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Abstract

A leader in the team enables efficient learning
for other novices in the social learning setting for
both humans and animals. This paper constructs
the leader-based decision learning framework for
Multi-Agent Reinforcement Learning and investi-
gates whether the leader enables the learning of
novices as well. We compare three different ap-
proaches to distilling a leader’s experiences: Lin-
ear Layer Dimension Reduction, Attentive Graph
Pooling, and Attention-based Graph Neural Net-
work. We successfully show that a leader-based
decision learning can 1) enable agents to learn
faster, cooperate more effectively, and escape lo-
cal optimum, and 2) promote the generalizability
of agents in more challenging and unseen envi-
ronments. The key to effective distillation is to
maintain and aggregate important information.

1. Introduction
Social learning, learning by observing the behavior of other
agents in the same environment, is a key component of hu-
man and animal intelligence (Ndousse et al., 2020), enabling
the agents to learn behaviors difficult to learn by individual
exploration. In particular, it is believed that the leader in
the team encourages cooperation, such that agents tend to
learn faster and cooperate more efficiently through obtain-
ing experience from the leader about key changes in the
environment. For example, there is always an experienced
and elder lead dog on any team of Alaskan Malamute sled
dogs, where the leader provides key guidance to other dogs.

We ask whether such behavior will also emerge in Multi-
Agent Reinforcement Learning (MARL) and whether this
paradigm can inspire us to construct a successful leader-
based decision learning framework to improve the perfor-
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mance and generalizability of MARL agents? Our paper
investigates leader-based social learning in the context of
MARL: specifically, improving the performance of a group
of novice agents (i.e. not trained in the environment) through
gaining the experience of a leader agent (i.e. pre-trained in
the environment).

Past research work of RL shows interest in related problems.
Imitation learning of RL resembles the copying behaviors,
such as learning from demonstrated trajectories, (Schaal,
1999; Argall et al., 2009), behavior cloning (BC) (Torabi
et al., 2018) and BC combined with RL fine-tuning (Lerer
& Peysakhovich, 2019). However, BC has limitations on
generalizability because the knowledge of decision learning
is distilled directly to all the agents. Furthermore, Ndousse
et al. 2020 explored emergent social learning in RL agents
and proposed that agents trained alone taking cues from
the behavior of experts could learn to perform better and
generalize to more complex environments. Our work is
inspired by their work, but we differ in that their experts are
not assumed to be a leader in multi-agent settings, and their
expert does not train and adapt to the environment alongside
the other agents. We also do not use a model-based auxiliary
loss and instead focus on pre-trained knowledge transfer
from leader to the novice.

We are also influenced by the work of Baker et al. 2019,
which worked with MARL and showed that agents may
create a self-supervised autocurricula through rounds of in-
teractions. Literature on agents learning to teach in coopera-
tive multi-agent environments (Omidshafiei et al., 2018) and
agents learning by watching another agent learn (Jacq et al.,
2019) also shed light on the teacher-student pre-trained
framework but lacked generalizability.

Contributions. Our paper focuses on two hypotheses:
Leader-based learning enables the agents to 1) out-perform
agents trained alone from the start due to enhanced co-
operation; 2) generalize faster to novel and more compli-
cated environments. These hypotheses are representative of
real-world problems such as autonomous driving and robot
cooperation. Our contribution is proposing a successful
leader-based learning framework to allow effective decision
awareness in cooperation for MARL which validates our
hypotheses. Through the comparison between three differ-



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Leader-based Decision Learning for Cooperative Multi-Agent Reinforcement Learning

ent methods to distill a leader’s experience including Linear
Layer Dimension Reduction, Attentive Graph Pooling, and
Attention-based Graph Neural Network, we provide evi-
dence that our leader-based learning scales better and leads
to behavior that centers around more human-relevant skills
than other MARL methods such as Multi-Agent Deep De-
terministic Policy Gradient (MADDPG).

2. Problem Background
In this work, we consider the setup of a partially observable
Markov game. The game has N agents, a set of states S
describing all configurations of all the agents, and a set of
actions A1, . . . ,AN and a set of observations O1, . . . ,ON

for each agent. Each agent i receives an observation that
consists of partial information from the state oi : S → Oi

and uses its policy πθi : Oi → Ai to choose its action,
where the policy is parameterized by θi. For convenience,
we may abbreviate πθi as πi. The next state comes from the
state transition function T : S×A1×· · ·×AN → S. Each
agent i receives reward ri : S ×A1 × · · · × AN → R as a
function of the state and the agents’ actions. The objective
for each agent (in our work, each adversarial agent) is to
maximize its total expected return Ri =

∑T
t=0 γ

trti , where
γ is the discount factor and T is the time horizon.

Specifically, we use the multi-agent particle environment
called Simple Tag (Lowe et al., 2017). This is a “predator-
prey” environment, where the good agents move faster and
want to avoid being hit by the adversaries, which are slower
and must cooperate to effectively chase and tag the good
agents. A “tag” happens when the agents collide. The en-
vironment also contains obstacles. The good agents move
randomly, while the adversaries are controlled by us. The
goal is for the adversaries to accumulate as many points as
possible by tagging the good agents. Each episode termi-
nates after a maximum number of steps, which we set to be
100. The details can be found in appendix A.1.

3. Methods
To have social learning with a leader agent and novice
agents, we implement a MARL algorithm on the novice
agents and transfer experience from the leader (an agent
that has been pre-trained) to them. We describe our baseline
algorithm and then the exact training procedures we used to
transfer experience from leaders to novices in this section.

3.1. Baseline Model: MADDPG

MADDPG is a method that deploys a centralized action-
value function within a Deep Deterministic Policy Gradi-
ent (DDPG) algorithm (Lowe et al., 2017). MADDPG is
developed as a framework of centralized training and de-
centralized execution enabled by actor-critic policy gradient

methods, which is also flexible enough for us to implement
our leader-novice-style training. We choose MADDPG as
our baseline for the following reasons: 1) The centralized
critic and decentralized actor could potentially overcome the
most drawbacks of MARL; 2) The critic and actor networks
in MADDPG are flexible, which enables us to conduct the
experience distillation from the leader; 3) MADDPG is
widely used as a baseline in MARL research.

3.2. Leader Experience Distillation

Based on the current MARL model, we propose a leader-
based framework to distill leader experience to the team
of agents. It involves two steps: 1) train a leader in the
simplest version of an environment with only one good, one
adversarial agent; 2) in the new environment, initialize one
controlled agent with the parameters from the trained leader.
In this way, one of the agents in the new environment will
become the leader of the team and be trained with other
agents. We only initialize one of the agents with the param-
eters of the leader for the following reasons: 1) initializing
only one agent makes other agents learn to cooperate instead
mimic the leader, and gives other agents more flexibility to
explore what the leader could not do; 2) we want to evaluate
how our model works in the most limited condition where
we only have the resources to get one leader.

The main challenge to overcome in the process of distilling
experience from the leader is that going from an environ-
ment with two agents to an environment with N > 2 total
agents increases the size of the inputs to the actor and critic
models. For the actor, when increasing the number of agents,
the dimension in observation space increases in the degree
of addition because we observe more agents. For the critic,
since the centralized critic takes as input the concatenated
actions and observation spaces of all agents, this increases
the input dimension in the degree of multiplication. Figure
1 illustrates our model structure. We propose three meth-
ods to compress the information from multiple agents into
the dimensions of a single agent so that we can distill the
leader’s experiences.

Linear Layer Dimension Reduction (LLDR) We firstly
propose to add a linear layer in the actor network as the
embedding layer for dimension reduction. Considering the
drastic change in the dimension of the input to the critic, we
do not conduct dimension reduction or parameter transfer
in the critic network to prevent the loss of information.

Attentive Graph Pooling (AGP) We then propose a method
to solve the dimension increase problem in the critic net-
work. By representing the input of each agent as a node
with fixed-sized embedding in a fully connected graph, we
could pool several vertices to a single vertex embedding
through AGP. In detail, this is done by creating attention
heads, using leaky ReLU activation, and using linear layers
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Figure 1: Model Structure of Leader Experience Distillation. It is based on the structure of Multi-agent Actor-Critic with an
additional embedding layer for dimension compression.

to reduce dimension. In this way, we can obtain a repre-
sentation with consistent feature dimensions for different
numbers of agents as the input to the critic network.

Attention-Based Graph Neural Network (AGNN) We
further propose another method to help effectively conduct
dimension reduction in critic network. Instead of directly
feeding the input of each agent into the layers for AGP,
a more sophisticated method is to first use the AGNN to
learn graph embeddings and then apply AGP to process the
learned graph embeddings. In this way, the graph is repre-
sented as a fixed-sized embedding by pooling features across
all vertices, so we can obtain a representation with consis-
tent feature dimensions for different numbers of agents.

Motivated by Li et al. 2019, which applied AGNN to transfer
knowledge between tasks with a different number of objects,
we apply a similar AGNN structure to transfer knowledge
from the leader to the novice agents. The AGNN architec-
ture is able to capture which neighbors are more relevant to
classifying a target node, which is critical in our case where
not all edges imply the same types or strengths of relations.
Through the weighted sum operation, we could get a well-
represented embedding capturing the agents’ relations, so
that they can learn to cooperate more effectively.

The structure of our attention-based GNN model follows
similar structure as the one proposed by Li et al. 2019.
Mathematically, assuming

−→
vti is the graph feature repre-

sentation of the i-th agent at timestep t. The representation
at timestep t+ 1 could be computed through sum operation,
−−→
vt+1
i =

∑
j wij

−→
mt

j . In this expression,
−→
mt

j is generated

from a parameterized function
−→
mt

j = ϕt
m(

−→
vti ), and wij is

computed through wij = σ(V T tanh(
−→
qtj +

−→
ktj )), where

−→
qtj

and
−→
ktj are generated from independent parameterized func-

tions
−→
qtj = ϕt

q(
−→
vti ) and

−→
ktj = ϕt

k(
−→
vti ).

4. Experimental Results
We conduct three sets of experiments to compare the per-
formance and generalizability of the proposed approaches

Figure 2: Experiments with different approaches in the
default settings. Effective leader-based learning enables
agents to learn faster, cooperate more effectively, and escape
the local optimum compared with baseline.

against a baseline and to validate our hypotheses.

4.1. Leader-based Learning with Different Approaches

We begin with the environment using the default settings,
where we control 3 adversarial agents to catch 1 good agent,
which moves 1.3× faster. By default, there are 2 obsta-
cles. We train the baseline and proposed approaches for 1M
episodes and evaluate performance every 1K episodes.

Figure 2 shows the performance of the baseline and our
three approaches. We see that LLDR and AGNN methods
outperform the baseline, while the AGP method performs
worse. Although the baseline converges relatively quickly,
it gets stuck at a local optimum after 400K episodes. We
verified by visualizing the agents that this is caused by inef-
fective cooperation. The LLDR method converges quicker
and reaches a higher reward. Although the AGNN method
initially converges slowly due to the relatively large amount
of parameters being learned, it ultimately reaches a higher
reward and outperforms the baseline. Through visualizing
the agents’ trajectories, we observe that generally, the three
adversarial agents trained using the baseline struggle to co-
operate, with adversarial agents making little effort to work
together to corral the good agent. However, adversarial
agents trained through LLDR and AGNN methods cooper-
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(a) 3 Good & 3 Adversarial
Agents, 2 Obstacles, and Nor-
mal Speed of Good Agents

(b) 1 Good & 3 Adv Agents, 3
Obstacles, and Quicker Speed
of Good Agents

Figure 3: Experiments with leader teaching in new environ-
ment. Leader-based learning with LLDR enables agents to
learn faster than the agents trained individually.

ate better, catching the good agent by surrounding it from
different directions.

This experiment validates our hypothesis that leader-based
MARL can enable agents to learn more quickly the skills
that are difficult to learn through individual exploration. The
presence of the leader also appears to encourage cooperation.
However, the distillation methods for compressing experi-
ence matter significantly. LLDR and AGNN approaches
worked well, indicating that the embedding layer should
not lose too much information. This makes sense because
AGNN can support “communication” among agents through
message passing on the graph. We also experimented with
applying the linear layer in both actor and critic networks,
instead of just the actor network, and the resulting perfor-
mance was similarly poor to results using AGP. All of this
suggests that the embedding layer must be utilized in a way
to maintain information between agents.

4.2. Leader-based Learning with Linear Layer in New
Environment

Because of the satisfactory performance of the LLDR
method in the default environment, we experiment in two
environments that are far different from and more compli-
cated than the environment in which the leader is trained.
The first has 3 good and 3 adversarial agents, which makes
cooperation more challenging since more goals tend to dis-
tract the focus of adversarial agents. We train the baseline
and LLDR approaches for 1M episodes and evaluate their
performance every 1K episodes. The second more challeng-
ing environment has 1 good, 3 adversarial agents, and 3
obstacles. Additionally, the good agents move 1.8× faster
than the default 1.3×. We train the baseline and LLDR ap-
proaches for 200K episodes and evaluate their performance
every 1K episodes.

Figure 3 shows the performance. We see that the LLDR
method strongly outperforms the baseline method, which
struggles to learn a good cooperation strategy. This again
validates our hypothesis that leader-based learning can en-
able the agents to learn faster in challenging environments.

Figure 4: Experiments with Few-Shot Learning to validate
generalization of agents from Leader-based Learning. Ef-
fective leader-based learning enables better generalization
in more challenging unseen environments.

4.3. Leader-based Learning in Few-Shot Learning

Finally, we evaluate the baseline and three proposed meth-
ods in a new environment with 1 good and 3 adversarial
agents, where the good agent moves 1.8× the speed of the
adversarial agents. Instead of initializing a single adversarial
agent with the parameters of a leader trained in an environ-
ment with 1 good and 1 adversarial agent as in the previous
experiments, we utilize few-shot learning: we initialize
three adversarial agents using the parameters of adversaries
trained in the environment with 1 good and 3 adversarial
agents as in the experiments using the corresponding meth-
ods (see Section 4.1). Figure 4 shows the performance of
the baseline and our three approaches. We see that LLDR
and AGNN methods outperform the baseline once again.
LLDR performs the best, although AGNN may be slower
to converge due to the larger model size. This result also
validates our second hypothesis that leader-based learning
would lead to more effective generalization. The agents
trained with a leader not only learn the abilities within the
trained environment but also possesses better cooperation
and learning capabilities to generalize in new challenging
environments.

5. Conclusion
In this work, we propose a new leader-based decision learn-
ing framework for MARL inspired by social learning. We
design three approaches, LLDR, AGP, and AGNN, to distill
a leader’s experience into novice agents. We successfully
show that leader-based learning enables agents to 1) learn
faster, cooperate more effectively, and escape local optimum
compared to agents trained individually, and 2) generalize
easily in more challenging, unseen environments. Addition-
ally, we notice that the embedding layer plays an important
role in experience distillation, such that only the methods
that perform compression without the loss of important in-
formation allow for effective leader-based decision learning.
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A. Appendix
A.1. Details of Environment

Figure 5 visualizes the default environment, with the good
agent shown in green, three adversarial agents shown in
blue, and two obstacles depicted by large black circles. The
agents’ observations include its own position and volicity
and the relative positions of others, obstacles. The adversar-
ial agents select their actions in a decentralized manner but
may learn to cooperate based on each their observations of
each other in the world.

Figure 5: Simple Tag with 1 Good Agent and 3 Adversarial
Agents

A.2. Details of MADDPG

For completeness, the full MADDPG algorithm is included
in Figure 6 (Lowe et al., 2017).

In particular, we use the extension of MADDPG that works
with deterministic policies. Given N agents with con-
tinuous policies µ = {µθ1 , . . . ,µθN } parameterized by
θ = {θ1, . . . , θN}, let J(θi) be the expected return for ad-
versarial agent i. We abbreviate each µθi as µi. Then the
gradient of the expected return is

∇θiJ(θi) = Ex,a∼D[∇θi logµi(ai|oi)
∇ai

Qµ
i (oi, a1, . . . , aN )|ai=µi(oi)],

(1)

where x is the state, and experience replay buffer D
holds transition data experienced by all agents in the form
(o, a, r, o′). The Qµ

i (oi, a1, . . . , aN ) is the centralized
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Figure 6: Full MADDPG Algorithm

action-value function (critic) that takes in an observation
from agent i and the actions of all agents in order to com-
pute the Q-value for agent i. We update Qµ

i by minimizing
the loss given by

L(θi) = Eo,a,r,o′

[
(Qµ

i (oi, a1, . . . , aN )− y)
2
]
,

where the target is

y = ri + γQµ′

i (o′, a′1, . . . , a
′
N )|a′

j=µ′
j(oj)

,

and we use a set of target policies µ′ = {µθ′
1
, . . . ,µθ′

N
}

parameterized by θ′i.


