches: domain adaptation (DA) and domain generalization (DG).
DA typically fine-tunes a source-trained model on the target domain data. Current approaches focus
on adversarial domain alignment (Kang et al., 2018), unsupervised learning with pseudo-labels (Yuan
et al., 2024), and combining adversarial adaptation with self-training or pixel-level adaptation (Du
et al., 2024). In contrast, DG assumes no access to target domain data during training. Existing
methods (Dou et al., 2019; Min et al., 2021; Peng et al., 2022; Zhao et al., 2024) can be categorized
into two paradigms based on representation learning: domain invariance and feature disentanglement.
The former achieves generalization through invariant risk minimization, kernel-based methods,
explicit feature alignment, and adversarial domain learning. The latter enhances generalization by
decomposing features into domain-shared and domain-specific components.

Cross-Domain Few-Shot Semantic Segmentation. Traditional FSS models struggle in CD-FSS
due to significant domain shifts and disjoint label spaces between the source and target domains.
To mitigate this domain gap, recent advances have introduced several advanced approaches. For
instance, PATNet (Lei et al., 2022) introduces the first standardized CD-FSS framework, employing a
pyramidal adaptation module to transform domain-specific features into domain-agnostic representa-
tions, effectively resolving cross-domain feature discrepancies. DSFM (Kong et al., 2024) employs a
parameter-free grouped style modulation (GSM) layer to generate diverse domain styles, improving
model generalization, and adopts a dual-branch fusion (DBF) strategy to enhance discriminative
capability and adaptability in target domains. GPRN (Peng et al., 2025) employs a SAM-aware
prompt initialization (SPI) module to transform SAM-generated masks into semantically rich visual
prompts, while utilizing a graph prompt reasoning (GPR) module to construct relational graphs
among prompts, thereby achieving global semantic consistency and enhancing feature representation
learning. DR-Adapter (Su et al., 2024) simulates diverse target domain features through local-global
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style perturbation and aligns them to the source domain space via cyclic alignment loss, enhancing
robustness to domain shifts while reducing overfitting.

Unlike the above methods, our approach first establishes a dual-encoder architecture that synergisti-
cally combines ResNet50’s local feature extraction with DINOv2’s global context modeling, thereby
capturing effective cross-domain representations. Furthermore, we utilize high-confidence response
maps from both branches to produce more discriminative query prototypes under the guidance of
support prototypes. To further enhance generalization, we introduce probabilistic hybrid prototypes
via non-deterministic modeling, which explicitly captures intra-category relationships. Finally, based
on a prototype recalibration strategy, we develop an adaptive prediction aggregator that effectively
combines multi-stage predictions through adaptive fusion, achieving superior segmentation accuracy.

3 METHOD

3.1 PROBLEM DEFINITION

In the CD-FSS task, the model is first trained in the source domain ({Xs,Ys} ∈ Dsource) and then
tested and evaluated in the target domain ({Xt,Yt} ∈ Dtarget). Here, Xs and Xt denote the data
distributions, while Ys and Yt are the corresponding label spaces. Note that Xs and Xt have different
data distributions, and Ys and Yt share no intersection, i.e., Xs ̸= Xt, Ys ∩ Yt = ∅. Specifically, in
an N -way K-shot setting, both the training set (Dtrain) and the testing set (Dtest) consist of multiple
episodes, each containing a support set (S = {Isi ,Ms

i }
N×K
i=1 ) and a query set (Q = {Iqi ,M

q
i }

Q
i=1),

where Isi ∈ RH×W×3 and Iqi ∈ RH×W×3 denote RGB images and Ms
i and Mq

i represent their
corresponding binary masks.

3.2 OVERVIEW

As illustrated in Fig. 2, our PPGN comprises three key components: (a) dual-branch feature en-
coders based on CNN and Transformer architectures, (b) dynamic mixed-probabilistic prototype
generator (DMPG), and (c) a prototype recalibration generator (PRG). Specifically, we employ
ResNet50 (He et al., 2016) (Er) and DINOv2 (Oquab et al., 2023) (Ed) as dual-branch feature
encoders to extract high-level semantic features from input support and query samples, i.e., {fr

s , f
r
q }

= Er(Is, Iq) and {fd
s , f

d
q } = Ed(Is, Iq). To address inherent intra-class variations, we propose the

dynamic mixed-probabilistic prototype generator (DMPG), which contains two key components: 1) a
dynamic prototype generator (DPG) that generates discriminative query prototypes (i.e., {P r

q,f , P
r
q,b}

and {P d
q,f , P

d
q,b}) by leveraging high-confidence response maps from both ResNet50 and DINOv2

predictions (i.e., {M i
r,M

i
d}, i = {1, 2}), guided by support prototypes; and 2) a mixed-probabilistic

prototype generator (MPG) that enhances prototype generalization through adaptive cross-space
prototype fusion with probabilistic non-deterministic parameterization. Additionally, to further
enhance model performance, we propose a prototype recalibration generator (PRG) with an adap-
tive prediction aggregator (APG) module that effectively integrates multi-stage predictions through
learned complementary weighting, yielding significant performance gains.

3.3 DYNAMIC MIXED-PROBABILISTIC PROTOTYPE GENERATOR

Dynamic Prototype Generator. As discussed, inherent intra-class variations between support
and query samples can propagate erroneous during direct prototype–feature similarity computation,
ultimately degrading model performance. To address this issue, we specifically design a dynamic
prototype generator (DPG) that enhances discriminative capability by guiding the generation of
the query prototype through high-confidence dual-branch response maps, as shown in Fig. 2 (a).
Specifically, for the visual features extracted from both ResNet50 (i.e., fr

s and fr
q ) and DINOv2 (i.e.,

fd
s and fd

q ) branches, we first perform bilinear interpolation and 1×1 convolution on both visual
features, respectively, for dimension alignment. Then, we obtain initial prototype representations of
support images through masked average pooling (MAP), which can be denoted as:

{P r
s,f , P

r
s,b} = FMAP (f

r
s ,Ms), {P d

s,f , P
d
s,b} = FMAP (f

d
s ,Ms), (1)

where FMAP (·) denotes the masked average pooling operation. P r
s,f and P r

s,b represent the prototypes
in the foreground and background obtained from the ResNet50 branch, while P d

s,f and P d
s,b correspond
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Figure 2: Architecture of the proposed PPGN. PPGN pioneers the integration of ResNet50’s local
feature extraction with DINOv2’s global context representations, thereby facilitating comprehensive
and complementary visual feature learning. Subsequently, we design a dynamic mixed-probabilistic
prototype generator (DMPG), which comprises a dynamic prototype generator (DPG) and a mixed-
probabilistic prototype generator (MPG). The DMPG produces discriminative query prototypes using
high-confidence maps from both branches, while boosting generalizability through probabilistic
hybrid prototypes (§3.3). Finally, we introduce a prototype recalibration generator (PRG), consisting
of DPG and an adaptive prediction aggregator (APG), to adaptively aggregate multi-stage predictions,
ultimately improving overall segmentation performance (§3.4).

to those derived from the DINOv2 branch. Ms indicates the ground-truth mask of the support image.
Subsequently, we compute the cosine similarity between the support prototypes and query features to
generate initial query predictions, i.e., M1

r and M1
d , which can be expressed as:

M1
r = Fcosine(f

r
q , P

r
s,f , P

r
s,b), M

1
d = Fcosine(f

d
q , P

d
s,f , P

d
s,b), (2)

where Fcosine(·) indicates the cosine similarity operation. For the initial query predictions M1
r and

M1
d obtained from the ResNet50 and DINOv2 branches, respectively, we can obtain a confidence map

through confidence computation. Specifically, channel-wise softmax normalization is first applied to
map the values of each spatial location’s pixel to the interval (0, 1). Here, the pixel values in each
channel represent the confidence scores for the foreground/background classification. To generate
more discriminative query prototypes (taking foreground prototype calculation as an example), we
introduce a learnable foreground threshold τ (initialized to 0.5). Positions that simultaneously exceed
τ in both M1

r and M1
d are identified as high-confidence response points. The corresponding feature

vectors of fr
q and fd

q at these locations serve as components to construct the foreground prototype.
After traversing all spatial coordinates in M1

r , we aggregate the candidate set of foreground vectors
to generate branch-specific foreground prototypes. This process is formulated as:

Ωr/d =
{
fr/d
q (x, y) | ∀(x, y),M1

r (x, y) ≥ τ ∩M1
d (x, y) ≥ τ

}
, (3)

where (x, y) is spatial coordinates, Ωr and Ωd denote the sets of high-confidence foreground vectors
selected from fr

q and fd
q , respectively. We then construct the foreground prototype for the query

target by concatenating and averaging the high-confidence foreground vectors, denoted as:

P
r/d
q,f = Favg(Fcat(ω1, ω2, . . . , ωn)), {ω1, ω2, . . . , ωn} ∈ Ωr/d, (4)

where Fcat(·) and Favg(·) denote channel-wise concatenation and average operations, respectively.
Additionally, it is worth noting that we can obtain the background prototype of the query in the same
manner, i.e., P r/d

q,b . Finally, we can obtain dual prototype representations for each query through the
ResNet50 and DINOv2 branches, i.e., {P r

q,b, P
r
q,f} and {P d

q,b, P
d
q,f}.
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Mixed-probabilistic Prototype Generator. Conventional CD-FSS methods typically employ a
single static prototype to represent the target category in query images. However, such a simplistic
and fixed representation often fails in complex scenarios. To address this limitation, we propose a
mixed-probabilistic prototype generator (MPG), as illustrated in Fig. 2 (b), to enhance prototype
generalization through non-deterministic modeling of hybrid prototypes with probabilistic parame-
terization. Specifically, we adaptively fuse the query prototypes captured from both DINOv2 and
ResNet50 branches using learnable parameters (taking the mixed foreground prototype as an exam-
ple). This process generates category prototypes that effectively integrate information from different
feature spaces, expressed as:

Pmix
q,f = α · P r

q,f + β · P d
q,f , (5)

where α and β represent learnable parameters. We further enhance the discriminative ability of
the query prototype by performing probabilistic modeling on the mixed foreground prototype, i.e.,
Pmix
q,f , through parameterized probability distributions. Specifically, we adopt two learnable 1×1

convolutional layers to learn the mean (termed as µ) and variance (denoted as σ) of the mixed
foreground prototype, expressed as:

µ = Fconvµ(P
mix
q,f ), σ = Fconvσ (P

mix
q,f ), (6)

where Fconvµ
(·) and Fconvσ

(·) denote learnable 1×1 convolutional layers. Besides, to facilitate
model learning, we introduce an external standard Gaussian distribution, i.e., ε ∼ N (0, 1), to
dynamically weight the distribution parameters of the mixed foreground prototype. Simultaneously,
to mitigate feature drift in category prototypes, we employ reparameterization and multi-sampling
strategies to enhance their discriminative capabilities. After N sampling iterations, we obtain the
following sampled set:

P = {pi = µ+ εiσ | i = 1, 2, ..., N}. (7)

Then, we stack the N sampled prototypes (i.e., pi) along the 0-th dimension and compute their
variances to quantify the uncertainty (termed as U ) in prototype representations. This uncertainty
modeling process can be denoted as:

U = Fvar(Fstack(P, dim = 0), dim = 0), (8)

where Fstack(·) and Fvar(·) represent stack and variance calculation operation, respectively. To
enhance the deterministic characteristics of category prototypes while filtering stochastic noise,
we first invert the captured uncertainty features and perform element-wise multiplication with the
original mixed prototype. This operation selectively amplifies discriminative patterns. Furthermore,
to preserve the integrity of initial prototype features and prevent information loss, we employ residual
connections to fuse the refined prototype with the original mixed prototype, yielding the final mixed
probabilistically-enhanced foreground prototype, i.e., P̂mix

q,f . This refinement process is expressed as:

P̂mix
q,f = (1− U)⊗ Pmix

q,f ⊕ Pmix
q,f , (9)

where ⊗ and ⊕ are element-wise multiplication and addition, respectively. Following the same
procedure, we can compute the mixed probabilistically enhanced background prototype, i.e., P̂mix

q,b .

3.4 PROTOTYPE RECALIBRATION GENERATOR

Prototypes and predictions exhibit a mutually reinforcing relationship, where iterative predic-
tion–prototype–prediction co-calibration progressively enhances segmentation accuracy. To this
end, we propose a prototype recalibration generator (PRG) that employs DPG to recalibrate and
refine query representations, coupled with an adaptive prediction aggregator (APG) to adaptively
integrate multi-stage predictions for performance enhancement, shown in Fig. 2 (c). Specifically,
we compute the second-round query predictions by measuring the similarity between the enhanced
mixed probabilistic prototypes (i.e., P̂mix

q,b and P̂mix
q,f ) and the query features extracted from both

encoder branches, which can be expressed as:

M2
r = Fcosine(f

r
q , P̂

mix
q,f , P̂mix

q,b ), M2
d = Fcosine(f

d
q , P̂

mix
q,f , P̂mix

q,b ). (10)

Subsequently, DPG is applied to derive enhanced prototype representations from the query features
and updated query predictions. Next, APG is used to first compute the similarity of the enhanced
prototypes with the original query features, thus obtaining the third-stage segmentation predictions,
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i.e., M3
r and M3

d . Notably, unlike the DMPG, these query prototypes exhibit inherently high reliability
and thus do not require additional probabilistic modeling. This operation can be defined as:

M3
r = Fcosine(f

r
q ,FDPG(f

r
q ,M

2
r ,M

2
d )), M

3
d = Fcosine(f

d
q ,FDPG(f

d
q ,M

2
r ,M

2
d )), (11)

where FDPG(·) represents the DPG operation. To further enhance prediction accuracy, an adaptive
aggregator is introduced to adaptively combine multi-stage predictions from ResNet50 and DINOv2
branches through learnable weighting factors, denoted as:

Mout =

3∑
i=2

(δi ·M i
r + λi ·M i

d), (12)

where δi and λi (i ∈ {2, 3}) denote learnable parameters.

3.5 LOSS FUNCTION

During both training and fine-tuning phases, we employ cross-entropy loss (Lce) to supervise the
segmentation predictions from all stages of both DINOv2 and ResNet50 branches, i.e., M1

r ∼ M3
r ,

M1
d ∼ M3

d , and Mout, thereby optimizing model parameters. Furthermore, for the µ and σ of
query prototypes obtained via 1×1 convolutions in the MPG module, we impose Kullback-Leibler
divergence (Kingma & Welling, 2013) regularization using a standard normal distribution as prior.
Let Mq denote the ground-truth of the query. Therefore, the total loss function is calculated as
follows:

Ltotal = Lce(Mout,Mq) +

3∑
i=1

(Lce(M
i
r,Mq) + Lce(M

i
d,Mq)) +D(N (µ, σ)||N (0, 1)). (13)

4 EXPERIMENT

4.1 BENCHMARKS

Following the PATNet (Lei et al., 2022) experimental setup, we utilize the SBD-augmented PASCAL
VOC 2012 (Everingham et al., 2010) dataset, which contains 20 common object categories, as our
source domain for model training. Subsequently, we fine-tune and evaluate our model on four widely
used benchmark datasets, including DeepGlobe (Demir et al., 2018), ISIC2018 (Tschandl et al.,
2018), Chest X-ray (Candemir et al., 2013), and FSS1000 (Li et al., 2020). For more details about
the test dataset, please refer to Appendix A.2. For performance evaluation, we adopt the mean
Intersection over Union (mIoU) metric and report the average results of five independent trials. Each
trial uses a unique random seed to ensure a comprehensive and robust evaluation. Additionally,
we thoroughly test our model’s performance under both 1-way 1-shot and 1-way 5-shot settings
to provide a complete understanding of its capabilities and limitations. For more details about the
implementation and source code, please refer to Appendix A.3 and Appendix A.1.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Quantitative Results. We compare our PPGN with state-of-the-art CD-FSS models, and the
results are shown in Table 1. It is worth noting that all models are trained on the PASCAL VOC
2012 (Everingham et al., 2010) dataset and evaluated quantitatively using mIoU (%) as the primary
metric across four standard datasets. To ensure a fair comparison, we categorize the models based on
whether they are fine-tuned, as fine-tuning typically leads to significant performance improvements.
As shown in Table 1, our PPGN achieves a remarkable performance advantage. Specifically, under
the 1-shot and 5-shot settings, our PPGN reaches impressive accuracies of 73.47% and 74.35%,
respectively, on the ISIC2018 (Tschandl et al., 2018) dataset. More importantly, the average mIoU
across the four standard datasets fully reflects the model’s comprehensive generalization ability across
different domains. Our PPGN achieves average mIoU scores of 72.18% and 76.16% on these four
datasets, demonstrating state-of-the-art performance. Moreover, compared to GPRN (Peng et al.,
2025), which employs other foundation vision models (i.e., SAM), our PPGN outperforms it by
↑0.48% (1-shot) and ↑0.86% (5-shot) in average mIoU across four benchmark datasets. Additionally,
compared to another outstanding model (e.g., IFANet (Nie et al., 2024)), our PPGN achieves
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Table 1: Quantitative comparison of the proposed method and state-of-the-art CD-FSS approaches
on four benchmarks, i.e., Deepglobe (Demir et al., 2018), ISIC2018 (Tschandl et al., 2018), Chest
X-ray (Candemir et al., 2013) and FSS1000 (Li et al., 2020), evaluated by mIoU (%). The top two
performances are highlighted in bold and underlined, respectively.

DeepGlobe ISIC2018 Chest X-ray FSS1000 AverageMethod 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Methods without Fine-tuning Phase

AMP (Siam et al., 2019) [ICCV2019] 37.64 40.63 28.41 30.49 51.27 53.07 57.23 59.22 43.63 45.82
RestNet (Huang et al., 2023) [BMVC2023] – – 42.25 51.10 70.43 73.69 81.53 84.89 – –
PMNet (Chen et al., 2024a) [WACV2024] 37.10 41.60 51.20 54.50 70.40 74.00 84.60 86.30 60.83 64.10

PerSAM (Zhang et al., 2024) [ICLR2024] 30.02 30.14 23.30 25.35 61.07 66.52 36.13 40.74 37.62 40.68
APM-M (Tong et al., 2024) [NeurIPS2024] 40.86 44.92 41.71 51.16 78.25 82.81 79.29 81.83 60.03 65.18
ABCDFSS (Herzog, 2024) [CVPR2024] 42.60 49.00 45.70 53.30 79.80 81.40 74.60 76.20 60.70 65.00

DR-Adapter (Su et al., 2024) [CVPR2024] 41.29 50.12 40.77 48.87 82.35 82.31 79.05 80.40 60.86 65.42
APSeg (He et al., 2024) [CVPR2024] 35.94 39.98 45.43 53.98 84.10 84.50 79.71 81.90 61.30 65.09

TVGTANet (Liu et al., 2025a) [ACM MM2025] 42.04 50.67 47.21 58.75 84.58 87.27 78.32 81.44 63.04 69.53
ISA (Fan et al., 2025) [ICCV2025] 44.32 52.73 37.21 56.10 83.42 86.28 78.76 86.03 60.92 70.29

LoEC (Liu et al., 2025b) [CVPR2025] 44.10 49.67 38.21 47.04 81.02 82.73 78.51 80.60 60.46 65.01
Methods with Fine-tuning Phase

PATNet (Lei et al., 2022) [ECCV2022] 37.89 42.97 41.16 53.58 66.61 70.20 78.59 81.23 56.06 61.99
DARNet (Fan et al., 2023) [Arxiv2023] 44.61 54.05 47.81 60.52 81.22 89.73 76.41 83.24 62.51 71.89

DMTNet (Chen et al., 2024b) [IJCAI2024] 40.14 51.17 43.55 52.30 73.74 77.30 81.52 83.28 59.74 66.01
DFSM (Kong et al., 2024) [ACM MM2024] 40.99 52.69 57.02 64.77 91.49 92.90 85.44 90.24 68.74 75.15
IFANet (Nie et al., 2024) [CVPR2024] 50.60 58.80 66.30 69.80 74.00 74.60 80.10 82.40 67.80 71.40
GPRN (Peng et al., 2025) [AAAI2025] 51.70 59.30 66.80 72.20 87.00 87.10 81.10 82.60 71.70 75.30
DFN (Tong et al., 2025a) [ICML2025] 39.45 47.67 50.36 58.53 83.18 87.14 82.97 85.72 63.99 69.77

SDRC (Tong et al., 2025b) [ICML2025] 43.15 46.83 46.57 55.02 82.86 84.79 80.31 82.55 63.22 67.30
DATO (Li et al., 2025) [CVPR2025] 51.10 59.30 68.76 70.30 79.58 81.07 81.79 84.61 70.31 73.82

PPGN(Ours) 49.83 60.51 73.47 74.35 78.14 81.99 87.28 87.79 72.18 76.16

performance gains of ↑7.17%, ↑4.14%, and ↑7.18% under the 1-shot setting, and ↑4.55%, ↑7.39%,
and ↑5.39% under the 5-shot setting on the ISIC2018 (Tschandl et al., 2018), Chest X-ray (Candemir
et al., 2013), and FSS1000 (Li et al., 2020) datasets, respectively. The average improvements across
the four standard datasets reach ↑4.38% and ↑4.76% for 1-shot and 5-shot scenarios, respectively.
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Figure 3: Visualization results on four benchmark
datasets. The red, green, and blue regions denote
the support masks, query masks, and query predic-
tions, respectively.

Qualitative Results. We further visualize
the prediction results of our PPGN across
four benchmark datasets, as shown in Fig. 3
(results on DeepGlobe (Demir et al., 2018),
ISIC2018 (Tschandl et al., 2018), Chest X-
ray (Candemir et al., 2013), and FSS1000 (Li
et al., 2020) datasets from top to bottom, re-
spectively). Critically, these target-domain test
categories not only exhibit distinct feature distri-
butions from the source-domain data but are en-
tirely absent during model training. Remarkably,
under these extremely challenging cross-domain
conditions, our PPGN consistently delivers ac-
curate foreground segmentation. As evidenced
by the Chest X-ray (Candemir et al., 2013) seg-
mentation results in Fig. 3 (third row), the model
successfully identifies precise lesion boundaries despite being trained solely on natural images, which
exhibit substantial stylistic divergence from medical imaging. This compelling performance unequiv-
ocally demonstrates PPGN’s exceptional generalization capacity and domain robustness. Further
analysis of the generalization enhancement achieved by our proposed probabilistic mechanism under
domain shift is provided in Appendix A.4.

4.3 ABLATION STUDY

We perform comprehensive ablation studies on the key components of PPGN to validate their
effectiveness, conducting all comparative experiments under the most challenging 1-shot setting on
the Chest X-ray (Candemir et al., 2013) dataset. Performance is evaluated by mIoU, with all results
averaged over five random seed trials to ensure reliability. More ablation studies are provided in
Appendix A.5 .

Component contribution analysis of DMPG and PRG. To further validate the effectiveness of
our proposed modules, i.e., DMPG and PRG, we conduct progressive ablation experiments. First, we
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establish pure ResNet50 and DINOv2 baselines (#3 in Table 2). Subsequent integration of the DMPG
module yields a +1.77% performance improvement (#4 vs. #3). We analyze the potential reasons
as follows: DPG produces more discriminative query prototypes, effectively addressing intra-class
variations between support and query samples; MPG addresses the generalization limitations of
conventional single prototypes by performing non-deterministic modeling of hybrid prototypes,
thereby capturing probabilistic prototype representations that are more robust to domain variations.
Further augmenting the model with the PRG achieves an additional +2.94% performance gain (#5 vs.
#4 ). This improvement stems from PRG’s adaptive prediction aggregator (APG), which strategically
combines multi-stage segmentation outputs from dual branches through complementary prediction
fusion, thereby fully exploiting cross-encoder synergies to enhance overall model capability.

Table 2: Ablation studies on key components
in PPGN, including two distinct encoders (e.g.,
ResNet50 and DINOv2), DMPG, and PRG. The
best results are highlighted in bold.

# ResNet50 DINOv2 DMPG PRG mIoU (%)
1 ✓ × × × 72.56
2 × ✓ × × 60.20
3 ✓ ✓ × × 73.43
4 ✓ ✓ ✓ × 75.20
5 ✓ ✓ ✓ ✓ 78.14

Effects of different encoders. To rigorously
validate the necessity of our dual-encoder ar-
chitecture, we conduct comprehensive ablation
experiments, with results detailed in Table 2.
Specifically, we first remove all auxiliary com-
ponents (including DMPG and PRG) and eval-
uate performance using individual encoders,
i.e., ResNet50 or DINOv2 alone. As shown
in entries #1 and #2 of Table 2, the baseline
models achieve 72.56% and 60.20% accuracy
scores with standalone ResNet50 and DINOv2
encoders, respectively. Remarkably, when combining both encoders, the model attains a significantly
higher accuracy of 73.43% (#3 in Table 2), delivering consistent improvements of +0.87% (#3 vs. #1)
and +13.23% (#3 vs. #2), which conclusively demonstrates complementary advantages between the
two encoding schemes.

Table 3: Finer-grained ablation studies
of the three key components in PPGN,
i.e., DPG, MPG and APG. The best re-
sults are highlighted in bold.

# DPG MPG APG mIoU (%)
1 ✓ ✓ ✓ 78.14
2 × ✓ ✓ 77.07
3 ✓ × ✓ 75.03
4 ✓ ✓ × 74.12

Component-wise analysis of DPG, MPG, and APG.
To further validate the contributions of finer-grained com-
ponents in PPGN, including DPG, MPG, and APG. We
conduct a series of ablation experiments, with quantita-
tive results presented in Table 3. Specifically, we sequen-
tially remove the DPG, MPG, and APG modules from
the overall PPGN framework. The performance of model
degrades by 1.07% (78.14% 7→ 77.07%), 3.11% (78.14%
7→ 75.03%), and 4.02% (78.14% 7→ 74.12%), respectively.
We attribute these observations to the following: DPG
removal forces the model to directly match query features
with support prototypes, amplifying segmentation errors due to inherent semantic discrepancies
between support and query samples. The model’s generalizability degrades significantly under
MPG ablation, as being limited to deterministic prototype matching proves inadequate for handling
complex scenarios where cluttered backgrounds demand more flexible representations. Removing
APG reduces the fusion mechanism to a simple summation of dual-branch predictions, thereby losing
both the adaptive weighting capability and the carefully designed complementary dynamics between
encoders. In contrast, integrating all three modules achieves optimal accuracy, demonstrating their
synergistic roles in the robust CD-FSS.

5 CONCLUSION

In this work, we propose a probabilistic prototype generation network (PPGN) for the CD-FSS task,
which synergistically combines CNN’s local feature extraction with the vision foundation model’s
global context prior knowledge to learn transferable cross-domain representations. Furthermore,
we design a DPG, which produces more discriminative query prototypes through high-confidence
response maps from dual-branch predictions, guided by support prototypes. Going beyond determin-
istic approaches, we develop a MPG that overcomes deterministic limitations via hybrid prototype
modeling with probabilistic parameterization, significantly enhancing generalization. Finally, we
introduce an APG to adaptively consolidate multi-stage segmentation results from dual branches,
further improving the overall performance. Extensive experiments demonstrate that our method
consistently outperforms existing approaches, establishing a new state-of-the-art benchmark.
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A APPENDIX

A.1 SOURCE CODE

Code is available at https://anonymous.4open.science/r/PPGN-4F8C.

A.2 TEST DATASET

We evaluate the cross-domain generalization capability of our segmentation model under varying
domain gaps using four standard datasets from the CD-FSS task: DeepGlobe (Demir et al., 2018),
ISIC2018 (Tschandl et al., 2018), Chest X-ray (Candemir et al., 2013), and FSS1000 (Li et al., 2020).
These datasets cover satellite imagery, dermoscopic images of skin lesions, human lung X-ray images,
and daily object images, respectively. The selected datasets exhibit category diversity, reflecting
realistic scenarios for few-shot semantic segmentation. Specifically,

• DeepGlobe (Demir et al., 2018) is a satellite imagery dataset where each image is densely
annotated at the pixel level with 7 categories: urban, agriculture, rangeland, forest, wa-
ter, barren land, and unknown regions. The spatial resolution of the images is fixed at
2,448×2,448 pixels. To increase the number of test images and reduce their size, we split
each image into 6 patches. After filtering out single-class images and those dominated by
the “unknown” category, we retain 5,666 images (each 408×408 pixels) for final evaluation.

• ISIC2018 (Tschandl et al., 2018) is a dermatological image dataset containing 2,596 lesion
images, each with a single primary lesion. The original images have a spatial resolution
of approximately 1,022×767 pixels. Following standard practice, we resize all images to
512×512 pixels for consistent processing.

• Chest X-ray (Candemir et al., 2013) is a medical imaging dataset for tuberculosis detection,
comprising 566 X-ray images with an original resolution of 4,020×4,892 pixels. Given
the large size of the raw images, we typically downsample them to 1,024×1,024 pixels for
processing.

• FSS1000 (Li et al., 2020) is a natural image dataset designed for few-shot segmentation,
comprising 1,000 object categories with 10 samples per category. For our experiments, we
adopt the official semantic segmentation split, where the test set contains 240 categories
and 2,400 test images. Each test image features a single well-defined segmentation target to
maintain task specificity. All test images maintain a standard resolution of 224×224 pixels.

A.3 IMPLEMENTATION DETAILS

We employ the widely popular ResNet50 (He et al., 2016) as the backbone of our model. All
experiments are conducted using PyTorch on a system equipped with a single NVIDIA RTX 4090
GPU. During the source domain training phase, we set the initial learning rate to 1e−4 and the
momentum to 0.9. Following the PATNet (Lei et al., 2022) paradigm, we standardize the input image
resolution to 400 × 400. In the fine-tuning stage, we assign dataset-specific learning rates. For
instance, the learning rates for the DeepGlobe (Demir et al., 2018), ISIC2018 (Tschandl et al., 2018),
Chest X-ray (Candemir et al., 2013), and FSS1000 (Li et al., 2020) datasets are set to 0.002, 0.003,
0.0005, and 0.004, respectively. Each dataset undergoes 30 epochs of optimization, with the first 10
epochs dedicated to source domain training and the remaining 20 epochs for fine-tuning to enhance
model performance. Furthermore, to augment the dataset and improve the robustness of the model,
we adopt a series of data augmentation strategies provided by PyTorch, including horizontal flipping,
vertical flipping, 90-degree rotation, and adjustments to brightness and hue. These techniques ensure
the model effectively handles variations in input data.

A.4 WHY THIS PROBABILISTIC MECHANISM ENHANCES GENERALIZATION UNDER DOMAIN
SHIFT?

Probabilistic prototype modeling enhances the model’s generalization ability by addressing the
inherent uncertainty caused by limited data and intra-class variations, which is fundamentally based
on Bayesian uncertainty modeling (Blundell et al., 2015; Kendall & Gal, 2017) to address domain
shift challenges. Specifically, when Dsource deviates from Dtarget, deterministic prototypes (such
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N mIoU (%)
10 75.70
25 77.55
50 78.14
75 73.38

100 77.00
150 76.44

Table 4: Impact on the number
of sampling iterations N in the
MPG.

τ mIoU (%)
0.5 77.94
0.6 68.11
0.7 50.86
0.8 45.84
0.9 49.47

learnable 78.14

Table 5: Ablation study on the
learnable threshold τ in MPG.

α β mIoU (%)
0.1 0.9 77.91
0.3 0.7 78.09
0.5 0.5 78.07
0.7 0.3 77.59
0.9 0.1 76.10
learnable 78.14

Table 6: Influence of learnable
parameters in MPG.

as mean vectors) often do not align with true class centroids. To this end, we model prototypes as
Gaussian distributions N (µ, σ2), where the mean µ captures cross-domain invariant features, while
the variance σ2 quantifies uncertainty arising from domain-specific bias. Through qualitative analysis,
our learned variance σ2 could be regarded as the uncertainty score that measures the confidence of the
embedded feature in belonging to the correct class. This process follows the principles of Bayesian
deep learning (Kingma & Welling, 2013), as marginalizing over the noise distribution enhances the
model’s robustness to domain shifts.

Alternatively, from an intuitive perspective, the probabilistic modeling process can be viewed as an
implicit data augmentation paradigm. The reparameterization technique performs multiple sampling
of prototype distributions (as shown in Eq. 7), which can be viewed as applying smooth perturbations
to category prototypes in the prototype space. This process effectively serves as implicit data
augmentation, enhancing the model’s robustness to input variations and consequently improving
cross-domain generalization capability.

A.5 MORE ABLATION STUDIES

Different sampling iterations (N ) in the MPG. We conduct systematic experiments to evaluate
different sampling iterations N (10, 25, 50, 75, 100, 150) in the MPG module, with results shown
in Table 4, where the model achieves optimal performance at 50 sampling iterations. We observe
that insufficient sampling (N < 50) leads to significant errors in variance estimation and inaccurate
hybrid prototype representations, while excessive sampling (N > 50) increases model complexity
and disrupts the optimization process, causing performance degradation. As illustrated in Fig. 4 (a),
the performance shows a clear trend: it improves monotonically as sampling iterations increase from
10 to 50, but degrades consistently beyond 50 samples. Based on this analysis, we set the default
sampling iteration to 50 in PPGN as it provides the best balance between estimation accuracy and
computational efficiency.

Learnable threshold τ in MPG. Investigating the role of threshold τ in MPG represents a crucial
research focus. Through extensive comparative experiments (Table 5), we systematically evaluate the
effectiveness of making τ a learnable parameter. When fixed to constant values (0.5, 0.6, 0.7, 0.8,
0.9), model performance progressively declines from 77.94% to 49.47%, as illustrated in Fig. 4 (b).
In contrast, the learnable-τ configuration achieves optimal performance (78.14% mIoU on Chest
X-ray dataset). We attribute this phenomenon to two key factors: (1) Overly large thresholds (e.g., τ
= 0.9) severely reduce valid feature vectors, compromising query prototype accuracy; and (2) our
learnable-τ enables dynamic threshold adaptation across different domain distributions, generating
more robust query prototypes through automatic confidence adjustment. Consequently, we implement
τ as a learnable parameter in our PPGN.

Effects of hyperparameter configurations in MPG. In the MPG module, effectively fusing
foreground and background prototypes from the ResNet50 and DINOv2 branches presents a critical
challenge. To address this, we conduct a series of controlled experiments. Specifically, we evaluate
different combinations of coefficients α and β, with quantitative results summarized in Table 6. The
experimental results demonstrate that employing learnable coefficients α and β yields optimal model
accuracy (78.14% mIoU on Chest X-ray dataset). We posit that this adaptive fusion mechanism
effectively combines ResNet-50’s local inductive bias with DINOv2’s global contextual awareness
through learned optimal weighting, thereby generating a more generalizable prototype space compared
to static aggregation. Thus, our PPGN adopts this dynamic weighting mechanism to aggregate both
types of prototypes.
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(c) Different frozen layers on
ResNet50.

Figure 4: (a) Impact of varying sampling iterations in MPG. (b) Impact of threshold τ in the MPG.
(c) Effects of varying frozen-layer configurations on model performance. “Trainable” denotes that all
backbone layers remain learnable, while “Li” indicates that only the i-th layer is frozen, with other
layers retaining trainable parameters.

Table 7: Impact on frozen layers in ResNet50.

# layer1 layer2 layer3 layer4 mIoU (%)
1 ✓ ✓ ✓ ✓ 72.88
2 × ✓ ✓ ✓ 77.92
3 × × ✓ ✓ 78.14
4 × × × ✓ 76.99
5 × × × × 74.15

Impact on frozen layers in ResNet50. To
evaluate how freezing different layers in the
ResNet50 (He et al., 2016) encoder affects
model performance, we conduct a series of fine-
grained ablation experiments on Chest X-ray
dataset, with results presented in Table 7. Ini-
tially, we train the model with all layers learn-
able (Table 7 #1), then progressively freeze en-
coder layers from shallow to deep until the entire
backbone is fixed, i.e., #2 7→ #5. Our findings show that PPGN performs best when layers 1 ∼
2 are frozen while layers 3 ∼ 4 remain trainable. As depicted in Fig. 4 (c), model performance
follows a bell-shaped curve — initially improving with partial freezing but declining when either too
many or all layers are frozen. This trend suggests that fully training the ResNet50 (He et al., 2016)
encoder introduces excessive learnable parameters, weakening cross-domain knowledge transfer,
while completely freezing the backbone restricts feature adaptability, degrading representation quality.
The optimal configuration (layers 1 ∼ 2 frozen, layers 3 ∼ 4 trainable) thus strikes a balance between
preserving pretrained knowledge and enabling task-specific adaptation.

Table 8: Effects of learnable
parameters in APG.

{δ2, δ3, λ2, λ3} mIoU (%)
fixed 75.02

learnable 78.14

Effects of hyperparameters in APG. To further validate the role
of adaptive fusion parameters in the APG module, we conduct an ab-
lation study, with quantitative results summarized in Table 8. Specif-
ically, when the learnable parameters (e.g., δi and λi, i ∈ {2, 3})
are fixed to 1.0, the model’s performance (mIoU on Chest X-ray
datasets) decreases from 78.14% to 75.02%. We attribute this perfor-
mance drop to the fact that adaptive fusion dynamically aggregates
multi-stage segmentation results, effectively leveraging the complementary strengths of the dual-
encoder architecture for optimal accuracy. Motivated by this observation, our PPGN employs an
adaptive fusion strategy to integrate multi-stage predictions.

Table 9: Performance of individual loss terms.

Lout L1
ce L2

ce L3
ce LD mIoU (%)

✓ × × × × 67.13
✓ ✓ × × × 68.61
✓ ✓ ✓ × × 71.32
✓ ✓ ✓ ✓ × 74.28
✓ ✓ ✓ ✓ ✓ 78.14

Expanding ablation analysis to individual loss
terms. To validate the effectiveness of individual
terms, we conduct extensive ablation experiments,
with results summarized in Table 9. We define the
final supervised loss as Lout = Lce(Mout,Mq),
the multi-stage loss as Li

ce = Lce(M
i
d,Mq) +

Lce(M
i
r,Mq), and the KL-divergence constraint as

LD = D(N (µ, σ)||N (0, 1)). As Table 9 shows, the
model’s performance (mIoU on Chest X-ray datasets)
improves steadily from 67.13% to 78.14% when progressively incorporating multi-stage supervision
and KL constraints into Lout. We attribute this phenomenon to the fact that: (1) Lout ensures global
alignment between the final segmentation output and ground-truth masks. It primarily optimizes
the fusion parameters δi and λi in APG, enabling rational weighting of multi-branch predictions;
(2) Multi-stage Li

ce enforces progressive consistency in intermediate predictions (e.g., M1/2/3
r/d ), it

directly supervises the iterative refinement in DPG and PRG, guaranteeing reliability across stages —
from initial prototype matching to probability-enhanced prototypes and calibrated predictions; (3)
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Figure 5: Visualization results of important components. “R” represents ResNet50, “D” denotes
DINOv2. “DMPG” and “PRG” mean dynamic mixed-probabilistic prototype generator and dynamic
prototype generator, respectively. Areas in red boxes represent incomplete segmentation or back-
ground interference.

LD regularizes the distribution parameters (e.g., µ and σ) of hybrid prototypes generated by MPG,
imposing a standard Gaussian prior to prevent over-divergence. This mitigates overfitting caused by
limited data (e.g., uncontrolled growth of σ).

Visualization results of important components. Further, we present the visualizations of PPGN’s
core modules (including DMPG and PRG) in Fig. 5. The results reveal that models employing a single
encoder (ResNet50 or DINOv2) achieve only coarse target localization, with segmentation outputs
exhibiting substantial noise and/or missing foreground regions (the 2nd and 3rd columns in Fig. 5).
In contrast, the combined use of ResNet50 and DINOv2 demonstrates complementary advantages:
the CNN-Transformer hybrid architecture simultaneously suppresses background interference and
recovers missing foreground details (the 4th column in Fig. 5). With the addition of the DMPG
module, the foreground representation is enhanced. We hypothesize that this improvement stems
from DMPG’s dual-path mechanism (DPG and MPG), which increases the discriminability of query
prototypes, thereby enabling more precise target object segmentation. Finally, the PRG module
further refines the results through its prediction-prototype-prediction refinement strategy, adaptively
fusing multi-stage outputs to boost segmentation accuracy.

Table 10: Compared with dif-
ferent foundational models.

Method mIoU (%)
CLIP 74.23
SAM 76.86

DINOv2 (Ours) 78.14

Replacing DINOv2 with SAM and CLIP. We replace DINOv2
with CLIP and SAM, respectively, to evaluate the model’s sensitivity
and adaptability under different vision foundation models. The
results are shown in Table 10. As Table 10 shows, when using
vision encoders based on the ViT architecture, e.g., SAM or CLIP,
the model maintains relatively stable performance, i.e., 74.23% and
76.86% mIoU on the Chest X-ray dataset. This further proves that
our PPGN exhibits strong adaptability.

Table 11: Model complexity comparison.

Method Total (M) Learnable (M) FPS mIoU (%)

GPRN 99.62 9.98 10.64 66.80
Ours 98.39 25.62 16.43 73.47

Complexity analysis. To further investigate
the complexity of the model, we conduct a
comprehensive complexity comparison with
state-of-the-art models, e.g., GPRN, evaluat-
ing total parameters, trainable parameters, in-
ference speed (FPS), and segmentation perfor-
mance (mIoU). All experiments are performed under identical conditions to ensure fairness, as
summarized in Table 11. The results demonstrate that our method achieves superior performance
with fewer total parameters (98.39 vs. 99.62), along with higher FPS (16.43 vs. 10.64), while
significantly outperforming GPRN in mIoU on the ISIC2018 dataset (73.47% vs. 66.80%). These
findings conclusively validate that our PPGN maintains an optimal balance between performance
and efficiency. Furthermore, we fully recognize the importance of lightweight architecture design
for resource-constrained environments and practical applications. In future work, we will explore
more efficient structural designs, such as replacing DINOv2 with MobileSAM, to significantly reduce
computational overhead.
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