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Abstract

We consider training and testing on mixture distributions with different training
and test proportions. We show that in many settings, and in some sense generi-
cally, distribution shift can be beneficial, and test performance can improve due
to mismatched training proportions. In a variety of scenarios, we identify the
optimal training proportions and the extent to which such distribution shift can be
beneficial.

1 Introduction

Imagine that you are taking a high-stakes exam next week. The exam will be 90% on European
history and 10% on Chinese history. Both topics are equally familiar to you and equally difficult, and
additional study will help you with each topic similarly. You have unlimited access to study material
and practice questions for both. How should you spend your limited studying budget? Should your
training match your test distribution, studying 90% European and 10% Chinese? Or would you
benefit from a distribution shift? Studying more Chinese history? Less? Only European history? We
encourage the reader to pause and make an intuitive guess.

The answer depends on the specific learning curve for improvement in test performance within a
topic as a function of the number of training examples from that topic. But at least for a generic 1/n
scaling (as obtained from e.g., both learning VC classes and in parametric regression), the answer,
as we will see in Section 3, is that you would benefit from a distribution shift, and should study
75% European History and 25% Chinese history—this would reduce your test error by 20% over the
90/10 non-shifted training.

We just saw an example of what we term Positive Distribution Shift: Even if we have unlimited data
from the target test distribution Dy, training on a shifted distribution Dy,ain # Diest can actually
improve test performance. This contrasts the typical study of distribution shift, i.e. training on one
distribution but then applying the predictor, or testing, on another. Typically, it is implicitly assumed
that the ideal case would be to train on the test distribution, that training on a different distribution
is a compromise, either because we don’t know or have access to the true Dy, Or it’s expensive
to sample from it, or we have only a limited number of samples and want to supplement them with
additional data from related distributions. Distribution shift is usually studied as “how much worse
do things get if we train on Dy ain # Diest”, With answers of the form “if Dy,..iy, is close or related
enough to Dy, then it’s not much worse”. In this paper, we investigate one of several ways in which
distribution shift can be positive.

Specifically, we systematically study the benefit of such distribution shift when training with mis-
matched mixing proportions relative to the test distribution. We model the test distribution as a
mixture of K components, with known mixing proportions {px }_,, and consider training distribu-
tions which are mixtures over the same components but with different mixing proportions {qk}szl.
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Figure 1: We plot the error rate for a hypothetical scenario modelling the high stakes exam described
in Section 1. We model the error rate on each of the test portions as being proportional to oc —

ng?

where n; represents the studying budget spent on that portion of the exam, so ¢ = 1 corresponds to
European History and ¢ = 2 to the Chinese History and set n; + ny = N to be the total studying
budget, with N = 100 hours. The exponent « is @ = 1 on the left plot and o = 2 on the right
plot. In both cases, we consider ny = gN and ny = (1 — ¢) N, where g is the proportion of time
spent studying for the European History portion of the exam. This way, the error rate on the exam
can be written as a function of ¢ as L(q) = 0.9 (1oéq)a + 0.1 (10éq)“ . We can see on both plots that

shifting away from the testing proportion (red line, i.e. ¢ = 90%) can lead to a better error rate
with the optimal test proportion (green line, i.e. ¢* whose values are displayed accordingly). See
also Corollary 3.3.

We can either think of this as providing guidance when we can actively control mixing between
different known components, or as helping us understand how and why a mismatched training
distribution can actually be beneficial. In Section 5 we discuss how the analysis is also applicable to a
setting where we are not testing on a mixture, but rather on compositional tasks, requiring composing
multiple skills, and the skills appear with differing frequencies—this compositional setting served as
a major motivation for our study.

We consider different per-component learning curves, capturing different error decays, differing
hardness among the components, and the possibility of transfer between components. In Section 3 we
consider power law error decay, both the 1/n decay mentioned earlier and more general power laws,
including with differing component hardnesses or error decays. In Section 4 we consider learning
curves corresponding to “fact memorization” scenarios (discussed in Section 4), including those
applicable to the skill composition setting, and which correspond to coupon-collector type learning
curves. In Section 6 we consider the possibility of transfer between components. In all of these,
we show that a mismatched training distribution can be beneficial, characterize the optimal training
mixture, and the extent to which mismatch can improve test performance and reduce the training
complexity.

Beyond all the specific scenarios, we then argue, in Section 7, that benefiting from mismatch is
not the exception but rather the rule. We show that only in rare situations (either measure zero or
satisfying a conservation property that does not generally hold) is the optimal training distribution
equal to the test distribution, while in “most” cases shift is good.

2 Setup

Learning Setup and Loss For concreteness, let £(h, z) be the loss function that describes how
well a model h performs on and instance z € Z. For example, in supervised learning, z can be
an input-output pair (x,y), and £(h, z) can be the prediction error of h(x) vs y. Or, in next-word
prediction, z can be a document and £(h, z) can be the average cross-entropy loss when using A to
predict each of the next tokens in the document. In any case, for a test distribution Dy over z, we
evaluate the model through the test loss Lp, ., (h) := E,p,... [¢(h, 2)].

Test Distribution.
Ds,...,Dk.

We consider test distributions consisting of a mixture of K components
A mixture D, = ), prDy is then specified by mixing proportions p =
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(p1,.-.,px) € Ak on the probability simplex Ax. We let p be the mixing proportions in the
test distribution, i.e. Diest = Dp, and so the test loss is Lp,, (h) = L(h), where here and elsewhere
we use the subscript p to denote the mixture Dy,

Learning Algorithm. We consider abstract “learning algorithm” A, which, given training data (or
sequence of training examples) S € ZV of size N, outputs a model .A(S) with test loss D, (A(S)).

Training Distribution. We consider training on i.i.d. samples S ~ Dév from mixtures Dy of the
same K components, but with potentially different mixing proportions g € A . For training mixing
proportions g, we denote Ly (p,q) = Espy[Lp(A(S))] the expected test error on Diest = Dp

when training with Dy ain = Dg (we frequently drop the subscript N if its clear from context).
The “non-shifted” expected test loss is then denoted L33™¢(p) = Ly (p, p). In contrast, we denote
L} (p) = mingea . Ln(p, q) the test error with the best mixing ratios, and g* the minimizing ratios.
When L* < L%™€ and so ¢* # p, this means we can benefit from mismatched training. Our main
analysis objective is to charactarize ¢*, L™ and the improvement over L°*™¢,

We can measure the mismatch benefit through the improvement in test error for a fixed training budget
Lo = L%, /L5™e. Or, we can consic(le)r the training complexity N.(p,q) = min N s.t. Ly (p, q) <
NC(p

Ngme(p) *

€ and the improvement N1 :=

Specifying the Learning Model The expected test loss Ly (p, q), and so ¢* and the benefit of
mismatch, depend on the data distributions and learning behaviour of the algorithm. We capture
these by modeling the subpoluation error function ey (n), i.e. the error on each component Dj,
when training with n,; examples from each component D;. That is, for a vector of sample sizes
n=(ny,...,ng) € Z%,, denote D™ = (D)™ x - - - x (D )" the distributions over samples with
n; examples from each component D;. Then eg(n) = Egp~[Lp, (A(S))]. When ex(n) = gi(ni)
depends only on the amount of within-component data, we say the components are orthogonal,
meaning there is no transfer between them (as in our Chinese and European history example). The
scalar function gx(ny) then captures the learning curve for each component. But more generally,
there might also be transfer, with data from one component helping learning on another.

In any case, the learnability function e : ZX, — R, captures our “learning model”. In each Section,
we consider different forms of learning models and characterize g* and L* for these models.

Data Sets and Training Sequences In our analysis, we refer to the training budget N and our
learning model specifying learning based on nj examples per component k. We can think of N and
n as specifying the number of training examples, in which case the training complexity is a sample
complexity. Or, we can think of /V as indicating the number of training steps, and ny, as indicating
the number of steps in which an example from component k is used. In this case, training complexity
is a measure of training time. Either interpretation is valid. But we should emphasize that we only
study a dependence on how many examples are used from each component, not on the order (as in
curriculum learning).

Learnabilities and Mixing Ratios. We model learning as a function of the number of examples
from each component, but for our analysis, it will useful to introduce the function e N7k(q) =
Es~(p,)» [Lx(A(S))], which captures the expected error on component & with mixing proportions
g. We will refer to éx(q) as the subpopulation error function in terms of the mixture q. Since
the per-component counts 7 are multinomial, we have ex(q) = E,mun(q,n)le(n)] € R and
Ln(p,q) = (p,eén(q)). Frequently for large sample size N, éx(q) will concentrate around e(gN ),
and we will sometimes exploit this in the analysis, or analyze for €(q) ~ e(gN).

3 Orthogonal Power Law

Many machine learning tasks can be captured with power law error functions. Some classic examples
include linear regression or learning VC classes, both of which have error rate o %, where n is the
number of data samples. More recently, there have been many papers studying the loss curves for
large language models for various tasks as a function of the compute budget in various scaling laws,
such as the Chinchilla Scaling Law [Hoffmann et al., 2022].

To model these situations, we will first consider a setup where each of the K tasks is orthogonal and
their subpopulation error functions in terms of the number of samples follow a simple power law.
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Model 3.1 (Orthogonal Power Law Error Tasks). There are K orthogonal tasks, each of which takes

data from one of the K subpopulations D; that appear in the test distribution with probability p;

and whose subpopulation error function ey (n) follows a power law, i.e. ex(n) = ﬁ for some
Ty

Ak>O,Bk20,and0<ak§1.‘

In Proposition 3.2, we characterize the test error improvement from the positive distribution shift
from optimal data mixing ratios in Model 3.1 when the size of the training data n is large.
Proposition 3.2 (Optimal Data Mixing Ratios For General Power Law). In Model 3.1, if for the
exponents it holds that vy = ay = -+ = ag < agy1 < agye < --- < ak for some S
then there exist €1,c9 > 0 that depend on «; such that for any test data mixing ratio p and any
n > no(A;, B;, a;, p;) we have that the following holds

4 = ailfal (aipiAi)l o+l i <a1a1> v
N ToF T (Z;‘g:l(aipiAi)m) Ve
1< 1
Lsamc(p) _ N Zp%falAi +o0 (W) . 2)
i=1

s “fs wr

L*(p) = Nla1 (Z(awpzAz)’l“> Z % o (NQ}JF&?) ' ©
P i=1 "

(2

The o(-) notation hides dependence on A;, B;, p;, K and «;.

Proposition 3.2 shows that in the power law Model 3.1, positive distribution shift from optimal data
mixing ratios improves the prefactor of the test error dependence on the number of data samples [V
but does not change the decay rate in terms of N. For the proof of Proposition 3.2 and a more precise
statement, see Appendix A.1.

To show that this can have significant implications for making training more data efficient, we show
the improvement from this positive distribution shift on the sample complexity in the case where we
have one majority population and K — 1 minority populations that all have the same power exponent
«. This will also include the test-taking example from Section 1.

Corollary 3.3 (Sample Complexity Improvement From Optimal Data Mixing For General Power

Law). Consider Model 3.1 with S = K, i.e. oy = - =ag =aand Ay = --- = Ax = A with
p=(p, %,...,%). We have that for any € > 0

o

. Oé+1 p a+1 _ a
Nao < (1- 2 —— K™+t
o) < (1-p) + 22 (12)

1

Furthermore, the optimal mixing ratios are given by qi pf%r1 and q; (%) o fori > 2.
Corollary 3.3 demonstrates an example case, that if we have one majority population and a number
of minority populations, the positive distribution shift from optimal data mixing ratio significantly
improves sample complexity. For fixed p, if K is large enough, N™"°(p) will be close to N1 (p) =~
1—p < 1, ie. we get sample complexity improvement of up to p. For example, for p = 0.7,
a = 0.28, and K = 100, for any € > 0, N/ (p) ~ 0.75, i.e. we achieve the same error with ~ 25%
less samples. We illustrate this in Figure 2. For the proof of Corollary 3.3, see Appendix A.1.

Furthermore, the test taking example considered in the introduction Section 1 follows from Corol-
lary 3.3, by taking K = 2, & = 1, and p = (0.9,0.1). In particular, this shows that the optimal
studying budget allocation is g* = (0.75,0.25) and the improvement is N™°(p) = 0.8. This means
that if you study for the exam with the right mixing ratio g*, you would need to study 20% less time
to achieve the same score as compared to using the test mixing ratio p. Further, taking o = % we
get the second example on Figure 2. This shows that we indeed get g* = (0.812...,0.188...) and
Nréto(p) = 0.944.

'We will also use the convention that if By, = 0 then ex(n) = min{Cj, <} for some C > 0. This will
"k

prevent L(p, g) from blowing up to infinity.
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Figure 2: We consider the setup of Corollary 3.3 with A = 1, o = 0.28, K = 100, and some fixed
N. On the left plot, we show the "non-shifted" expected population loss L%™¢(p) and the optimally
mixed expected population loss L*(p) as a function of majority population mass p. On the right plot,
we show the ratio of sample complexities for any fixed € > 0, N'™i°(p) as a function of the mass of
the majority population, p. We can see significant improvement in the sample complexity from the
positive distribution shift from using optimal mixing ratio, even up to ~ 25%.

4 Orthogonal Memorization Tasks

We consider a task of memorizing a number of unique elements from a dataset of fixed size, where
the test distribution is a mixture of the tasks we are trying to memorize.

Model 4.1 (Orthogonal Memorization Tasks). Suppose there are K tasks, each of which is a
memorization of a unique element. The test distribution is a mixture of these K tasks, where the k-th
task appears with probability pg. In this case the subpopulation error functions in terms of n is given
by ex(n) = 1, —0}-

The following theorem characterizes the test error improvement from the positive distribution shift
from optimal data mixing ratios in the Orthogonal Memorization Task Model 4.1.

Theorem 4.2 (Optimal Data Mixing Test Error Improvement For Orthogonal Memorization Task).
In Model 4.1, for all p € AX=1 with p; > py > -+ > pg, the expected loss when training on n
samples is given by

K
L= (p) = > prl(l —pi)™ o)
k=1
K
L*(p) = (Kn(p) — D)én(P)+ > iy )
k=Kn(p)+1

where On(P) € [Piy (p)+1> PKx(p)) and KN (p) is defined as follows:

Kn(p) := max{ng:i(l_(ps/pk)l/(K1)) < 1}' (6)

k=1

To understand the magnitute of the test error improvement in Theorem 4.2, we will assume that the
test proportions p follow a power law p, = O(k~%) for some o > 1 and that the number of tasks to
memorize K is larger than the size of the training set V. In this case, we show that the improvement
from positive distribution shift Theorem 4.2 improves even the test error scaling in terms of N. For
the proof of Theorem 4.2, see Appendix A.2.

Corollary 4.3 (Test Error Improvement For Orthogonal Memorization Taks with Power Law Test
Mixing Ratios). If pp = O(k™%) for some o > 1 and K = Q(N), then

L=me(p) = O(NHE), L7 (p) = O(N ).

For example, when o = 1.5, we have L**™¢(p) = O(N~'/3) and L*(p) = ©(N~1/?). For the
proof of Corollary 4.3, see Appendix A.2.
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Figure 3: Mismatched distribution improves the test accuracy of a language model in solving a
synthetic CoT reasoning task on skill composition (Section 5). During test, the model is asked to
compose several functions following a power law. Instead of training directly on this task (blue
curve), mixing with another task that uniformly samples the functions improves the final accuracy
(orange curve).

5 Connection to Skill Composition

All the above analyses focus on the case where tasks are orthogonal. However, if we already know
that the test distribution can be decomposed into K tasks, then maybe we should deal with these K
tasks independently. So why do we have test mixing ratios in the first place?

We note here that in some cases, we may need to compose these K tasks later at inference time, and
the test mixing ratios can come from the proportions in the composition. Imagine that we are training
a language model to do mathematical reasoning. Each problem may involve several math skills, and
a language model can acquire a math skill only if it sees the skill enough times during training. This
can be conceptually modeled as the orthogonal memorization task discussed above, but at inference
time, the language model has to sequentially apply the math skills in its chain of thought (CoT). The
natural distribution of math skills then determines the test mixing ratios we care about.

We demonstrate this in a concrete synthetic task on skill composition. There are K skills, where the
i-th skill is a function g; that maps a number from {0, ..., 9} to {0, ..., 9}. Each skill has a unique En-
glish name. Assume that all these skills are randomly sampled: the names are uniformly random from
aname set, and each g; is uniformly random among all possible functions that map from {0, ..., 9} to
{0,...,9}. Atinference time, a set of k skills g;,, . . . , g;, are sampled IID following a power law with
exponent a = 1.5. The language model is prompted with the names of these skills and a number = €
{0,...,9}: “[x] -> [skill name 1] -> [skill name 2] -> --- -> [skill name k]”.
The model is expected to output the result after function composition: y = g;, (g5, _, (- - - gi, () - -+ ).

Let Dyest be the distribution of the above prompt and a CoT calculating the correct answer, with
M = 10°, k sampled uniformly from 10 to 50. Is the best strategy just training on the same
distribution (Dyyain = Diest)? Inspired by our calculation for the orthogonal memorization task
above, properly adjusting the occurrence probability for each skill may lead to better test accruacy.
To demonstrate this, we construct another distribution Dyt consisting of strings in the form of
“[x] [skill name] = [expected output]”, where the skill and input number are uniformly
sampled. In Figure 3, we conduct experiments with a model with GPT-2 architecture and ~50M
parameters. We show that training with Diyain = 30% - Dunitorm + 70% - Diess Significantly
outperform training with Dy directly. We defer the experiment details to Appendix C.

6 Non-orthogonal Tasks and Transfer Learning

Many transfer learning setups, such as multi-task learning of linear classifiers over linear representa-
tion with feature learning Baxter [2011], Maurer [2009], Pontil and Maurer [2013], Aliakbarpour
et al. [2024] and multi-task learning with shared sparsityWang et al. [2016, 2017], the subpopulation

error functions ex(n) can be written in the form egx(n) = (rzﬁ-f‘#%‘k + :?f',f. For example,

in multi-task learning of shared sparsity Wang et al. [2017], the error bound takes this form with
o) = =ag =1L

To model all of these cases, we consider the following model of transfer learning.

Model 6.1 (Standard Transfer Learning Model). There are K subpopulations, each of which appears
in the test distribution with proportion p;. The subpopulation error functions depend on the number

of samples n as ex(n) = W‘%’;m + %, for some Ag , A1 > 0and 0 < ay < 1.
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Interestingly, the Standard Transfer Learning Model 6.1 is equivalent to the setup of Orthogonal Power
Law Tasks Model 3.1 in the sense that we can understand optimal data mixing ratio g* and the error
improvement of the Standard Transfer Learning model from a specific instance of the Orthogonal
Power Law model. Namely, the transfer term in each of the subpopulation loss functions can be

decomposed into a transfer error term and a specific task error term ey, (n) = e (n) 4 €’ (n),

where effanster () = W#)“k is independent of the distribution of samples across different tasks,

A s .
and e*°(n) = —=¢ only depends on ny. Therefore, the transfer error term efanster () in each of the
k

subpoluation error functions will only offset the final expected loss L(p, g) by Zfil pi%, which
only depends on the total number of samples /N. On the other hand, the specific task error terms
€;7**(n) can be thought of as orthogonal tasks and will behave tha same as in Model 3.1. So, for the
Standard Transfer Learning Model 6.1, the optimal data mixing ratio g* and the expected test losses
L*(p) and L**™¢(p) are given by Equation (1) and Equation (2) respectively in Proposition 3.2 with
Ay, being replaced by A; .

6.1 Data Mixing Transfer Learning.

Ye et al. [2025] consider the problem of estimating the outcome performance of a large langue model
trained on a mixture of domains. In particular, they find that an exponential function over the linear
combinations of mixing proportions leads to good prediction. Namely, they fix the training budget [NV
and only vary the mixing ratio g and show that the validation loss on ¢-th domain can be predicted

well by a function of the form ¢; + b; exp (— ZK

=1 tij qj) , where ¢;, b;, ;; are parameters to fit.

Following their work, we propose the following model for the Data Mixing Transfer Learning.

Model 6.2 (Data Mixing Transfer Learning). There are K subpopulations, each of which appears
with probability p in the test distribution. Each of the subpopulation error functions in terms of the

mixing ratio q are e (q) = cg + by exp (— Z;il tijqj) for some constants ¢y, and by, > 0, ;.

We note that even though Model 6.2 is indeed not defined by the subpopulation error functions
er(n), it is precisely the setup that Ye et al. [2025] consider. This slightly deviates from our
main setup, which focuses on specifying models by their error functions. However, when the
number of samples N is large, it is reasonable to make the approximation that ei(n) ~ ex(gN),

and Model 6.2 can be interpreted as being defined by the subpopulation error functions of the
form ex(n) = ci(|n|) + b (|n|) exp (— Z]K:1 tij(|n|)nj), where ¢y, by, and ¢;; are functions that
depend only on the total compute budget N = |n|.

The following proposition characterizes the test error improvement from the positive distribution
shift coming from the optimal data mixing ratio in the data mixing transfer model.

Proposition 6.3 (Optimal Train Data Mixing Ratio for Data Mixing Transfer Learning Model). In
Model 6.2, if the coefficients t;; are such that T is invertible and and (TT)~'1 > 0, and p; # 0 for

all 1, the following hold
1+1"T'7
* —1 o
¢ =T ( ! T)

K K K
L¥™¢(p) = Z cipi + Z pibiexp | — Z tijpj
i=1 =1 j=1

K Tr—1
1T
') =S eps +exp | ——t TV 1T,
(p) ; p p( T ) (T")

Gt}

where T is a vector with entreis T, = log ( e

Proposition 6.3 shows the positive distribution from the optimal data mixing for Model 6.2. Note that
the additional conditions on T, p; are technical conditions used in order to simplify presentation. For
the complete statement and the proof of Proposition 6.3, see Appendix A.3.
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To demonstrate how large the gap can be, we consider the problem of data mixing transfer learning
Model 6.2 with K = 2 tasks and a one-directional transfer from the second to the first task.

Corollary 6.4 (Optimal Data Mixing Ratio Can Have Significant Improvement in the Transfer

Learning Model). Let K = 2, let p = (%, %) andletby = by =b> 0. If T = <(1) ?) then we

have that

1

1
[same _ ¥ _ 9po—3 (1 — Za + O((IQ)) .

Furthermore, if we let C' = % and B = be~ 3 then we have that
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Corollary 6.4 shows that for two tasks with a small of transfer between the second to the first we
can have error improvement from the positive distribution shift by mismatching training and test

distribution, that is L™ ~ % < 1 for small . For the proof of Corollary 6.4, see Appendix A.3.

7 1It’s Almost Always Better to Mismatch

So far, we have shown the existence of and quantified the positive distribution shift coming from
mistmatched test and train data mixing ratios for the cases of orthogonal power law tasks in Section 3,
orthogonal memorization tasks in Section 4, and standard transfer learning and data mixing transfer
learning in Section 6. that positive distribution shift from mismatching test and train mixing ratios
exists. In this section, we will provide further mathematical justification that a positive distribution
shift coming from the data mixing ratio almost always exists. That is, we show that it’s almost always
better to mismatch the training and test distributions: ¢* # p and L*(p, ¢*) < L%™¢(p).

More precisely, we will show that either the test data mixing ratio is on a measure zero set of
the simplex or the subpopulation error functions ey (n) have to be very specific functions, which
are meaningless. For example, in the case of orthogonal tasks, either the test mixing ratio is on a
measure zero subset or the subpopulation error functions ey (n) are all constants, which we show in
Corollary 7.4.

We define the probability simplex AKX 1 .= {p ERK :p>0, |pl = 1}, and its interior Af‘l =
{peRX :p>0, |p| =1}, where |p| := Zszl pr. We will define fj(p) by extending the domain
of each e (p) to the set of non-zero, non-negative vectors Rlz{o \ {0} by defining fi(p) := ék(l%l).

We further define L5™¢(p) := 2521 prfr(p), which extends the definition of L%*™¢ to the set of
non-zero, non-negative vectors Rlz{o \ {0}.

Condition 7.1 (Conservation Condition). (f1(p),..., fx(p)) = VL%™¢(p) forallp € Rgo \ {0}.

Theorem 7.2 (Positive Distribution Shift Almost Always Exists For Data Mixing). For any set of
subpopulations Dy, . .., Dy and any learning algorithm A, either Condition 7.1 holds, or there
exists a zero-measure set U on AKX~ such that for allp € A=\ U, L (p) < L**™(p).

Theorem 7.2 shows that either p is on a measure zero set U on AX~1 or the Conservation Condi-
tion 7.1 must hold. We will show that Conservation Condition 7.1 happens only for very specific
cases of subpopulation error functions.

Conservation Condition Rarely Holds. First, we will show that if the subtasks are orthogonal, the
conservation condition Condition 7.1 is only satisfied if all of the subpopulation error functions are
constants.

Lemma 7.3 (Orthogonal Tasks). If K > 3, and if for all k € [K], fr(p) = gk(l%kl) for some function
gk, then Condition 7.1 holds if and only if gi’s are all constant functions.

Theorem 7.2 and Lemma 7.3 together show that in the case of orthogonal tasks, positive distirbution
shift always exists by changing the training data mixing ratio away from the test mixing ratio, unless
all the subpopulation error functions are constant.
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Corollary 7.4 (Positive Distribution Shift Always Exists for Orthogonal Tasks). For any set of
K > 3 subpopulations D, ..., Dk and any learning algorithm A, if there exists subpopulation
k € [K] such that its error function ey, is not a constant functions over [N| where N is the number
of total samples then there exists a measure zero set U on A1 such that for all p € AK=1\ U
positive distribution shift from data mixing exists in the sense that there is q* #* p for which

Ly(p,q) = L*(p) < L¥*™¢(p).

Further, we show that if the Conservation Condition 7.1 is satisfied, then one function f; determines
the rest up to a constant.

Lemma 7.5. If both (f1,..., i, L5™°) and (f1,..., fx, L5*™°) satisfy Condition 7.1, and if
fi = fi for some i € [m], then for all k # i, fr(p) = fr(p) + Cy for some constant C,.

The above Lemma 7.5 implies that for every k and corresponding error function ey (n ), there exists
at most one tuple of error functions {e; }f(zl jx (up to a individual constant offset for each error
function e;) that positive distribution shift does not happen for p of positive measure. This further
implies the following corollary.

Corollary 7.6 (Positive Distribution Shift Almost Always Exists for General Tasks). For any set
of K > 3 subpopulations D1, ..., Dk and any learning algorithm A, for all p € Affl, the
configuration of [ex(1)|ke[k),n that positive distribution shift does not happen is zero-measure.

Corollary 7.6 shows that either the test mixing ratio p is on a set of measure zero on the simplex or
the configuration of subpopulation error functions ex(n) is on a set of measure zero. This implies
that positive distribution shift exists almost always.

8 Related Works

Distribution Shift That is Not Harmful. The benefits of mismathcing the training and test distri-
bution has already been in studied in some settings. Gonzdlez and Abu-Mostafa [2015] demonstrate
in many linear regression problems that mismatched training and test distributions can outperform
matched ones. Unlike in our paper, they do not restrict to changing the train distribution only through
data mixing, so their results do not fit our framework. On the other hand, we explicitly characterize
the positive distribution shift, while Gonzélez and Abu-Mostafa [2015] only show its existence for
linear regression problems and are only able to characterize the distribution explicitly in very special
cases. Canatar et al. [2021] show how in high-dimensional kernel regression problems to numerically
optimize the training distribution for better test performance. However, they do not characterize
the positive distribution shift, but rather only show how to numerically find it for kernel regression.
Similarly, they do not restrict the test distribution to one coming from a data mixture, so their results
do not fit our framework.

Data Mixing. There a number of recent empiricaly works that consider the same setting of data
mixing as we do. Ye et al. [2025] introduce data mixing laws, quantitative empirical predictions
of large language model performance based on the data mixture proportions. Furthermore, they
show experimental results demonstrating that their approach significantly decreases the number of
steps needed to reach certain performance. This paper informed our data mixing transfer model and
fits in our framework. Goyal et al. [2024] show that data curation for VLMs cannot be compute
agnostic. They introduce neural scaling laws that allow for estimating performance on multiple
data pools without jointly training on them. Their work fits our framework. Similarly, we also find
that optimal mixing ratios are not compute agnostic, specifically in the orthogonal power law tasks,
orthogonal memorization task, and standard transfer learning task. Jiang et al. [2025] introduce an
algorithm for online optimization of data distributions, that adjusts mixture based on the estimated
per-domain learning potential, achieving comparable or better performance than previous methods
while maintaing compuatational efficiency. While all of these works consider the same phenomena
of changing the training mixing ratio to improve test performacne, the main difference between our
work and theirs is that we consider positive distribution shift from data mixing ratio in a broader
context and from the theoretical standpoint as well.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes], ,or [NA].

e [NA] means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
¢ Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: Yes, the main claim accuretly reflects the paper’s contribution and scope.
Guidelines:

» The answer NA means that the abstract and introduction do not include the claims made in
the paper.

 The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, we discuss the limitations of our work and clearly define the scope of each of
our claims.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: We provide full set of assumptions and complete and corrected proofs in the
appendix. For some of the claims, we only state an informal or a limited scope version in the
main body for the ease of presentation.

Guidelines:

* The answer NA means that the paper does not include theoretical results.
¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
» All assumptions should be clearly stated or referenced in the statement of any theorems.

 The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes, we disclose the information needed to reproduce the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.
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L]

If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to

make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For

example, if the contribution is a novel architecture, describing the architecture fully might

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the

results, access to a hosted model (e.g., in the case of a large language model), releasing of a

model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions

to provide some reasonable avenue for reproducibility, which may depend on the nature of

the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Yes, we provide the access in to the code and data in the appendix.

Guidelines:

L]

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

13


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

550

552

553

554

555
556

557

558

559
560

561

562
563

564

565

566
567
568

569
570
571

572
573

574

588

589
590

591

592
593
594
595
596
597
598
599

600

Answer: [Yes]

Justification: Yes, we specify all the details of the experiment necessary to understand and
reproduce the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we provide information about statistical significance of results where appropri-
ate.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

» The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Yes, we provide sufficient information on the computer resources needed to
reproduce the experiments in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, our research conforms in every aspect to the Neur[PS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: As this is mainly a theoretical paper, there is no immediate societal impact of the
owrk.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]
Justification: Yes, we properly credit all the original owners of assets where due.
Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.
For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not realease new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.
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Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: See previous point.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA|

Justification: The core methods developed in this research do not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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