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Abstract

Gradient boosting is a widely used machine learning algorithm for tabular regression,
classification and ranking. Although, most of the open source implementations of gradient
boosting such as XGBoost, LightGBM and others have used decision trees as the sole base
estimator for gradient boosting. This paper, for the first time, takes an alternative path of
not just relying on a static base estimator (usually decision tree), and rather trains a list of
models in parallel on the residual errors of the previous layer and then selects the model
with the least validation error as the base estimator for a particular layer. This paper has
achieved state-of-the-art results when compared to other gradient boosting implementations
on 50+ tabular regression and classification datasets. Furthermore, ablation studies show that
MSBoost is particularly effective for small and noisy datasets. Thereby, it has a significant
social impact especially in tabular machine learning problems in the domains where it is not
feasible to obtain large high quality datasets.

1 Introduction

Gradient boosting (Friedman, 2001; 2002) has been a powerful boosting (Schapire, 1990) based machine
learning algorithm that has achieved state-of-the-art accuracy in various real world tasks. Such as in particle
physics, biochemistry, finance, fraud detection, search engine recommendations, drug discovery and many
others (Chen & He, 2015; Wu et al., 2018; Nobre & Neves, 2019; Hajek et al., 2023; Burges, 2010; Li et al.,
2007; Gulin et al., 2011; Sikander et al., 2022; Sun et al., 2020; Natekin & Knoll, 2013; Roe et al., 2005; Wu
et al., 2010; Zhang & Haghani, 2015). Its significance lies in its ability to handle diverse data types and
complex feature engineering whilst effectively managing high-dimensional, noisy datasets with heterogeneous
features.

It builds a ’stronger’ predictive model by combining several weaker models through an iterative greedy process
that focuses on correcting the errors of previous models, which is based on sound theoretical evidence as
per (Kearns & Valiant, 1994). Popular implementations of gradient boosting include XGBoost (Chen &
Guestrin, 2016), which enhances traditional methods by introducing regularization to prevent overfitting and
tree pruning to improve efficiency, and LightGBM (Ke et al., 2017), which differs by using a leaf-wise tree
growth strategy instead of level-wise growth, and implements Gradient-based One-Side Sampling (GOSS)
to speed up training on large datasets while maintaining accuracy. Furthermore, other variants include
CatBoost (Prokhorenkova et al., 2018) which introduces a novel categorical encoding method to mitigate
target leakage, and using Artificial Neural Network, Principal Component Analysis and Random Projections
for feature extraction and combine this with gradient boosting as per AugBoost (Tannor & Rokach, 2019).

The main contribution of this paper, Model Selection based Gradient Boosting (MSBoost1), is to explore,
for the first time, the usage of model selection in order to find the base estimator with the least validation
error. Unlike the current methods which use a single base estimator, usually decision tree (Li et al., 1984;
Friedman et al., 2000; Rokach & Maimon, 2005), although previous research has been done in boosting other
models (Zięba et al., 2014). Benchmarking this method, MSBoost, on 50+ datasets indicate that this method
outperforms previous methods such as LightGBM and XGBoost, and based on the ablation studies performed

1 https://github.com/AnnonAIResearcher/MSBoost/tree/main/MSBoost-main
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it can be observed that MSBoost is particularly effective for small and noisy datasets. Thereby, MSBoost
would be particularly effective for tabular regression and classification problems where it is not feasible or
expensive to obtain thousands of high quality samples.

2 Method

(a) Conventional Gradient Boosting (b) Model Selection based Gradient Boosting (MS-
Boost)

Figure 1: Conventional Gradient Boosting methods usually use Decision Trees, also known as CART(s),
as the sole base estimator in order to minimize the residual errors over a number of iterations. Whereas,
MSBoost from a list of ML models dynamically would choose the one with the least residual errors, in parallel,
and use it as the base estimator for that layer.

Similar to gradient boosting, the goal of MSBoost is to approximate any arbitrary but particular F : Rm → R
with a series of additive and scaled Fi in order to minimize L(F(x), F (x)). For any given tabular dataset
D = {(xi, yi)}n

i=1, and a differentiable loss function L(y, F (x)). Wherein xi is an arbitrary but particular
vector xi = (x1

i , x2
i , . . . , xm

i ) containing m features, and y ∈ Rn, which has n samples is the target vector.
First, MSBoost initializes the first estimator as a constant term i.e F0(x) = arg mink

∑n
i=1 L(yi, k), which

turns out to be the arithmetic mean of the target values vector y. Next, for each subsequent iteration
i = 1, . . . , N it shall compute the pseudo residuals:

ri = −
[

∂L(y, Fi−1(x))
∂Fi−1(x)

]
(1)

and the base estimator for ith layer is based on a list of models M, such that:

hi(x) = arg min
∀M∈M

L(y, M(ri))(ri) (2)

Finally it would update the model for ith layer, i.e Fi(x) = Fi−1(x) + α · hi(x), and the final prediction,
ŷ = F (x) = F0(x) +

∑N
i=1 Fi(x).
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Algorithm 1 MSBoost Algorithm Pseudocode
Require: Tabular dataset D = {(xi, yi)}n

i=1, differentiable loss function L(y, F (x)), models M, number of
iterations N , learning rate α

1: Initialize F0(x) = arg mink

∑n
i=1 L(yi, k)

2: for i = 1 to N do
3: ri = −

[
∂L(y,Fi−1(x))

∂Fi−1(x)

]
4: hi(x) = arg min∀M∈M L(y, M(ri))(ri)
5: Fi(x) = Fi−1(x) + α · hi(x)
6: end for
7: return ŷ = F0(x) +

∑N
i=1 Fi(x) =0

2.1 Rationale for Model Selection in Gradient Boosting

Since model selection searches for arg minM∈M L(y, M(ri)) for each iteration i, ⇒ L(y, M(ri)) ≤
L(y, S(ri)),∀S which are static machine learning models say Decision Tree. And over a large number
of iterations N , ri,M (model selection, a dynamic method) < ri,S (for any static base estimator). This is
technically a "≤" inequality, but based on the inductive proposition that over a large number of iterations,
N , a static method would have higher E(ri) than dynamically selecting base estimators in each iteration,
the "<" inequality should hold true. Wherein the base case is E(ri,M) < E(ri,S), which is empirically true
as per (Caruana & Niculescu-Mizil, 2006; McElfresh et al., 2024) and theoretically justified by the No Free
Lunch Theorem (Wolpert & Macready, 1997; Wolpert, 2002). Furthermore, analysing the effect of specific
base estimators stacked over N iteration on the residual plots shall be an interesting obsevation, for example
a non-linear model like (Cortes & Vapnik, 1995) may have a more linear residual plot when compared to
that of a linear model, so a non linear base estimator in ith iteration may lead to a linear model in i + 1th

iteration. But this has been left for a avenue for future research.

Also, as empirically demonstrated by (Caruana & Niculescu-Mizil, 2006; McElfresh et al., 2024), there is
no one-size-fits-all baseline model which does well on all types of datasets, which empirically justifies as to
why boosting multiple estimators might be effective; and, increase the diversity of the base learners, which
potentially help to improve the generalization performance (i.e less variance) (Zhou, 2012).

2.2 Model Selection Methods2

Naïve Method The naïve way for model selection is to train all the available base estimators on ri in parallel.
This way would ensure that the model with the least residual errors is truly being selected for each layer and
precisely conforms to the theoretical rationale stated in Section 2.1. But this would have the largest time com-
plexity, i.e O(Number of Iterations× Base model with the highest time complexity i.e the limiting factor).

Random Sampling Sampling a subset of models from M, shall reduce the overall training time, but this
may not find the model with least possible validation residual errors.

Frequency & Probability Based Sampling Assuming that only a subset of models from M would
be used for most of the time due to the characteristics of the dataset being used. For the first I iterations,
this shall be a track of the frequency of the top N models, and for the rest of the iterations only train the
top N models initially found. Here I and N are hyper-parameters. A more vigorous method for this would
be to use Bayesian model selection (Wasserman, 2000; Ando, 2011; Chipman et al., 2001) using Dirchlet’s
distribution (Dirichlet, 1889; Dirichlet & Seidel, 1900) and train the models with the top N probabilities of
being used. (See Algorithm 2)

2The model selection was done on a validation dataset, subsampled from the training data.

3



Under review as submission to TMLR

Algorithm 2 Update Posterior Probabilities for Models
Require: New observed error values E, Prior probabilities for all models P (For the first iteration it is

assumed that all models have an equal prior probability.), Indices of trained models T , Dirichlet prior
parameters α, Penalty factor β = 0.7

1: PT ← [Pi | i ∈ T]
2: S ∼ Dir(α)1000

3: W← [] // Initialize weights
4: for s ∈ S do
5: w ← exp (−

∑n
i=1 log(si) · Ei) // Get probabilities

6: W←W ∪ {w}
7: end for
8: W← W∑

W
9: P′

T ← PT · (W · S)
10: P′ ← P // Initialize updated posterior probabilities
11: for i ∈ T do
12: P ′

i ← P′
T[i] // Update posterior probabilities for trained models

13: end for
14: U← {i | i /∈ T}
15: for i ∈ U do
16: P ′

i ← P ′
i · β // Penalize untrained models

17: end for
18: return P′ ← P′∑

P′ =0

3 Experiments & Discussion

Comparison with baselines MSBoost (random sampling half of the models from M for training in each
iteration) was compared3 with XGBoost and LightGBM. The source code of the experiments are available,
and can be reproduced (https://github.com/AnnonAIResearcher/MSBoost/tree/main/MSBoost-main).
Unfortunately due to constrained computational resources the benchmarking was done on 1K samples on
OpenML Vanschoren et al. (2014); Bischl et al. (2021) datasets with 0.01 lasso threshold to screen for irrelevant
features which would have increased the computational costs. Table 1 compares the mean squared error with
5 fold cross validation (CV), and Table 2 compares the log loss with 5 Fold CV; please check Appendix A.1
for entire results. Paired single tailed t-test reveal that MSBoost yields a statistically significant improvement
over LightGBM and XGBoost in metrics, with p-value << 0.001 (excluding outliers like wave_energy), and
p < 0.02 for standard deviation thus improving the bias-variance trade-off Briscoe & Feldman (2011). It
should be noted even without regularization, and GOSS and EFB of XGBoost and LightGBM respectively,
MSBoost has a statistically significant improvement. Thereby, this may have even better improvement over
previous methods if those techniques are incorporated in MSBoost. (The complete results can be found in
Appendix A.1, and Appendix B for source and description of these datasets.)

Impact of dataset dependent factors Figure 2 highlights how MSBoost and the baseline models perform
when noise, number of samples and others are progressively increased on Scikit-Learn’s Pedregosa et al. (2011)
make classification dataset Guyon (2003). This is a cherry-picked example, but similar trend was found on
all other Scikit-Learn’s synthetic datasets, their plots can be found in Appendix A.2. Using paired single tail
t-test that MSBoost has a p-value < 0.01 when compared to XGBoost and LightGBM for robustness against
noise and for impact of number of samples when compared to the baseline models.

3For now it wasn’t compared to CatBoost, since in order to have a fair comparison, since MSBoost’s implementation doesn’t
have targeted feature encoding for now.
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Table 1: Comparison (regression) with baselines based on mean squared error (MSE)

MSBoost LightGBM XGBoost

wave_energy 0.0 ± 0.0 1.9e+9 ± 2.9e+8 3.0e+9 ± 4.5e+8
Friedman 2 150 ± 31 385 ± 57 501 ± 58
Sparse Uncorr. 1.0 ± 0.15 1.5 ± 0.11 1.7 ± 0.22
kin8nm 2.1e-2 ± 1e-4 3.1e-2 ± 1.5e-3 3.6e-2 ± 1.3e-3
sarcos 32 ± 8 46 ± 15 48 ± 10
Moneyball 431 ± 24 588 ± 42 635 ± 39
yprop_4_1 7e-4 ± 1e-4 9e-4 ± 1e-4 1.1e-3 ± 1e-4
fps_benchmark 2354 ± 110 2917 ± 104 3758 ± 395
Zurich Transport 10 ± 0.7 12 ± 0.9 15 ± 1.4
Diabetes 3017 ± 333 3590 ± 433 3991 ± 651

Table 2: Comparison (classification) with baselines based on log loss

MSBoost LightGBM XGBoost

phoneme 0.34 ± 0.03 0.43 ± 0.07 0.43 ± 0.06
guillermo 0.56 ± 0.04 0.69 ± 0.10 0.77 ± 0.11
MagicTelescope 0.40 ± 0.04 0.48 ± 0.05 0.50 ± 0.05
heloc 0.58 ± 0.01 0.67 ± 0.08 0.78 ± 0.09
Bioresponse 0.50 ± 0.02 0.57 ± 0.08 0.59 ± 0.07
electricity 0.54 ± 0.06 0.61 ± 0.08 0.65 ± 0.09
Australian 0.50 ± 0.03 0.54 ± 0.06 0.64 ± 0.08
house_16H 0.38 ± 0.03 0.40 ± 0.07 0.42 ± 0.06
pol 0.17 ± 0.04 0.18 ± 0.05 0.15 ± 0.04
california 0.37 ± 0.03 0.39 ± 0.05 0.40 ± 0.06

Figure 2: Impact of dataset dependent various factors on log loss for Make Classification Dataset Guyon
(2003)

Impact of model selection methods The effect of number of base models trained on the model selection
methods is demonstrated in Figure 3, this is a cherry-picked example the rest can be found in Appendix A.3.
There is no statistically significant difference in choosing the bayes method over the frequency based method
(p = 0.28), but the bayes method turns out to be better than random sampling (p = 0.06).

Table 4: p-values for impact of number of models on model selection methods (Row vs. Column)
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Figure 3: Impact of changing number of models trained, for model selection methods (Scikit-Learn’s Make
Classification dataset)

Table 3: Comparison on small noisy real world datasets with significant social impact (†MSE & ‡Log Loss)

UCI ID Kelly et al. MSBoost LightGBM XGBoost

AIDS Clinical Trials† 890 8.1e-2 ± 6.5e-3 +7.1% ± +33.8% +13.5% ± -1.5%
Student Performance† 320 6.3 ± 0.81 +5.4% ± +15.3% +25.9% ± +42.2%
Energy Efficiency† 242 1.7 ± 0.18 +2.2% ± +16.9% +34.3% ± +19.1%
Diabetes† Pedregosa et al. (2011) 3017 ± 333 +18.9% ± +30.0% +32.9% ± +95.4%
Liver Disorders† 60 9.6 ± 1.19 +4.7% ± +2.6% +23.1% ± -0.3%
Heart Failure Clinical Records† 519 0.12 ± 0.03 +3.4% ± +35.95% +17.9% ± +37.1%
Thyroid Cancer Recurrence‡ 915 1.2 ± 0.88 +30.6% ± -13.1% +22.9% ± +4.1%
Rice (Cammeo and Osmancik)‡ 545 2.79 ± 0.10 +7.7% ± +130.3% +6.1% ± +31.0%
Blood Transfusion Service‡ 176 8.3 ± 0.48 +10.4% ± +0.3% +13.9% ± +148.0%
Acute Inflammations‡ 184 0.0 ± 0.0 0.3 ± 0.6 0.75 ± 1.2
SPECTF Heart‡ 96 6.4 ± 1.24 +4.2% ± +93.0% +2.1% ± +34.9%
Glioma Grading Clinical & ...‡ 759 4.8 ± 0.75 +33.9% ± +20.5% +34.8% ± -26.7%

Bayes Frequency Based Random Sampling

Bayes 1.00 0.71 0.82
Frequency Based 0.28 1.00 0.82
Random Sampling 0.06 0.17 1.00

Social Impact As mentioned above, there is statistically significant evidence that using model selection
along with gradient boosting, MSBoost, may improve bias-variance trade-off. Particularly on small and noisy
datasets, where usually other machine learning algorithms tend to overfit Lever et al. (2016); Oates & Jensen
(1997). Table 3 demonstrates a few possible tabular regression and classification problems with significant
social impact, where MSBoost turns out to be better than other methods in terms of MSE/log loss and
standard deviation (5 Fold CV).

Limitations & Further Prospects (i) Since it trains multiple models for each iteration, MSBoost, has a
enormously high time complexity. Where the limiting factor is SVM’s RBF kernel, which is quadratic. So
the worst case time complexity of MSBoost is approximately O(n2), whereas LightGBM and others have
a time complexity of O(n log n) (ii) In theory MSBoost can be extended to multiclass classification using
one-versus-rest or natively as well but for now MSBoost was not tested for multi-class classification. (iii) Due
to system resource constrains (AMD Ryzen 5 3550H & 8 GB RAM, Ubuntu 20.4 & 22.04.4 LTS), and the
enormous time complexity the test most of the benchmarking couldn’t be done for more than 1K samples,
although this was compensated by benchmarking on 50+ datasets with 5 fold CV. (iv) MSBoost, can be
combined with regularization methods, adaptive learning rate, GOSS, EFB, and targeted feature encoding
from XGBoost, LightGBM, and CatBoost, but for now this has been left for future work.
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4 Conclusion

This paper introduces a novel gradient boosting method, MSBoost, which uses model selection to find
base estimators for each iteration of gradient boosting. Empirical results show that there is a statistically
significant evidence that this method outperforms other popular gradient boosting methods (LightGBM &
XGBoost), both in terms of errors and standard deviation of the error. Furthermore, ablation studies reveal
that MSBoost outperforms other methods on (synthetic & real) small and noisy datasets, a domain where
machine learning algorithms usually struggle. Future work, shall incorporate techiques like targeted feature
encoding, GOSS, EFB and other from the current Gradient Boosting methods.

Broader Impact Statement

Our work significantly enhances the accuracy of classifiers and regressors, offering wide-ranging benefits across
various fields. In robotics, improved predictive models can optimize motion control and decision-making,
enabling more efficient automation. In healthcare, more accurate predictions can lead to earlier diagnoses,
personalized treatment plans, and better patient outcomes. In finance, precise models can enhance risk
assessment, fraud detection, and portfolio optimization, driving smarter investments and economic growth.
However, this increased accuracy also presents risks, particularly the potential for malicious use. For instance,
highly accurate models could be misused for unauthorized surveillance, discriminatory profiling, or financial
market manipulation. In healthcare, they may overfit sensitive data, leading to privacy concerns or biased
treatments. We underscore the need for ethical safeguards to mitigate these risks, advocating for fairness,
transparency, and responsible use, in alignment with the TMLR Ethics Guidelines.
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A Extended Results

A.1 Benchmarking Results

Table 5: Comparison (regression) with baselines based on mean squared error (MSE)
MSBoost LightGBM XGBoost

wave_energy 0.0 ± 0.0 1.979e+9 ± 2.967e+8 3.007e+9 ± 4.515e+8
SGEMM_GPU_kernel_performance 0.0006 ± 0.0001 0.0021 ± 0.0005 0.0005 ± 0.0001
Friedman 2 150.5209 ± 31.6582 385.8898 ± 57.2398 501.6854 ± 58.3089
Sparse Uncorrelated 1.0338 ± 0.1538 1.5732 ± 0.1136 1.7742 ± 0.2214
kin8nm 0.0217 ± 0.0016 0.0318 ± 0.0015 0.0364 ± 0.0013
sarcos 32 ± 8 46 ± 15 48 ± 10
Moneyball 431.9247 ± 24.2184 588.8988 ± 42.4500 635.3445 ± 39.3275
Parkinsons Telemonitoring 13.5233 ± 2.1851 18.2569 ± 3.4753 13.1871 ± 1.8204
yprop_4_1 0.0007 ± 0.0001 0.0009 ± 0.0001 0.0011 ± 0.0001
fps_benchmark 2354.4510 ± 110.9576 2917.2280 ± 104.0124 3758.8541 ± 395.4950
Zurich Transport 10.0047 ± 0.7051 12.3082 ± 0.9710 15.2101 ± 1.4006
Diabetes 3017.3830 ± 333.9345 3590.3865 ± 433.2183 3991.1318 ± 651.7501
medical_charges 0.0057 ± 0.0021 0.0067 ± 0.0019 0.0068 ± 0.0021
Airlines_DepDelay_1M 3.7258 ± 0.2437 4.3522 ± 0.3432 5.2531 ± 0.3028
visualizing_soil 24.9784 ± 6.9898 28.2629 ± 7.3992 22.4963 ± 9.5333
video_transcoding 146.3238 ± 51.3910 163.5462 ± 60.2620 206.6265 ± 64.0276
health_insurance 310.6828 ± 27.6937 345.2994 ± 31.4665 397.2537 ± 25.3154
grid_stability 0.0009 ± 0.0001 0.0010 ± 0.0001 0.0012 ± 0.0001
abalone 5.3366 ± 0.8634 5.8872 ± 1.2488 6.1480 ± 1.1375
Liver Disorders 9.1786 ± 1.1586 10.0795 ± 1.2242 11.8547 ± 1.1893
student_performance_por 8.1418 ± 1.3556 8.9132 ± 1.2743 12.5153 ± 1.6150
diamonds 1.93e+6 ± 3.44e+5 2.09e+6 ± 4.88e+5 2.30e+6 ± 4.59e+5
auction_verification 9.34e+7 ± 1.15e+7 1.00e+8 ± 9.79e+6 1.52e+8 ± 2.04e+7
cpu_act 10.2950 ± 1.5068 10.7118 ± 1.9016 16.6299 ± 10.0559
Student Performance 6.3849 ± 0.9935 6.5426 ± 0.9590 7.3635 ± 1.2074
pol 103.6665 ± 21.9906 105.9581 ± 42.7356 126.1512 ± 46.4249
AIDS Clinical Trials Group Study 0.0857 ± 0.0065 0.0868 ± 0.0087 13.1871 ± 1.8204
Bike_Sharing_Demand 12307.1564 ± 1427.9618 12461.6368 ± 1476.1868 13478.9580 ± 1027.8582
srsd-feynman_hard 2.549e-70 2.578e-70 2.984e-70
seattlecrime6 151041.8081 ± 3619.6563 151809.1711 ± 3291.9561 151684.2628 ± 3180.8946

Table 6: Comparison (classification) with baselines based on log loss
MSBoost LightGBM XGBoost

phoneme 0.3467 ± 0.0371 0.4324 ± 0.0750 0.4393 ± 0.0623
guillermo 0.5644 ± 0.0461 0.6988 ± 0.1070 0.7725 ± 0.1146
MagicTelescope 0.4020 ± 0.0428 0.4817 ± 0.0510 0.5090 ± 0.0512
heloc 0.5888 ± 0.0130 0.6773 ± 0.0831 0.7849 ± 0.0932
Bioresponse 0.5012 ± 0.0264 0.5705 ± 0.0811 0.5921 ± 0.0752
electricity 0.5462 ± 0.0645 0.6137 ± 0.0818 0.6530 ± 0.0997
Australian 0.5087 ± 0.0318 0.5459 ± 0.0691 0.6432 ± 0.0853
house_16H 0.3847 ± 0.0361 0.4086 ± 0.0702 0.4254 ± 0.0681
pol 0.1738 ± 0.0489 0.1839 ± 0.0598 0.1524 ± 0.0468
Bioresponse 0.5431 ± 0.0805 0.5705 ± 0.0811 0.5921 ± 0.0752
california 0.3736 ± 0.0345 0.3911 ± 0.0552 0.4050 ± 0.0625
heloc 0.6507 ± 0.0872 0.6773 ± 0.0831 0.7849 ± 0.0932
higgs 0.7332 ± 0.1404 0.7543 ± 0.0862 0.8221 ± 0.1008
compas-two-years 0.6986 ± 0.1059 0.7138 ± 0.0543 0.8056 ± 0.0742
Higgs 0.7255 ± 0.0842 0.7409 ± 0.0540 0.8661 ± 0.0510
MiniBooNE 0.2995 ± 0.0294 0.3043 ± 0.0568 0.3087 ± 0.0610
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Table 7: (Absolute values) Comparison on small noisy real world datasets with significant social impact
(†MSE & ‡Log Loss)

UCI ID Kelly et al. MSBoost LightGBM XGBoost

AIDS Clinical Trials† 890 8.1e-2 ± 6.5e-3 8.7e-2 ± 1.1e-2 9.2e-2 ± 8.6e-3
Student Performance† 320 6.3 ± 0.81 6.6 ± 0.93 7.9 ± 1.15
Energy Efficiency† 242 1.7 ± 0.18 1.74 ± 0.21 2.28 ± 0.26
Diabetes† Pedregosa et al. (2011) 3017 ± 333 3585 ± 433 4010 ± 651
Liver Disorders† 60 9.6 ± 1.19 10.05 ± 1.22 11.82 ± 1.18
Heart Failure Clinical Records† 519 0.12 ± 0.03 0.124 ± 0.041 0.141 ± 0.047
Thyroid Cancer Recurrence‡ 915 1.2 ± 0.88 1.57 ± 0.77 1.47 ± 0.92
Rice (Cammeo and Osmancik)‡ 545 2.79 ± 0.10 3.00 ± 0.23 2.96 ± 0.13
Blood Transfusion Service‡ 176 8.3 ± 0.48 9.16 ± 0.48 9.46 ± 1.19
Acute Inflammations‡ 184 0.0 ± 0.0 0.003 ± 0.006 0.0075 ± 0.012
SPECTF Heart‡ 96 6.4 ± 1.24 6.67 ± 1.2 6.53 ± 1.29
Glioma Grading Clinical & ...‡ 759 4.8 ± 0.75 6.43 ± 0.9 6.47 ± 0.55

A.2 Impact of Data Dependent Factors

This section contains all the plots for impact of data dependent factors on Scikit-Learn’s Pedregosa et al.
(2011) simulated datasets. Lower area under the loss curve indicate better performance.

A.2.1 Classification Datasets4

Figure 4: Make Classification Hastie et al. (2009b)

4Due to computational and hardware constrains the jupyter kernel crashed when the number of samples went more than
around 5K, so it wasn’t done on 10K samples like regression.
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Figure 5: Hastie 10 Dataset Hastie et al. (2009b)

Figure 6: Gaussian Quantiles Hastie et al. (2009a)

Figure 7: Make Blobs

Figure 8: Make Moons
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A.2.2 Regression Datasets

Figure 9: Make Circles

Figure 10: Sparse Uncorrelated Celeux et al. (2012)
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Figure 11: Friedman 1 Friedman (1991); Breiman (1996)

Figure 12: Friedman 2 Friedman (1991); Breiman (1996)

Figure 13: Friedman 3 Friedman (1991); Breiman (1996)
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Figure 14: Swiss Roll Marsland (2011)

Figure 15: S Curve

15



Under review as submission to TMLR

A.3 Impact of Model Selection Methods

(a) Make Classification (b) Make Hastie

(c) Make Gaussian Quantiles (d) Sparse Uncorrelated

(e) Friedman 1 (f) Friedman 2

(g) Friedman 3 (h) Swiss Roll

(i) S Curve

Figure 16: Impact of number of models for model selection methods
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B Dataset Sources & Description5

B.1 Benchmarking Datasets

B.1 Benchmarking Datasets

This section contains descriptions for selected datasets used for benchmarking. Please refer to the original
sources Vanschoren et al. (2014); Bischl et al. (2021); Pedregosa et al. (2011); Kelly et al. for descriptions for
all the datasets used in Table 5 & 6.

• wave_energy: This data set consists of positions and absorbed power outputs of wave energy converters
(WECs) in four real wave scenarios from the southern coast of Australia. The data is obtained from an
optimization method (blackbox optimization) with the goal of finding the optimal buoys placement. Each
instance represents wave energy returns for different placements of 16 buoys.

• Friedman 2: y(X) = (X[:, 0]2 + (X[:, 1] × X[:, 2] −
√

1
X[:,1]∗X[:,3]))2 + noise × N(0, 1)

• Sparse Uncorrelated: X ∼ N(0, 1); y(X) = X[:, 0] + 2 × X[:, 1] − 2 × X[:, 2] − 1.5 × X[:, 3]

• kin8nm: A realistic simulation of the forward dynamics of an 8 link all-revolute robot arm. The task is to
predict the distance of the end-effector from a target based on angular positions of the joints.

• sarcos: Dataset related to an inverse dynamics problem for a seven degrees-of-freedom SARCOS anthropo-
morphic robot arm. Predict joint torques from joint positions, velocities, and accelerations.

• Moneyball: Dataset used in baseball analytics, focusing on statistics like on-base percentage (OBP) and
slugging percentage (SLG) to predict player performance.

• yprop_4_1: Dataset used in the tabular data benchmark, transformed accordingly, for regression on
categorical and numerical features.

• fps_benchmark: Dataset containing FPS measurements of video games executed on computers, characterized
by CPU and GPU specifications and game settings.

• Zurich Transport: Zurich public transport delay data, cleaned and prepared for analysis.

• phoneme: Dataset to distinguish between nasal (class 0) and oral sounds (class 1) using harmonics and energy
ratios.

• guillermo: The challenge introduces diverse, real-world datasets formatted uniformly for binary classification
tasks, evaluated by AUC. Participants use preprocessed matrices and adhere to time-constrained evaluations
on Codalab.

• MagicTelescope: Simulation data from a ground-based atmospheric Cherenkov gamma telescope, detecting
high-energy gamma particles.

• heloc: Dataset used in the tabular data benchmark, transformed accordingly, for classification on numerical
features.

• Bioresponse: Predict biological responses of molecules based on chemical properties and molecular descriptors.

• electricity: Dataset collected from the Australian New South Wales Electricity Market, containing 45,312
instances over a period from 7 May 1996 to 5 December 1998.

• Australian: Australian Credit Approval dataset, anonymized and converted to ARFF format, used in credit
card application analysis.

• house_16H: Binarized version of the house dataset, converting numeric target features to a two-class nominal
target feature based on mean values.

• pol: Dataset used in the tabular data benchmark for classification on numerical features, related to a
telecommunication problem.

• california: The dataset includes data from all California block groups in the 1990 Census, averaging 1425.5
individuals per group in compact areas varying with population density. It features 20,640 observations across
9 variables, excluding groups with zero entries, with the dependent variable being ln(median house value).

5GPT-3.5 was used to summarize the data description from original sources.
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B.2 Social Impact Datasets
B.2 Social Impact Datasets

• AIDS Clinical Trials Group Study 175: The AIDS Clinical Trials Group Study 175 Dataset contains healthcare
statistics and categorical information about patients who have been diagnosed with AIDS. This dataset was
initially published in 1996. The prediction task is to predict whether or not each patient died within a certain
window of time or not.

• Student Performance: The dataset analyzes student achievement in two Portuguese secondary schools,
covering grades, demographics, and school-related factors. It includes separate datasets for Mathematics
(mat) and Portuguese language (por), with a strong correlation between final grade (G3) and earlier grades
(G2 and G1), essential for prediction and analysis according to Cortez and Silva (2008).

• Energy Efficiency: The dataset consists of 768 samples representing 12 different building shapes simulated
in Ecotect. Variations include glazing area, distribution, orientation, and other parameters, generating 8
features per sample. The objective involves predicting two real-valued responses or, alternatively, using the
rounded responses for multi-class classification.

• Diabetes: Contains 442 samples with 10 numeric features related to diabetes progression, including age, sex,
BMI, blood pressure, and blood serum measurements. Target is a continuous measure of disease progression
one year after baseline.

• Liver Disorders: The dataset contains records of male individuals with 5 blood test variables possibly related
to liver disorders from alcohol consumption. The 7th field serves as a train/test selector, not as a dependent
variable for liver disorder presence/absence; researchers should use the dichotomized 6th field (drinks) for
classification.

• Heart Failure Clinical Records: This dataset contains the medical records of 299 patients who had heart
failure, collected during their follow-up period, where each patient profile has 13 clinical features.

• Differentiated Thyroid Cancer Recurrence: This data set contains 13 clinicopathologic features aiming to
predict recurrence of well differentiated thyroid cancer. The data set was collected in duration of 15 years
and each patient was followed for at least 10 years.

• Rice (Cammeo and Osmancik): A study was conducted on Osmancik and Cammeo rice species, prominent in
Turkey since 1997 and 2014 respectively. 3810 rice grain images were analyzed, deriving 7 morphological
features per grain. Osmancik grains are noted for their wide, long, glassy, and dull appearance, while Cammeo
grains exhibit similar characteristics with a focus on width and length.

• Blood Transfusion Service Center: This study utilized data from the Blood Transfusion Service Center
in Hsin-Chu City, Taiwan, for a classification problem. The dataset comprises 748 donor records selected
randomly, with features including R (Recency), F (Frequency), M (Monetary), T (Time since first donation),
and a binary variable indicating blood donation in March 2007 (1 for donated, 0 for not donated). The
objective was to develop a RFMTC marketing model using these variables.

• Acute Inflammations: The dataset was crafted by a medical expert to support an expert system for diagnosing
two urinary system diseases: acute inflammation of the urinary bladder and acute nephritis. It utilizes Rough
Sets Theory for rule detection, with each instance representing a potential patient.

• SPECTF Heart: Data on cardiac Single Proton Emission Computed Tomography (SPECT) images. Each
patient classified into two categories: normal and abnormal. The dataset describes diagnosing of cardiac
Single Proton Emission Computed Tomography (SPECT) images. Each of the patients is classified into two
categories: normal and abnormal. The database of 267 SPECT image sets (patients) was processed to extract
features that summarize the original SPECT images. As a result, 44 continuous feature pattern was created
for each patient.

• Glioma Grading Clinical and Mutation Features: The dataset focuses on gliomas, primary brain tumors
graded as LGG (Lower-Grade Glioma) or GBM (Glioblastoma Multiforme), based on histological/imaging
criteria and molecular mutations. It includes the most frequently mutated 20 genes and 3 clinical features
from TCGA-LGG and TCGA-GBM projects. The goal is to predict the glioma grade (LGG or GBM) using
these features, aiming to identify the optimal subset for improved diagnostic accuracy and cost reduction in
molecular testing for glioma patients.
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