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Abstract

Natural gradient methods are appealing in policy optimization due to their invariance to
smooth reparameterization and their ability to account for the local geometry of the policy
manifold. These properties often lead to improved conditioning of the optimization problem
compared to Euclidean policy gradients. However, their reliance on Monte Carlo estima-
tion introduces high variance and sensitivity to hyperparameters. In this paper, we address
these limitations by integrating Randomized Quasi-Monte Carlo (RQMC) sampling into the
natural actor-critic (NAC) framework. We revisit the NAC linear system and show that,
under imperfect value approximation, the NAC update decomposes exactly into the true
natural gradient plus a Fisher-metric projection of the Bellman residual onto the score-
feature span. We further develop RQMC-based NAC estimators that replace IID sampling
with randomized low-discrepancy trajectories. We provide a variance analysis showing that
these RQMC-based estimators strictly reduce estimator variance under mild regularity con-
ditions, thereby reducing the propagation of Bellman-residual error into the natural-gradient
update. Empirical results on certain reinforcement learning benchmarks demonstrate that
our RQMC-enhanced algorithms consistently match or improve upon the performance and
stability of their vanilla counterparts.

1 Introduction

Reinforcement learning (RL) finds optimal solutions to sequential decision-making problems, where an agent
seeks a set of decision rules that maximize cumulative reward through repeated interaction with an en-
vironment (Sutton et al., 1998; Bertsekas, 2025). Among the spectrum of RL algorithms, policy-gradient
actor–critic methods are appealing due to their compatibility with continuous action spaces, their use of
flexible function approximators, and their applicability to high-dimensional nonlinear systems (Sutton et al.,
1999; Peters et al., 2005). The policy-gradient and actor–critic methods (Williams, 1992; Sutton et al., 1999;
Konda & Tsitsiklis, 1999; Konda & Borkar, 1999; Baxter & Bartlett, 2001) avoid explicit computation of
exact value functions, instead calibrate the policy parameters directly through averaged or bootstrapped
gradient estimates. However, standard Euclidean gradients can become trapped in plateau regions of the
objective landscape, where their magnitude is extremely small and provides little directional guidance for
further improvement (Kakade, 2001). Moreover, when optimizing over parameterized probability distribu-
tions, Euclidean distance between parameter vectors does not necessarily correspond to similarity between
the induced policies.

Natural gradient methods (Amari, 1998; Martens, 2020) and their reinforcement-learning variant, the natural
policy gradient (NPG) (Kakade, 2001; Peters et al., 2005; Khodadadian et al., 2021), address these limitations
by replacing Euclidean geometry with the Fisher–Rao information metric, the canonical Riemannian metric
on statistical manifolds. Under this geometry, which is equivalently induced by the Kullback–Leibler (KL)
divergence, the steepest-descent direction is not given by the ordinary gradient rather by the natural gradient
(Amari, 1998; Martens & Grosse, 2015; Martens, 2020), which preconditions updates using the Fisher infor-
mation matrix. The resulting updates correspond to meaningful changes in policy behavior, are invariant to
reparameterization, and tend to be more stable when optimizing stochastic policies. Linear convergence of
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the natural policy gradient has been proven for tabular and softmax parameterizations (Khodadadian et al.,
2021), confirming its geometric efficiency.

Classical natural gradient methods, though, provide invariant, geometry-aware updates, they do not spec-
ify how to get a good estimate of that update from the data. Monte Carlo (MC) method (Metropolis &
Ulam, 1949; Mohamed et al., 2020) has been the most common method for approximating policy gradient
and natural policy gradient. Despite their widespread use and asymptotic convergence guarantees, Monte
Carlo methods can suffer from slow convergence rates O(N−1/2) and high variance, particularly in high-
dimensional problems using fewer sample set. Variance reduction for policy gradients has been extensively
studied through baseline subtraction (Weaver & Tao, 2001), control variates (Grathwohl et al., 2018; Tucker
et al., 2017), generalized advantage estimation (Schulman et al., 2016), importance-sampling corrections
(Precup, 2000; Jiang & Li, 2016), and recursive variance reduction methods (Xu et al., 2020a). Analyses
of REINFORCE have explored its sample-efficiency properties under Monte Carlo rollouts (Zhang et al.,
2021), yet such methods remain fundamentally tied to independent trajectory sampling and therefore do
not address the variance arising from the trajectory-generation process itself. While recent works have pro-
vided non-asymptotic convergence rates for natural actor-critic (Xu et al., 2020b), the performance of these
algorithms in practice remains heavily influenced by the variance of their gradient estimates.

Quasi-Monte Carlo methods (QMC) offer a solution to this problem by replacing the random sampling of
Monte Carlo with a more deterministic low-discrepancy point set (Niederreiter, 1978; Papageorgiou, 2003;
Faure, 1982; Halton, 1960) such as Sobol, Halton Faure and Niederreiter sequences and provides an efficient
approach to numerical integration (Halton, 1960), simulation and optimization. QMC is shown to obtain
O(1/N) rate of convergence (Papageorgiou, 2003) for integrands with bounded variation in the sense of
Hardy and Krause and lower effective dimension (Owen, 1997b). Moreover, when multiple independent
samples are needed, one can introduce random perturbations to a QMC point set and get a set of new random
points in a way that preserves the low-discrepancy nature (Owen, 1995; L’Ecuyer, 2018). This new point set
is referred to as the randomized quasi-Monte Carlo (RQMC) (Owen, 1995) point set. The efficiency of RQMC
sampling for policy evaluation and policy learning has been empirically studied in (Arnold et al., 2022),
where RQMC sampling is used as a drop-in replacement of Monte Carlo sampling, in vanilla policy gradient
algorithm and soft actor-critic algorithm (Haarnoja et al., 2018). In (Arnold et al., 2022) it is shown that
by generating trajectories from actions sampled using RQMC point sets, improved estimates of policy gradient
can be achieved while reducing variance in policy value estimates. Furthermore, this enhancement can be
accomplished with fewer samples. Array-RQMC (L’Ecuyer et al., 2008) applies RQMC point sets to simulate
finite parallel realizations of a Markov chain by sampling next states directly from the state space, rather
than actions from the action space. Each RQMC point has dimensionality matching the state space, enabling
coordinated, low-discrepancy sampling across trajectories. This leads to substantial variance reduction due
to the induced stratification and negative dependence across state transitions (Puchhammer et al., 2021;
Abdellah et al., 2019).

1.1 Our Contribution

In this paper, we provide a theoretical analysis of the Natural Actor–Critic framework with respect to stochas-
tic estimation error on natural-gradient updates. We revisit NAC from the perspective of the compatible-
feature solution and show that, when the critic only approximately satisfies the Bellman equation, the result-
ing update admits a clear structural decomposition: the estimate produced by the critic consists of the true
natural gradient together with a Fisher-metric projection of the Bellman residual onto the score feature space.
We further show how randomness in this solution propagates through Fisher preconditioning, directly influ-
encing update magnitude, conditioning, and stability. Prior analyses of bias in natural actor–critic methods
(Thomas, 2014; Wen et al., 2021) only examine discounting mismatch or the generic gap between actor–critic
and policy-gradient updates, but do not provide this projection-based characterization specific to natural ac-
tor–critic with compatible features. Our analysis makes explicit that the behaviour of NAC is not determined
solely by information geometry but also by the variance properties of the estimator used to approximate the
natural gradient. Based on this perspective, we propose a variance-reduced natural-gradient estimator based
on low-discrepancy sampling. By incorporating randomized quasi–Monte Carlo (RQMC) constructions into
the estimation of the compatible-feature solution, we obtain an unbiased estimator whose dispersion is prov-
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ably reduced relative to standard Monte Carlo sampling. Although randomized quasi–Monte Carlo methods
have been applied to reinforcement learning (Arnold et al., 2022), specifically for generic policy-gradient and
standard actor–critic algorithms, and their use has not been examined within the natural actor–critic frame-
work. To our knowledge, ours is the first to integrate Array-RQMC sampling directly into the NAC linear
system and to establish that randomized low-discrepancy arrays yield unbiased estimators of all NAC compo-
nents. We specifically leverage Array-RQMC methods, which extend QMC to sequence simulation, multiple
parallel Markov chains are simulated with synchronized low-discrepancy inputs at each step. This provides a
principled pathway for transferring the variance-reduction and convergence benefits of Array-RQMC Markov
chain simulation into natural actor–critic methods.

2 Background

In this paper, we consider the standard reinforcement learning (RL) framework (Sutton et al., 1998; Put-
erman, 2014), where the underlying system is modeled as a discrete-time Markov decision process (MDP).
The latent MDP consists of a finite set of states S and actions A , the values of which at each time step
t ∈ {0, 1, 2...} are represented as st ∈ S and at ∈ A . The dynamics of the underlying system are modeled
using state transition probabilities P(st+1 = s′ | st = s,at = a) and the state transition reward r(st,at) ∈ R,
∀s, s′ ∈ S , a ∈ A , t ∈ {0, 1, 2....}. The agent follows a stationary stochastic policy πθ(·|s), parameterized
by θ ∈ Rq, which defines a distribution over actions given state s. In general, the goal of RL is to find a
policy that optimizes the cost function J(θ), which is a measure of the performance of the policy πθ. The
natural actor-critic algorithm (Peters et al., 2005) optimizes the cost function based on the mean cumulative
γ-discounted rewards, where γ ∈ [0, 1) serves as the discount factor. The objective is given by:

Jγ(θ) = Eat∼πθ(·|st)

[
τ−1∑
t=0

rt
∣∣ s0 ∼ µ

]
, (1)

where µ is the initial distribution and τ be a geometric stopping time, independent of the trajectory, with
tail distribution P(τ > t) = γ t. By independence of τ and the trajectory, and by Tonelli’s theorem,
Eπθ

[∑τ−1
t=0 rt | s0 ∼ µ

]
=
∑∞
t=0 P(τ > t)Eθ[rt | s0 ∼ µ] =

∑∞
t=0 γ

t Eπθ [rt | s0 ∼ µ]. Hence,

Jγ(θ) =
∞∑
t=0

γt Eπθ [rt | s0 ∼ µ] =
∞∑
t=0

γt
∑
s∈S

Pπθ (st = s | s0 ∼ µ)
∑
a∈A

πθ(a|s)r(s, a)

=
∑
s∈S

[ ∞∑
t=0

γt Pπθ (st = s | s0 ∼ µ)
] ∑
a∈A

πθ(a|s)r(s, a) = 1
1− γ

∑
s∈S

dπθγ,µ(s)
∑
a∈A

πθ(a|s)r(s, a), (2)

where dπθγ,µ(s) = (1− γ)
∑∞
t=0 γ

tPπθ (st = s|s0 ∼ µ) is the discounted stationary distribution of state s under
the policy πθ. The value function V π(s) is defined as V πθγ (s) =

∑
a∈A πθ(a|s)Qπθγ (s, a), where

Qπθγ (s, a) = Eπθ

[ ∞∑
t=0

γtrt | s0 = s,a0 = a

]
. (3)

The gradient of the cost function w.r.t. the policy parameters θ is as follows (Sutton et al., 1999),

∇θJ(θ) =
∑
s∈S

dπθγ,µ(s)
∑
a∈A

∇θπθ(a|s)Qπθγ (s, a), (4)

We can also subtract a baseline function for the reduction in variance since a baseline function always
has a mean zero with respect to the policy. The gradient of the cost function then becomes, ∇θJ(θ) =∑
s d

πθ
γ,µ(s)

∑
a∇θπθ(a|s)(Qπθγ (s, a) − b(s)). Since γ and µ are fixed, we let dπθ = dπθγ,µ, Qπθ = Qπθγ and

V πθ = V πθγ .

In (Amari, 1998), it is shown that when optimizing a function in a Riemannian space, the natural gradient
gives the direction of the steepest descent. This is applicable in reinforcement learning because the cost
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Figure 1: The standard gradient follows Euclidean steepest descent, whereas the natural gradient adapts to
the geometry of the parameter space.

function J(θ) can be viewed as a function over the set of probability distributions {πθ, θ ∈ Rq} such that
each state s is associated with a probability manifold that has a Riemannian structure. This manifold
captures the intrinsic geometry of the policy space, accounting for the fact that small changes in parameters
can have different effects depending on the current policy. Also, two parameter vectors that induce the same
probability distribution over the trajectory space should be considered the same point, and the distance
between two policies should be measured by how different their probability distributions are, not by the
Euclidean distance between their parameters. The natural gradient update can be seen as a first-order
update that preconditions the gradient with the Fisher information matrix, which accounts for the curvature
of the policy space (Kakade, 2001) and is defined as follows:

∇GJ(θ) = G(θ)−1∇θJ(θ) (5)

where G is the Fisher information matrix associated with the probability distribution πθ(a|s),

G(θ) = E s∼dπθ
a∼πθ(·|s)

[
(∇θ log πθ(a|s))(∇θ log πθ(a|s))⊤]

The natural gradient preconditions the update with G(θ)−1, which accounts for the intrinsic geometry of the
parameter manifold. This ensures that a unit step in the gradient direction corresponds to a unit of change
in the model’s predictions, not its parameters, leading to more stable and efficient convergence. In (Kakade,
2001), it is shown that if fw(s, a) is a function used to approximate the state-action value Qπ(s, a), such
that fw(s, a) meets the criteria posed in (Sutton et al., 1999), then the parameters for the approximation,
gives the natural gradient of the cost function, i.e., w = G(θ)−1∇θJ(θ). In (Peters et al., 2005), actor-
critic algorithms(Konda & Tsitsiklis, 1999) were introduced, integrating natural policy gradient with linear
function approximation within an LSTD-λ framework (Boyan, 1999) to estimate the value of w. Subsequently,
(Bhatnagar et al., 2007) extended these methods by proposing fully incremental algorithms that estimate
the inverse Fisher information matrix and the natural gradient in an online setting. It is important to note
that the geometry of the policy manifold is locally captured by G(θ), and any noise in its estimate can lead
to biased or unstable natural gradient directions.

3 Natural Actor Critic

Here, we establish a rigorous analysis of the natural actor-critic algorithm in the discounted setting, under
linear function approximation. Analytically, the natural gradient is defined through the Fisher metric, prac-
tical algorithms must estimate this direction from sampled trajectories, where the true advantage function
is unknown. The natural actor–critic framework addresses this by employing linear function approximation,
which enables the natural gradient to be recovered from a sample-based linear system. Specifically, we
consider a linear function approximation for the advantage function: let fw(s, a) = ψ(s, a)Tw be an approxi-
mation of the advantage function Aπθ (s, a), where w ∈ Rq is a parameter vector and ψ(s, a) = ∇θ log πθ(a|s)
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is the state-action score (policy gradient) feature vector. Similarly, the value function V πθ is approximated
by a linear function: V πθ (s) ≈ ϕ(s)⊤v, with state feature vector ϕ : S → Rd and v ∈ Rd. In this paper, we
assume the following:
Assumption 1. For θ ∈ Rq, the Markov chain induced by πθ is ergodic, i.e., aperiodic, and irreducible.
Assumption 2. The features and rewards are bounded, i.e., ∃Cϕ, Cψ, Cr > 0, s.t., ∥ϕ(s)∥ ≤
Cϕ, ∥ψ(s, a)∥ ≤ Cψ, |r(s, a)| ≤ Cr, ∀s, a.
Assumption 3. The policy π(a|s, θ) is continuously differentiable and bounded in gradients, with constants
M∇π > 0 satisfying: ∥∇θπ(a|s, θ)∥ ≤M∇π, ∀s, a, θ.
Assumption 4. The gradient of the cost objective ∇θJ(θ) is Lipschitz continuous.

∃LJ > 0, ∥∇θJ(θ)−∇θJ(θ′)∥ ≤ LJ∥θ − θ′∥,∀θ, θ′ ∈ Θ.

Assumption 5. The Fisher Information Matrix, defined asG(θ) = Es∼dπ,a∼π(·|s,θ)[ψ(s, a)ψ(s, a)⊤], satisfies:

(a) Positive definiteness: ∃λmin > 0 and λmax <∞ such that λminI ⪯ G(θ) ⪯ λmaxI, ∀θ ∈ Θ.

(b) Lipschitz continuity: ∃LG > 0 such that ∥G(θ)−G(θ′)∥ ≤ LG∥θ − θ′∥,∀θ, θ′ ∈ Θ.

Assumption 6. For each θ ∈ Θ, the augmented feature vector ϕ̂(s, a) = [ψ(s, a)⊤, ϕ(s)⊤]⊤ is linearly
independent dπθ × πθ-almost surely.
Remark 1. Assumption 2 trivially follows for finite state and action spaces. Further, under Assumptions
2 and 3, and with the state and action spaces finite, it follows that both the policy gradient ∇θJ(θ) and
natural gradient ∇GJ(θ) are also bounded. Specifically,

1. The policy gradient satisfies ∥∇θJ(θ)∥ ≤ MJ := |A| ·M∇π · Cr1−γ for all θ ∈ Θ. This follows from policy
gradient theorem and Assumptions 2 and 3, since

∥∇θJ(θ)∥ ≤
∑
s∈S

dπθ (s)
∑
a∈A
∥∇θπθ(a|s)∥ · |Qπθ (s, a)|

≤
∑
s∈S

dπθ (s)
∑
a∈A

M∇π ·
Cr

1− γ = M∇π|A| ·
Cr

1− γ .

2. The natural gradient satisfies ∥∇GJ(θ)∥ ≤M∇G
:= MJ/λmin for all θ ∈ Θ. Indeed,

∥∇GJ(θ)∥ = ∥G(θ)−1∇θJ(θ)∥ ≤ ∥G(θ)−1∥ · ∥∇θJ(θ)∥ ≤ MJ

λmin
.

The last inequality follows from Part 1 and Assumption 5(a), (G(θ) ⪰ λminI, so ∥G(θ)−1∥ ≤ 1/λmin).

To ensure that the curvature of the policy manifold does not distort gradients arbitrarily, we first establish
that the natural-gradient operator varies smoothly with the parameters.
Lemma 1. (Lipschitz Continuity of Natural Gradient): Under Assumptions 4 and 5, the natural
gradient ∇GJ(θ) is Lipschitz continuous, i.e., there exists L∇G

> 0 such that

∥∇GJ(θ)−∇GJ(θ′)∥ ≤ L∇G
∥θ − θ′∥, ∀θ, θ′ ∈ Θ,

with Lipschitz constant L∇G
= LJ

λmin
+ LGMJ

λ2
min

.

Proof. Let θ, θ′ ∈ Θ. Then:

∥∇GJ(θ)−∇GJ(θ′)∥ = ∥G(θ)−1∇θJ(θ)−G(θ′)−1∇θJ(θ′)∥
≤ ∥G(θ)−1(∇θJ(θ)−∇θJ(θ′))∥+ ∥(G(θ)−1 −G(θ′)−1)∇θJ(θ′)∥
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For the first term, using Assumption 4, we get

∥G(θ)−1(∇θJ(θ)−∇θJ(θ′))∥ ≤ 1
λmin

LJ∥θ − θ′∥ (6)

For the second term, using the identity G(θ′)−1 −G(θ)−1 = G(θ′)−1(G(θ)−G(θ′))G(θ)−1:

∥(G(θ)−1 −G(θ′)−1)∇θJ(θ′)∥ = ∥G(θ)−1(G(θ′)−G(θ))G(θ′)−1∇θJ(θ′)∥
≤ ∥G(θ)−1∥ · ∥G(θ′)−G(θ)∥ · ∥G(θ′)−1∇θJ(θ′)∥

≤ 1
λmin

· LG∥θ − θ′∥ · MJ

λmin

= LGMJ

λ2
min
∥θ − θ′∥ (7)

The claim follows by combining (6) and (7).

The geometric interpretation of the natural gradient is rooted in the intimate connection between the Fisher
information matrix and the local structure of the policy manifold. To make this relationship precise, the
following result establishes a second-order approximation of the KL divergence between a policy and a
perturbed version of itself.
Theorem 2. Let πθ(a|s) be a twice-differentiable policy parameterized by θ ∈ Rd, and let δ ∈ Rd be a small
perturbation vector. Under the state distribution dπθ (s), the Kullback-Leibler divergence between πθ and πθ+δ
satisfies:

DKL(πθ ∥ πθ+δ) = 1
2δ

⊤G(θ)δ +O(∥δ∥3),

Proof. For each state s, consider the KL divergence between the action distributions:

Ds(θ, δ) = DKL(πθ(·|s) ∥ πθ+δ(·|s)) =
∑
a∈A

πθ(a|s) log πθ(a|s)
πθ+δ(a|s)

.

Now we define the log-ratio term:

Ls(a, δ) = log πθ(a|s)
πθ+δ(a|s)

= − log πθ+δ(a|s) + log πθ(a|s).

We expand log πθ+δ(a|s) around θ as follows:

log πθ+δ(a|s) = log πθ(a|s) + (∇θ log πθ(a|s))⊤
δ + 1

2δ
⊤ (∇2

θ log πθ(a|s)
)
δ +O(∥δ∥3).

Substituting back, we get

Ls(a, δ) =− (∇θ log πθ(a|s))⊤
δ − 1

2δ
⊤ (∇2

θ log πθ(a|s)
)
δ +O(∥δ∥3).

Now we compute Ds(θ, δ) as the expected value of Ls(a, δ) under πθ(·|s) as follows:

Ds(θ, δ) = Ea∼πθ(·|s) [Ls(a, δ)]

=− δ⊤Ea∼πθ(·|s) [∇θ log πθ(a|s)]−
1
2δ

⊤Ea∼πθ(·|s)
[
∇2
θ log πθ(a|s)

]
δ +O(∥δ∥3).

The first-order term vanishes due to a fundamental property of score functions:

Ea∼πθ(·|s) [∇θ log πθ(a|s)] =
∑
a

πθ(a|s)
∇θπθ(a|s)
πθ(a|s)

= ∇θ
∑
a

πθ(a|s) = ∇θ1 = 0.
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Thus:

Ds(θ, δ) = −1
2δ

⊤Ea∼πθ(·|s)
[
∇2
θ log πθ(a|s)

]
δ +O(∥δ∥3).

Now we analyze the Hessian expectation term. We compute the Hessian explicitly as follows:

∇2
θ log πθ(a|s) = ∇θ

(
∇θπθ(a|s)
πθ(a|s)

)
= ∇

2
θπθ(a|s)
πθ(a|s)

− (∇θπθ(a|s)) (∇θπθ(a|s))⊤

(πθ(a|s))2 .

Taking expectation under πθ(·|s):

Ea∼πθ(·|s)
[
∇2
θ log πθ(a|s)

]
=
∑
a

∇2
θπθ(a|s)−

∑
a

(∇θπθ(a|s)) (∇θπθ(a|s))⊤

πθ(a|s)

= ∇2
θ

(∑
a

πθ(a|s)
)
−Gs(θ)

= 0−Gs(θ),

where Gs(θ) is the Fisher information matrix for state s, defined as

Gs(θ) = Ea∼πθ(·|s)

[
∇θ log πθ(a|s) (∇θ log πθ(a|s))⊤ |s

]
.

Substituting back, we obtain

Ds(θ, δ) = 1
2δ

⊤Gs(θ)δ +O(∥δ∥3).

Finally, by taking expectation over the state distribution dπθ (s), we get the desired claim as follows:

DKL(πθ ∥ πθ+δ) = Es∼dπθ [Ds(θ, δ)]

= 1
2δ

⊤Es∼dπθ [Gs(θ)] δ +O(∥δ∥3)

= 1
2δ

⊤G(θ)δ +O(∥δ∥3).

This theorem provides the geometric foundation for understanding how parameter perturbations translate to
changes in policy distributions. It establishes that the Fisher information matrix G(θ) defines the local Rie-
mannian metric on the manifold of stochastic policies, revealing that Euclidean distances between parameter
vectors do not reflect the intrinsic distance between corresponding policies. Instead, the Kullback-Leibler
divergence captures the true local geometry, and the above result shows that its second-order expansion is
governed precisely by G(θ). This indicates that natural gradient directions, obtained by preconditioning
with G(θ)−1, correspond to steepest ascent in policy space rather than parameter space. The result reveals
how G(θ) encodes the curvature of the policy manifold and quantifies the sensitivity of policy distributions to
parameter changes. The next result characterizes how this geometry directly governs optimal policy updates,
explicitly connecting the local information-geometric structure established in Theorem 2 to the algorithmic
form of natural gradient updates.
Theorem 3. The natural gradient update δ∗ = αG(θ)−1∇θJ(θ) is the solution to the constrained optimiza-
tion problem:

max
δ
∇θJ(θ)⊤δ subject to DKL(πθ ∥ πθ+δ) ≤ ϵ. (8)
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Proof. We first consider the local second-order approximation of the KL divergence from Theorem 2:

DKL(πθ ∥ πθ+δ) = 1
2δ

⊤G(θ)δ +O(∥δ∥3).

For small δ, we approximate DKL(πθ ∥ πθ+δ) ≈ 1
2δ

⊤G(θ)δ. Now the given constrained optimization problem
reduces to the following second order:

max
δ
∇θJ(θ)⊤δ subject to 1

2δ
⊤G(θ)δ ≤ ϵ.

The corresponding Lagrangian form is given by

L(δ, λ) = ∇θJ(θ)⊤δ − λ
(

1
2δ

⊤G(θ)δ − ϵ
)
,

where λ ≥ 0 is the Lagrange multiplier. Now taking the gradient with respect to δ and using the first order
optimality condition, we get

∂L
∂δ

= ∇θJ(θ)− λG(θ)δ = 0

⇒ λG(θ)δ = ∇θJ(θ) ⇒ δ = 1
λ
G(θ)−1∇θJ(θ).

Now substitute back into the constraint to obtain the following:

1
2δ

⊤G(θ)δ = 1
2

(
1
λ
G(θ)−1∇θJ(θ)

)⊤

G(θ)
(

1
λ
G(θ)−1∇θJ(θ)

)
= ϵ

⇒ 1
2λ2∇θJ(θ)⊤G(θ)−1∇θJ(θ) = ϵ.

Let M = ∇θJ(θ)⊤G(θ)−1∇θJ(θ). Then λ =
√

M
2ϵ . Substitute this back to obtain the following optimal

update:

δ = 1
λ
G(θ)−1∇θJ(θ) =

√
2ϵ
M
G(θ)−1∇θJ(θ).

Set the learning rate as α =
√

2ϵ
M . Then, we obtain the desired natural gradient update, δ∗ =

αG(θ)−1∇θJ(θ). Finally, we verify that this indeed satisfies the KL constraint:

DKL(πθ ∥ πθ+δ∗) ≈ 1
2(δ∗)⊤G(θ)δ∗

= 1
2
(
αG(θ)−1∇θJ(θ)

)⊤
G(θ)

(
αG(θ)−1∇θJ(θ)

)
= 1

2α
2∇θJ(θ)⊤G(θ)−1∇θJ(θ)

= 1
2

(
2ϵ
M

)
M = ϵ.

Remark 2. Theorem 3 characterizes the natural gradient as the optimizer of a KL-constrained variational
problem, and this formulation makes its underlying geometric structure explicit. The natural gradient
direction G(θ)−1∇θJ(θ) represents the direction of steepest ascent on the Riemannian manifold of policies,
where distances are measured by the KL divergence rather than Euclidean distance in parameter space.
In this geometry, an update of fixed “length” corresponds to a fixed KL displacement in policy space,
automatically adapting each step to the curvature of the policy manifold. This contrasts with the standard
Euclidean gradient, which solves

max
δ
∇θJ(θ)⊤δ s.t. 1

2∥δ∥
2 ≤ ϵ,

8
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and yields δ ∝ ∇θJ(θ), a direction that depends heavily on the parameterization and often fails to reflect
actual changes in the induced policy. Moreover, the KL-constrained formulation in Theorem 3 is precisely
the local quadratic approximation underlying the trust-region update of Schulman et al. (2015). When the
KL constraint in TRPO is linearized and approximated to second order, its trust-region subproblem reduces
exactly to the problem solved above, whose closed-form solution is the natural gradient. Thus, the theorem
provides a rigorous bridge between classical natural-gradient RL and modern trust-region policy-gradient
algorithms, unifying them through the geometry of the policy manifold.

We now characterize the quantitative properties of natural gradient updates by deriving fundamental bounds
that govern their behavior and performance guarantees.
Theorem 4. For a given KL-divergence constraint ϵ > 0, the natural gradient update δ∗ = αG(θ)−1∇J(θ)
satisfies the following:

1. Natural gradient norm bound:

∥G(θ)−1∇J(θ)∥ ≤ λmin(θ)−1∥∇J(θ)∥

2. Rayleigh quotient bounds:

∥∇J(θ)∥2

λmax(θ) ≤ ∇J(θ)⊤G(θ)−1∇J(θ) ≤ ∥∇J(θ)∥2

λmin(θ)

3. Improvement bounds: The optimal improvement under KL constraint ϵ satisfies:√
2ϵ

λmax(θ)∥∇J(θ)∥ ≤ ∇J(θ)⊤δ∗ ≤

√
2ϵ

λmin(θ)∥∇J(θ)∥

Proof. Since G(θ) is symmetric positive definite matrix, it admits the following spectral decomposition:

G(θ) = Q(θ)Γ(θ)Q(θ)⊤, where Γ(θ) = diag(λ1(θ), . . . , λd(θ)), G(θ)−1 = Q(θ)Λ(θ)−1Q(θ)⊤,

where Q(θ) is orthonormal and λ1(θ) ≥ λ2(θ) ≥ · · · ≥ λd(θ) > 0 are the eigenvalues of G(θ).

Proof of (1): Let y := Q(θ)⊤∇J(θ) and note that ∥y∥ = ∥∇J(θ)∥ due to orthonormality of Q(θ). The
natural gradient direction w = G(θ)−1∇J(θ) satisfies:

∥G(θ)−1∇J(θ)∥2 = ∥Q(θ)Λ(θ)−1Q(θ)⊤∇J(θ)∥2 = ∥Λ(θ)−1y∥2

=
d∑
i=1

y2
i

λi(θ)2 ≤
1

λmin(θ)2

d∑
i=1

y2
i = ∥∇J(θ)∥2

λmin(θ)2 .

On taking square roots, we obtain the claim ∥G(θ)−1∇J(θ)∥ ≤ λmin(θ)−1∥∇J(θ)∥.

Proof of (2): To obtain the Rayleigh quotient bound, we have,

∇J(θ)⊤G(θ)−1∇J(θ) = ∇J(θ)⊤Q(θ)Λ(θ)−1Q(θ)⊤∇J(θ) = y⊤Λ(θ)−1y =
d∑
i=1

y2
i

λi(θ)
.

Since λmin(θ) ≤ λi(θ) ≤ λmax(θ), we obtain:

1
λmax(θ)

d∑
i=1

y2
i ≤

d∑
i=1

y2
i

λi(θ)
≤ 1
λmin(θ)

d∑
i=1

y2
i ,

which gives the stated bounds since ∥y∥ = ∥∇J(θ)∥.

9
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Proof of (3): From Theorem 3, the natural gradient update δ∗ = αG(θ)−1∇J(θ) solves the constrained
optimization problem (8) and it achieves the following improvement:

∇J(θ)⊤δ∗ =
√

2ϵ · (∇J(θ)⊤G(θ)−1∇J(θ)).

Now by substituting the Rayleigh quotient bounds from (2) into this, we obtain√
2ϵ · ∥∇J(θ)∥2

λmax(θ) ≤ ∇J(θ)⊤δ∗ ≤

√
2ϵ · ∥∇J(θ)∥2

λmin(θ) ,

which simplifies to the stated improvement bounds.

The above bounds reveal the crucial role of the Fisher information matrix’s spectral properties in deter-
mining both the magnitude of natural gradient steps and their guaranteed improvement. The eigenvalue
bounds λmin and λmax of G(θ) directly control the relationship between the KL constraint ϵ and the ex-
pected policy improvement, providing a theoretical foundation for understanding the convergence behavior
of natural gradient methods. The improvement bounds establish that natural gradient updates guarantee
non-decreasing performance when the KL constraint is satisfied, with the convergence rate governed by the
condition number λmax/λmin of the Fisher information matrix. This further explains why natural gradient
methods achieve more stable and efficient policy optimization compared to standard gradient approaches,
as they automatically adapt step sizes to the local curvature of the policy manifold while ensuring updates
respect the intrinsic geometry of the policy space through preconditioning via G(θ)−1.

3.1 The Algorithm

The natural actor–critic framework estimates natural policy gradient specifically through compatible function
approximation, exploiting the structural compatibility between the policy score functions and the natural-
gradient. This methodology (Kakade, 2001; Peters et al., 2005), considers the policy score function ψ(s, a) =
∇θ log πθ(a|s) as basis functions for advantage approximation. The term "compatible" refers to the property
that these basis functions satisfy the condition ∇wAw(s, a) = ψ(s, a), ensuring alignment with the natural
policy gradient structure (Sutton et al., 1999). This formulation is grounded in the policy gradient theorem,
which establishes that the score function inherently appears in gradient expressions. By employing ψ(s, a) as
compatible features, the resulting parameter estimates automatically yield natural gradient directions when
solved through least-squares minimization as follows:

min
w

E(s,a)∼dπθ×πθ

[(
Qπθ (s, a)− Q̂πθ (s, a)

)2
]
, (9)

where the expectation is taken with respect to the state-action distribution under the policy πθ derived from
the discounted state visitation distribution dπθ (s) = (1− γ)

∑∞
t=0 γ

tPπθ (st = s). And,

Qπθ (s, a) = Aπθ (s, a) + V πθ (s)

≈ ψ(s, a)⊤w + ϕ(s)⊤v = ϕ̂(s, a)⊤w, (10)

with ϕ̂(s, a) = [ψ(s, a)⊤, ϕ(s)⊤]⊤ and w = [w⊤, v⊤]⊤ are the augmented features and parameters, respec-
tively. Thus, (9) seeks the best linear approximation of the Q-function in the augmented feature space (which
includes the score function and the value function features). Taking the gradient of the objective and setting
it to zero yields:

∇wE(s,a)∼dπθ×πθ

[(
Qπθ (s,a)− ϕ̂(s,a)⊤w

)2
]

= 0.

This gives:

E(s,a)

[(
Qπθ (s,a)− ϕ̂(s,a)⊤w

)
ϕ̂(s,a)

]
= 0. (11)

10
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Using the Bellman equation Qπθ (s, a) = r(s, a) + γV πθ (s′) and the approximation V πθ (s′) ≈ ϕ(s′)⊤v, we
substitute into (11):

E(s,a)∼dπθ×πθ
s′∼P(·|s,a)

[(
r(s,a) + γϕ(s′)⊤v − ϕ̂(s,a)⊤w

)
ϕ̂(s,a)

]
= 0.

Rewriting in terms of w̄:

E(s,a,s′)

[
ϕ̂(s,a)

(
ϕ̂(s,a)⊤w − γϕ̃(s′)⊤w

)]
= E(s,a)∼dπθ×πθ

[
r(s,a)ϕ̂(s,a)

]
,

where ϕ̃(s′) = [0⊤, ϕ(s′)⊤]⊤ ∈ Rq+d and 0 is a zero vector with the same dimension as w. This yields the
linear system:

Ξw = b, (12)

where

Ξ = E(s,a)∼dπθ×πθ
s′∼P(·|s,a)

[
ϕ̂(s,a)

(
ϕ̂(s,a)− γ ϕ̃(s′)

)⊤
]
, and b = E(s,a)∼dπθ×πθ

[
r(s, a)ϕ̂(s, a)

]
. (13)

Solving the linear system Ξ w̄ = b avoids explicit Fisher matrix inversion by casting natural actor–critic
estimation as a single least-squares problem over compatible features. The solution w̄∗ = (w∗, v∗) sepa-
rates naturally into a component w∗ that recovers the natural gradient G(θ)−1∇θJ(θ) and a component v∗

corresponding to the critic parameters. This formulation therefore couples natural-gradient estimation and
value-function learning within a single regression.
Remark 3. In the above, we have a compatibile critic of the form fw(s, a) = ψ(s, a)⊤w and is fit by least
squares to a target Q̂πθ as follows: wθ = arg minw E

[
(Q̂πθ − ψ⊤w)2], with Q̂πθ (s, a) = r(s, a) + γ ϕ(s′)⊤v.

By the first-order optimality conditions of the least-squares problem, the solution wθ satisfies the normal
equations E

[
ψ (Q̂πθ − ψ⊤wθ)

]
= 0. This means Q̂πθ decomposes into two orthogonal pieces in L2(dπθ × πθ):

Q̂πθ = ψ⊤wθ︸ ︷︷ ︸
projection onto

span{ψ}

+ ζ,︸︷︷︸
orthogonal

residual

with E[ψ ζ] = 0. So the residual ζ has no component along any score direction, precisely what “compatible”
enforces. To further understand why this zeros the harmful part, consider the actor update using the
compatible critic fwθ :

G−1 E[ψ fwθ ] = G−1 E[ψ ψ⊤]wθ = G−1Gwθ = wθ.

If instead one uses the raw target Q̂πθ , then

G−1 E[ψ Q̂πθ ] = G−1 E
[
ψ (ψ⊤wθ + ζ)

]
= G−1 (Gwθ + E[ψ ζ]︸ ︷︷ ︸

= 0

) = wθ.

Thus, both ways, we obtain the same step wθ. Crucially, the only component that could bias the actor,
E
[
ψ (Q̂πθ − ψ⊤wθ)

]
, is forced to zero by the regression optimality. The actor “sees” only directions in the

score span span{ψ}. Compatibility projects the (possibly noisy) target Q̂πθ onto that span, discarding the
orthogonal component the actor cannot use anyway. This projection is exactly what is needed to compute
the natural step, with no explicit Fisher inverse required.

To ensure the computational feasibility of the natural actor-critic framework, it is essential that the linear
system derived from compatible function approximation admits a unique solution. The following theorem
establishes sufficient conditions for the invertibility of the matrix Ξ, thereby guaranteeing the well-posedness
of the linear system.

11
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Theorem 5. Let (s,a) ∼ dπθ × πθ and s′ ∼ P(· | s,a). Let Ξ1 = E
[
ϕ̂(s,a)ϕ̂(s,a)⊤] and Ξ2 =

E
[
ϕ̂(s,a) ϕ̃(s′)⊤]. Hence, under Assumptions 1–6 and for γ < λmin(Ξ1)/C2

ϕ̂
, with C

ϕ̂
= max{Cψ, Cϕ}, we

have Ξ ≻ 0, and the linear system Ξw = b has the unique solution w∗ = Ξ−1b.

Proof. By Assumption 6, we obtain

z⊤Ξ1z = E
[(
z⊤ϕ̂(s,a)

)2
]
> 0, for all z ̸= 0, (14)

hence Ξ1 is positive definite. Hence, λmin(Ξ1) > 0. Now using Cauchy–Schwarz and boundedness of the
features (Assumption 2),

∥Ξ2∥ =
∥∥E[ϕ̂ ϕ̃⊤]

∥∥ ≤ E
[
∥ϕ̂∥ ∥ϕ̃∥

]
≤ C2

ϕ̂
, where C

ϕ̂
:= max{Cψ, Cϕ}.

Further, for any vector z ∈ Rq+d, we have

z⊤Ξ2z = z⊤
(

Ξ2+Ξ⊤
2

2

)
z

≤
∥∥∥Ξ2+Ξ⊤

2
2

∥∥∥ ∥z∥2

≤ 1
2
(
∥Ξ2∥+ ∥A⊤

2 ∥
)
∥z∥2

= ∥Ξ2∥ ∥z∥2, since ∥Ξ⊤
2 ∥ = ∥Ξ2∥.

Now for any unit vector z,

z⊤Ξz = z⊤Ξ1z − γ z⊤Ξ2z

≥ λmin(Ξ1)∥z∥2 − γ ∥Ξ2∥
≥ λmin(Ξ1)− γ C2

ϕ̂
.

Thus if γ < λmin(Ξ1)/C2
ϕ̂
, we have z⊤Ξz > 0 for all z ̸= 0, i.e., Ξ ≻ 0. Hence Ξ is invertible, so the normal

equations Ξw = b admit the unique solution w∗ = Ξ−1b.

The above results establish that the matrix Ξ is positive definite, and thus invertible, provided the discount
factor γ is bounded by γ < λmin(Ξ1)/C2

ϕ̂
. Technically, this condition ensures that the covariance structure Ξ1

dominates the temporal difference term γΞ2 in the matrix Ξ = Ξ1−γΞ2, preserving the positive definiteness
inherited from Ξ1. This guarantees the numerical stability of solving the linear system Ξw = b and is a
prerequisite for any meaningful policy update. Under these guarantees, the following result characterizes
the solution itself. It demonstrates that under perfect value function approximation, the component w of
the solution vector w∗ corresponds exactly to the natural policy gradient. It establishes the validity of the
compatible function approximation.
Theorem 6. Let V πθ be perfectly represented by the linear approximation V πθ (s) = ϕ(s)⊤v for all s ∈ S,
for some v ∈ Rd. The solution w∗ = [w⊤, v⊤]⊤ to the linear system (12) satisfies w = G(θ)−1∇θJ(θ).

Proof. We begin by expanding the expectation on the left-hand side:

E[ϕ̂(ϕ̂− γϕ̃t)⊤] = E

[[
ψψ⊤ ψ(ϕ⊤ − γϕ′⊤)
ϕψ⊤ ϕ(ϕ⊤ − γϕ′⊤)

]]
=
[
E[ψψ⊤] E[ψ(ϕ⊤ − γϕ′⊤)]
E[ϕψ⊤] E[ϕ(ϕ⊤ − γϕ′⊤)]

]

Similarly, the right-hand side expands to:

E[rϕ̂] =
[
E[rψ]
E[rϕ]

]

12
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The linear system can thus be written as two equations

E[ψψ⊤]w + E[ψ(ϕ⊤ − γϕ′⊤)]v = E[rψ] (15)
E[ϕψ⊤]w + E[ϕ(ϕ⊤

t − γϕ⊤
t+1)]v = E[rtϕt] (16)

From the definition of the Fisher information matrix, we have E[ψψ⊤] = G(θ). Now, under the assumption
of perfect value function approximation (i.e., V πθ (s) = ϕ(s)⊤v), we have from the Bellman equation:

Qπθ (s, a) = r(s, a) + γV πθ (s′)
= r(s, a) + γϕ(s′)⊤v

and Aπθ (s, a) = Qπθ (s, a)− V πθ (s)
= r(s, a) + γϕ(s′)⊤v − ϕ(s)⊤v

Thus, we can rewrite (15) as

G(θ)w + E[ψ(r + γϕ′⊤v − ϕ⊤v − r)] = E[rψ]

⇒ G(θ)w + E[ψ(γϕ′⊤v − ϕ⊤v)] = E[rψ]− E[ψr]
⇒ G(θ)w − E[ψAπθ (s,a)] = 0 (17)

From the policy gradient theorem, we have

∇θJ(θ) = E[ψQπθ (s,a)]
= E[ψAπθ (s,a)] + E[ψV πθ (s)]

Since E[ψ|s] = 0 (as ψ is the score function), we have:

E[ψV πθ (s)] = E[E[ψ|s]V πθ (s)] = 0

Therefore, ∇θJ(θ) = E[ψAπθ (s,a)]. Substituting back into (17), we get,

G(θ)w −∇θJ(θ) = 0 ⇒ w = G(θ)−1∇θJ(θ)

The above result confirms that NAC coincides with the exact natural policy gradient when the critic is perfect.
However, if the value function class cannot fit V πθ exactly, it incurs a bias. We now provide a fundamental
theoretical characterization of the bias in natural actor-critic methods under function approximation, showing
that imperfect value function representation introduces a systematic bias term that projects the Bellman
error onto the natural gradient direction. We let Eπθ

[·] = Es∼dπθ ,a∼πθ

s′∼P(·|s,a)
[·].

Theorem 7. Let V πθ (s) be approximated by a linear function Vv(s) = ϕ(s)⊤v, which is not a perfect
representation. The solution w = [w⊤, v⊤]⊤ to the linear system (12) satisfies:

w = G(θ)−1∇θJ(θ) +G(θ)−1Eπθ [ψ(s,a) · ε(s,a, s′)]

where ε(s, a, s′) is the Bellman error for transition (s, a, s′), defined as ε(s, a, s′) = (r(s, a) + γVv(s′)) −
Qπθ (s, a)

Proof. From the linear system (12), we have

Eπθ
[ϕ̂(ϕ̂− γϕ̃t)⊤]w = Eπθ

[rϕ̂].

Then,
E[ψψ⊤]w + E[ψ(ϕ⊤ − γϕ′⊤)]v = E[rψ] (18)

13
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The true Bellman equation for Qπθ is

Qπθ (s, a) = r(s, a) + γEs′∼P(·|s,a)[V πθ (s′)]

Our approximation is Q̂(s, a) = ψ(s, a)⊤w + ϕ(s)⊤v, and we have an approximated value function Vv(s) =
ϕ(s)⊤v. For a specific transition (s, a, s′), the Bellman error is:

ε(s, a, s′) = (r(s, a) + γVv(s′))−Qπθ (s, a)
⇒ r(s, a) = Qπθ (s, a)− γVv(s′) + ε(s, a, s′)

Now, substitute this expression into the RHS of (18).

E[rψ] = E[(Qπθ (s,a)− γVv(s′) + ε(s,a, s′))ψ]
= E[Qπθ (s,a)ψ]− γE [Vv(s′)ψ] + E [ε(s,a, s′)ψ] . (19)

Now rewrite the LHS of (18) as

LHS = E[ψψ⊤]w + E[ψϕ⊤v]− γE[ψϕ′⊤v]
= E[ψψ⊤]w + E[ψVv(s)]− γE[ψVv(s′)] (20)

Now, equating the expanded LHS and RHS:

E[ψψ⊤
t ]w + E[ψVv(s)]− γE[ψVv(s′)] = E [Qπθ (s, a)ψ]− γE [Vv(s′)ψ] + E [ε(s,a, s′)ψ]
⇒ E[ψψ⊤]w + E[ψVv(s)] = E [Qπθ (s,a)ψ] + E [ε(s,a, s′)ψ] .

Now, add and subtract E [Vv(s)ψ]

E[ψψ⊤]w + E[ψVv(s)] = E [(Qπθ (s,a)− Vv(s))ψ] + E [Vv(s)ψ] + E [ε(s,a, s′)ψ]
⇒ E[ψψ⊤]w = E [(Qπθ (s,a)− Vv(s))ψ] + E [ε(s,a, s′)ψ]
⇒ G(θ)w = E [(Qπθ (s,a)− Vv(s))ψ] + E [ε(s,a, s′)ψ] . (21)

Define the approximate advantage function:

Ã(s, a) = Qπθ (s, a)− Vv(s)
= Aπθ (s, a) + (V πθ (s)− Vv(s))

Therefore,

E
[
Ã(s,a)ψ

]
= E [Aπθ (s,a)ψ] + E [(V πθ (s)− Vv(s))ψ]

Since E[ψ | s] = 0,

E [(V πθ (s)− Vv(s))ψt] = E [E [(V πθ (s)− Vv(s))ψt | s]]
= E [(V πθ (st)− Vv(s)) · E[ψ | s]]
= 0.

Thus, E
[
Ã(s,a)ψ

]
= E [Aπθ (s,a)ψ]. By the policy gradient theorem, we also have,

∇θJ(θ) = E [ψ(s,a)Qπθ (s,a)] = E [ψ(s,a)Aπθ (s,a)]

Therefore, E
[
Ã(s,a)ψ

]
= ∇θJ(θ). Substituting back into (21), we get,

G(θ)w = ∇θJ(θ) + E [ε(s,a, s′)ψ]
⇒ w = G(θ)−1∇θJ(θ) +G(θ)−1E [ε(s,a, s′)ψ] .

14
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The above result reveals that the bias in natural gradient estimation arises from the score-projected Bellman
residual P ∗ε = E[ψ(s, a)ε(s, a, s′)] (where P ∗f = E[ψf ] is the score projector), which extracts precisely the
components of function approximation error that correlate with policy sensitivity directions. While state-only
approximation errors are automatically filtered out due to the fundamental property P ∗h = E[ψh(s)] = 0
for any state-dependent function h (due to E[ψ|s] = 0), the Bellman error ε(s, a, s′) = (r(s, a) + γVv(s′))−
Qπθ (s, a) inherently contains action-dependent components that survive this projection. This occurs because
imperfect value approximation creates Bellman errors that vary with action selection through the MDP
dynamics—different actions lead to different next-state values and rewards, causing the approximation error
to align with policy sensitivity. Consequently, policy updates are systematically distorted toward regions
where value function errors correlate with the score function, rather than following the true steepest ascent
direction of expected return. This creates a problematic feedback loop: biased gradients alter the state
visitation distribution, rendering previously learned value functions increasingly inaccurate, which further
amplifies the bias in subsequent iterations. The result is either convergence to suboptimal policies where the
biased gradient estimate vanishes despite non-zero true gradients, or catastrophic divergence as the policy
is progressively misled by accumulating approximation errors that survive the score projection filter.

4 Natural Actor–Critic with Array-RQMC Sampling

The theoretical guarantees of the natural actor-critic framework are dependent upon the accuracy of the
estimated natural gradient. The compatible-feature solution is affected by stochastic estimation noise due to
finite sampling. Both the bias term and the stochastic fluctuations are filtered through Fisher preconditioning
and jointly influence the stability and accuracy of the natural-gradient update. Consequently, controlling
estimator variance is essential to limit the impact of both bias and stochastic noise on the natural-gradient
update. Standard Monte Carlo rollouts rely on independent uniforms, which leads to high-variance estimators
and makes the natural-gradient update sensitive to noise in the critic. To reduce this variance while preserving
unbiasedness, we now incorporate Randomized Quasi-Monte Carlo (RQMC) methods to sample trajectories
more efficiently from dπθ . We assume access to a generative model (simulator) represented by a deterministic
oracle Λ, such that given the current state st, an action at ∼ πθ(·|st), and a uniform random seed ut ∼ U [0, 1],
the next state can be generated as: st+1 = Λ(st,at,ut). Here Λ encodes the probability transition P(·|st,at)
via the inverse transform sampling, i.e., Λ(st,at,ut) = F−1

st,at(ut), where Fst,at is the CDF associated with
P(·|st,at).

4.1 Randomized Quasi Monte-Carlo

Quasi–Monte Carlo (QMC) methods are based on the construction of low–discrepancy point sets, which are
deterministic sequences designed to cover the unit hypercube [0, 1)d more uniformly than pseudo–random
samples. Informally, low discrepancy means that the points are distributed so as to avoid large gaps or clus-
ters, ensuring that no region of the domain is systematically over– or under–represented. Such constructions
are particularly well suited for numerical integration in moderate dimensions. A common formalization of
low–discrepancy point sets is given by (t,m, d)–nets. A (t,m, d)–net in base b is a set of N = bm points
in [0, 1)d with the property that every axis–aligned b–adic box of volume bt−m contains exactly bt points.
Digital (t,m, d)–nets provide a principled way to construct highly uniform point sets and form the foundation
of many QMC sequences used in practice.

In this paper, we consider the Sobol sequence (Sobol’, 1967), which is a widely used digital net in base 2.
Sobol sequences are generated using a family of polynomials that are irreducible over the finite field F2,
together with associated direction numbers. These direction numbers determine a set of generating matrices
that map integers to points in [0, 1)d via binary expansions. Each point in the sequence is constructed
through bitwise operations (notably exclusive–or operations) on these binary representations, resulting in a
deterministic point set with strong uniformity properties. Various constructions of direction numbers have
been proposed; in our implementation we follow the approach of Joe & Kuo (2008).

While QMC point sets are deterministic and highly uniform, their performance can be sensitive to correlations
between the integrand and the fixed point set. To address this issue, randomized quasi–Monte Carlo (RQMC)
methods introduce randomness into the construction while preserving the low–discrepancy structure. A
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Figure 2: Monte Carlo (Left) shows irregular trajectories due to independent random sampling. Array
RQMC (Right) uses randomized low-discrepancy sequences, producing more uniform and structured paths.

standard approach is digital scrambling, which applies random transformations to the generating matrices
of a digital net, often combined with a random digital shift (Matoušek, 1998). In particular, left matrix
scrambling replaces each generating matrix of the Sobol sequence with a randomly transformed version,
yielding a randomized point set with uniform marginals. Random digital shifts are then applied via a
bitwise exclusive–or with a random binary vector, ensuring that the resulting estimator is unbiased while
retaining the variance–reduction properties of the underlying low–discrepancy construction (L’Ecuyer, 2018).
These scrambled nets form the basic building blocks used in our Array–RQMC construction.

Array-RQMC is an extension of RQMC specifically designed to simulate Markov chains by running N
realizations in parallel. Let si,j be the state of the ith chain at time j, and let Ωj = {u1,j , u2,j , . . . , uN,j}
be an independent RQMC point set with ui,j ∈ [0, 1)dim(S). We have N parallel chains {si,j}Ni=1. At each step
j, we proceed as follows:

1. Sort the chain states {si,j} by a sort function h.
2. Generate and scramble a RQMC point set Ωj of size N , then sort those points by their first coordinate.
3. Pair each chain with one RQMC point in that sorted order to sample the next state si,j+1 as

si,j+1 = Λ
(
si,j , ai,j , ui,j

)
, and the corresponding reward ri,j , where Λ denotes the inverse transform

of the transition function P of the Markov chain.

The N trajectories are deliberately coupled since the driving uniforms are dependent, typically yielding
negative inter-trajectory correlation, which reduces the variance of sample-mean estimators relative to Monte
Carlo. However, it does not alter the marginal distribution for each chain. In other words, each si,j+1 has
the same distribution as it would under an IID Monte Carlo simulation, ensuring there is no bias in the
chain evolution. By sorting the states (so neighbors in the array are similar states) and sorting the RQMC
points (neighbors are nearby uniforms), then pairing rank-i with rank-i, the simulator’s output across the
array change smoothly across parallel trajectories. Subsequently on averaging over a smooth sequence, the
fluctuations cancel out much more than in an irregular one resulting in reduced variance.

Finally, the Array–RQMC pooled estimators (averaged over both N chains and T time steps) are obtained
as follows:

Ξ̂N = 1
N

T−1∑
j=0

(
N∑
i=1

ϕ̂i,j
(
ϕ̂i,j − γ ϕ̃i,j

)⊤)
,

ζ̂N = 1
N

T−1∑
j=0

(
N∑
i=1

ri,j ϕ̂i,j

)
.

(22)
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Theorem 8. Consider the Array-RQMC based estimation given in (22) using N parallel chains and trajec-
tory length T . Under the following assumptions:

a. For each j, the scrambled point set Ωj = {u1,j , . . . ,uN,j} ⊂ [0, 1)d satisfies ui,j ∼ Unif([0, 1)d) for
all i, and the sets {Ωj}T−1

j=0 are independent across j.

b For each j, the random vector (u1,j , . . . ,uN,j) is exchangeable, i.e., for every permutation σ of
{1, . . . , N}, (uσ(1),j , . . . ,uσ(N),j)

d= (u1,j , . . . ,uN,j). Thus the joint distribution of the RQMC
points is invariant under reordering.

c. For each j, the point set Ωj is independent of {Fj}j≥0, the natural filtration gener-
ated by the state–action process and all past randomness up to time j, i.e., Fj :=
σ
(
{(si,t, ai,t)}Ni=1, Ω0, . . . ,Ωt−1 : 0 ≤ t ≤ j

)
.

d. The transition map Λ satisfies Λ(s,a,u) d= P(· | s,a) for u ∼ Unif([0, 1)d), so that using u ∈
[0, 1)d via inverse transform reproduces the Markov kernel P(· | s, a).

e. At each time j, the permutation σj used to reorder the chains depends only on the current states:
σj = σj(s1,j , . . . , sN,j), and never on the RQMC points Ωj. After sorting, chain i occupies position
k = σj(i) and receives the RQMC point u′

k,j, the k-th element of the sorted point set.

Then Ξ̂N and b̂T the estimators are unbiased:

E[Ξ̂N ] = Ξ and E[ζ̂N ] = ζ.

Proof. First we show that, despite the dependence induced across chains by Array–RQMC, the marginal
law of each state–action–next-state triple (si,j ,ai,j , si,j+1) coincides with that of a standard Monte Carlo
simulation of the Markov chain. This further implies unbiasedness of Ξ̂N and ζ̂N . Let {(sMC

i,j ,aMC
i,j )} be N

independent copies of the Markov chain driven by IID uniforms, i.e., sMC
i,0 ∼ µ0 i.i.d. across i, aMC

i,j ∼ πθ(· |
sMC
i,j ), and sMC

i,j+1 ∼ P(· | sMC
i,j ,aMC

i,j ). This is the standard MC simulator for the same MDP and policy. We
will show that for all i and j,

(si,j ,ai,j , si,j+1) d= (sMC
i,j ,aMC

i,j , sMC
i,j+1), (23)

where d= denotes equality in distribution. We proceed by induction on j. For j = 0, we have si,0 ∼ µ0

by initialization of the Array–RQMC chains, so (si,0,ai,0) d= (sMC
i,0 ,aMC

i,0 ) once actions are sampled from
πθ(· | si,0), since both procedures use the same policy. Assume now that for some fixed j ≥ 0,

(si,j ,ai,j)
d= (sMC

i,j ,aMC
i,j ) for all i.

Fix a time j and condition on the σ-algebra Fj generated by all states and actions up to time j (and all
past RQMC sets up to time j − 1). By 8.c, the scrambled point set Ωj is independent of Fj . By 8.a,
each ui,j is marginally Unif([0, 1)d), and by 8.b, the vector (u1,j , . . . ,uN,j) is exchangeable. The Array–
RQMC procedure next computes a permutation σj that depends only on (s1,j , . . . , sN,j) (8.e), and reassigns
the RQMC points by ordering them into a sorted set and pairing the chain with rank k to point u′

k,j .
Since the sorting of Ωj depends only on the RQMC points themselves, and σj depends only on states,
the composition (u′

1,j , . . . ,u′
N,j) is still an exchangeable random vector with the same multiset of values

as Ωj , and remains independent of Fj . In particular, for any Borel set B ⊂ [0, 1)d and any index k,
P
(
u′
k,j ∈ B | Fj

)
= P

(
u1,j ∈ B

)
= Unif(B), where the last equality uses marginal uniformity. Thus,

conditionally on Fj , each assigned point u′
k,j is Unif([0, 1)d). Now consider a fixed chain index i. After

sorting, it occupies some rank k = σj(i), and receives the point u′
k,j . Hence,

u′
σj(i),j

∣∣Fj ∼ Unif([0, 1)d). (24)
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The next state of chain i is generated via si,j+1 = Λ(si,j ,ai,j ,u′
σj(i),j). By (24) and 8.d, si,j+1

∣∣ si,j ,ai,j d=
P(· | si,j ,ai,j), which is exactly the same conditional law as in the MC reference process. Together with the
induction hypothesis (si,j ,ai,j)

d= (sMC
i,j ,aMC

i,j ), we get (si,j+1,ai,j+1) d= (sMC
i,j+1,aMC

i,j+1), where ai,j+1 ∼ πθ(· |
si,j+1) in both processes. Hence (23) holds for all j by induction.

Now define the measurable function fΞ(s,a, s′) = ϕ̂(s,a)
(
ϕ̂(s,a)− γϕ̃(s′)

)⊤
. By construction,

Ξ̂N = 1
N

T−1∑
j=0

N∑
i=1

fΞ(si,j ,ai,j , si,j+1).

Using the coupling (23) and linearity of expectation,

E[Ξ̂N ] = 1
N

T−1∑
j=0

N∑
i=1

E
[
fΞ(si,j ,ai,j , si,j+1)

]
= 1
N

T−1∑
j=0

N∑
i=1

E
[
fΞ(sMC

i,j ,aMC
i,j , sMC

i,j+1)
]
.

Each term in the double sum has the same distribution, and for large j we are in the stationary regime with
(sMC
i,j ,aMC

i,j , sMC
i,j+1) ∼ dπθ × πθ × P, so that

E
[
fΞ(sMC

i,j , sMC
i,j , sMC

i,j+1)
]

= E(s,a,s′)∼dπθ×πθ×P
[
fΞ(s,a, s′)

]
= Ξ.

Thus E[Ξ̂N ] = Ξ.

The unbiasedness of ζ̂N can be proven identically. Define fζ(s, a) = r(s, a) ϕ̂(s, a), so that

ζ̂N = 1
N

T−1∑
j=0

N∑
i=1

fζ(si,j ,ai,j).

Now using the same coupling and stationarity argument, we obtain E[ζ̂N ] = E(s,a)∼dπθ×πθ
[
fζ(s,a)

]
= ζ.

Remark 4. Assumption 8.a ensures that each RQMC point is correctly distributed, exchangeability guar-
antees that sorting doesn’t introduce bias, temporal independence prevents pathological correlations across
time, and state-RQMC independence is crucial for the conditional uniformity argument. In practice, Sobol
sequences with Owen scrambling and random digital shift satisfy these properties. Violation of any sub-
assumption can lead to biased estimators, with state-RQMC dependence being particularly pernicious as it
directly breaks the proof technique. The restriction in Assumption 8.b that sorting depends only on states is
essential for preserving exchangeability. If sorting used both state and RQMC information, the conditional
distribution of assigned RQMC points could become non-uniform. In practice, common sorting functions
like state value estimates or coordinate-based ordering satisfy this assumption. Adaptive sorting strategies
that incorporate RQMC information would violate this assumption and require separate theoretical analysis.
Assumption 8.d connects the theoretical transition kernel to the practical implementation. It requires that
the inverse transform method correctly simulates the Markov chain transitions. In discrete state spaces,
this is achieved through the inverse CDF method. Violation of this assumption leads to incorrect transition
distributions and biased gradient estimates. Assumption 8.c ensures that the only dependence introduced in
Array-RQMC comes from the deterministic sorting step, not from interactions between the chain evolution
and the quasi-random uniforms.

The complete pseudo-code of our proposed algorithm, termed aRNAC, under the discounted reward criteria
is summarized in Algorithm 1.
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Algorithm 1 Array-RQMC Natural Actor-Critic (aRNAC)
Function aRNAC(N , h, α, γ, ϵ)

Input: N : number of parallel chains; h: state sorting function for Array-RQMC; α: learning rates for
actor; γ: discount factor; ϵ: convergence threshold for gradient direction
Initialize: θ ← 0, w̄ ← 0, Ā← 0, b̄← 0, s0 ∼ random
si,0 ← s0, ∀i ∈ {1, . . . , N} // Initialize parallel chains

1 for j = 0, 1, 2, . . . do
2 i← 0, Âj ← 0, b̂j ← 0 // Reset per-iteration accumulators
3 Generate new RQMC point set Ωj // Low-discrepancy sampling
4 for i = 1, 2, . . . N do

// Policy execution with RQMC-enhanced transitions
5 ai,j ∼ πθ(·|si,j) // Sample action from current policy
6 si,j+1 ← Λ(si,j ,ai,j , P̃i), ri,j ← r(si,j ,ai,j) // Feature computation for natural gradient

estimation
7 ϕ̂i,j ← [ψTi,j , ϕTi,j ]T // Augmented features: score + value
8 ϕ̃i,j ← [0T , ϕTi,j+1]T // Next-state value features

// Accumulate LSTD-Q statistics
9 Âi+1,j ← Âi,j + ϕ̂i,j(ϕ̂i,j − γϕ̃i,j)T ,

b̂i+1,j ← b̂i,j + ri,j ϕ̂i,j
10 Sort s0,j+1, . . . , sN−1,j+1 according to h(si,j+1) // Maintain low-discrepancy structure

across chains
11 Critic Update: (Natural gradient estimation via LSTD-Q)
12 Aj+1 ← (1− 1

j+1 )Aj + 1
j+1

1
N ÂN,j // Update Fisher matrix estimate

13 b← (1− 1
j+1 )b+ 1

j+1 b̂j // Update policy gradient estimate
14 wj ← Ā−1b̄ // Solve for natural gradient (use SVD)
15 Actor Update: (Policy improvement) if ∠(wj , wj−1) ≤ ϵ then
16 θj+1 ← θj + αwj // Update policy parameters

4.2 Analysis of Natural Actor-Critic

We analyze the finite-sample performance of the natural actor-critic algorithm under standard Monte Carlo
sampling. The goal is to bound the error in estimating the natural policy gradient ∇GJ(θ) = G(θ)−1∇J(θ),
where G(θ) is the Fisher information matrix and ∇J(θ) is the policy gradient. We consider the setting where
trajectories are generated under the current policy πθ, and estimates are constructed from N independent
sample trajectories. In the following analysis, we consider an idealized setting in which the action–value
function Qπθ is available exactly when constructing the empirical estimators. This assumption isolates the
sampling variability of the gradient estimators by removing approximation error arising from a learned critic.
This allows to characterize the intrinsic sampling variance of natural-gradient estimation. This idealized
variance-only setting serves as the baseline to which approximation error is later added.

We define the empirical estimators using N independent samples {(si,ai)}Ni=1 drawn from dπθ × πθ:

Ĝ = 1
N

N∑
i=1

ψ(si,ai)ψ(si,ai)⊤, ∇̂J(θ) = 1
N

N∑
i=1

ψ(si,ai)Qπθ (si,ai), ∇̂GJ(θ) = Ĝ−1∇̂J(θ). (25)

The following lemma bounds the estimation error of the empirical Fisher information matrix in Frobenius
norm which for any matrix A ∈ Rq×q is defined as ∥A∥F =

√∑q
i=1
∑q
j=1 |Aij |2.

Lemma 9. The empirical Fisher information matrix estimator Ĝ satisfies:

E
[
∥Ĝ−G(θ)∥2

]
≤ CG

N
, where CG = C4

ψ.
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Proof. We define the random matrix xi = ψ(si, ai)ψ(si, ai)⊤ for each sample i. Then, Ĝ = 1
N

∑N
i=1 xi, and

G(θ) = E[xi]. The estimation error in Frobenius norm squared decomposes as follows:

∥Ĝ−G(θ)∥2
F =

q∑
j=1

q∑
k=1

(
(Ĝ−G(θ))jk

)2
.

Taking expectation and using linearity, we obtain

E
[
∥Ĝ−G(θ)∥2

F

]
=
∑
j,k

E
[(

(Ĝ−G(θ))jk
)2
]
. (26)

Now, observe that (Ĝ − G(θ))jk = 1
N

∑N
i=1 ((xi)jk − E[(xi)jk]). Since the samples {(si,ai)} are i.i.d., the

cross-terms vanish in expectation, and we obtain,

E
[(

(Ĝ−G(θ))jk
)2
]

= 1
N

Var ((xi)jk) ≤ 1
N

E
[
(xi)2

jk

]
. (27)

The (j, k)-th entry of xi is (xi)jk = ψj(si, ai)ψk(si, ai). By the Cauchy–Schwarz inequality, (xi)2
jk = ψ2

jψ
2
k ≤

∥ψ∥4. From Assumption 2, the feature vector ψ(s, a) is bounded: ∥ψ(s, a)∥ ≤ Cψ for all s, a. Therefore,
E
[
(xi)2

jk

]
≤ E

[
∥ψ∥4] ≤ C4

ψ. Summing over all q2 entries, we get,
∑
j,k E

[
(xi)2

jk

]
≤ q2C4

ψ. Further, note
that

∑
j,k(xi)2

jk = ∥xi∥2
F = ∥ψψ⊤∥2

F . Now for any vector ψ ∈ Rq, the outer product ψψ⊤ has the following
Frobenius norm:

∥ψψ⊤∥2
F = trace

(
(ψψ⊤)(ψψ⊤)

)
= trace

(
ψ(ψ⊤ψ)ψ⊤) = (ψ⊤ψ)trace(ψψ⊤) = ∥ψ∥2∥ψ∥2 = ∥ψ∥4.

Thus, ∥xi∥2
F = ∥ψ∥4 ≤ C4

ψ, and consequently,

E
[
∥xi∥2

F

]
≤ C4

ψ. (28)

Combining all together (26)-(28), we obtain,

E
[
∥Ĝ−G(θ)∥2

F

]
=
∑
j,k

E
[(

(Ĝ−G(θ))jk
)2
]
≤ 1
N

∑
j,k

E
[
(xi)2

jk

]
= 1
N

E
[
∥xi∥2

F

]
≤
C4
ψ

N
.

Therefore, E
[
∥Ĝ−G(θ)∥2

]
≤ C4

ψ

N , which completes the proof with CG = C4
ψ.

We now analyze the empirical policy gradient estimator constructed from sampled trajectories.
Lemma 10. The empirical policy gradient estimator ∇̂J(θ) satisfies the following:

E
[
∥∇̂J(θ)−∇J(θ)∥2

]
≤ C∇

N
, where C∇ = C2

ψC
2
Q with CQ = Cr

1− γ .

Proof. We define the random vector yi = ψ(si,ai)Qπθ (si,ai). Then, ∇̂J(θ) = 1
N

∑N
i=1 yi, and ∇J(θ) =

E[yi]. We now use exactly the same variance calculation as in the previous lemma, but with the Euclidean
norm. The estimation error is now given by,

∥∇̂J(θ)−∇J(θ)∥2 =
q∑
j=1

(
(∇̂J(θ)−∇J(θ))j

)2
.

Taking expectation and using linearity, we obtain,

E
[
∥∇̂J(θ)−∇J(θ)∥2

]
=

q∑
j=1

E
[(

(∇̂J(θ)−∇J(θ))j
)2
]
. (29)
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Since (∇̂J(θ)−∇J(θ))j = 1
N

∑N
i=1 ((yi)j − E[(yi)j ]) and samples are i.i.d., we have

E
[(

(∇̂J(θ)−∇J(θ))j
)2
]

= 1
N

Var ((yi)j) ≤
1
N

E
[
(yi)2

j

]
. (30)

The j-th component is (Yi)j = ψj(si,ai)Qπθ (si,ai). From Assumption 2, |ψj(s, a)| ≤ Cψ, ∀s, a, and the
Q-function is bounded by CQ = Cr/1− γ . Therefore,

(yi)2
j = ψj(si,ai)2 (Qπθ (si,ai))2 ≤ C2

ψC
2
Q.

Thus, E
[
(yi)2

j

]
≤ C2

ψC
2
Q. Now consider the squared norm of yi.

∥yi∥2 =
q∑
j=1

(yi)2
j =

q∑
j=1

ψj(si,ai)2 (Qπθ (si,ai))2 = (Qπθ (si,ai))2
q∑
j=1

ψj(si,ai)2

= (Qπθ (si,ai))2 ∥ψ(si,ai)∥2 ≤ C2
QC

2
ψ. (31)

Therefore, E
[
∥yi∥2] ≤ C2

ψC
2
Q. Finally by combining all the above (29–31), we obtain,

E
[
∥∇̂J(θ)−∇J(θ)∥2

]
=

q∑
j=1

E
[(

(∇̂J(θ)−∇J(θ))j
)2
]
≤ 1
N

q∑
j=1

E
[
(yi)2

j

]
= 1
N

E
[
∥yi∥2] ≤ C2

ψC
2
Q

N
.

This completes the proof with C∇ = C2
ψC

2
Q.

We now establish the uniform boundedness of the natural gradient estimator under Tikhonov regularization
Lemma 11. Under Assumptions 2–5, and using a Tikhonov regularized empirical Fisher matrix Ĝreg =
Ĝ+ ϵI for some ϵ > 0, there exists a constant Bϵ > 0 such that∥∥∥∇̂GJ(θ)−∇GJ(θ)

∥∥∥ ≤ Bϵ almost surely,

where

Bϵ =
(

2CψCQ

ϵ

(
1 +

C2
ψ

λmin

)
+ CψCQ

λmin

)2

.

Proof. Observe that for the Tikhonov regularized empirical Fisher matrix Ĝreg = Ĝ+ ϵI for some ϵ > 0, the
empirical natural gradient is defined as ∇̂GJ(θ) = Ĝ−1

reg∇̂J(θ). Now, we obtain the following bounds:

∥∇̂J(θ)∥ =

∥∥∥∥∥ 1
N

N∑
i=1

ψ(si,ai)Qπθ (si,ai)

∥∥∥∥∥ ≤ 1
N

N∑
i=1
∥ψ(si,ai)∥|Qπθ (si,ai)| ≤ CψCQ (32)

Similarly, ∥∇J(θ)∥ ≤ CψCQ. Further,

∥Ĝ∥ =

∥∥∥∥∥ 1
N

N∑
i=1

ψ(si,ai)ψ(si,ai)⊤

∥∥∥∥∥ ≤ 1
N

N∑
i=1
∥ψ(si,ai)∥2 ≤ C2

ψ.

Similarly, ∥G(θ)∥ ≤ C2
ψ. Also, from Assumption 5, we have ∥G(θ)−1∥ ≤ 1

λmin
.

Now, for the regularized empirical Fisher matrix Ĝreg = Ĝ + ϵI, we have Ĝreg ⪰ ϵI ⇒ ∥Ĝ−1
reg∥ ≤ 1

ϵ . Now,
consider the following difference:

∇̂GJ(θ)−∇GJ(θ) = Ĝ−1
reg∇̂J(θ)−G(θ)−1∇J(θ)

= Ĝ−1
reg(∇̂J(θ)−∇J(θ)) + (Ĝ−1

reg −G(θ)−1)∇J(θ)
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Taking norms, we get∥∥∥∇̂GJ(θ)−∇GJ(θ)
∥∥∥ ≤ ∥Ĝ−1

reg∥∥∇̂J(θ)−∇J(θ)∥+ ∥Ĝ−1
reg −G(θ)−1∥∥∇J(θ)∥

Using the bounds established above, we obtain∥∥∥∇̂GJ(θ)−∇GJ(θ)
∥∥∥ ≤ 1

ϵ
· 2CψCQ + ∥Ĝ−1

reg −G(θ)−1∥ · CψCQ

≤ 1
ϵ
· 2CψCQ + ∥Ĝ−1

reg∥∥Ĝreg −G(θ)∥∥G(θ)−1∥ · CψCQ (33)

Also, we have - ∥Ĝ−1
reg∥ ≤ 1

ϵ - ∥G(θ)−1∥ ≤ 1
λmin

- ∥Ĝreg −G(θ)∥ ≤ ∥Ĝ−G(θ)∥+ ϵ∥I∥ ≤ 2C2
ψ + ϵ. Therefore,

∥Ĝ−1
reg −G(θ)−1∥ ≤ 1

ϵ
· (2C2

ψ + ϵ) · 1
λmin

=
2C2

ψ + ϵ

ϵλmin
(34)

Now, putting (34) in (33), we get∥∥∥∇̂GJ(θ)−∇GJ(θ)
∥∥∥ ≤ 2CψCQ

ϵ
+

2C2
ψ + ϵ

ϵλmin
· CψCQ

≤ 2CψCQ

ϵ

(
1 +

C2
ψ

λmin

)
+ CψCQ

λmin

Hence, ∥∥∥∇̂GJ(θ)−∇GJ(θ)
∥∥∥2
≤ Bϵ, where Bϵ =

(
2CψCQ

ϵ

(
1 +

C2
ψ

λmin

)
+ CψCQ

λmin

)2

.

The following theorem quantifies non-asymptotically the mean squared error convergence rate of the regular-
ized natural gradient estimator ∇̂GJ(θ), characterizing how its estimation variance decays with the sample
size N .
Theorem 12 (Finite-Sample Error Bound for Regularized Natural Gradient Estimation). Under
Assumptions 2–5, and using a Tikhonov regularized empirical Fisher matrix Ĝreg = Ĝ + ϵI with ϵ > 0, the
regularized natural gradient estimator ∇̂GJ(θ) = Ĝ−1

reg∇̂J(θ) satisfies:

E
[∥∥∥∇̂GJ(θ)−∇GJ(θ)

∥∥∥2
]
≤ Cgvar

N
+

12ϵ2M2
∇G

λ4
min

,

where
Cgvar = 8

λ2
min

(
C∇ +M2

∇G
CG
)

+ 4BϵCG
λ2

min
,

M∇G
bounds ∥∇GJ(θ)∥ (Remark 1), and Bϵ is the almost-sure bound from Lemma 11 for the specific regu-

larization parameter ϵ.

Proof. We let ĝ = ∇̂J(θ) and g = ∇J(θ). For the regularized natural gradient estimator ∇̂GJ(θ), the
estimation error now decomposes as follows:

∇̂GJ(θ)−∇GJ(θ) = Ĝ−1
regĝ −G−1g = Ĝ−1

reg(ĝ − g) + (Ĝ−1
reg −G−1)g.

Using the identity Ĝ−1
reg −G−1 = Ĝ−1

reg(G− Ĝreg)G−1 and noting that G− Ĝreg = (G− Ĝ)− ϵI, we obtain:

∇̂GJ(θ)−∇GJ(θ) = Ĝ−1
reg(ĝ − g) + Ĝ−1

reg[(G− Ĝ)− ϵI]G−1g

= Ĝ−1
reg(ĝ − g) + Ĝ−1

reg(G− Ĝ)∇GJ(θ)− ϵĜ−1
regG

−1∇GJ(θ). (35)
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Let E denote the well-conditioned event: E =
{∥∥∥Ĝ−G∥∥∥ < λmin

2

}
. On event E , Weyl’s inequality ensures

λmin(Ĝ) ≥ λmin −
∥∥∥Ĝ−G∥∥∥ > λmin

2 , which implies∥∥∥Ĝ−1
reg

∥∥∥ ≤ 1
λmin(Ĝreg)

≤ 1
λmin(Ĝ) + ϵ

<
1

λmin/2 + ϵ
≤ 2
λmin

, (36)

where the last inequality follows since ϵ > 0. Now taking norms in (35) and applying the triangle inequality
and sub-multiplicativity on E , we get∥∥∥∇̂GJ(θ)−∇GJ(θ)

∥∥∥ ≤ ∥∥∥Ĝ−1
reg

∥∥∥ ∥ĝ − g∥+
∥∥∥Ĝ−1

reg

∥∥∥∥∥∥G− Ĝ∥∥∥ ∥∇GJ(θ)∥+ ϵ
∥∥∥Ĝ−1

reg

∥∥∥ ∥∥G−1∥∥ ∥∇GJ(θ)∥ .

Using the bounds
∥∥∥Ĝ−1

reg

∥∥∥ ≤ 2
λmin

,
∥∥G−1

∥∥ ≤ 1
λmin

, and ∥∇GJ(θ)∥ ≤M∇G
(Remark 1), we get,∥∥∥∇̂GJ(θ)−∇GJ(θ)

∥∥∥ ≤ 2
λmin

∥ĝ − g∥+ 2M∇G

λmin

∥∥∥G− Ĝ∥∥∥+ 2ϵM∇G

λ2
min

.

Squaring both sides and using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2):∥∥∥∇̂GJ(θ)−∇GJ(θ)
∥∥∥2
≤ 12
λ2

min
∥ĝ − g∥2 +

12M2
∇G

λ2
min

∥∥∥G− Ĝ∥∥∥2
+

12ϵ2M2
∇G

λ4
min

. (37)

We now take the total expectation and split it over events E and Ec:

E
[∥∥∥∇̂GJ(θ)−∇GJ(θ)

∥∥∥2
]

= E
[∥∥∥∇̂GJ(θ)−∇GJ(θ)

∥∥∥2
IE

]
+ E

[∥∥∥∇̂GJ(θ)−∇GJ(θ)
∥∥∥2
IEc

]
. (38)

We bound each term separately.

First we bound the error on the well-conditioned event E . Taking expectation of inequality (37) over E and
applying Lemmas 9 and 10, we get

E
[∥∥∥∇̂GJ(θ)−∇GJ(θ)

∥∥∥2
IE

]
≤ 12
λ2

min
E
[
∥ĝ − g∥2

]
+

12M2
∇G

λ2
min

E
[∥∥∥G− Ĝ∥∥∥2

]
+

12ϵ2M2
∇G

λ4
min

≤ 12
λ2

min

(
C∇

N
+M2

∇G

CG
N

)
+

12ϵ2M2
∇G

λ4
min

= 12
λ2

min

(
C∇ +M2

∇G
CG
) 1
N

+
12ϵ2M2

∇G

λ4
min

. (39)

Now we bound the error on the ill-conditioned event Ec. Using Lemma 11, we have

E
[∥∥∥∇̂GJ(θ)−∇GJ(θ)

∥∥∥2
IEc

]
≤ Bϵ · P(Ec). (40)

Using Chebyshev’s inequality and Lemma 9, we get

P(Ec) = P
(∥∥∥Ĝ−G∥∥∥ ≥ λmin

2

)
≤

E
[∥∥∥Ĝ−G∥∥∥2

]
(λmin/2)2 ≤ 4CG

λ2
minN

. (41)

Substituting (41) into (40):

E
[∥∥∥∇̂GJ(θ)−∇GJ(θ)

∥∥∥2
IEc

]
≤ 4BϵCG
λ2

minN
. (42)

Finally, the total expectation (38) can be bounded by substituting bounds (39) and (42) as follows

E
[∥∥∥∇̂GJ(θ)−∇GJ(θ)

∥∥∥2
]
≤ 12
λ2

min

(
C∇ +M2

∇G
CG
) 1
N

+
12ϵ2M2

∇G

λ4
min

+ 4BϵCG
λ2

minN
.
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The above theorem establishes a non-asymptotic mean-squared error bound for the regularized natural-
gradient estimator. It decomposes the estimation error into a stochastic variance term of order O(N−1) and
a deterministic bias term scaling as O(ϵ2). The variance constant Cgvar depends quadratically on λ−1

min, the in-
verse of the smallest eigenvalue of the Fisher information matrix, which explicitly quantifies the amplification
of sampling noise during preconditioning induced by ill-conditioned policy curvature. Meanwhile, the bias
component arises exclusively from the Tikhonov regularization ϵI, inducing an explicit bias–stability trade-
off: regularization guarantees invertibility and numerical robustness at the cost of a fixed approximation
error. Overall, the theorem identifies the implicit O(N−1) Monte Carlo variance floor for natural-gradient
estimation and provides a principled statistical baseline against which variance-reduction strategies can be
assessed.

We now analyze the convergence behavior of natural policy gradient estimation when value functions are
approximated using linear architectures. The following theorem characterizes the error dynamics under
standard Monte Carlo sampling.
Theorem 13 (Finite-Sample Error Bound for Regularized NAC with Function Approximation).
Let wtrue = G(θ)−1∇θJ(θ)+G(θ)−1E[ψ(s, a)ε(s, a, s′)] be the biased natural gradient from Theorem 7, where
ε(s, a, s′) is the Bellman error. Let ŵϵ = Ĝ−1

regĝ be the regularized empirical estimator with Ĝreg = Ĝ + ϵI,
ϵ > 0, using N Monte Carlo samples. Under Assumptions 2–5, there exist Cwvar > 0 such that

E
[
∥ŵϵ − wtrue∥2] ≤ Cwvar

N
+ 24
λ2

min
Cε + 12ϵ2M2

w

λ2
min

,

where
Cwvar = 24

λ2
min

(C∇ +M2
wCG) + 4BϵCG

λ2
min

, with Cε = ∥E[ψ(s,a)ε(s,a, s′)]∥2,

Mw = M∇G
+
√
Cε

λmin
, and Bϵ =

(CψCQ

ϵ
+Mw

)2
.

Proof. We again let G = G(θ), g = ∇θJ(θ), b = E[ψ(s,a)ε(s,a, s′)], Cε = ∥b∥2, ĝ = ∇̂J(θ), and gtrue =
∇θJ(θ) + E[ψ(s,a)ε(s,a, s′)]. Then gtrue = g + b, and wtrue = G−1gtrue. We also define the regularized
estimator as ŵϵ = Ĝ−1

regĝ with Ĝreg = Ĝ+ ϵI.

We decompose the error on ŵϵ as follows:

ŵϵ − wtrue = Ĝ−1
regĝ −G−1gtrue

= Ĝ−1
reg(ĝ − gtrue) +

(
Ĝ−1

reg −G−1)gtrue.

Using the identity Ĝ−1
reg −G−1 = Ĝ−1

reg(G− Ĝreg)G−1 and noting G− Ĝreg = (G− Ĝ)− ϵI, we obtain

ŵϵ − wtrue = Ĝ−1
reg(ĝ − gtrue) + Ĝ−1

reg(G− Ĝ)wtrue − ϵ Ĝ−1
regwtrue. (43)

Similar to Theorem 12, we define the well-conditioned event E =
{
∥Ĝ−G∥ < λmin

2

}
. On event E , we have

λmin(Ĝ) ≥ λmin/2 (by Assumption 5), which implies

∥Ĝ−1
reg∥ ≤

2
λmin

. (44)

From Remark 1 and the definition of b, we have

∥wtrue∥ ≤ ∥G−1g∥+ ∥G−1b∥ ≤M∇G
+ ∥b∥
λmin

= M∇G
+
√
Cε

λmin
=: Mw. (45)

Taking norms in (43) and applying triangle inequality and using (44–45), we obtain on E

∥ŵϵ − wtrue∥ ≤
2

λmin
∥ĝ − gtrue∥+ 2

λmin
∥G− Ĝ∥Mw + 2ϵ

λmin
Mw. (46)
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Now by definition, we have ∥ĝ − gtrue∥ ≤ ∥ĝ − g∥ + ∥b∥ and ∥b∥ =
√
Cε. By applying the inequality

(a+ b+ c)2 ≤ 3(a2 + b2 + c2) on (46), we obtain

∥ŵϵ − wtrue∥2 ≤ 12
λ2

min

(
∥ĝ − g∥+

√
Cε
)2 + 12M2

w

λ2
min
∥G− Ĝ∥2 + 12ϵ2M2

w

λ2
min

≤ 24
λ2

min
∥ĝ − g∥2 + 24Cε

λ2
min

+ 12M2
w

λ2
min
∥G− Ĝ∥2 + 12ϵ2M2

w

λ2
min

, (47)

where we used (x + y)2 ≤ 2(x2 + y2). By taking the expectation of (47) conditioned on E and applying
Lemmas 9 and 10, we get

E
[
∥ŵϵ − wtrue∥21E

]
≤ 24C∇

λ2
minN

+ 24Cε
λ2

min
+ 12M2

wCG
λ2

minN
+ 12ϵ2M2

w

λ2
min

. (48)

Now we bound the expectation on the complement event Ec. Since Ĝreg ⪰ ϵI, we have ∥Ĝ−1
reg∥ ≤ 1/ϵ.

Moreover, ∥ĝ∥ ≤ CψCQ (from (32)). Hence

∥ŵϵ∥ ≤
CψCQ

ϵ
, ∥ŵϵ − wtrue∥ ≤

CψCQ

ϵ
+Mw =:

√
Bϵ.

Thus ∥ŵϵ − wtrue∥2 ≤ Bϵ almost surely. Now by appealing to Chebyshev’s Inequality and Lemma 9,

P(Ec) = P
(
∥Ĝ−G∥ ≥ λmin/2

)
≤ 4E[∥Ĝ−G∥2]

λ2
min

≤ 4CG
λ2

minN
.

Consequently,

E
[
∥ŵϵ − wtrue∥21Ec

]
≤ Bϵ P(Ec) ≤ 4BϵCG

λ2
minN

. (49)

Finally, by adding (48) and (49) gives the final bound.

E
[
∥ŵϵ − wtrue∥2] ≤ 1

N

(24C∇

λ2
min

+ 12M2
wCG

λ2
min

+ 4BϵCG
λ2

min

)
+ 24Cε
λ2

min
+ 12ϵ2M2

w

λ2
min

.

Theorem 13 extends the analysis to the practical setting where value functions are approximated, introduc-
ing an additional, irreducible error source: the score-projected Bellman residual Cε = |E[ψ(s, a)ε(s, a, s′)]|2.
This constant bias term persists even with infinite samples and zero regularization, representing an implicit
limit on policy improvement achievable with a given function class. The geometry of this bias is particularly
revealing: state-dependent approximation errors vanish under projection due to the score function property
E[ψ|s] = 0, while action-dependent errors survive and systematically skew policy updates along directions
that correlate with policy sensitivity. The combined error bound demonstrates that both sampling vari-
ance and approximation bias are amplified by λ−1

min, creating a three-way trade-off between sample efficiency
(O(1/N)), numerical stability (ϵ2), and representation power (Cε). Thus, the above two results provide the
statistical foundation for understanding why natural actor-critic methods can struggle with high-variance
gradients while simultaneously explaining the effectiveness of techniques that address either sampling effi-
ciency (through variance reduction) or representation quality (through richer function approximators).

4.3 Array-RQMC Analysis

We now analyze the corresponding estimators when trajectory generation is driven by Array–RQMC which
offers more structured sampling, with particular emphasis on how structured dependence across sample
trajectories propagates through the natural actor–critic linear system. To establish the theoretical foundation
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for the variance reduction achieved by randomized quasi-Monte Carlo methods within our framework, we now
present a central result on the mean-squared error of estimators constructed from scrambled (t,m, d)-nets.
This theorem (Owen, 1997b;a) provides a rigorous non-asymptotic bound on the integration error when a
deterministic low-discrepancy point set is randomized via nested uniform scrambling and a digital shift. The
bound explicitly relates the error to the Hardy–Krause variation of the integrand, denoted VHK(f). Formally,
for a function f : [0, 1)d → R, let ∂uf denote the mixed partial derivative with respect to the coordinates in
u ⊆ {1, . . . , d}, and define the Vitali variation of f on a k-dimensional face as the integral of |∂uf | over that
face. The Hardy–Krause variation is then defined as:

VHK(f) =
∑

∅̸=u⊆{1,...,d}

∫
[0,1]|u|

|∂uf(xu,1−u)| dxu,

where (xu,1−u) denotes the point in [0, 1]d with coordinates in u set to xu and the remaining coordinates set
to 1 (Owen, 1997a). For functions with VHK(f) <∞, the theorem shows that the RQMC estimator achieves
a mean-squared error of order O((logN)2d/N2), a strict improvement over the standard Monte Carlo rate of
O(1/N). This result is critical for our subsequent analysis, as it formally guarantees that the RQMC-based
estimators for the Fisher information matrix and the policy gradient—components of the natural actor-critic
linear system—inherit this accelerated convergence, thereby directly reducing the variance propagated into
the natural-gradient update.
Theorem 14. (Owen, 1997a; 2013) Let {zi}Ni=1 ⊂ [0, 1)d be a randomly scrambled (t,m, d)-net in base b,
with N = bm, constructed via Owen’s nested uniform scrambling (optionally followed by a random digital
shift). Let f : [0, 1)d → R be integrable with finite Hardy–Krause variation VHK(f) <∞, and define

ÎN := 1
N

N∑
i=1

f(zi), I :=
∫

[0,1)d
f(z) dz.

Then E[ÎN ] = I and there exists a constant cd > 0 (depending only on d and the net construction) such that

E
[
(ÎN − I)2] ≤ cd VHK(f)2 (logN)2d

N2 .

We now apply this result to bound the estimation errors of the Fisher information matrix and the policy
gradient within the natural actor-critic framework. Specifically, we consider the Array-RQMC estimators
Ĝ and ĝ defined in (25), which are constructed by averaging over parallel trajectories generated via low-
discrepancy point sets.
Lemma 15. Under Assumptions 2–5, the Array–RQMC estimators Ĝ and ĝ in (25) satisfy

E
[
∥Ĝ−G∥2] ≤ CG (logN)2d

N2 , E
[
∥ĝ − g∥2] ≤ Cg (logN)2d

N2 ,

where d = ds+da is the total dimension of the uniforms driving transition and action selection, and CG, Cg >
0 depend only on problem constants (in particular on Cψ, Cr, γ, |S|, |A|) and the net construction.

Proof. We first prove the bound for Ĝ; the argument for ĝ is identical. Fix a time step j and let Fj be the
σ-field generated by all states/actions up to time j and all scrambled nets up to time j− 1. Conditioning on
Fj freezes the current array {(si,j , ai,j)}Ni=1. Now given (si,j , ai,j), the next pair (si,j+1, ai,j+1) is generated
by inverse transforms si,j+1 = Λ(si,j , ai,j , u), ai,j+1 = Γ(si,j+1, v). Let z = (u, v) ∈ [0, 1)d. Because S,A are
finite, both Λ and Γ are inverse-CDF maps for discrete distributions with finite support; hence [0, 1)d can be
partitioned into finitely many axis-aligned boxes on which (si,j+1(z), ai,j+1(z)) is constant. Consequently,
for each (k, ℓ),

fkℓi,j(z) := ψk(si,j , ai,j)ψℓ(si,j , ai,j)

is a bounded step function with finitely many axis-aligned discontinuities, and thus has finite Hardy–Krause
variation VHK(fkℓi,j) <∞ (Niederreiter, 1978).
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Owen’s scrambled-net result gives a mean-squared error bound of order (logN)2d/N2 for estimating an
integral of a function with finite Hardy–Krause variation by averaging the function over the scrambled net
points. However, the estimator is not average of one function f over the net. Instead, it is the average of
many functions f1, . . . , fN , where fi depends on (si,j , ai,j), evaluated at corresponding net points zi,j . So
we need a “multi-integrand” extension. Let {zi,j}Ni=1 denote the scrambled (t, d)-net used at time j (after
the state-dependent permutation; a permutation does not change the empirical average). We define the
following centered errors:

∆i := fkℓi,j(zi,j)−
∫

[0,1)d
fkℓi,j(z) dz.

Then

(Ĝkℓ −Gkℓ)2 =
(

1
N

N∑
i=1

∆i

)2

= 1
N2

N∑
i=1

∆2
i + 2

N2

∑
i<r

∆i∆r.

By taking conditional expectation given the σ-field Fj and applying Cauchy–Schwarz inequality, we get
E[∆i∆r | Fj ] ≤

√
E[∆2

i | Fj ]E[∆2
r | Fj ]. Moreover, conditional on Fj , each fkℓi,j is deterministic with finite

VHK, so Theorem 14 implies

E[∆2
i | Fj ] ≤ cd VHK(fkℓi,j)2 (logN)2d

N2 .

Now combining all of the above and summing the diagonal and off-diagonal terms gives

E
[
(Ĝkℓ −Gkℓ)2 | Fj

]
≤ cd

(
1
N

N∑
i=1

VHK(fkℓi,j)2

)
(logN)2d

N2 ,

where we used (
∑N
i=1 ai)2 ≤ N

∑N
i=1 a

2
i with ai = VHK(fkℓi,j). Since S ×A is finite, the collection of possible

functions {fkℓi,j(·)} over all (si,j , ai,j) is finite, and therefore

V̄ 2
kℓ := sup

(s,a)∈S×A
VHK(fkℓs,a)2 <∞.

Hence 1
N

∑N
i=1 VHK(fkℓi,j)2 ≤ V̄ 2

kℓ uniformly over j, which yields

E
[
(Ĝkℓ −Gkℓ)2 | Fj

]
≤ cd V̄ 2

kℓ

(logN)2d

N2 .

Summing over (k, ℓ) and using ∥ · ∥2 ≤ ∥ · ∥2
F gives

E
[
∥Ĝ−G∥2 | Fj

]
≤ cd

(∑
k,ℓ

V̄ 2
kℓ

) (logN)2d

N2 =: CG
(logN)2d

N2 .

Finally, take expectation over Fj . Averaging over the T steps preserves the bound because the scrambled
nets are independent across j and the bound is uniform in j. The identical argument applied to ĝ yields the
analogous bound with constant Cg.

We now derive a finite-sample error bound for the resulting regularized natural gradient estimator. This
theorem quantifies the combined effect of low-discrepancy sampling and Tikhonov regularization on the
accuracy of natural gradient updates. Specifically, we analyze the estimator Ĝ−1

reg∇̂J(θ), where Ĝreg = Ĝ+ϵI
with ϵ > 0.
Theorem 16 (Finite-Sample Error Bound for Regularized Natural Gradient Estimation with
Array-RQMC). Under Assumptions 2–5 and for the Tikhonov regularized Fisher matrix, Ĝreg = Ĝ +
ϵI, ϵ > 0, we have the following:

E
[∥∥Ĝ−1

reg∇̂J(θ)−∇GJ(θ)
∥∥2
]
≤ Crqvar ·

(logN)2d

N2 +
12M2

∇G

λ4
min

· ϵ2,

where
Crqvar = 12

λ2
min

(
Cg +M2

∇G
CG
)

+ 4B̃(ϵ)CG
λ2

min
, and B̃(ϵ) =

(CψCQ

ϵ
+M∇G

)2
.

27



Under review as submission to TMLR

Proof. Let ∇̂G,ϵJ(θ) = Ĝ−1
reg∇̂J(θ), G = G(θ), g = ∇J(θ), ĝ = ∇̂J(θ), and denote the (unregularized)

natural gradient by w = G−1g = ∇GJ(θ).

We decompose the estimation error as follows:

∇̂G,ϵJ(θ)− w = Ĝ−1
regĝ −G−1g = Ĝ−1

reg(ĝ − g)︸ ︷︷ ︸
gradient estimation error

+
(
Ĝ−1

reg −G−1)g︸ ︷︷ ︸
matrix inversion error

. (50)

Using the identity A−1 −B−1 = A−1(B −A)B−1 with A = Ĝreg and B = G, we get

Ĝ−1
reg −G−1 = Ĝ−1

reg(G− Ĝreg)G−1.

Applying G− Ĝreg = G− (Ĝ+ ϵI) = (G− Ĝ)− ϵI we get

Ĝ−1
reg −G−1 = Ĝ−1

reg(G− Ĝ)G−1 − ϵ Ĝ−1
regG

−1. (51)

Now from (50) and (51), we get

∇̂G,ϵJ(θ)− w = Ĝ−1
reg(ĝ − g) + Ĝ−1

reg(G− Ĝ)w − ϵ Ĝ−1
regG

−1w.

Taking norms and applying the triangle inequality, we obtain∥∥∇̂G,ϵJ(θ)− w
∥∥ ≤ ∥Ĝ−1

reg∥ ∥ĝ − g∥+ ∥Ĝ−1
reg∥ ∥G− Ĝ∥ ∥w∥+ ϵ ∥Ĝ−1

reg∥ ∥G−1∥ ∥w∥. (52)

Similar to Theorem 12, we now define the event E =
{
∥Ĝ − G∥ < λmin/2

}
. On E , we have ∥Ĝ−1

reg∥ ≤ 2
λmin

.
On E , by applying Assumption 5 and Remark 1 to (52), we get∥∥∇̂G,ϵJ(θ)− w

∥∥ ≤ 2
λmin

∥ĝ − g∥+ 2M∇G

λmin
∥G− Ĝ∥+ 2ϵM∇G

λ2
min

.

Apply the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) to the above, we obtain

∥∥∇̂G,ϵJ(θ)− w
∥∥2 ≤ 12

λ2
min
∥ĝ − g∥2 +

12M2
∇G

λ2
min

∥G− Ĝ∥2 +
12ϵ2M2

∇G

λ4
min

.

Taking expectations and invoking Lemma 15, we get,

E
[∥∥∇̂G,ϵJ(θ)− w

∥∥21E

]
≤ 12
λ2

min

(
Cg +M2

∇G
CG
) (logN)2d

N2 +
12ϵ2M2

∇G

λ4
min

. (53)

Now we bound the expectation on Ec. By Chebyshev’s inequality and Lemma 15, we obtain

P(Ec) = P
(
∥G− Ĝ∥ ≥ λmin/2

)
≤ E[∥G− Ĝ∥2]

(λmin/2)2 ≤ 4CG
λ2

min

(logN)2d

N2 . (54)

Moreover, since Ĝreg ⪰ ϵI, we have ∥Ĝ−1
reg∥ ≤ 1/ϵ, and by Assumption 2, ∥ĝ∥ ≤ CψCQ (from (32)). Hence

∥∇̂G,ϵJ(θ)∥ = ∥Ĝ−1
regĝ∥ ≤ ∥Ĝ−1

reg∥∥ĝ∥ ≤
CψCQ
ϵ

.

Therefore, ∥∥∇̂G,ϵJ(θ)− w
∥∥ ≤ CψCQ

ϵ
+M∇G

=⇒
∥∥∇̂G,ϵJ(θ)− w

∥∥2 ≤ B̃(ϵ), (55)

where B̃(ϵ) :=
(
CψCQ
ϵ +M∇G

)2
. Thus, by taking expectation over Ec on (55), and applying (54), we obtain

E
[∥∥∇̂G,ϵJ(θ)− w

∥∥21Ec
]
≤ B̃(ϵ)P(Ec) ≤ 4B̃(ϵ)CG

λ2
min

(logN)2d

N2 . (56)
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Finally, by combining (53) and (56), we obtain the final bound as follows:

E
[∥∥∇̂G,ϵJ(θ)− w

∥∥2
]
≤
[ 12
λ2

min

(
Cg +M2

∇G
CG
)

+ 4B̃(ϵ)CG
λ2

min

] (logN)2d

N2 +
12ϵ2M2

∇G

λ4
min

.

The above result reveals two fundamentally distinct components: a variance term scaling as O((logN)2d/N2)
and a bias term scaling as O(ϵ2). The variance term inherits the accelerated convergence rate characteristic
of scrambled (t,m, d)-nets, demonstrating that the structured dependence introduced by Array-RQMC effec-
tively suppresses the stochastic noise in estimating both the Fisher information matrix G(θ) and the policy
gradient ∇J(θ). Crucially, this O((logN)2d/N2) rate represents a strict improvement over the canonical
Monte Carlo rate of O(1/N), with the exponent 2 reflecting the quadratic error reduction from quasi-Monte
Carlo integration of functions with finite Hardy–Krause variation. The bias term arises solely from the
Tikhonov regularization ϵI, which guarantees numerical invertibility but introduces a deterministic per-
turbation that persists even as N → ∞. The presence of λ−4

min in the bias constant explicitly quantifies
how ill-conditioned curvature (small λmin) amplifies regularization-induced distortion during precondition-
ing. This result therefore delineates a clear bias–variance trade-off: while smaller ϵ reduces approximation
bias, it may compromise numerical stability; conversely, increasing N reduces stochastic variance without
affecting the bias floor. It also confirms that the geometric preconditioning inherent to natural gradients is
fully compatible with the variance-reduction benefits of low-discrepancy sampling.

We now state the finite-sample error bound for the regularized Array-RQMC natural actor-critic estimator
under linear function approximation.
Theorem 17 (Regularized Array-RQMC Natural Actor-Critic). Under Assumptions 2–5 and the
conditions of Lemma 15, let wtrue = G(θ)−1∇θJ(θ)+G(θ)−1E[ψ(s, a)ε(s, a, s′)] be the biased natural gradient,
where ε(s, a, s′) is the Bellman error, and let Ĝreg = Ĝ+ ϵI with ϵ > 0. Define the regularized Array-RQMC
estimator ŵARQMC = Ĝ−1

reg∇̂J(θ). Then there exist constants Carqmc > 0, Cε > 0 and Mw > 0 such that

E
[
∥ŵARQMC − wtrue∥2] ≤ Carqmc

(logN)2d

N2 + 16
λ2

min
Cε + 16ϵ2M2

w

λ2
min

,

where d is the total dimension of the uniforms driving the transitions and actions, λmin is the minimal
eigenvalue of G(θ), Cε = ∥E[ψ(s,a)ε(s,a, s′)]∥2, and Mw = M∇G

+
√
Cε/λmin with M∇G

the bound on the
true natural gradient (Remark 1).

Proof. For brevity, we denote G = G(θ), g = ∇θJ(θ), b = E[ψ(s,a)ε(s,a, s′)], and gtrue = g + b. Thus
wtrue = G−1gtrue.

We first decompose the error on ŵARQMC as follows:

ŵARQMC − wtrue = Ĝ−1
reg(ĝ − gtrue) + (Ĝ−1

reg −G−1)gtrue.

Using the identity Ĝ−1
reg − G−1 = Ĝ−1

reg(G − Ĝreg)G−1 and G − Ĝreg = (G − Ĝ) − ϵI, we rewrite the second
term as

(Ĝ−1
reg −G−1)gtrue = Ĝ−1

reg(G− Ĝ)G−1gtrue − ϵ Ĝ−1
regG

−1gtrue

= Ĝ−1
reg(G− Ĝ)wtrue − ϵ Ĝ−1

regwtrue.

Hence
ŵARQMC − wtrue = Ĝ−1

reg(ĝ − gtrue) + Ĝ−1
reg(G− Ĝ)wtrue − ϵ Ĝ−1

regwtrue. (57)

Similar to Theorem 12, we now define the event E = {∥Ĝ − G∥ ≤ λmin/2}. On E , we have λmin(Ĝreg) ≥
λmin/2, so that

∥Ĝ−1
reg∥ ≤

2
λmin

. (58)
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By Assumption 5, ∥G−1∥ ≤ 1/λmin. From Remark 1 and the definition of b, we have

∥wtrue∥ ≤ ∥G−1g∥+ ∥G−1b∥ ≤M∇G
+ ∥b∥
λmin

= M∇G
+
√
Cε

λmin
=: Mw. (59)

Taking norms in (57) and using (58)–(59),

∥ŵARQMC − wtrue∥ ≤ ∥Ĝ−1
reg∥ ∥ĝ − gtrue∥+ ∥Ĝ−1

reg∥ ∥G− Ĝ∥ ∥wtrue∥+ ϵ ∥Ĝ−1
reg∥ ∥wtrue∥

≤ 2
λmin

(
∥ĝ − g∥+ ∥b∥

)
+ 2Mw

λmin
∥G− Ĝ∥+ 2ϵMw

λmin
.

Using identity (a+ b+ c)2 ≤ 4(a2 + b2 + c2) and applying Cauchy–Schwarz give

∥ŵARQMC − wtrue∥2 ≤ 16
λ2

min
∥ĝ − g∥2 + 16

λ2
min
∥b∥2 + 16M2

w

λ2
min
∥G− Ĝ∥2 + 16ϵ2M2

w

λ2
min

.

Now taking expectation conditioned on E and invoking Lemma 15, we get,

E
[
∥ŵARQMC − wtrue∥21E

]
≤ 16
λ2

min
Cg

(logN)2d

N2 + 16
λ2

min
Cε + 16M2

w

λ2
min

CG
(logN)2d

N2 + 16ϵ2M2
w

λ2
min

. (60)

Now we bound on the complement event Ec. Similarly as in Theorem 13, we have ∥Ĝ−1
reg∥ ≤ 1/ϵ and

∥ĝ∥ ≤ CψCQ. Thus

∥ŵARQMC∥ = ∥Ĝ−1
regĝ∥ ≤

CψCQ
ϵ

.

Together with (59) we obtain the following almost-sure bound

∥ŵARQMC − wtrue∥ ≤
CψCQ
ϵ

+Mw =: Bϵ. (61)

By Chebyshev’s inequality and Lemma 15, we get

P(Ec) = P
(
∥Ĝ−G∥ > λmin/2

)
≤ 4E[∥Ĝ−G∥2]

λ2
min

≤ 4CG
λ2

min

(logN)2d

N2 . (62)

Hence,

E
[
∥ŵARQMC − wtrue∥21Ec

]
≤ B2

ϵ P(Ec) ≤ 4B2
ϵCG

λ2
min

(logN)2d

N2 . (63)

Finally, by combining the expectations on E (60) and Ec (63), we get the required bound.

E
[
∥ŵARQMC − wtrue∥2] ≤ [ 16

λ2
min

(
Cg +M2

wCG
)

+ 4B2
ϵCG

λ2
min

]
(logN)2d

N2 + 16
λ2

min
Cε + 16ϵ2M2

w

λ2
min

.

The above result provides a complete non-asymptotic decomposition of the mean-squared error of the reg-
ularized Array-RQMC natural-actor-critic estimator. The bound explicitly separates three distinct sources
of inaccuracy: a variance term scaling as Carqmc(logN)2d/N2, an irreducible approximation bias 16

λ2
min
Cε,

and a regularization bias 16ϵ2M2
w

λ2
min

. The variance term reflects the stochastic error induced by finite-sample
estimation of the Fisher matrix and the policy gradient. The rate O((logN)2d/N2) is strictly faster than
the canonical Monte-Carlo rate O(1/N) and is inherited from the scrambled-net construction; the expo-
nent 2 arises from the quadratic error reduction of quasi-Monte-Carlo integration for functions of bounded
Hardy–Krause variation. This acceleration is the core benefit of employing Array-RQMC: by replacing in-
dependent pseudo-random points with a low-discrepancy set, the estimator achieves a quadratically smaller
variance as a function of the number N of parallel chains.
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The approximation bias term originates from the projection of the Bellman residual ε(s, a, s′) onto the
score-feature space, i.e., Cε = ∥E[ψ(s, a)ε(s, a, s′)]∥2. This bias does not vanish with increased sampling or
decreased regularization; it is a fundamental limitation of the chosen function class. The factor λ−2

min indicates
that ill-conditioned curvature (a small minimal Fisher eigenvalue) amplifies the effect of approximation errors,
making the natural-gradient direction more sensitive to inaccuracies in the critic. The regularization bias
term arises from the Tikhonov regularization ϵI added to ensure numerical invertibility of the empirical
Fisher matrix. Like the approximation bias, it is scaled by λ−2

min, again highlighting the vulnerability of
preconditioned updates to poor conditioning. This term represents a deliberate bias–stability trade-off: a
larger ϵ guarantees invertibility and controls the norm of Ĝ−1

reg, but introduces a persistent bias that cannot
be eliminated by collecting more samples.

Collectively, the error bound delineates a three-way trade-off between sample efficiency (via the accelerated
variance term), representation power (via the approximation bias), and numerical robustness (via the reg-
ularization bias). The presence of λ−2

min in both bias terms underscores the critical role of policy manifold
curvature: when the Fisher matrix is ill-conditioned, not only does the sampling variance require more
samples to reduce (as seen in the constant Carqmc), but the biases are also magnified. This result provides
a rigorous foundation for understanding the interplay between low-discrepancy sampling, function approx-
imation, and preconditioning in natural actor-critic methods, and it justifies the use of Array-RQMC as a
variance-reduction technique that operates orthogonally to the approximation and regularization errors.

5 Experiments

In this section, we demonstrate the effectiveness of low-discrepancy sampling for estimating the natural
policy gradient. All experiments use Sobol sequences, randomized via a Left Matrix scramble combined with
a digital shift. Points from the RQMC set are generated using the Sobol Engine (Virtanen et al., 2020). Our
emphasis is on analysing the behaviour of the gradient estimator and the resulting optimisation dynamics,
rather than relying solely on task-level performance metrics. To this end, we report the Gradient Noise
Scale (GNS) as a scale-aware proxy for estimator variance, together with the update magnitude log∥wt∥
as an indicator of stability and conditioning. Note that the within-window second moment of the update wt
can be decomposed as follows:

E
[
∥wt∥2] = ∥E[wt]∥2 + tr

(
Cov(wt)

)
,

which separates the contribution of the mean update direction from its stochastic dispersion. Moti-
vated by this expression, the GNS is defined as a scale-normalized measure of noise, proportional to
tr
(

Cov(wt)
)/
∥E[wt]∥2, thereby quantifying stochastic variability relative to the strength of the update signal.

Intuitively, GNS measures the variance of the gradient relative to its signal: a lower GNS means either the
gradient estimator’s variance is low or its mean direction is strong (or both), indicating a high signal-to-noise
ratio in wt.

In addition to GNS, we report average return to assess task-level performance, as well as several com-
plementary diagnostics that characterize optimization behavior. The update magnitude log∥wt∥ captures
the scale and smoothness of parameter motion, with large fluctuations indicating poor conditioning or noisy
gradients. We further report the KL divergence between successive policies, which measures the
effective step size in policy space and serves as a proxy for trust-region behavior, and policy entropy,
which reflects the evolution of exploration and guards against premature collapse. Together, these met-
rics provide a multi-faceted view of both performance and stability, enabling a principled comparison of
variance-reduction effects beyond asymptotic return alone. All reported results are obtained by averaging
over multiple independent runs with different random seeds. Curves show the seed-wise mean together with
standard deviation (shaded), computed over fixed training windows to expose between-run stochasticity
while attenuating non-stationarity within individual trajectories.

1. DeepSea: DeepSea environment from Bsuite (Osband et al., 2019) constitutes a particularly stringent
diagnostic for policy-gradient methods, as the learning signal is both sparse and exponentially weak in the
horizon. This causes early gradient estimates to be dominated by stochastic noise. In this setting, we observe
a clear separation between methods. As shown in Figure 3, our algorithm aRNAC achieves consistently higher
average return while maintaining the lowest gradient noise scale (GNS). Although Vanilla NAC (VNAC) and
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Figure 3: DeepSea (BSuite): performance and gradient noise. Plots show mean ± standard deviation
across random seeds. DeepSea is a sparse-reward, long-horizon exploration task in which early policy-gradient
estimates are dominated by noise. aRNAC achieves higher average return while consistently maintaining the
lowest gradient noise scale (GNS). In contrast, VNAC and A2C exhibit elevated and more variable noise
levels, with a transient crossing during mid-training, while vanilla policy gradients (PG) remain persistently
noisy. These results indicate that variance-reduced natural updates substantially suppress gradient noise in
regimes with extremely weak learning signals.

A2C eventually reduce noise relative to vanilla policy gradients, both exhibit substantially higher variance
during the critical early and mid-learning phases. Also A2C displays transient instability due to critic-
induced noise. Meanwhile, the variance-reduced natural updates of aRNAC suppress stochastic fluctuations
at the level of the gradient estimator itself, allowing weak reward signals to accumulate reliably over long
horizons.

Figure 4 shows qualitative differences in optimisation dynamics between the methods. aRNAC consistently
operates with smaller and smoother update magnitudes, as shown in the log |update| trace. VNAC and A2C
exhibit irregular oscillations and vanilla policy gradients remain highly erratic. Additionally, aRNAC sustains
controlled exploration without premature entropy collapse and induces significantly smaller KL divergence
between successive policies, indicating conservative, trust-region-like steps in policy space. These results
suggest that the benefits of aRNAC in this setting arise not merely from improved asymptotic performance,
but from fundamentally more stable learning dynamics under extreme noise and delayed reward, which
corroborates our variance-reduction and natural-gradient analysis.

2. Frozen-Lake: FrozenLake (Brockman et al., 2016) involves grid-based navigation where the agent
aims to reach a goal while avoiding failure caused by slippery transitions. It represents a fundamentally
different setting from DeepSea. Here, the state–action space is small and discrete, but the dynamics are
highly stochastic and the reward signal is sparse, with a single terminal success and frequent catastrophic
failures. In this setting, we observe that aRNAC consistently attains higher average returns than other
methods. It also converges faster and more reliably to the optimal policy. As shown in Figure 5, vanilla
policy gradients struggle to propagate sparse terminal rewards through the stochastic transitions, resulting
in noisy and unstable learning trajectories. While VNAC and A2C partially mitigate this issue through
curvature information or critic bootstrapping, both exhibit slower convergence and greater sensitivity to
transition randomness. In contrast, the variance-reduced natural updates of aRNAC enable effective credit
assignment even when successful trajectories are rare, leading to more dependable improvement across seeds.

Beyond return, FrozenLake exposes differences in optimization behavior that are particularly relevant in
discrete stochastic environments. The log |update| traces indicate that aRNAC performs consistently smaller
and more stable parameter updates. VNAC exhibits noticeable fluctuations and PG shows erratic behavior
throughout training. We observe similar ordering in the gradient noise scale, where aRNAC maintains the
lowest noise level, followed by A2C and VNAC. The policy gradient remains the noisiest. These dynamics
suggest that, even in low-dimensional settings, controlling estimator variance is crucial when transition
stochasticity dominates the learning signal. The results show that variance reduction at the level of the
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Figure 4: DeepSea (BSuite): Mean ± standard deviation across seeds. The log ∥update∥ traces reveal
that aRNAC performs consistently smaller and smoother parameter updates, whereas VNAC and A2C
exhibit larger fluctuations and PG shows highly erratic behavior. Entropy evolution indicates that aRNAC
preserves controlled exploration over long horizons without premature collapse. KL divergence between
successive policies further confirms this stability: variance-reduced natural updates induce smaller policy
shifts per iteration, approximating a trust-region behavior without explicit constraints. Together, these
diagnostics explain the improved robustness of aRNAC under severe noise and delayed reward.

natural-gradient estimator leads to more robust and reliable learning, in small, discrete environments with
fragile reward structure.

3. Acrobot: Acrobot (Brockman et al., 2016) presents a continuous-state (discretized for the algorithm),
under-actuated control problem in which successful learning requires coordinating torque-limited actions
over long horizons to achieve an unstable upright configuration. It is characterised by a smooth but highly
nonconvex control landscape in which progress is achieved not through local reward shaping, but by gradually
accumulating mechanical energy via coordinated torque application. In this regime, learning is limited
less by exploration failure and more by poor conditioning of gradient directions when the policy is far
from the swing-up manifold. In this setting, we observe that aRNAC attains higher average return and
converges more rapidly than all baselines (Figure 6). Vanilla policy gradients exhibit slow and erratic
improvement, reflecting the high variance of Monte Carlo gradient estimates in the presence of delayed
rewards and nonlinear dynamics. While A2C improves sample efficiency by introducing a learned baseline,
its performance remains sensitive to critic noise, leading to flatter learning curves and increased variability
across seeds. VNAC benefits from natural-gradient geometry and demonstrates improved stability relative
to first-order methods, but still lags behind aRNAC in terms of convergence speed and final return. These
results indicate that, for Acrobot, both curvature information and variance control are necessary to reliably
exploit the weak reward signal induced by long-horizon swing-up behaviour.

The log |update| trace shows that aRNAC consistently callibrates with smaller and smoother parameter
updates, whereas VNAC exhibits noticeable oscillations and A2C shows intermittent bursts associated with
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Figure 5: FrozenLake: [ Top ] average episodic return (higher is better). [ Middle ] gradient noise scale
(GNS; lower indicates a less noisy update direction). [ Bottom ] log-norm of the update vector log ∥∆t∥
(lower indicates smaller, more stable steps). Shaded regions denote standard deviation across runs. aRNAC
achieves higher returns with consistently lower GNS and smaller update norms than VNAC, A2C, and PG,
reflecting improved stability from randomized low-discrepancy sampling within the NAC estimator. VNAC
exhibits noticeable oscillations, while PG remains the noisiest and least stable baseline. Here, for NAC-family
methods (VNAC, aRNAC), ∆t ≡ wt (the compatible-critic / natural-step vector); for A2C and PG, ∆t ≡ gt
(the actual policy-gradient update used by the optimiser).

critic-induced noise. This behavior reflects in the gradient noise scale also, where aRNAC maintains the
lowest noise level during training, followed by VNAC, and policy gradients remaining substantially noisier.
Note that these stability advantages emerge early in training, when the policy is far from optimal and gradient
estimates are most unreliable. The results demonstrate that variance-reduced natural updates do not merely
improve asymptotic performance but fundamentally stabilize learning dynamics in nonlinear control tasks,
enabling more reliable optimization under delayed rewards and complex dynamics.

4. Taxi Domain: The Taxi domain (Brockman et al., 2016) involves grid-based navigation with the goal
of completing a passenger pickup and drop-off efficiently while avoiding illegal actions. It differs qualitatively
from the other benchmarks considered. The rewards are neither purely sparse nor dense, but arise from a
sequence of interdependent sub-decisions involving navigation, pickup, and drop-off under a discrete, factored
state space. The results are summarised in Figure 7 In this setting, we observe that aRNAC achieves
higher average return and reaches stable performance significantly earlier than other methods. Vanilla
policy-gradient methods tend to have difficulty coordinating decisions across stages, leading to policies that
perform well in navigation yet fail to reliably carry out the pickup–drop-off sequence. VNAC improves
upon this behaviour by exploiting policy geometry, yet its progress remains uneven, reflecting sensitivity
to noisy subtask-level gradients. A2C, while benefiting from bootstrapped value estimates, exhibits slower
improvement due to critic variance propagating across the tightly coupled decision stages. In contrast,
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Figure 6: Acrobot: [ Top ] average episodic return. [ Middle ]: gradient noise scale (GNS; lower is
better). [ Bottom ]: log-norm of the update vector log ∥∆t∥. Shading indicates standard deviation across
runs. aRNAC attains higher returns with markedly lower GNS and smaller update norms than VNAC, A2C,
and PG, consistent with variance-reduction in the natural-actor update; VNAC fluctuates more, and PG is
the noisiest baseline. Note the update (y-axis) ∆t = wt for NAC-family methods; ∆t = gt for A2C/PG.

aRNAC consistently integrates weak but structured learning signals across subtasks, resulting in more reliable
end-to-end task completion.

Unlike long-horizon exploration tasks, this setting induces frequent but low-magnitude gradient signals whose
utility depends on accurate aggregation across states with shared semantic roles (e.g., pickup locations
versus drop-off destinations). The log |update| traces show that aRNAC performs smaller, well-regulated
updates and avoids the oscillatory behavior observed in VNAC and the abrupt jumps characteristic of vanilla
policy gradients. This stabilization is further mirrored in the gradient noise scale, where aRNAC maintains
consistently lower noise, enabling more coherent policy refinement across related state clusters. Importantly,
these effects emerge without sacrificing exploration, indicating that the advantage of aRNAC in Taxi stems
not from aggressive policy changes but from improved statistical efficiency in assembling compositional
decisions. Overall, the Taxi results show that variance-reduced natural gradients are especially effective in
domains dominated by structured credit-assignment requirements.

GridWorld: In the Gridworld setting (Brockman et al., 2016), the agent operates over a discrete set of
states and actions, aiming to reach a designated goal state while minimizing path length and avoiding ineffi-
cient transitions. Here, dynamics are mostly driven by dense but locally myopic rewards. The performance
depends on the agent’s ability to exploit spatial regularities while avoiding the accumulation of suboptimal
local decisions. Unlike Taxi domain, where optimality requires coordinating a fixed sequence of subtasks,
Gridworld requires consistent improvement across many short-horizon transitions whose effects compound
over time. In this setting, aRNAC achieves higher average return and exhibits more reliable convergence
than all baselines (Figure 8). Vanilla policy gradient oscillates between locally reasonable but globally ineffi-
cient paths. VNAC and A2C improve stability relative to first-order methods, however their learning curves
remain more or less flatter. This shows their difficulty in aggregating weak improvements across neighbour-
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Figure 7: Taxi Domain: [ Top ] average episodic return (higher is better). [ Middle ] gradient noise scale
(GNS; lower indicates a less noisy update direction). [ Bottom ] log-norm of the update vector log ∥∆t∥
(lower indicates smaller, more stable steps). Shaded regions denote standard deviation across multiple runs.
aRNAC achieves higher returns while maintaining lower GNS and smaller update norms than VNAC, A2C,
and PG, consistent with variance reduction from randomized low-discrepancy sampling within the NAC
linear-system estimator. VNAC exhibits larger oscillations, and PG remains the noisiest and least stable
baseline. Note that for NAC-family methods (VNAC, aRNAC), ∆t ≡ wt (the compatible-critic / natural-
step vector); for A2C and PG, ∆t ≡ gt (the actual policy-gradient update used by the optimiser).

ing states. In contrast, aRNAC more effectively exploits the spatial smoothness of the environment, and it
translates small, consistent improvements into long-term performance gains.

Although individual transitions are short-horizon, the high number of updates amplifies estimator noise,
making stability over many iterations indeed essential. The log |update| traces show that aRNAC maintains
uniformly smaller and smoother updates, whereas VNAC displays moderate fluctuations and vanilla policy
gradient remain highly erratic. This behaviour is reflected in the gradient noise scale, where aRNAC consis-
tently attains the lowest noise levels, and obtain coherent policy refinement across adjacent states. Notably,
these advantages emerge without suppressing exploration. This shows that aRNAC balances stability and
adaptability even in densely connected state spaces. Overall, these results show that by controlling gradient
noise, one can essentially improve performance not only in sparse-reward or long-horizon tasks, but also in
structured environments where local errors can add up over time thus impacting cumulative performance.

6 Conclusion

In this paper, we analyzed the Natural Actor–Critic method from the perspective of stochastic estimation
error in the natural-gradient update. By examining the compatible-feature solution that defines the natural
gradient, we showed how randomness inherent in this estimator propagates through Fisher preconditioning
and affects the magnitude and conditioning of parameter updates. This analysis shows that the behavior of
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Figure 8: Gridworld: [ Top ] average episodic return. [ Middle ] gradient noise scale (GNS; lower is
better). [ Bottom ] log-norm of the update vector log ∥∆t∥. Shaded regions denote standard deviation across
runs. aRNAC achieves the best return and the lowest noise/step magnitudes; VNAC exhibits noticeable
oscillations; PG remains unstable and noisy; A2C is intermediate. Again, we consider the update ∆t = wt
for NAC-family methods; ∆t = gt for A2C/PG.

NAC is influenced not only by the geometric structure induced by the Fisher matrix but also by the variance
properties of the estimator used to approximate the natural gradient. Within this framework, we showed
that low-discrepancy sampling provides a principled way to reduce stochastic variability in the natural-
gradient estimator while preserving unbiasedness. In particular, randomized low-discrepancy constructions
reduce estimator dispersion relative to standard Monte Carlo sampling without altering the optimization
objective or update structure. The theoretical analysis of our RQMC-based NAC estimators shows a strict
reduction in estimator variance under reasonable conditions. Together, these results characterize the impact
of estimator variance on natural-gradient methods and its implications for stability and conditioning in
natural actor–critic algorithms.
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