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Abstract

We consider training and testing on mixture distributions with different training1

and test proportions. We show that in many settings, and in some sense generi-2

cally, distribution shift can be beneficial, and test performance can improve due3

to mismatched training proportions. In a variety of scenarios, we identify the4

optimal training proportions and the extent to which such distribution shift can be5

beneficial.6

1 Introduction7

Imagine that you are taking a high-stakes exam next week. The exam will be 90% on European8

history and 10% on Chinese history. Both topics are equally familiar to you and equally difficult, and9

additional study will help you with each topic similarly. You have unlimited access to study material10

and practice questions for both. How should you spend your limited studying budget? Should your11

training match your test distribution, studying 90% European and 10% Chinese? Or would you12

benefit from a distribution shift? Studying more Chinese history? Less? Only European history? We13

encourage the reader to pause and make an intuitive guess.14

The answer depends on the specific learning curve for improvement in test performance within a15

topic as a function of the number of training examples from that topic. But at least for a generic 1/n16

scaling (as obtained from e.g., both learning VC classes and in parametric regression), the answer,17

as we will see in Section 3, is that you would benefit from a distribution shift, and should study18

75% European History and 25% Chinese history—this would reduce your test error by 20% over the19

90/10 non-shifted training.20

We just saw an example of what we term Positive Distribution Shift: Even if we have unlimited data21

from the target test distribution Dtest, training on a shifted distribution Dtrain →= Dtest can actually22

improve test performance. This contrasts the typical study of distribution shift, i.e. training on one23

distribution but then applying the predictor, or testing, on another. Typically, it is implicitly assumed24

that the ideal case would be to train on the test distribution, that training on a different distribution25

is a compromise, either because we don’t know or have access to the true Dtest, or it’s expensive26

to sample from it, or we have only a limited number of samples and want to supplement them with27

additional data from related distributions. Distribution shift is usually studied as “how much worse28

do things get if we train on Dtrain →= Dtest”, with answers of the form “if Dtrain is close or related29

enough to Dtest, then it’s not much worse”. In this paper, we investigate one of several ways in which30

distribution shift can be positive.31

Specifically, we systematically study the benefit of such distribution shift when training with mis-32

matched mixing proportions relative to the test distribution. We model the test distribution as a33

mixture of K components, with known mixing proportions {pk}Kk=1, and consider training distribu-34

tions which are mixtures over the same components but with different mixing proportions {qk}Kk=1.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Figure 1: We plot the error rate for a hypothetical scenario modelling the high stakes exam described
in Section 1. We model the error rate on each of the test portions as being proportional to ↑ 1

nω
i

,
where ni represents the studying budget spent on that portion of the exam, so i = 1 corresponds to
European History and i = 2 to the Chinese History and set n1 + n2 = N to be the total studying
budget, with N = 100 hours. The exponent ω is ω = 1 on the left plot and ω = 2 on the right
plot. In both cases, we consider n1 = qN and n2 = (1 ↓ q)N , where q is the proportion of time
spent studying for the European History portion of the exam. This way, the error rate on the exam
can be written as a function of q as L(q) = 0.9 1

(100q)ω + 0.1 1
(100q)ω . We can see on both plots that

shifting away from the testing proportion (red line, i.e. q = 90%) can lead to a better error rate
with the optimal test proportion (green line, i.e. q→ whose values are displayed accordingly). See
also Corollary 3.3.

We can either think of this as providing guidance when we can actively control mixing between36

different known components, or as helping us understand how and why a mismatched training37

distribution can actually be beneficial. In Section 5 we discuss how the analysis is also applicable to a38

setting where we are not testing on a mixture, but rather on compositional tasks, requiring composing39

multiple skills, and the skills appear with differing frequencies—this compositional setting served as40

a major motivation for our study.41

We consider different per-component learning curves, capturing different error decays, differing42

hardness among the components, and the possibility of transfer between components. In Section 3 we43

consider power law error decay, both the 1/n decay mentioned earlier and more general power laws,44

including with differing component hardnesses or error decays. In Section 4 we consider learning45

curves corresponding to “fact memorization” scenarios (discussed in Section 4), including those46

applicable to the skill composition setting, and which correspond to coupon-collector type learning47

curves. In Section 6 we consider the possibility of transfer between components. In all of these,48

we show that a mismatched training distribution can be beneficial, characterize the optimal training49

mixture, and the extent to which mismatch can improve test performance and reduce the training50

complexity.51

Beyond all the specific scenarios, we then argue, in Section 7, that benefiting from mismatch is52

not the exception but rather the rule. We show that only in rare situations (either measure zero or53

satisfying a conservation property that does not generally hold) is the optimal training distribution54

equal to the test distribution, while in “most” cases shift is good.55

2 Setup56

Learning Setup and Loss For concreteness, let ε(h, z) be the loss function that describes how57

well a model h performs on and instance z ↔ Z . For example, in supervised learning, z can be58

an input-output pair (x, y), and ε(h, z) can be the prediction error of h(x) vs y. Or, in next-word59

prediction, z can be a document and ε(h, z) can be the average cross-entropy loss when using h to60

predict each of the next tokens in the document. In any case, for a test distribution Dtest over z, we61

evaluate the model through the test loss LDtest(h) := Ez↑Dtest [ε(h, z)].62

Test Distribution. We consider test distributions consisting of a mixture of K components63

D1, . . . ,DK . A mixture Dp =
∑

k pkDk is then specified by mixing proportions p =64
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(p1, . . . , pK) ↔ !K on the probability simplex !K . We let p be the mixing proportions in the65

test distribution, i.e. Dtest = Dp, and so the test loss is LDp(h) = Lp(h), where here and elsewhere66

we use the subscript p to denote the mixture Dp.67

Learning Algorithm. We consider abstract “learning algorithm” A, which, given training data (or68

sequence of training examples) S ↔ ZN of size N , outputs a model A(S) with test loss Dp(A(S)).69

Training Distribution. We consider training on i.i.d. samples S ↗ DN
q from mixtures Dq of the70

same K components, but with potentially different mixing proportions q ↔ !K . For training mixing71

proportions q, we denote LN (p, q) = ES↑DN
p
[Lp(A(S))] the expected test error on Dtest = Dp72

when training with Dtrain = Dq (we frequently drop the subscript N if its clear from context).73

The “non-shifted” expected test loss is then denoted L
same
N (p) = LN (p,p). In contrast, we denote74

L
→

N (p) = minq↓!K LN (p, q) the test error with the best mixing ratios, and q→ the minimizing ratios.75

When L
→
< L

same and so q→ →= p, this means we can benefit from mismatched training. Our main76

analysis objective is to charactarize q→, L→ and the improvement over L
same.77

We can measure the mismatch benefit through the improvement in test error for a fixed training budget78

L
ratio
N = L

→

N/L
same
N . Or, we can consider the training complexity Nω(p, q) = min N s.t. LN (p, q) ↘79

ϑ and the improvement N ratio
ω := N→

ε (p)
N same

ε (p) .80

Specifying the Learning Model The expected test loss LN (p, q), and so q→ and the benefit of81

mismatch, depend on the data distributions and learning behaviour of the algorithm. We capture82

these by modeling the subpoluation error function ek(n), i.e. the error on each component Dk83

when training with ni examples from each component Di. That is, for a vector of sample sizes84

n = (n1, . . . , nK) ↔ ZK
↔0, denote Dn = (D1)n1≃· · ·≃(DK)nK the distributions over samples with85

ni examples from each component Di. Then ek(n) = ES↑Dn [LDk (A(S))]. When ek(n) = gk(nk)86

depends only on the amount of within-component data, we say the components are orthogonal,87

meaning there is no transfer between them (as in our Chinese and European history example). The88

scalar function gk(nk) then captures the learning curve for each component. But more generally,89

there might also be transfer, with data from one component helping learning on another.90

In any case, the learnability function e : ZK
↔0 ⇐ RK , captures our “learning model”. In each Section,91

we consider different forms of learning models and characterize q→ and L
→ for these models.92

Data Sets and Training Sequences In our analysis, we refer to the training budget N and our93

learning model specifying learning based on nk examples per component k. We can think of N and94

n as specifying the number of training examples, in which case the training complexity is a sample95

complexity. Or, we can think of N as indicating the number of training steps, and nk as indicating96

the number of steps in which an example from component k is used. In this case, training complexity97

is a measure of training time. Either interpretation is valid. But we should emphasize that we only98

study a dependence on how many examples are used from each component, not on the order (as in99

curriculum learning).100

Learnabilities and Mixing Ratios. We model learning as a function of the number of examples101

from each component, but for our analysis, it will useful to introduce the function ēN,k(q) =102

ES↑(Dq)n [Lk(A(S))], which captures the expected error on component k with mixing proportions103

q. We will refer to ēk(q) as the subpopulation error function in terms of the mixture q. Since104

the per-component counts n are multinomial, we have ēN (q) = En↑Mult(q,N)[e(n)] ↔ RK and105

LN (p, q) = ⇒p, ēN (q)⇑. Frequently for large sample size N , ēN (q) will concentrate around e(qN),106

and we will sometimes exploit this in the analysis, or analyze for ē(q) ⇓ e(qN).107

3 Orthogonal Power Law108

Many machine learning tasks can be captured with power law error functions. Some classic examples109

include linear regression or learning VC classes, both of which have error rate ↑ 1
n , where n is the110

number of data samples. More recently, there have been many papers studying the loss curves for111

large language models for various tasks as a function of the compute budget in various scaling laws,112

such as the Chinchilla Scaling Law [Hoffmann et al., 2022].113

To model these situations, we will first consider a setup where each of the K tasks is orthogonal and114

their subpopulation error functions in terms of the number of samples follow a simple power law.115
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Model 3.1 (Orthogonal Power Law Error Tasks). There are K orthogonal tasks, each of which takes116

data from one of the K subpopulations Di that appear in the test distribution with probability pi117

and whose subpopulation error function ek(n) follows a power law, i.e. ek(n) = Ak

n
ωk
k +Bk

for some118

Ak > 0, Bk ⇔ 0, and 0 < ωk ↘ 1.1119

In Proposition 3.2, we characterize the test error improvement from the positive distribution shift120

from optimal data mixing ratios in Model 3.1 when the size of the training data n is large.121

Proposition 3.2 (Optimal Data Mixing Ratios For General Power Law). In Model 3.1, if for the122

exponents it holds that ω1 = ω2 = · · · = ωS < ωS+1 ↘ ωS+2 ↘ · · · ↘ ωK for some S123

then there exist ϖ1, ϖ2 ⇔ 0 that depend on ωi such that for any test data mixing ratio p and any124

n > n0(Ai, Bi,ωi, pi) we have that the following holds125

q
→

i =
1

N

ωi↑ω1
ωi+1




(ωipiAi)(∑S

i=1(ωipiAi)
1

ω1+1

)ε1+1





1
ωi+1

+ o

(
1

N

ωi↑ω1
ωi+1

)
(1)

126

L
same(p) =

1

Nε1

S∑

i=1

p
1↗ε1
i Ai + o

(
1

Nε1+ϑ1

)
. (2)

L
→(p) =

1

Nε1

(
S∑

i=1

(ωipiAi)
1

ωi+1

)ε1



S∑

i=1

(piAi)
1

ωi+1

ω

ωi
ωi+1

i



+ o

(
1

Nε1+ϑ2

)
. (3)

The o(·) notation hides dependence on Ai, Bi, pi,K and ωi.127

Proposition 3.2 shows that in the power law Model 3.1, positive distribution shift from optimal data128

mixing ratios improves the prefactor of the test error dependence on the number of data samples N129

but does not change the decay rate in terms of N . For the proof of Proposition 3.2 and a more precise130

statement, see Appendix A.1.131

To show that this can have significant implications for making training more data efficient, we show132

the improvement from this positive distribution shift on the sample complexity in the case where we133

have one majority population and K ↓ 1 minority populations that all have the same power exponent134

ω. This will also include the test-taking example from Section 1.135

Corollary 3.3 (Sample Complexity Improvement From Optimal Data Mixing For General Power136

Law). Consider Model 3.1 with S = K, i.e. ω1 = · · · = ωK = ω and A1 = · · · = AK = A with137

p = (p, 1↗p
K↗1 , . . . ,

1↗p
K↗1 ). We have that for any ϑ > 0138

N
ratio

ω (p) ↘ (1↓ p) + 2
ω+ 1

ω

(
p

1↓ p

) 1
ω+1

K
↗

ω
ω+1 .

Furthermore, the optimal mixing ratios are given by q
→

1 ↑ p
1

ω+1 and q
→

i ↑
(

1↗p
K↗1

) 1
ω+1

for i ⇔ 2.139

Corollary 3.3 demonstrates an example case, that if we have one majority population and a number140

of minority populations, the positive distribution shift from optimal data mixing ratio significantly141

improves sample complexity. For fixed p, if K is large enough, N ratio(p) will be close to N
ratio(p) ⇓142

1 ↓ p < 1, i.e. we get sample complexity improvement of up to p. For example, for p = 0.7,143

ω = 0.28, and K = 100, for any ϑ > 0, N ratio
ω (p) ⇓ 0.75, i.e. we achieve the same error with ⇓ 25%144

less samples. We illustrate this in Figure 2. For the proof of Corollary 3.3, see Appendix A.1.145

Furthermore, the test taking example considered in the introduction Section 1 follows from Corol-146

lary 3.3, by taking K = 2, ω = 1, and p = (0.9, 0.1). In particular, this shows that the optimal147

studying budget allocation is q→ = (0.75, 0.25) and the improvement is N ratio(p) = 0.8. This means148

that if you study for the exam with the right mixing ratio q→, you would need to study 20% less time149

to achieve the same score as compared to using the test mixing ratio p. Further, taking ω = 1
2 we150

get the second example on Figure 2. This shows that we indeed get q→ = (0.812 . . . , 0.188 . . . ) and151

N
ratio(p) = 0.944.152

1We will also use the convention that if Bk = 0 then ek(n) = min{Ck,
Ak

n
ωk
k

} for some Ck > 0. This will

prevent L(p, q) from blowing up to infinity.
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Figure 2: We consider the setup of Corollary 3.3 with A = 1, ω = 0.28, K = 100, and some fixed
N . On the left plot, we show the "non-shifted" expected population loss Lsame(p) and the optimally
mixed expected population loss L→(p) as a function of majority population mass p. On the right plot,
we show the ratio of sample complexities for any fixed ϑ > 0, N ratio

ω (p) as a function of the mass of
the majority population, p. We can see significant improvement in the sample complexity from the
positive distribution shift from using optimal mixing ratio, even up to ⇓ 25%.

4 Orthogonal Memorization Tasks153

We consider a task of memorizing a number of unique elements from a dataset of fixed size, where154

the test distribution is a mixture of the tasks we are trying to memorize.155

Model 4.1 (Orthogonal Memorization Tasks). Suppose there are K tasks, each of which is a156

memorization of a unique element. The test distribution is a mixture of these K tasks, where the k-th157

task appears with probability pk. In this case the subpopulation error functions in terms of n is given158

by ek(n) = 1{nk=0}.159

The following theorem characterizes the test error improvement from the positive distribution shift160

from optimal data mixing ratios in the Orthogonal Memorization Task Model 4.1.161

Theorem 4.2 (Optimal Data Mixing Test Error Improvement For Orthogonal Memorization Task).162

In Model 4.1, for all p ↔ !K↗1
with p1 ⇔ p2 ⇔ · · · ⇔ pK , the expected loss when training on n163

samples is given by164

L
same(p) =

K∑

k=1

pk(1↓ pk)
N (4)

L
→(p) = (KN (p)↓ 1)ϱN (p) +

K∑

k=KN (p)+1

pk, (5)

where ϱN (p) ↔ [pKN (p)+1, pKN (p)) and KN (p) is defined as follows:165

KN (p) := max

{
s ↘ K :

s↗1∑

k=1

(1↓ (ps/pk)
1/(K↗1)) < 1


. (6)

To understand the magnitute of the test error improvement in Theorem 4.2, we will assume that the166

test proportions p follow a power law pk = ”(k↗ε) for some ω > 1 and that the number of tasks to167

memorize K is larger than the size of the training set N . In this case, we show that the improvement168

from positive distribution shift Theorem 4.2 improves even the test error scaling in terms of N . For169

the proof of Theorem 4.2, see Appendix A.2.170

Corollary 4.3 (Test Error Improvement For Orthogonal Memorization Taks with Power Law Test171

Mixing Ratios). If pk = ”(k↗ε) for some ω > 1 and K = #(N), then172

L
same(p) = ”(N↗1+ 1

ω ), L
→(p) = ”(N↗ε+1).

For example, when ω = 1.5, we have L
same(p) = ”(N↗1/3) and L

→(p) = ”(N↗1/2). For the173

proof of Corollary 4.3, see Appendix A.2.174
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Figure 3: Mismatched distribution improves the test accuracy of a language model in solving a
synthetic CoT reasoning task on skill composition (Section 5). During test, the model is asked to
compose several functions following a power law. Instead of training directly on this task (blue
curve), mixing with another task that uniformly samples the functions improves the final accuracy
(orange curve).

5 Connection to Skill Composition175

All the above analyses focus on the case where tasks are orthogonal. However, if we already know176

that the test distribution can be decomposed into K tasks, then maybe we should deal with these K177

tasks independently. So why do we have test mixing ratios in the first place?178

We note here that in some cases, we may need to compose these K tasks later at inference time, and179

the test mixing ratios can come from the proportions in the composition. Imagine that we are training180

a language model to do mathematical reasoning. Each problem may involve several math skills, and181

a language model can acquire a math skill only if it sees the skill enough times during training. This182

can be conceptually modeled as the orthogonal memorization task discussed above, but at inference183

time, the language model has to sequentially apply the math skills in its chain of thought (CoT). The184

natural distribution of math skills then determines the test mixing ratios we care about.185

We demonstrate this in a concrete synthetic task on skill composition. There are K skills, where the186

i-th skill is a function gi that maps a number from {0, . . . , 9} to {0, . . . , 9}. Each skill has a unique En-187

glish name. Assume that all these skills are randomly sampled: the names are uniformly random from188

a name set, and each gi is uniformly random among all possible functions that map from {0, . . . , 9} to189

{0, . . . , 9}. At inference time, a set of k skills gi1 , . . . , gik are sampled IID following a power law with190

exponent ω = 1.5. The language model is prompted with the names of these skills and a number x ↔191

{0, . . . , 9}: “[x] -> [skill name 1] -> [skill name 2] -> · · · -> [skill name k]”.192

The model is expected to output the result after function composition: y = gik(gik↑1(· · · gi1(x) · · · )).193

Let Dtest be the distribution of the above prompt and a CoT calculating the correct answer, with194

M = 105, k sampled uniformly from 10 to 50. Is the best strategy just training on the same195

distribution (Dtrain = Dtest)? Inspired by our calculation for the orthogonal memorization task196

above, properly adjusting the occurrence probability for each skill may lead to better test accruacy.197

To demonstrate this, we construct another distribution Duniform consisting of strings in the form of198

“[x] [skill name] = [expected output]”, where the skill and input number are uniformly199

sampled. In Figure 3, we conduct experiments with a model with GPT-2 architecture and ↗50M200

parameters. We show that training with Dtrain = 30% · Duniform + 70% · Dtest significantly201

outperform training with Dtest directly. We defer the experiment details to Appendix C.202

6 Non-orthogonal Tasks and Transfer Learning203

Many transfer learning setups, such as multi-task learning of linear classifiers over linear representa-204

tion with feature learning Baxter [2011], Maurer [2009], Pontil and Maurer [2013], Aliakbarpour205

et al. [2024] and multi-task learning with shared sparsityWang et al. [2016, 2017], the subpopulation206

error functions ek(n) can be written in the form ek(n) = A0,k

(n1+···+nk)ωk
+ A1,k

n
ωk
k

. For example,207

in multi-task learning of shared sparsity Wang et al. [2017], the error bound takes this form with208

ω1 = · · · = ωK = 1.209

To model all of these cases, we consider the following model of transfer learning.210

Model 6.1 (Standard Transfer Learning Model). There are K subpopulations, each of which appears211

in the test distribution with proportion pk. The subpopulation error functions depend on the number212

of samples n as ek(n) =
A0,k

(n1+···+nk)ωk
+ A1,k

n
ωk
k

, for some A0,k, A1,k > 0 and 0 < ωk ↘ 1.213
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Interestingly, the Standard Transfer Learning Model 6.1 is equivalent to the setup of Orthogonal Power214

Law Tasks Model 3.1 in the sense that we can understand optimal data mixing ratio q→ and the error215

improvement of the Standard Transfer Learning model from a specific instance of the Orthogonal216

Power Law model. Namely, the transfer term in each of the subpopulation loss functions can be217

decomposed into a transfer error term and a specific task error term ek(n) = e
transfer
k (n) + e

spec
k (n),218

where etransfer
k (n) = A0,k

(n1+···+nk)ωk
is independent of the distribution of samples across different tasks,219

and e
spec
k (n) = A1,k

n
ωk
k

only depends on nk. Therefore, the transfer error term e
transfer
k (n) in each of the220

subpoluation error functions will only offset the final expected loss L(p, q) by
∑K

i=1 pi
A0,k

Nωk
, which221

only depends on the total number of samples N . On the other hand, the specific task error terms222

e
spec
k (n) can be thought of as orthogonal tasks and will behave tha same as in Model 3.1. So, for the223

Standard Transfer Learning Model 6.1, the optimal data mixing ratio q→ and the expected test losses224

L
→(p) and L

same(p) are given by Equation (1) and Equation (2) respectively in Proposition 3.2 with225

Ak being replaced by A1,k.226

6.1 Data Mixing Transfer Learning.227

Ye et al. [2025] consider the problem of estimating the outcome performance of a large langue model228

trained on a mixture of domains. In particular, they find that an exponential function over the linear229

combinations of mixing proportions leads to good prediction. Namely, they fix the training budget N230

and only vary the mixing ratio q and show that the validation loss on i-th domain can be predicted231

well by a function of the form ci + bi exp
(
↓
∑K

j=1 tijqj

)
, where ci, bi, tij are parameters to fit.232

Following their work, we propose the following model for the Data Mixing Transfer Learning.233

Model 6.2 (Data Mixing Transfer Learning). There are K subpopulations, each of which appears234

with probability pk in the test distribution. Each of the subpopulation error functions in terms of the235

mixing ratio q are ēk(q) = ck + bk exp
(
↓
∑K

j=1 tijqj

)
for some constants ck and bk > 0, tij .236

We note that even though Model 6.2 is indeed not defined by the subpopulation error functions237

ek(n), it is precisely the setup that Ye et al. [2025] consider. This slightly deviates from our238

main setup, which focuses on specifying models by their error functions. However, when the239

number of samples N is large, it is reasonable to make the approximation that ek(n) ⇓ ek(qN),240

and Model 6.2 can be interpreted as being defined by the subpopulation error functions of the241

form ek(n) = ck(|n|) + bk(|n|) exp
(
↓
∑K

j=1 tij(|n|)nj

)
, where ck, bk, and tij are functions that242

depend only on the total compute budget N = |n|.243

The following proposition characterizes the test error improvement from the positive distribution244

shift coming from the optimal data mixing ratio in the data mixing transfer model.245

Proposition 6.3 (Optimal Train Data Mixing Ratio for Data Mixing Transfer Learning Model). In246

Model 6.2, if the coefficients tij are such that T is invertible and and (T T )↗11 > 0, and pi →= 0 for247

all i, the following hold248

q→ = (T )↗1

(
1 + 1↘T↗1

ς

1T↗11
1 ↓ ς

)

L
same(p) =

K∑

i=1

cipi +
K∑

i=1

pibi exp



↓
K∑

j=1

tijpj





L
→(p) =

K∑

i=1

cipi + exp

(
↓1↓ 1↘T↗1

ς

1TT↗11

)
1T (T↘)↗11,

where ς is a vector with entreis ςl = log
(

[(T↓)↑11]l
plbl

)
.249

Proposition 6.3 shows the positive distribution from the optimal data mixing for Model 6.2. Note that250

the additional conditions on T , pi are technical conditions used in order to simplify presentation. For251

the complete statement and the proof of Proposition 6.3, see Appendix A.3.252

7



To demonstrate how large the gap can be, we consider the problem of data mixing transfer learning253

Model 6.2 with K = 2 tasks and a one-directional transfer from the second to the first task.254

Corollary 6.4 (Optimal Data Mixing Ratio Can Have Significant Improvement in the Transfer255

Learning Model). Let K = 2, let p = ( 12 ,
1
2 ), and let b1 = b2 = b > 0. If T =

(
1 ω

0 1

)
then we256

have that257

L
same ↓ L

→ = 2be↗
1
2

(
1↓ 1

4
ω+O(a2)

)
.

Furthermore, if we let C = c1+c2
2 and B = be

↗
1
2 then we have that258

L
ratio =

LN

L→
=

C ↓B

C +B
+

BC

2(B + C)2
ω+O(ω2)

Corollary 6.4 shows that for two tasks with a small of transfer between the second to the first we259

can have error improvement from the positive distribution shift by mismatching training and test260

distribution, that is Lratio ⇓ C↗B
C+B < 1 for small ω. For the proof of Corollary 6.4, see Appendix A.3.261

7 It’s Almost Always Better to Mismatch262

So far, we have shown the existence of and quantified the positive distribution shift coming from263

mistmatched test and train data mixing ratios for the cases of orthogonal power law tasks in Section 3,264

orthogonal memorization tasks in Section 4, and standard transfer learning and data mixing transfer265

learning in Section 6. that positive distribution shift from mismatching test and train mixing ratios266

exists. In this section, we will provide further mathematical justification that a positive distribution267

shift coming from the data mixing ratio almost always exists. That is, we show that it’s almost always268

better to mismatch the training and test distributions: q→ →= p and L
→(p, q→) < L

same(p).269

More precisely, we will show that either the test data mixing ratio is on a measure zero set of270

the simplex or the subpopulation error functions ek(n) have to be very specific functions, which271

are meaningless. For example, in the case of orthogonal tasks, either the test mixing ratio is on a272

measure zero subset or the subpopulation error functions ek(n) are all constants, which we show in273

Corollary 7.4.274

We define the probability simplex !K↗1 :=

p ↔ RK : p ⇔ 0, |p| = 1


, and its interior !K↗1

+ :=275 
p ↔ RK : p > 0, |p| = 1


, where |p| :=

∑K
k=1 pk. We will define fk(p) by extending the domain276

of each ēk(p) to the set of non-zero, non-negative vectors RK
↔0 \ {0} by defining fk(p) := ēk(

p
|p| ).277

We further define L
same(p) :=

∑K
k=1 pkfk(p), which extends the definition of Lsame to the set of278

non-zero, non-negative vectors RK
↔0 \ {0}.279

Condition 7.1 (Conservation Condition). (f1(p), . . . , fK(p)) = ↖L
same(p) for all p ↔ RK

↔0 \ {0}.280

Theorem 7.2 (Positive Distribution Shift Almost Always Exists For Data Mixing). For any set of281

subpopulations D1, . . . ,DK and any learning algorithm A, either Condition 7.1 holds, or there282

exists a zero-measure set U on !K↗1
such that for all p ↔ !K↗1 \ U , L

→

N (p) < L
same(p).283

Theorem 7.2 shows that either p is on a measure zero set U on !K↗1 or the Conservation Condi-284

tion 7.1 must hold. We will show that Conservation Condition 7.1 happens only for very specific285

cases of subpopulation error functions.286

Conservation Condition Rarely Holds. First, we will show that if the subtasks are orthogonal, the287

conservation condition Condition 7.1 is only satisfied if all of the subpopulation error functions are288

constants.289

Lemma 7.3 (Orthogonal Tasks). If K ⇔ 3, and if for all k ↔ [K], fk(p) = gk(
pk

|p| ) for some function290

gk, then Condition 7.1 holds if and only if gk’s are all constant functions.291

Theorem 7.2 and Lemma 7.3 together show that in the case of orthogonal tasks, positive distirbution292

shift always exists by changing the training data mixing ratio away from the test mixing ratio, unless293

all the subpopulation error functions are constant.294
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Corollary 7.4 (Positive Distribution Shift Always Exists for Orthogonal Tasks). For any set of295

K ⇔ 3 subpopulations D1, . . . ,DK and any learning algorithm A, if there exists subpopulation296

k ↔ [K] such that its error function ek is not a constant functions over [N ] where N is the number297

of total samples then there exists a measure zero set U on !K↗1
such that for all p ↔ !K↗1 \ U298

positive distribution shift from data mixing exists in the sense that there is q→ →= p for which299

LN (p, q) = L
→(p) < L

same(p).300

Further, we show that if the Conservation Condition 7.1 is satisfied, then one function fi determines301

the rest up to a constant.302

Lemma 7.5. If both (f1, . . . , fK , L
same) and (f̂1, . . . , f̂K , L̂

same) satisfy Condition 7.1, and if303

fi = f̂i for some i ↔ [m], then for all k →= i, fk(p) = f̂k(p) + Ck for some constant Ck.304

The above Lemma 7.5 implies that for every k and corresponding error function ek(n), there exists305

at most one tuple of error functions {ej}Kj=1,j ≃=k (up to a individual constant offset for each error306

function ej) that positive distribution shift does not happen for p of positive measure. This further307

implies the following corollary.308

Corollary 7.6 (Positive Distribution Shift Almost Always Exists for General Tasks). For any set309

of K ⇔ 3 subpopulations D1, . . . ,DK and any learning algorithm A, for all p ↔ !K↗1
+ , the310

configuration of [ek(n)]k↓[K],n that positive distribution shift does not happen is zero-measure.311

Corollary 7.6 shows that either the test mixing ratio p is on a set of measure zero on the simplex or312

the configuration of subpopulation error functions ek(n) is on a set of measure zero. This implies313

that positive distribution shift exists almost always.314

8 Related Works315

Distribution Shift That is Not Harmful. The benefits of mismathcing the training and test distri-316

bution has already been in studied in some settings. González and Abu-Mostafa [2015] demonstrate317

in many linear regression problems that mismatched training and test distributions can outperform318

matched ones. Unlike in our paper, they do not restrict to changing the train distribution only through319

data mixing, so their results do not fit our framework. On the other hand, we explicitly characterize320

the positive distribution shift, while González and Abu-Mostafa [2015] only show its existence for321

linear regression problems and are only able to characterize the distribution explicitly in very special322

cases. Canatar et al. [2021] show how in high-dimensional kernel regression problems to numerically323

optimize the training distribution for better test performance. However, they do not characterize324

the positive distribution shift, but rather only show how to numerically find it for kernel regression.325

Similarly, they do not restrict the test distribution to one coming from a data mixture, so their results326

do not fit our framework.327

Data Mixing. There a number of recent empiricaly works that consider the same setting of data328

mixing as we do. Ye et al. [2025] introduce data mixing laws, quantitative empirical predictions329

of large language model performance based on the data mixture proportions. Furthermore, they330

show experimental results demonstrating that their approach significantly decreases the number of331

steps needed to reach certain performance. This paper informed our data mixing transfer model and332

fits in our framework. Goyal et al. [2024] show that data curation for VLMs cannot be compute333

agnostic. They introduce neural scaling laws that allow for estimating performance on multiple334

data pools without jointly training on them. Their work fits our framework. Similarly, we also find335

that optimal mixing ratios are not compute agnostic, specifically in the orthogonal power law tasks,336

orthogonal memorization task, and standard transfer learning task. Jiang et al. [2025] introduce an337

algorithm for online optimization of data distributions, that adjusts mixture based on the estimated338

per-domain learning potential, achieving comparable or better performance than previous methods339

while maintaing compuatational efficiency. While all of these works consider the same phenomena340

of changing the training mixing ratio to improve test performacne, the main difference between our341

work and theirs is that we consider positive distribution shift from data mixing ratio in a broader342

context and from the theoretical standpoint as well.343
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NeurIPS Paper Checklist395

The checklist is designed to encourage best practices for responsible machine learning research,396

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove397

the checklist: The papers not including the checklist will be desk rejected. The checklist should398

follow the references and follow the (optional) supplemental material. The checklist does NOT count399

towards the page limit.400

Please read the checklist guidelines carefully for information on how to answer these questions. For401

each question in the checklist:402

• You should answer [Yes] , [No] , or [NA] .403

• [NA] means either that the question is Not Applicable for that particular paper or the relevant404

information is Not Available.405

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).406

The checklist answers are an integral part of your paper submission. They are visible to the407

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it408

(after eventual revisions) with the final version of your paper, and its final version will be published409

with the paper.410

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.411

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a412

proper justification is given (e.g., "error bars are not reported because it would be too computationally413

expensive" or "we were unable to find the license for the dataset we used"). In general, answering414

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we415

acknowledge that the true answer is often more nuanced, so please just use your best judgment and416

write a justification to elaborate. All supporting evidence can appear either in the main paper or the417

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification418

please point to the section(s) where related material for the question can be found.419

IMPORTANT, please:420

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",421

• Keep the checklist subsection headings, questions/answers and guidelines below.422

• Do not modify the questions and only use the provided macros for your answers.423

1. Claims424

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s425

contributions and scope?426

Answer: [Yes]427

Justification: Yes, the main claim accuretly reflects the paper’s contribution and scope.428

Guidelines:429

• The answer NA means that the abstract and introduction do not include the claims made in430

the paper.431

• The abstract and/or introduction should clearly state the claims made, including the contribu-432

tions made in the paper and important assumptions and limitations. A No or NA answer to433

this question will not be perceived well by the reviewers.434

• The claims made should match theoretical and experimental results, and reflect how much435

the results can be expected to generalize to other settings.436

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are437

not attained by the paper.438

2. Limitations439

Question: Does the paper discuss the limitations of the work performed by the authors?440

Answer: [Yes]441

Justification: Yes, we discuss the limitations of our work and clearly define the scope of each of442

our claims.443
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Guidelines:444

• The answer NA means that the paper has no limitation while the answer No means that the445

paper has limitations, but those are not discussed in the paper.446

• The authors are encouraged to create a separate "Limitations" section in their paper.447

• The paper should point out any strong assumptions and how robust the results are to vi-448

olations of these assumptions (e.g., independence assumptions, noiseless settings, model449

well-specification, asymptotic approximations only holding locally). The authors should450

reflect on how these assumptions might be violated in practice and what the implications451

would be.452

• The authors should reflect on the scope of the claims made, e.g., if the approach was only453

tested on a few datasets or with a few runs. In general, empirical results often depend on454

implicit assumptions, which should be articulated.455

• The authors should reflect on the factors that influence the performance of the approach. For456

example, a facial recognition algorithm may perform poorly when image resolution is low or457

images are taken in low lighting. Or a speech-to-text system might not be used reliably to458

provide closed captions for online lectures because it fails to handle technical jargon.459

• The authors should discuss the computational efficiency of the proposed algorithms and how460

they scale with dataset size.461

• If applicable, the authors should discuss possible limitations of their approach to address462

problems of privacy and fairness.463

• While the authors might fear that complete honesty about limitations might be used by review-464

ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that465

aren’t acknowledged in the paper. The authors should use their best judgment and recognize466

that individual actions in favor of transparency play an important role in developing norms467

that preserve the integrity of the community. Reviewers will be specifically instructed to not468

penalize honesty concerning limitations.469

3. Theory assumptions and proofs470

Question: For each theoretical result, does the paper provide the full set of assumptions and a471

complete (and correct) proof?472

Answer: [Yes]473

Justification: We provide full set of assumptions and complete and corrected proofs in the474

appendix. For some of the claims, we only state an informal or a limited scope version in the475

main body for the ease of presentation.476

Guidelines:477

• The answer NA means that the paper does not include theoretical results.478

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.479

• All assumptions should be clearly stated or referenced in the statement of any theorems.480

• The proofs can either appear in the main paper or the supplemental material, but if they appear481

in the supplemental material, the authors are encouraged to provide a short proof sketch to482

provide intuition.483

• Inversely, any informal proof provided in the core of the paper should be complemented by484

formal proofs provided in appendix or supplemental material.485

• Theorems and Lemmas that the proof relies upon should be properly referenced.486

4. Experimental result reproducibility487

Question: Does the paper fully disclose all the information needed to reproduce the main488

experimental results of the paper to the extent that it affects the main claims and/or conclusions489

of the paper (regardless of whether the code and data are provided or not)?490

Answer: [Yes]491

Justification: Yes, we disclose the information needed to reproduce the experiments.492

Guidelines:493

• The answer NA means that the paper does not include experiments.494
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• If the paper includes experiments, a No answer to this question will not be perceived well by495

the reviewers: Making the paper reproducible is important, regardless of whether the code496

and data are provided or not.497

• If the contribution is a dataset and/or model, the authors should describe the steps taken to498

make their results reproducible or verifiable.499

• Depending on the contribution, reproducibility can be accomplished in various ways. For500

example, if the contribution is a novel architecture, describing the architecture fully might501

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary502

to either make it possible for others to replicate the model with the same dataset, or provide503

access to the model. In general. releasing code and data is often one good way to accomplish504

this, but reproducibility can also be provided via detailed instructions for how to replicate the505

results, access to a hosted model (e.g., in the case of a large language model), releasing of a506

model checkpoint, or other means that are appropriate to the research performed.507

• While NeurIPS does not require releasing code, the conference does require all submissions508

to provide some reasonable avenue for reproducibility, which may depend on the nature of509

the contribution. For example510

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to511

reproduce that algorithm.512

(b) If the contribution is primarily a new model architecture, the paper should describe the513

architecture clearly and fully.514

(c) If the contribution is a new model (e.g., a large language model), then there should either515

be a way to access this model for reproducing the results or a way to reproduce the model516

(e.g., with an open-source dataset or instructions for how to construct the dataset).517

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are518

welcome to describe the particular way they provide for reproducibility. In the case of519

closed-source models, it may be that access to the model is limited in some way (e.g.,520

to registered users), but it should be possible for other researchers to have some path to521

reproducing or verifying the results.522

5. Open access to data and code523

Question: Does the paper provide open access to the data and code, with sufficient instructions524

to faithfully reproduce the main experimental results, as described in supplemental material?525

Answer: [Yes]526

Justification: Yes, we provide the access in to the code and data in the appendix.527

Guidelines:528

• The answer NA means that paper does not include experiments requiring code.529

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/530

guides/CodeSubmissionPolicy) for more details.531

• While we encourage the release of code and data, we understand that this might not be532

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including533

code, unless this is central to the contribution (e.g., for a new open-source benchmark).534

• The instructions should contain the exact command and environment needed to run to535

reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.536

cc/public/guides/CodeSubmissionPolicy) for more details.537

• The authors should provide instructions on data access and preparation, including how to538

access the raw data, preprocessed data, intermediate data, and generated data, etc.539

• The authors should provide scripts to reproduce all experimental results for the new proposed540

method and baselines. If only a subset of experiments are reproducible, they should state541

which ones are omitted from the script and why.542

• At submission time, to preserve anonymity, the authors should release anonymized versions543

(if applicable).544

• Providing as much information as possible in supplemental material (appended to the paper)545

is recommended, but including URLs to data and code is permitted.546

6. Experimental setting/details547

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,548

how they were chosen, type of optimizer, etc.) necessary to understand the results?549
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Answer: [Yes]550

Justification: Yes, we specify all the details of the experiment necessary to understand and551

reproduce the experiments.552

Guidelines:553

• The answer NA means that the paper does not include experiments.554

• The experimental setting should be presented in the core of the paper to a level of detail that555

is necessary to appreciate the results and make sense of them.556

• The full details can be provided either with the code, in appendix, or as supplemental material.557

7. Experiment statistical significance558

Question: Does the paper report error bars suitably and correctly defined or other appropriate559

information about the statistical significance of the experiments?560

Answer: [Yes]561

Justification: Yes, we provide information about statistical significance of results where appropri-562

ate.563

Guidelines:564

• The answer NA means that the paper does not include experiments.565

• The authors should answer "Yes" if the results are accompanied by error bars, confidence566

intervals, or statistical significance tests, at least for the experiments that support the main567

claims of the paper.568

• The factors of variability that the error bars are capturing should be clearly stated (for example,569

train/test split, initialization, random drawing of some parameter, or overall run with given570

experimental conditions).571

• The method for calculating the error bars should be explained (closed form formula, call to a572

library function, bootstrap, etc.)573

• The assumptions made should be given (e.g., Normally distributed errors).574

• It should be clear whether the error bar is the standard deviation or the standard error of the575

mean.576

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably577

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality578

of errors is not verified.579

• For asymmetric distributions, the authors should be careful not to show in tables or figures580

symmetric error bars that would yield results that are out of range (e.g. negative error rates).581

• If error bars are reported in tables or plots, The authors should explain in the text how they582

were calculated and reference the corresponding figures or tables in the text.583

8. Experiments compute resources584

Question: For each experiment, does the paper provide sufficient information on the computer585

resources (type of compute workers, memory, time of execution) needed to reproduce the586

experiments?587

Answer: [Yes]588

Justification: Yes, we provide sufficient information on the computer resources needed to589

reproduce the experiments in the appendix.590

Guidelines:591

• The answer NA means that the paper does not include experiments.592

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or593

cloud provider, including relevant memory and storage.594

• The paper should provide the amount of compute required for each of the individual experi-595

mental runs as well as estimate the total compute.596

• The paper should disclose whether the full research project required more compute than the597

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it598

into the paper).599

9. Code of ethics600
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Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS601

Code of Ethics https://neurips.cc/public/EthicsGuidelines?602

Answer: [Yes]603

Justification: Yes, our research conforms in every aspect to the NeurIPS Code of Ethics.604

Guidelines:605

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.606

• If the authors answer No, they should explain the special circumstances that require a deviation607

from the Code of Ethics.608

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration609

due to laws or regulations in their jurisdiction).610

10. Broader impacts611

Question: Does the paper discuss both potential positive societal impacts and negative societal612

impacts of the work performed?613

Answer: [NA]614

Justification: As this is mainly a theoretical paper, there is no immediate societal impact of the615

owrk.616

Guidelines:617

• The answer NA means that there is no societal impact of the work performed.618

• If the authors answer NA or No, they should explain why their work has no societal impact or619

why the paper does not address societal impact.620

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,621

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-622

ment of technologies that could make decisions that unfairly impact specific groups), privacy623

considerations, and security considerations.624

• The conference expects that many papers will be foundational research and not tied to625

particular applications, let alone deployments. However, if there is a direct path to any626

negative applications, the authors should point it out. For example, it is legitimate to point out627

that an improvement in the quality of generative models could be used to generate deepfakes628

for disinformation. On the other hand, it is not needed to point out that a generic algorithm629

for optimizing neural networks could enable people to train models that generate Deepfakes630

faster.631

• The authors should consider possible harms that could arise when the technology is being632

used as intended and functioning correctly, harms that could arise when the technology is633

being used as intended but gives incorrect results, and harms following from (intentional or634

unintentional) misuse of the technology.635

• If there are negative societal impacts, the authors could also discuss possible mitigation636

strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms637

for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,638

improving the efficiency and accessibility of ML).639

11. Safeguards640

Question: Does the paper describe safeguards that have been put in place for responsible release641

of data or models that have a high risk for misuse (e.g., pretrained language models, image642

generators, or scraped datasets)?643

Answer: [NA]644

Justification: The paper poses no such risks.645

Guidelines:646

• The answer NA means that the paper poses no such risks.647

• Released models that have a high risk for misuse or dual-use should be released with necessary648

safeguards to allow for controlled use of the model, for example by requiring that users adhere649

to usage guidelines or restrictions to access the model or implementing safety filters.650

• Datasets that have been scraped from the Internet could pose safety risks. The authors should651

describe how they avoided releasing unsafe images.652
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• We recognize that providing effective safeguards is challenging, and many papers do not653

require this, but we encourage authors to take this into account and make a best faith effort.654

12. Licenses for existing assets655

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the656

paper, properly credited and are the license and terms of use explicitly mentioned and properly657

respected?658

Answer: [Yes]659

Justification: Yes, we properly credit all the original owners of assets where due.660

Guidelines:661

• The answer NA means that the paper does not use existing assets.662

• The authors should cite the original paper that produced the code package or dataset.663

• The authors should state which version of the asset is used and, if possible, include a URL.664

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.665

• For scraped data from a particular source (e.g., website), the copyright and terms of service666

of that source should be provided.667

• If assets are released, the license, copyright information, and terms of use in the package668

should be provided. For popular datasets, paperswithcode.com/datasets has curated669

licenses for some datasets. Their licensing guide can help determine the license of a dataset.670

• For existing datasets that are re-packaged, both the original license and the license of the671

derived asset (if it has changed) should be provided.672

• If this information is not available online, the authors are encouraged to reach out to the673

asset’s creators.674

13. New assets675

Question: Are new assets introduced in the paper well documented and is the documentation676

provided alongside the assets?677

Answer: [NA]678

Justification: We do not realease new assets.679

Guidelines:680

• The answer NA means that the paper does not release new assets.681

• Researchers should communicate the details of the dataset/code/model as part of their sub-682

missions via structured templates. This includes details about training, license, limitations,683

etc.684

• The paper should discuss whether and how consent was obtained from people whose asset is685

used.686

• At submission time, remember to anonymize your assets (if applicable). You can either create687

an anonymized URL or include an anonymized zip file.688

14. Crowdsourcing and research with human subjects689

Question: For crowdsourcing experiments and research with human subjects, does the paper690

include the full text of instructions given to participants and screenshots, if applicable, as well as691

details about compensation (if any)?692

Answer: [NA]693

Justification: The paper does not involve crowdourcing nor research with human subjects.694

Guidelines:695

• The answer NA means that the paper does not involve crowdsourcing nor research with696

human subjects.697

• Including this information in the supplemental material is fine, but if the main contribution of698

the paper involves human subjects, then as much detail as possible should be included in the699

main paper.700

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or701

other labor should be paid at least the minimum wage in the country of the data collector.702
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15. Institutional review board (IRB) approvals or equivalent for research with human subjects703

Question: Does the paper describe potential risks incurred by study participants, whether such704

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or705

an equivalent approval/review based on the requirements of your country or institution) were706

obtained?707

Answer: [NA]708

Justification: See previous point.709

Guidelines:710

• The answer NA means that the paper does not involve crowdsourcing nor research with711

human subjects.712

• Depending on the country in which research is conducted, IRB approval (or equivalent) may713

be required for any human subjects research. If you obtained IRB approval, you should714

clearly state this in the paper.715

• We recognize that the procedures for this may vary significantly between institutions and716

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines717

for their institution.718

• For initial submissions, do not include any information that would break anonymity (if719

applicable), such as the institution conducting the review.720

16. Declaration of LLM usage721

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-722

standard component of the core methods in this research? Note that if the LLM is used only for723

writing, editing, or formatting purposes and does not impact the core methodology, scientific724

rigorousness, or originality of the research, declaration is not required.725

Answer: [NA]726

Justification: The core methods developed in this research do not involve LLMs as any important,727

original, or non-standard components.728

Guidelines:729

• The answer NA means that the core method development in this research does not involve730

LLMs as any important, original, or non-standard components.731

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what732

should or should not be described.733
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