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Abstract

There is growing interest in extending average
treatment effect (ATE) estimation to incorporate
non-tabular data, such as images and text, which
may act as sources of confounding. Neglecting
these effects risks biased results and flawed sci-
entific conclusions. However, incorporating non-
tabular data necessitates sophisticated feature ex-
tractors, often in combination with ideas of trans-
fer learning. In this work, we investigate how
latent features from pre-trained neural networks
can be leveraged to adjust for sources of confound-
ing. We formalize conditions under which these
latent features enable valid adjustment and sta-
tistical inference in ATE estimation, demonstrat-
ing results along the example of double machine
learning. In this context, we also discuss criti-
cal challenges inherent to latent feature learning
and downstream parameter estimation using those.
As our results are agnostic to the considered data
modality, they represent an important first step
towards a theoretical foundation for the usage of
latent representation from foundation models in
ATE estimation.

1. Introduction

Causal inference often involves estimating the average treat-
ment effect (ATE), which represents the causal impact of
an exposure on an outcome. Under controlled study se-
tups of randomized controlled trials (RCTs), valid inference
methods for ATE estimation are well established (Deaton
& Cartwright, 2018). However, RCT data is usually scarce
and in some cases even impossible to obtain, either due
to ethical or economic reasons. This often implies relying
on observational data, typically subject to (unmeasured)
confounding—(hidden) factors that affect both the exposure
and the outcome. To overcome this issue of confounding,
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several inferential methods have been developed that aim
to adjust ATE estimation for such confounders. Most of
these consider tabular features as confounders. However,
confounding information might also or only be present in
non-tabular data, such as images or text.

Non-tabular Data as Sources of Confounding Espe-
cially in medical domains, imaging is a key component
of the diagnostic process. Frequently, CT scans or X-rays
are the basis to infer a diagnosis and a suitable treatment
for a patient. However, as the information in such medical
images often also affects the outcome of the therapy, the
information in the image acts as a confounder. Similarly,
treatment and health outcomes are often both related to a pa-
tient’s files, which are typically in text form. Consequently,
ATE estimation based on such observational data will likely
be biased if the confounder is not adequately accounted
for. Typical examples would be the severity of a disease
or fracture. The extent of a fracture impacts the likelihood
of surgical or conservative therapy, and the severity of a
disease may impact the decision for palliative or chemother-
apy. In both cases, the severity will likely also impact the
outcome of interest, e.g., the patient’s recovery rate. An-
other famous example is the Simpson’s Paradox observed
in the kidney stone treatment study of Charig et al. (1986).
The size of the stone (information inferred from imaging)
impacts both the treatment decision and the outcome, which
leads to flawed conclusions about the effectiveness of the
treatment if confounding is not accounted for (Julious &
Mullee, 1994).

Contemporary Applications The previous examples
demonstrate that modern data applications require extending
ATE estimation to incorporate non-tabular data. However,
given the nature of non-tabular data this usually requires
additional feature extraction mechanisms to condense high-
dimensional inputs to the relevant information in the data.
This is usually done by employing neural network-based
approaches such as foundation models or other pre-trained
neural networks. While this may seem straightforward in
principalwe show that it necessitates special caution. In
particular, incorporating such features into ATE estimation
requires overcoming previously unaddressed theoretical and
practical challenges, including the non-identifiability and
high dimensionality of latent features.
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Figure 1. Schematic (left) and DAG visualization (right) of the
effect of a treatment 7" on outcome Y that is confounded by non-
tabular data W (e.g. information from medical imaging).

Problem setup Given n independent and identically dis-
tributed (i.i.d.) observations of (T, W, Y"), we are interested
in estimating the ATE of a binary variable 7" € {0,1} on
some outcome of interest Y € R while adjusting for some
source of confounding W € W (cf. Figure 1). W is pre-
treatment data from some potentially complex sampling
space W that is assumed to be sufficient for adjustment. The
definition of sufficiency will be formalized in Section 2.1.
Under positivity and consistency assumption—the standard
assumptions in causality—the target parameter of interest
can be identified as

ATE :=E[E[Y|T =1,W] —E[Y|T =0,W]. (1)

While there are many well-known ATE estimators, most
require to estimate either the outcome regression function

g(t,w) =EY|T =t, W = w] )
or the propensity score
m(tlw) = P[T = t|IW = w] 3)

at parametric rate /n. Doubly robust estimators such as
the Augmented Inverse Probability Weighted, the Targeted
Maximum Likelihood Estimation or the DML approach
estimate both nuisance functions g and m. These meth-
ods thus only require the product of their estimation errors
to converge at \/ﬁ—rate (Robins & Rotnitzky, 1995; Van
Der Laan & Rubin, 2006; Van der Laan & Rose, 2011; Cher-
nozhukov et al., 2017; 2018). However, even this can be
hard to achieve, given the curse of dimensionality when
considering the high-dimensionality of non-tabular data W
such as images. Especially given the often limited number
of samples available in many medical studies involving im-
ages, estimating m and g as a function of W, e.g., via neural
networks, might not be feasible or overfit easily. To cope
with such issues, a common approach is to adopt ideas from
transfer learning and use pre-trained neural networks.

Our Contributions In this paper, we discuss under what
conditions pre-trained representations Z = (W) obtained
from pre-trained neural networks ¢ can replace W in the
estimation of nuisance functions (2) and (3). Although the

dimensionality of Z is usually drastically reduced compared
to W, one major obstacle from a theoretical point of view is
that representations can only be learned up to invertible lin-
ear transformations (e.g., rotations). We argue that common
assumptions allowing fast convergence rates, e.g., sparsity
or additivity of the nuisance function, are no longer reason-
able in such settings. In contrast, we build on the idea of low
intrinsic dimensionality of the pre-trained representations.
Combining invariance of intrinsic dimensions and functional
smoothness with structural sparsity, we establish conditions
that allow for sufficiently fast convergence rates of nuisance
function estimation and, thus, valid ATE estimation and
inference. Our work, therefore, not only advances the the-
oretical understanding of causal inference in this context
but also provides practical insights for integrating modern
machine learning tools into ATE estimation.

Related Work In recent years there has been a surge in
research aiming to incorporate non-tabular data into estima-
tion procedures such as ATE estimation. We review these
in detail in Appendix C.1. By connecting and extending
several of those theoretical ideas and empirical findings,
our work establishes a set of novel theoretical results and
conditions that allow to obtain valid inference when using
pre-trained representations in adjustment for confounding.

2. Properties of Pre-Trained Representations

Given the high dimensional nature of non-tabular data, to-
gether with the often limited number of samples available
(especially in medical domains), training feature extractors
such as deep neural networks from scratch is often infeasi-
ble. This makes the use of latent features from pre-trained
neural networks a popular alternative (Erhan et al., 2010).
In order to use pre-trained representations for adjustment in
the considered ATE setup, certain conditions regarding the
representations are required.

2.1. Sufficient Conditions on Pre-Trained
Representations

Given any pre-trained model ¢, trained independently of W
on another dataset, we denote the learned (last-layer) rep-
resentations as Z := ¢(W). Due to the non-identifiability
of Z up to certain orthogonal transformations, further dis-
cussed in Section 2.2, we define the following conditions
for the induced equivalence class of representations Z fol-
lowing Christgau & Hansen (2024). For this, we abstract
the adjustment as conditioning on information in the ATE
estimation, namely conditioning on the uniquely identifiable
information contained in the sigma-algebra o(Z) generated
by any Z € Z (see also Appendix B.1 for a special case).

Definition 2.1. [Christgau & Hansen (2024)] Given the
joint distribution P of (T, W,Y"), sigma algebra o(Z) of Z,
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and t € {0,1}, we say that any Z € Z is

(i) P-valid if (P-a.s.):

Ep[Ep[Y|T =t,0(Z)]] = Ep[Ep[Y|T = t, W]|

(ii) P-OMS (Outcome Mean Sufficient) if (P-a.s.):

Ep[V|T =t,0(Z)] = Ep[Y|T = t, W]

(>iii) P-ODS (Outcome Distribution Sufficient) if:
Y 1p WI|T, Z.

Remark2.2. If Z € Zis P-ODS, itis also called a sufficient
embedding in the literature (Dai et al., 2022).

The three conditions in Definition 2.1 place different restric-
tions on the nuisance functions (2) and (3). While P-ODS
is most restrictive (followed by P-OMS) and thus guaran-
tees valid downstream inference more generally, the strictly
weaker condition of P-validity is already sufficient (and in
fact necessary) to guarantee that Z € Z is a valid adjust-
ment set in the ATE estimation (Christgau & Hansen, 2024).
Thus, any pre-trained representation Z considered in the
following is assumed to be at least P-valid.
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Figure 2. Schematic visualization of a pre-trained neural network
»(+) and representations Z = o(W).

2.2. Non-Identifiability under ILTs

In practice, the representation Z = (W) is extracted from
some layer of a pre-trained neural network . This infor-
mation does not change under bijective transformations of
Z, so the representation Z itself is not identifiable. We ar-
gue that, in this context, non-identifiability with respect to
invertible linear transformations (ILTs) is most important.
Suppose Z = (W) is extracted from a deep network’s ¢th
layer. During pre-training the network further processes Z
through a model head ¢(Z7), as schematically depicted in
Figure 2. The model head usually has the form ¢>*( AZ +b)
where A, b are the weights and biases of the /th layer, and
¢>* summarizes all following computations. Due to this
structure, any bijective linear transformation Z — (QZ can
be reversed by the weights A — A = Q1A so that the
networks ¢>¢(A - 4+b) and ¢~*(AQ - +b) have the same
output.

Definition 2.3 (Invariance to ILTs). Given a latent rep-
resentation Z, we say that a model (head) ¢ with pa-
rameters £ € Z is non-identifiable up to invertible lin-
ear transformations if for any invertible matrix Q € R*¢

I € E: 0e(QZ) = ¢¢(2).

Important examples of ILTs are rotations, permutations, and
scalings of the feature space as well as compositions thereof.

3. Estimation using Pre-Trained
Representations

The previous section discussed sufficient and necessary (in-
formation theoretic) conditions for pre-trained representa-
tions, justifying their usage for adjustment in downstream
tasks. The following section will discuss aspects of the func-
tional estimation in such adjustments. Valid statistical infer-
ence in downstream tasks usually requires fast convergence
of nuisance function estimators. However, obtaining fast
convergence rates in high-dimensional estimation problems
is particularly difficult. We argue that some commonly made
assumptions are unreasonable due to the non-identifiability
of representations. We discuss this in the general setting of
nonparametric estimation as described in the following.

The Curse of Dimensionality The general problem in
nonparametric regression is to estimate some function f in
the regression model

Y = f(X)+e “

with outcome Y € R, features X € R<, and error
€ ~ N(0, 02). The minimax rate for estimating Lipschitz
functions is known to be n~ 22 (Stone, 1982). This rate
becomes very slow for increasing d, known as the curse
of dimensionality. Several additional structural and distri-
butional assumptions are commonly encountered to obtain
faster convergence rates in high dimensions.

3.1. Structural Assumption I: Smoothness

A common structural assumption is the smoothness of the
function f in (4), i.e., the existence of s bounded and contin-
uous derivatives. Most convergence rate results assume at
least some level of smoothness (see Table 1). The following
lemma verifies that this condition is also preserved under
ILTs. The proof of this and subsequent lemmas are given in
Appendix B.3.

Lemma 3.1 (Smoothness Invariance under ILTS). Let D C
R? be an open set, f : D — R be an s-smooth-function on
D, and Q by any ILT. Then h = fo Q™ ': Q(D) — Riis
also s-smooth on the transformed domain Q (D).

The lemma shows that a certain level of smoothness of a
function defined on latent representations may reasonably be
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Smoothness | + Additivity | + Sparsity & Linearity | Intrinsic Dimension
Stone (1982) | Stone (1985) | Raskutti et al. (2009) | Bickel & Li (2007)
O(n~ =) ‘ O(n~=+1) ‘ O(y/plog(d)/n),p < d ‘ O(n~ ZFim), dpy<d

Table 1. Assumptions and related minimax convergence rates of the estimation error

assumed due to its invariance to ILTs. If the feature dimen-
sion is large, however, an unrealistic amount of smoothness
would be required to guarantee fast convergence rates (e.g.,
of order n~1/%). This necessitates additional structural or
distributional assumptions.

3.2. Structural Assumptions I1: Additivity & Sparsity

The common structural assumption is that f is additive,
flx) = Z;l:l fj(z;), i.e., the sum of univariate s-smooth
functions. In this case, the minimax convergence rate re-
duces to n~ Z+T (Stone, 1985). Another common approach
is to rely on the idea of sparsity. Assuming that f is p-
sparse implies that it only depends on p < min(n, d) fea-
tures. In case one further assumes the univariate functions
to be linear in each feature, i.e. f(z) = >°V_, B;x; with
coefficient 8; € R, the optimal convergence rate reduces to

v/plog(d/p)/n (Raskutti et al., 2009).

It can easily be shown that the previously discussed condi-
tions are both preserved under permutation and scaling. But
as the following lemma shows, sparsity and additivity of f
are (almost surely) not preserved under generic ILTs such
as rotations.

Lemma 3.2 (Non-Invariance of Additivity and Sparsity
under ILTs). Let f : R — R be a function of v € R, We
distinguish between two cases:

(i) Additive: f(x) = 2?21 [j(x;), with univariate func-
tions f; : R — R, and at least one f; being non-linear.

(ii) Sparse Linear: f(x) = Z?Zl Bjx;, where B; € R
and at least one (but not all) 3; = 0.

Then, for almost every Q drawn from the Haar measure on
the set of ILTs, it holds:

(i) If f is additive, then h = f o Q! is not additive.
(ii) If f is sparse linear, then h = f o Q™1 is not sparse.

Given the non-identifiability of representations with respect
to ILTs and the non-invariance result of Lemma 3.2, any ad-
ditivity or sparsity assumption about the target function f of
the latent features seems unjustified. An example of this ro-
tational non-invariance of sparsity is given in Figure 7. This
also implies that learners such as the Lasso (with underly-
ing sparsity assumption), tree-based methods that are based
on axis-aligned splits (including related boosting methods),
and most feature selection algorithms are not ILT-invariant.
Further examples can be found in (Ng, 2004).

3.3. Distributional Assumption: Intrinsic Dimension

While the previous conditions are structural assumptions
regarding the function f itself, faster convergence rates can
also be achieved by making distribution assumptions about
the support of f. A popular belief is that the d-dimensional
data X € R? lie on or close to a low-dimensional manifold
M with intrinsic dimension d . This relates to the famous
manifold hypothesis that many high-dimensional data con-
centrate on low-dimensional manifolds (Fefferman et al.,
2016, e.g.,). There is strong empirical support for this as-
sumption, especially for non-tabular modalities such as text
and images, see Appendix C.2. Given that dyq < d, and
again assuming [ to be s-smooth, this can lead to a much
faster convergence rate of n” TFa (Bickel & Li, 2007), as
it is independent of the dimension d of the ambient space.

Similarly to Lemma 3.1, the following lemma shows the
invariance of the intrinsic dimension of a manifold with
respect to any ILT of the coordinates in the d-dimensional
ambient space.

Lemma 3.3 (Intrinsic Dimension Invariance under ILTs).
Let M C R? be a smooth manifold of dimension d < d.
For any ILT Q, the transformed set

QM) = {Qz | v € M}.

is also a smooth manifold of dimension d .

Remark 3.4. Put differently, in case the latent representa-
tions Z € R lie on a d-dimensional smooth manifold
M, then the IL-transformed representations Q(Z) also lie
on a smooth manifold Q (M) of dimension d 4.

Therefore, as opposed to additivity or sparsity, the struc-
tural and distribution assumptions of smoothness and low
intrinsic dimensionality are invariant w.r.t. any ILT of the
features. These properties—in light of the non-identifiability
of Z w.r.t. ILTs—are thus crucial when working with latent
representations.

Deep Networks Can Adapt to Intrinsic Dimensions Re-
cently, several theoretical works have shown that DNNs
can adapt to the low intrinsic dimension of the data and
thereby attain the optimal rate of n” TE (Chen et al.,
2019; Schmidt-Hieber, 2019; Nakada & Imaizumi, 2020;
Kohler et al., 2023). Extending previous ideas, we present a
new convergence rate result for DNNs in the next section.
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4. Downstream Inference

The manifold assumption alone, however, cannot guarantee
sufficient approximation rates in our setting. Even if the
manifold dimension d x4 is much smaller than the ambient
dimension d (for example, d s =~ 30), an unreasonably high
degree of smoothness would need to be assumed to allow
for convergence rates below n~ /4,

In what follows, we give a more realistic assumption to
achieve such rates. In particular, we combine the low-
dimensional manifold structure in the feature space with
a structural smoothness and sparsity assumption on the tar-
get function. For the latter, we build on the hierarchical
decomposition model (HCM) assumption from Kohler &
Langer (2021), which is formally defined in Appendix A.1.
Importantly, under the following Assumption 4.1, we also
show that the HCM assumption is invariant under ILTs (de-
tails in Appendix A.1).

Assumption 4.1. The target function f, can be decom-
posed as fo = f o, where M is a smooth, compact,
d pq-dimensional manifold, 1) : M — RP is s,-smooth, and
fisaHCM of level k € N with constraint set P.

4.1. Convergence Rate of DNNs

We now show that DNNSs can efficiently exploit this struc-
ture. Let (Y7, Z;)7, be i.i.d. observations and ¢ be a loss
function. Define

fo=argminE[((f(Z),Y)],
f:RESR

n

f= argmin —% U(f(Z)Y5),

1
FEF(Lnwn) i

where F (L, v) is the set of feed-forward neural networks
with L layers and v neurons per layer. Let Z ~ Pz and
define the Lo(Pz)-norm of a function f as Hf||2L2(PZ) =

| f(2)?dP(z). We make the following assumption on the
loss function /.

Assumption 4.2. There is a, b € (0, 00) such that

E[U(/(2),Y)] ~ E[(fo(2),Y)]
1F = o2,y

€ [a,b].

Assumption 4.2 is satisfied for the squared and logistic loss,
among others (e.g., Farrell et al., 2021, Lemma 8).

Theorem 4.3. Suppose Assumption 4.1 and Assumption 4.2
hold. There are sequences L, v, and a corresponding
sequence of neural network architectures F (L, vy,) such
that (up to log n factors)

max n_2‘+1>>
(s,p) EPU(sy5d )

1 = folloaien) = Oy (

The result shows that the convergence rate of the neural
networks is only determined by the worst-case pair (s, p)
appearing in the constraint set of the HCM and the embed-
ding map . The theorem extends the results of Kohler &
Langer (2021) in two ways. First, it allows for more gen-
eral loss functions than the square loss. This is important
since classification methods are often used to adjust for con-
founding effects. Second, it explicitly exploits the manifold
structure of the input space, which may lead to much sparser
HCM specifications and dramatically improved rates.

4.2. Validity of DML Inference

We now combine our findings to give a general result for the
validity of DML from pre-trained representations. The DML

estimator Jﬁ“\E, formally defined in Appendix A.2, gains its
doubly robustness by using the orthogonalized score

L=, Z0) (= T)(Yi — 9(0, Z:))
m(Z;) 1—m(Z) '

Further details are provided in Appendix A.2. For the next
result, we need the following additional conditions.

Assumption 4.4. It holds for some € > 0

E[lg(t, 2)|?] < E[|Y]?
e Ellg(t, 2)°) < o0, E[[YP] < o,

E[lY —g(T,2)]*] >0, Pr(m(Z) € (c,1—¢)) =1.
The first two conditions ensure that the tails of Y and g(t, Z)

are not too heavy. The second two conditions are required
for the ATE to be identifiable.

Theorem 4.5. Suppose the pre-trained representation is P-
valid, Assumption 4.4 holds, and the outcome regression and
propensity score functions g and m satisfy Assumption 4.1
with constraints Py U (s, dam) and Py, U (8, dp), respec-
tively. Suppose further

s s 1

>—, (5

min - X min -~ ,
(8:P)EPGU(sy,da) P (s'.p')EPmU(s),,dam) P~ 4

and the estimators §*) and m*) are DNNs as specified in
Theorem 4.3 with the restriction that ') is clipped away
from 0 and 1. Then

Vi(ATE — ATE) — N(0,02),

where 0% = E[p(T;,Y;, Zi; g, m)?).

5. Experiments

Next, we will complement our theoretical results with em-
pirical evidence from experiments with text and images.
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Figure 3. Label Confounding: Comparison of ATE estimators on
the IMDB dataset. DML and S-Learner use pre-trained represen-
tations. Point estimates and 95% CI’s are depicted.

5.1. Validity of ATE Inference from Pre-Trained
Representations

For the text modality, we utilize the IMDb Movie Reviews
dataset from Lhoest et al. (2021) consisting of 50,000 movie
reviews labeled for sentiment analysis. For the image modal-
ity, we use the dataset from Kermany et al. (2018) containing
5,863 chest X-ray images labeled for the lung disease pneu-
monia. The pre-trained representations of the two modalities
are obtained from the last hidden layer of the pre-trained
Transformer-based model BERT (Devlin et al., 2019) and
Densenet-121 model from the TorchXRay Vision library (Co-
hen et al., 2022), respectively. For both data applications,
we simulate treatment and outcome variables while inducing
confounding based on the labels, such that the label creates a
negative bias in both ATE settings if not properly accounted
for. Further details can be found in Appendix D. We investi-
gate the DML estimator using different nuisance function
estimators and compare these to another common causal
estimator, called S-Leaner, which only estimates the out-
come function (2) (details in Appendix C.2). Both use the
pre-trained representations to adjust for confounding in the
ATE estimation. As a benchmark, we compare the estimate
to the ones of a Naive estimator (unadjusted estimation) and
the Oracle estimator (adjusts for the true label).

Label Confounding The results for the IMDb simulation
over 5 simulations are depicted in Figure 3. The naive esti-
mator, S-Learner (for both nuisance estimators) and DML
using random forest show a strong negative bias. In con-
trast, DML with linear nuisance estimator yields unbiased
estimates with good coverage, as can be seen by the con-
fidence intervals. First, these results indicate that DML
seems to benefit from the double robust estimation. Second,
DML fails when using random forest nuisance estimators. A
random forest cannot achieve sufficiently fast convergence
rates without structural sparsity assumptions, which are un-
likely to hold due to their sensitivity to ILTs. The same
phenomenon can be observed in the image-based simulation
as demonstrated in Appendix E.

SH

I

@

Estimated ATE

True ATE %}
e Soooe T t é‘} """""""
50600
o o020
Naive S-Learner S-Learner DML DML
(NN) (RF) (NN) (RF)

Figure 4. Complex Confounding: Comparison of ATE estimators
on the X-ray dataset. DML and S-Learner use pre-trained repre-
sentations. Point estimates and 95% CI’s are depicted.

5.2. Neural Networks Adapt to Functions on Low
Dimensional Manifolds

In a second line of experiments, we investigate the ability
of neural networks to adapt to low intrinsic dimensions.
The features in our data sets already concentrate on a low-
dimensional manifold. For example, Figure 8 shows that the
intrinsic dimension of the X-ray images is around d = 12,
whereas the ambient dimension is d = 1024. To simulate
complex confounding with structural smoothness and spar-
sity, we first train an autoencoder (AE) with 5-dimensional
latent space on the pre-trained representations. These AE-
encodings are then used to simulate confounding. The
encoder-then-linear function is a multi-layered hierarchi-
cal composition as in Assumption 4.1. We refer to this as
complex confounding.

Complex Confounding In contrast to the previous sec-
tion, we now use a neural network (with ReLLU activation,
100 hidden layers with 50 neurons each) instead of a lin-
ear model in the outcome regression nuisance estimation.
Similar to the previous experiments, we find that the naive
estimate is strongly biased similar to the random forest-
based estimators. In contrast, the neural network-based
estimators exhibit much less bias. While the S-Learner’s
confidence intervals are too optimistic, the DML estimator
shows high coverage and is therefore the only estimator that
enables valid inference. Similar results are obtained for the
IMDDb dataset as demonstrated in Appendix E.

6. Conclusion

In this work, we explore ATE estimation under confounding
induced by non-tabular data. In particular, we investigate
conditions, such as low intrinsic dimensionality and struc-
tural sparsity, under which pre-trained neural representations
can effectively be used to adjust for such kind of confound-
ing. By allowing for valid ATE estimation and inference,
the results provide a theoretically grounded foundation for
the use of pre-trained representations in ATE estimation.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Further Details regarding Section 4
A.1. Structural Sparsity on the Manifold

In this section, we formally define and investigate the structural sparsity assumption for functions defined on manifolds, as
discussed in Section 4. Kohler & Langer (2021) recently derived convergence rates based on the following assumption.

Definition A.1 (Hierarchical composition model, HCM).
(a) We say that f: R? — R satisfies a HCM of level 0, if f(x) = x; for some j € {1,...,d}.
(b) We say that | satisfies a HCM of level k > 1, if there is a s-smooth function h: RP — R such that

flz) = h(hl(x), el hp(gv))7
where hi, ..., hy: R? — R are HCMs of level k — 1.

The collection P of all pairs (s, p) € R x N appearing in the specification is called the constraint set of the HCM.

The assumption includes the case of sparse linear and (generalized) additive models as a special case but is much more
general. Kohler & Langer (2021) and Schmidt-Hieber (2020) exploit such a structure to show that neural networks can
approximate the target function at a rate that is only determined by the worst-case pair (s, p) appearing in the constraint
set. It already follows from Lemma 3.2 that the constraint set of such a model is not invariant to ILTs of the input space.
Furthermore, the assumption does not exploit the potentially low intrinsic dimensionality of the input space. To overcome
these limitations, we propose a new assumption combining the input space’s manifold structure with the hierarchical
composition model.

Assumption A.2 (Restatement of Lemma 4.1). The target function f can be decomposed as fy = f o ¢, where M is a
smooth, compact, d-dimensional manifold, ¢: M — RP is sy-smooth, and f is a HCM of level £ € N with constraint
set P.

Whitney’s embedding theorem (e.g., Lee & Lee, 2012, Chapter 6) allows any smooth manifold to be smoothly embedded
into R24* This corresponds to a mapping v with sy = 0o and p = 2d 4 in the assumption above. If not all information in
the pre-trained representation Z is relevant, however, p can be much smaller. Importantly, Assumption A.2 is not affected by
ILTs.

Lemma A.3 (Invariance of Assumption A.2 under ILTs). Let Q be any ILT. If fo satisfies Assumption A.2 for a given P and
(84, dm), then fo = fo o Q™! satisfies Assumption A.2 with the same P and (sy, d ),

A.2. Further Details on the Double Machine Learning (DML) Estimator
For binary treatment 7' € {0, 1} and pre-trained representations Z, we define the outcome regression function
g(t,2) =E[Y|T =t,Z = 2],
and the propensity score
m(z) =P[T =1|Z = z].
Suppose we are given an i.i.d. sample (Y;, Z;, T;)"_,. DML estimators of the ATE are typically based on a cross-fitting

procedure. Specifically, let Uszl I, = {1,...,n} be a partition of the sample indices such that |I;,|/n — 1/K. Let (¥
and /() denote estimators of ¢ and m computed only from the samples (Y;, Z;, T})i¢1,- Defining

——(k ]_

ATE" = 37 (5, Vi Zi g ),
Ikl &

with orthogonalized score

Y —g(1,%;))  (1=T)(Y; —g(0,%;))

T;
DT, Yo, Zis gsm) = g(1, Z2) — g(0, Z;) + 134

m(ZZ) 1-— m(Zl) ’
the final DML estimate of ATE is given by
K
— 1 = (k)
ATE = > ATE
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B. Proofs and Additional Results

B.1. Equivalence Class of Representations

Lemma B.1 (Equivalence Class of Representations). Let (0, F, P) be a probability space, and let Z : . — R be a
measurable map (a random representation). Then for each ILT Q) the random variable Q(Z) satisfies

7(Q(2)) = a(2),

where o(Z) denotes the o-algebra generated by the random variable Z. Consequently,

z ={Q2) | Qe o}

forms an equivalence class of representations that are indistinguishable from the viewpoint of measurable information.

Proof. Each Q € Q is an invertible linear transformation. Consequently, @) is a Borel measurable bijection with a Borel
measurable inverse. To show o(Q(Z)) = o(Z), consider any Borel set B C R%. We have

{weQ:Q(Z(w) eBy={weQ:Z(w)eQ (B}

Since Q1 (B) is Borel (as Q is a Borel isomorphism), the pre-image {w : Z(w) € Q~'(B)} belongs to o(Z). Similarly,
for any Borel set A C R4,
{weN: Z(w)e A} ={w e N:Q(Z(w)) € Q(A)},

which belongs to o (Q(Z)). Therefore, 0(Q(Z)) = o(Z). O

B.2. Proof of Lemma 3.1

Proof. We consider f being C* on the open domain D C R¢, so by definition, all partial derivatives of f up to order s
exist and are continuous on D. Further, we consider any invetible matrix (). Such linear transformations are known to be
infinitely smooth (as all their partial derivatives of any order exist and are constant, hence continuous). Hence, the function
h = f o Q™! is the composition of a C* function f with a linear and thus C'> map Q~'.

Applying the multivariate chain rule, we can easily verify that the differentiability properties of h are inherited from those
of f and the linear transformation QQ ~'. Specifically, since Q! is C™°, and f is C*, their composition h retains the C**
smoothness. Lastly, the (transformed) domain (D) is also open as linear (and thus continuous) transformations preserve
the openness of sets in R%. Therefore, h is well-defined and C* on Q(D). O

B.3. Proof of Lemma 3.2

Proof. Suppose that @ is an invertible matrix representing the linear map z — @(z). Denote by Q = Q! its inverse and
its rows by ¢1, ..., Gq-

(i) Additivity
Assume that f is additive, i.e.,
d
Fx) = filz),
j=1

and that at least one f; is nonlinear. Define h(Z) = h(Q~'Z). We have
d
h(E) =Y fi(q &)
j=1

Assume without loss of generality that f; is nonlinear. The set of invertible matrices where ¢; equals a multiple of a standard
basis vector has Haar measure 0. Hence, f; (G, ) is a nonlinear function of multiple coordinates of Z, implying that / is not
additive.

11
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(ii) Sparsity

Assume f is sparse linear of the form f(z) = 87 with 1 < ||| < d. We have h(i) = f(Q7'%) = TQ 'z = ATz
While the map £ is still linear, the set of matrices @ such that || 3]lo = |37 Q|0 # d has Haar measure zero. O

B.4. Proof of Lemma 3.3

Proof. As in the previous proof, it is essential to note that ILTs @ are linear, invertible maps that are C*° (infinitely
differentiable) with inverses that are likewise C'>°. Specifically, ) serves as a global diffeomorphism on R?, ensuring that
both @ and Q! are smooth (C°°) functions.

Given that M is a d o¢-dimensional smooth manifold, for each point = on the manifold (x € M), there exists a neighborhood
U C M and a smooth chart ¢ : U — R that is a diffeomorphism onto its image. Applying the orthogonal transformation
@ to M results in the set Q(M), and correspondingly, the image Q(U) C Q(M). To construct a smooth chart for Q (M),
we can consider the map
2:QU) = R™, 3(Q(x) = (),

where © € U. Since Q is a diffeomorphism, the composition ¢ = ¢ o Q! restricted to Q(U) remains a smooth
diffeomorphism onto its image. Hence, this defines a valid smooth chart for Q(M). Covering Q (M) with such transformed
charts derived from those of M ensures that QQ(M ) inherits a smooth manifold structure. Each chart ¢ smoothly maps an
open subset of (M) to an open subset of R%, preserving the intrinsic dimension. Therefore, the intrinsic dimension d 4

of the manifold M is preserved under any orthogonal transformation (), and Q (M) remains a d (-dimensional smooth
manifold in R%. O

B.5. Proof of Lemma A.3

Proof. Recall that () is an invertible linear map, fo = fo¢: M — R, and fo = foovoQt: QM) — R. Write
f=foywithy =¢oQ': Q(M) — R. Since M is a smooth manifold, (M) is a smooth manifold with the same
intrinsic dimension d ¢ by Lemma 3.3. Since z — Q™! is continuous and M is compact, Q(M) is also compact. Next,
since 1) is s,,-smooth by assumption, Y is also s-smooth by Lemma 3.1. Finally, the HCM part f in the two models fo and
fo is the same, so they share the same constraint set P. This concludes the proof. O

B.6. Proof of Theorem 4.3

We will use Theorem 3.4.1 of Van der Vaart & Wellner (2023) to show that the neural network f converges at the rate stated
in the theorem. For ease of reference we re-state a slightly simplified version of the theorem adapted to the notation used in
our paper. Here and in the following, we write a < b to indicate a < Cb for a constant C' € (0, o) not depending on n.

Proposition B.2. Ler F,, be a sequence of function classes, ¢ be some loss function, fy the estimation target, and

= arg min — o f
fer, 1 Z

Define Frs = {f € Fn: |If — follLo(p,) < 0} and suppose that for every § > 0, it holds

inf  E[(f(2),Y)]—E[l(fo(Z),Y)] Z 6%, (B.2.1)

fefw,,zi\F7L,5/2

and, writing U;(z,y) = £(f(2),y) — £(fo(2),y), that

Y %( )
— 0(Z:,Y;) — Bl (ZY , B.2.2
Bl sw |0 Z:: E{ (2| £ 7 (B22)
for functions ¢, () such that § — ¢,,(8)/6~¢ is decreasing for some € > 0. If there are fo € F, and e, > 0 such that
en 2 El(fo(2),Y)] — E[t(fo(2), V)], (B.2.3)
Onlen) S Vney, (B.2.4)

it holds || f — Jollzo(py) = Oplen).

12
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Proof of Theorem 4.3. Define (s*,d") = argmin , ,)epu(s, .4, /P and denote the targeted rate of convergence by

En = max n~ % (logn)* = n~ =+ (logn)*.

(5,p)EPU(syp,d M)

We now check the conditions of Proposition B.2.

Condition (B.2.1): Follows from Assumption 4.2, since

a

inf  E[(f(2),Y) - E(h(Z), V)] > i allf ~ follde, > 30

fEFn,6\Fn,s5/2 T fE€Fns\Fns)2

Condition (B.2.2): Let N(e, F, L2(®)) be the minimal number of e-balls required to cover F in the Ly(())-norm.
Theorem 2.14.2 of Van der Vaart & Wellner (2023) states that eq. (B.2.2) holds with

)

6u(8) = Jn(6) (1 N

where

4
3.(8) =sup [ VTHTog N(e. F(L,), La(Q))de
Q Jo

with the supremum taken over all probability measures ). Lemma B.3 in Appendix B.7 gives

Jn(8) S 6+/log(1/8)Lv/log(Lv),
which implies that § — ¢,,(8)/62~1/? is decreasing, so the condition is satisfied.

Condition (B.2.3): According to Lemma B.4 in Appendix B.7 there are sequences L,, = O(loge,, 1), v, = O(en, &/ 25*)

such that there is a neural network ﬁ) € F(Ln,vy,) with

sup |fo(2) = fo(2)] = Ofen).

zEM
Together with Assumption 4.2, this implies

E[¢(fo(2),Y)] — E[E(fo(Z),Y)] < bllfo — foll7,(p,) <P sup fo(z) = fo(2)* S &b,
ze
as required.
Condition (B.2.4): Using L,, = O(loge; 1), v, = O(sﬁd*/%*) and our bound on J,,(¢) from Lemma B.3, we get
1/2 —g 1 3/2
Jn(8) < 81log? (67 Ve, 2 log® (e h).

Now observe that

_dr_
Polen) < o og(er") +

_ 2s*4d* 9 1 _ 2s*4d* 4 1
o _ ! _
=g, > log“(e,")+en = log*(e, )n

< nl/Z(log n)~% + n'/?,

—1/2

where the last step follows from our definition of €,, and the fact that log(e,;!) < logn. In particular, €, satisfies
bnlen) S /e, which concludes the proof of the theorem. O
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B.7. Auxiliary results

Lemma B.3. Let F(L,v) be a set of neural networks with sup ez ) || flloo < 00. Forall 6 > 0 sufficiently small, it
holds

sgp / ' V1 +1log N(e, F(L,v), Ly(Q))de < 6+/log(1/8) Lv+/log(Lv).

Proof. Denote by VC(F) the Vapnik-Chervonenkis dimension of the set 7. By Theorem 2.6.7 in Van der Vaart & Wellner
(2023), it holds

sgp log N (g, F, L2(Q)) < log(1/e)VC(F),

for € > 0 sufficiently small. By Theorem 7 of Bartlett et al. (2019), we have
VC(F(L,v)) < L*v*log(Lv).

For small ¢, this gives

sup V1+log N(e, F(L,v), L2(Q)) < V/log(1/e) Lv\/log(Lv),

Integrating the right-hand side gives the desired result. O

Lemma B.4. Suppose fy satisfies Assumption 4.1 for a given constraint set P and (sy,da). Define (s*,d*) =
arg Min g ) epU(s,,da) s/p. Then for any € > 0 sufficiently small, there is a neural network architecture F(L,v) with

L =0(loge™ ), v =0("4/2") such that there is fo € F(L,v) with
sup | fo(2) = fo(2)] = O(e).

zeEM

Proof. The proof proceeds in three steps. We first approximate the embedding component ¢ by a neural network {/;, then the
HCM component f by a neural network f. Finally, we concatenate the networks to approximate the composition fo = f o

by fo = fo.

Approximation of the embedding component. Recall that ¢: M — R? is a s,-smooth mapping. Write ¢(z) =
(¥1(2),...,%aq(2)) and note that each 1, : M — R is also sy-smooth. Since M is a smooth d r(-dimensional manifold, it
has Minkowski dimension d . Then Theorem 2 of Kohler et al. (2023) (setting M = /2% in their notation) implies
that there is a neural network ¢; € F(Ly, vy) with Ly, = O(loge™") and 1, = O(e~4M/25) such that

sup [1;(2) — 1;(2)| = O(e).
zEM

Parallelize the networks Jj into a single network zz = (1;1, ceey Jd) : M — R?. By construction, the parallelized network
1 has Ly, layers, width d x vy, = O(vy), and satisfies

sup [[(2) — ¢(2)|| = O(e).

zeM

Approximation of the HCM component. Let a € (0,00) be arbitrary. By Theorem 3(a) of Kohler & Langer (2021)

) ~
(setting M; ; = e71/2P;" in their notation), there is a neural network f € F(Lys,vg) with Ly = O(loge™!) and
vi = O(e~%/?57) such that

sup  |f (@) — f(x)] = Ofe),

z€[—a,al?
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Combined approximation. Now concatenate the networks {/; and fto obtain the network ]"‘B = fo {/Jv € F(Ly +
Ly, max{vy,v;}). Observe that Ly, + Ly = O(loge™!) and vy, + vy = O(e~%/257), so the network has the right size. It
remains to show that its approximation error is sufficiently small. Define

v = sup [|ih(2) — $(2)|),
zeM

which is O(e) by the construction of 1),
a:= sup [[$(2)[ +7,
zEM

which is O(1) by assumption, and
- /
K o aup (@) = @)

/ )
o |z =2

which is finite since f is Lipschitz due to min, qye» s > 1 and the fact that finite compositions of Lipschitz functions are
Lipschitz. By the triangle inequality, we have

< sup [f((2)) = f(9(2))] + sup 1F(9(2) = (@ (2))]

zEM
< sup |f(x) = f@)|+ K

z€[—a,al?
= 0(5)’

as claimed. O

sup | fo(2) — fo(2)
zeM

B.8. Proof of Theorem 4.5

Proof. We validate the conditions of Theorem II.1 of Chernozhukov et al. (2017). Our Assumption 4.4 covers all their
moment and boundedness conditions on g and m. By Theorem 4.3, we further know that

™ —mll 1, ps) + 19 = gllLopy) = 0p(1).
Further, Theorem 4.3 yields

’
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We have to show that the term on the right is of order o, (n=1/2). Observe that

s n s’ S 1 o 1 n 1 - 1
2s+p 28’ +p " 2 24p/s  2+p'/s " 2
4+ p/s+p'/s >1
(2+p/s)2+p'/s) ~ 2
/
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/
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ss
Thus, our condition
. . s 1
min - X min - >,
(8:P)EPGU(sy,dr) P (/0" )EPmU(s),,da) P~ 4
implies
||m(k) - m||L2(Pz) X Hg(k‘) - gHLz(Pz) = Op(n_l/Q)’
as required. O
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C. Additional Related Literature
C.1. Related Literature

Given the recent rise in interest to incorporate non-tabular data and modern machine learning methods in ATE estimation,
there are many related works, of which many got published most recently. We first begin by reviewing the popular doubly
robust causal estimation framework of Double Machine Learning, both its original form and more recent extensions.
Subsequently, we discuss several alternative approaches in the causal context that also incorporate non-tabular data. Lastly,
we review various studies that investigate non-tabular data and its latent representations from a theoretical perspective.

Double Machine Learning (DML) The DML framework was initially proposed for tabular features in combination
with classical machine learning methods (Chernozhukov et al., 2017; 2018). Several theoretical and practical extensions to
incorporate neural networks have been made with a focus on tabular data (Shi et al., 2019; Farrell et al., 2021; Chernozhukov
et al., 2022; Zhang & Bradic, 2024). Additionally, there is a growing body of research that aims to incorporate non-tabular
data as adjustment into DML (Veitch et al., 2019; 2020; Klaassen et al., 2024). While the latter directly incorporates the
non-tabular data in the estimation, none of them discuss conditions that would theoretically justify fast convergence rates
necessary for valid inference.

Alternative Approaches A different strand of research uses either derived predictions (Zhang et al., 2023; Battaglia et al.,
2024; Jerzak et al., 2022a;b; 2023) or proxy variables (Kuroki & Pearl, 2014; Kallus et al., 2018; Miao et al., 2018; Mastouri
et al., 2021) instead of the non-tabular data itself in downstream estimation. In contrast to these proposals, we consider the
particularly broad setup of using pre-trained representations of non-tabular data for confounding adjustment. More recently,
(Melnychuk et al., 2022) and (Dhawan et al., 2024) proposed to use foundation models in the causal context, by proposing
large langue model (LLM) based causal estimators. While the former consider tabular features over time, the latter target
their method for text data. However, none of the two discuss conditions that would justify fast convergence rates necessary
for valid inference for the proposed estimators.

Theoretical Work on Non-Tabular Data and its Latent Representations Given the increasing popularity of pre-trained
models, Dai et al. (2022) and Christgau & Hansen (2024) establish theoretical conditions justifying the use of derived
representations in downstream tasks, which we are discussed in Section 2.1. The idea of a low intrinsic dimensionality of
non-tabular data and its latent representations to explain the superior performance of deep neural networks in non-tabular
data domains has been explored and validated both empirically (Gong et al., 2019; Ansuini et al., 2019; Pope et al., 2021;
Konz & Mazurowski, 2024) and theoretically (Chen et al., 2019; Schmidt-Hieber, 2019; Nakada & Imaizumi, 2020).

C.2. Empirical Evidence of Low Intrinsic Dimensions

Using different ID estimators such as the maximum likelihood estimator (MLE; Levina & Bickel, 2004) on popular image
datasets such as ImageNet (Deng et al., 2009), several works find clear empirical evidence for low ID of both the image data
and related latent features obtained from pre-trained NNs (Gong et al., 2019; Ansuini et al., 2019; Pope et al., 2021). The
existence of the phenomenon of low intrinsic dimensions was also verified in the medical imaging (Konz & Mazurowski,
2024) and text-domain (Aghajanyan et al., 2020). All of the mentioned research finds a striking inverse relation between
intrinsic dimensions and (state-of-the-art) model performance, which nicely matches the previously introduced theory about
ID-related convergence rates.

D. Experimental Details and Computing Environment
Simulation Setup

We conduct several simulation studies to investigate the performance of different Average Treatment Effect (ATE) estimators
of a binary treatment on some outcome in the presence of a confounding induced by non-tabular data. In the experiments,
the confounding is induced by the labels, i.e., the pneumonia status or the review as well as more complex functions of the
pre-trained features. Nuisance function estimation is based on the pre-trained representations that are obtained from passing
the non-tabular data through the pre-trained neural models and extracting the last hidden layer features.

Data and Pre-trained Models For the text data, we utilize the IMDb Movie Reviews dataset from Lhoest et al. (2021)
consisting of 50,000 movie reviews labeled for sentiment analysis. For each review, we extract the [CLS] token, a 768-
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dimensional vector per review entry, of the pre-trained Transformer-based model BERT (Devlin et al., 2019). To process the
text, we use BERT’s subword tokenizer (bert-base-uncased) and truncate sequences to a maximum length of 128 tokens.
We use padding if necessary. After preprocessing and extraction of pre-trained representations, we sub-sampled 1,000 and
4,000 pre-trained representations for the two confounding setups to make the simulation study tractable. For the image data
simulation, we use the dataset from Kermany et al. (2018) that originally contains 5,863 chest X-ray images of children
that were obtained from routine clinical care in the Guangzhou Women and Children’s Medical Center, Guangzhou. We
preprocess the data such that each patient appears only once in the dataset. This reduces the effective sample size to 3,769
chest X-rays. Each image is labeled according to whether the lung disease pneumonia is present or not. The latent features
are obtained by passing the images through a pre-trained convolutional neural network and extracting the 1024-dimensional
last hidden layer features of the model. We use the pre-trained Densenet-121 model from the TorchXRayVision library
(Cohen et al., 2022), which was trained on a large publicly available chest X-rays dataset (Cohen et al., 2020). Specifically,
we use the Densenet-121 with resolution 224 x 224 and the training data it was trained on (all). The representations are
taken from this model as it showed superior performance in benchmark studies (Cohen et al., 2020). Note that the dataset
from the Guangzhou Women and Children’s Medical Center that we use, was not used during the training of the model.
This is important from a theoretical and practical viewpoint, as the confounding simulation via labels might otherwise be too
easy to adjust for given that the model could have memorized the input data. However, using this kind of data we rule out
this possibility.

Confounding As introduced in the main text, we simulate confounding both on the true labels of the non-tabular data as
well as encodings from a trained autoencoder. While this induces a different degree of complexity for the confounding, the
simulated confounding is somewhat similar in both settings. We first discuss the simpler setting of Label Confounding. In
all of the experiments, the true average treatment effect was chosen to be two.

Label Confounding Label confounding was induced by simulating treatment and outcome both dependent on the binary
label. In the case of the label being one (so in case of pneumonia or in case of a positive review), the probability of treatment
is 0.7 compared to 0.3 when the label is zero. The chosen probabilities guaranteed a sufficient amount of overlap between
the two groups. The outcome is simulated by a linear model of the treatment times the ATE. We then add a linear term for
the label as well as Gaussian noise. The linear term of the label is the label times a negative coefficient in order to induce a
negative bias to the average treatment setup compared to a randomized setting. Overall, the simulated confounding matches
the setup of the partial linear model. Given that the confounding simulation is only based on the labels, the study was in fact
randomized with respect to any other source of confounding.

Complex Confounding To simulate complex confounding with structural smoothness and sparsity, we first train an
autoencoder (AE) with 5-dimensional latent space on the pre-trained representations, both in the case of the text and image
representations. These AE-encodings are then used to simulate confounding similarly as in the previous experiment. The
only difference is that we now sample the coefficients for the 5S-dimensional AE-encodings. For the propensity score, these
are sampled from a normal distribution, while the sampled coefficients for outcome regression are restricted to be negative,
to ensure a sufficiently larger confounding effect, that biases naive estimation. We choose a 5-dimensional latent space to
allow for sufficiently good recovery of the original pre-trained representations.

Estimators We estimate the ATE using multiple methods across 5 simulation iterations. In each of these, we estimate a
Naive estimator that simply regresses the outcome on treatment while not adjusting for confounding. The Oracle estimator
uses a linear regression of outcome on both treatment and the pneumonia label that was used to induce confounding. The
S-Learner estimates the outcome regression function g(t, Z) = E[Y | T = t, Z = z] by fitting a single model §(¢, z) to all
data, treating the treatment indicator as a feature. The average treatment effect estimate of the S-Learner is then given by

— 1 A
ATEs =~ > a1, z) = §(0, z).

i=1

In contrast, the Double Machine Learning estimators estimates both the outcome regression function and the propensity
score to obtain its double robustness property as defined in Appendix A.2. In the experiments both the S-Learner and DML
estimators are used in combination with linear and random forest-based nuisance estimators. DML (Linear) uses standard
linear regression and logistic regression for the outcome and propensity score estimation respectively, while the S-Learner
(Linear) only uses linear regression for the outcome regression. For the random forest-based estimation, a standard random
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forest implementation from scikit-learn is used. The number of estimated trees is varied in certain experiments to improve
numerical stability. For the neural network-based estimators, we use neural networks with a depth of 100 and width of 50
while using ReL.U activation and Adam for optimization. Besides using such a neural network nuisance estimator for the
outcome regression, the DML (NN) estimator uses logistic regression to improve numerical stability. Generally, DML was
used with sample splitting and with two folds for cross-validation. For the S-Learner and the DML Learner the Python
packages CausalML (Chen et al., 2020) and DoubleML (Bach et al., 2022) are used, respectively.

Computational environment All computations were performed on a user PC with Intel(R) Core(TM) i7-8665U CPU @
1.90GHz, 8 cores, and 16 GB RAM. Run times of each experiment do not exceed one hour.

E. Further Experiments
E.1. Further Experiments on ATE estimation

This section provides additional results from further experiments. The results depicted in Figure 5 and Figure 6 complement
Figure 3 and Figure 4 that are discussed in Section 5. The results for the pneumonia simulation with label confounding over
5 simulations are depicted in Figure 5. As before, the naive estimator shows a strong negative bias. Similarly, the S-Learner
(for both nuisance estimators) and for DML using random forest exhibit a negative bias and too narrow confidence intervals.
In contrast, DML with linear nuisance estimator yields less biased estimates with good coverage due to its properly adapted
confidence intervals. A similar pattern can be observed for the complex confounding setting in the IMDb data depicted in
Figure 6. The naive estimator and both of the random forest-based ATE estimators exhibit strong bias. In contrast, both
neural network-based estimators show very little bias. This provides further evidence that neural networks can adapt to
the low intrinsic dimension of the data. However, in contrast to the DML estimator, the S-Learner still shows too narrow
confidence intervals and has thus poor coverage. As it was in the example discussed in the main body of the test, the DML
(NN) estimator is the only estimator that yields unbiased estimates and valid inference.
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Figure 5. Label Confounding: Comparison of ATE estimators on the X-Ray dataset. DML & S-Learner use pre-trained representations.

E.2. Non-Invariance of Sparsity under Rotations

In the next experiment, we show empirically that the sparsity of a function is not invariant under rotations of the features, in
accordance with the result in Lemma 3.2. We start with a linear classifier function (logistic regression) defined on certain
latent features. While the dimension of the entire latent feature space is 1024, the function is p-sparse with p < 400. Thus,
only p coefficients of the linear classifier are non-zero while the rest is zero. For the experiment, we iteratively rotated
random pairs of latent features by a degree that is chosen at random. Thus, each random rotation corresponds to a random
two dimensional feature rotation. After each rotation we estimate the linear classifier on the rotated features and count
the number of non-zero coefficients. The results are depicted in Figure 7. The number of non-zero coefficients increases
with the number of random rotations up until the model is not sparse anymore, i.e., such that it depends on all 1024 latent
features. While the number of non-zero coefficients changes with each rotation, the classification itself (prediction of the
linear classifier) remains the same given the rotational invariance of Logistic regression.
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Figure 6. Complex Confounding: Comparison of ATE estimators on the IMDb dataset. DML & S-Learner use pre-trained representations.
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Figure 7. Non-zero coefficients of a linear classifier on latent features, showing that sparsity is lost with an increasing number of random
feature rotations.

E.3. Intrinsic Dimensions of Pre-trained Representations

We also provide empirical evidence that validates the hypothesis of low intrinsic dimensions of pre-trained representations.
For this, we use different pre-trained models from the from the TorchXRayVision library (Cohen et al., 2022). All of these
are trained on chest X-rays and use a Densenet-121 (Huang et al., 2017) architecture. Given the same architecture of the
models, the dimension of the last layer hidden features is 1024 for all models. The different names of the models on the
x-axis indicate the dataset they were trained on. We use the 3,769 chest X-rays from the X-rays dataset described above and
pass these through each pre-trained model to extract the last layer features of each model, which we call the pre-trained
representations of the data. Subsequently, we use standard intrinsic dimension estimators such as the MLE (Levina & Bickel,
2004), the Expected Simplex Skewness estimator, and the Local Principal Component Analysis estimator, with a choice of
number of neighbors set to 5, 25 and 50, respectively. While the intrinsic dimension estimates vary by the pre-trained model
and the intrinsic dimension estimator used, the results indicated that the intrinsic dimension of the pre-trained representations
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is much smaller than the dimension of the ambient space (1024).
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Figure 8. Different Intrinsic Dimension (ID) Estimates of Pre-Trained Representations obtained from different pre-trained models.
Representations are based on the X-Ray dataset.
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