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Abstract

Model quantization is widely applied for compressing and accelerating deep neural1

networks (DNNs). However, conventional Quantization-Aware Training (QAT)2

focuses on training DNNs with uniform bit-width. The bit-width settings vary3

across different hardware and transmission demands, which induces considerable4

training and storage costs. Hence, the scheme of one-shot joint training multiple5

precisions is proposed to address this issue. Previous works either store a larger6

FP32 model to switch between different precision models for higher accuracy or7

store a smaller INT8 model but compromise accuracy due to using shared quanti-8

zation parameters. In this paper, we introduce the Double Rounding quantization9

method, which fully utilizes the quantized representation range to accomplish10

nearly lossless bit-switching while reducing storage by using the highest integer11

precision instead of full precision. Furthermore, we observe a competitive inter-12

ference among different precisions during one-shot joint training, primarily due13

to inconsistent gradients of quantization scales during backward propagation. To14

tackle this problem, we propose an Adaptive Learning Rate Scaling (ALRS) tech-15

nique that dynamically adapts learning rates for various precisions to optimize the16

training process. Additionally, we extend our Double Rounding to one-shot mixed17

precision training and develop a Hessian-Aware Stochastic Bit-switching (HASB)18

strategy. Experimental results on the ImageNet-1K classification demonstrate that19

our methods have enough advantages to state-of-the-art one-shot joint QAT in both20

multi-precision and mixed-precision. Our codes are available at here.21

1 Introduction22

Recently, with the popularity of mobile and edge devices, more and more researchers have attracted23

attention to model compression due to the limitation of computing resources and storage. Model24

quantization [1; 2] has gained significant prominence in the industry. Quantization maps floating-point25

values to integer values, significantly reducing storage requirements and computational resources26

without altering the network architecture.27

Generally, for a given pre-trained model, the quantization bit-width configuration is predefined for a28

specific application scenario. The quantized model then undergoes retraining, i.e., QAT, to mitigate29

the accuracy decline. However, when the model is deployed across diverse scenarios with different30

precisions, it often requires repetitive retraining processes for the same model. A lot of computing31

resources and training costs are wasted. To address this challenge, involving the simultaneous32

training of multi-precision [3; 4] or one-shot mixed-precision [3; 5] have been proposed. Among33

these approaches, some involve sharing weight parameters between low-precision and high-precision34

models, enabling dynamic bit-width switching during inference.35

However, bit-switching from high precision (or bit-width) to low precision may introduce significant36

accuracy degradation due to the Rounding operation in the quantization process. Additionally, there is37

severe competition in the convergence process between higher and lower precisions in multi-precision38
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Figure 1: Overview of our proposed lossless adaptive bit-switching strategy.

scheme. In mixed-precision scheme, previous methods often incur vast searching and retraining costs39

due to decoupling the training and search stages. Due to the above challenges, bit-switching remains40

a very challenging problem. Our motivation is designing a bit-switching quantization method that41

doesn’t require storing a full-precision model and achieves nearly lossless switching from high-bits to42

low-bits. Specifically, for different precisions, we propose unified representation, normalized learning43

steps, and tuned probability distribution so that an efficient and stable learning process is achieved44

across multiple and mixed precisions, as depicted in Figure 1.45

To solve the bit-switching problem, prior methods either store the floating-point parameters [6; 7; 4; 8]46

to avoid accuracy degradation or abandon some integer values by replacing rounding with floor[3; 9]47

but leading to accuracy decline or training collapse at lower bit-widths. We propose Double Rounding,48

which applies the rounding operation twice instead of once, as shown in Figure1 (a). This approach49

ensures nearly lossless bit-switching and allows storing the highest bit-width model instead of the50

full-precision model. Specifically, the lower precision weight is included in the higher precision51

weight, reducing storage constraints.52

Moreover, we empirically find severe competition between higher and lower precisions, particularly53

in 2-bit precision, as also noted in [10; 4]. There are two reasons for this phenomenon: The optimal54

quantization interval itself is different for higher and lower precisions. Furthermore, shared weights55

are used for different precisions during joint training, but the quantization interval gradients for56

different precisions exhibit distinct magnitudes during training. Therefore, we introduce an Adaptive57

Learning Rate Scaling (ALRS) method, designed to dynamically adjust the learning rates across58

different precisions, which ensures consistent update steps of quantization scales corresponding to59

different precisions, as shown in the Figure 1 (b).60

Finally, we develop an efficient one-shot mixed-precision quantization approach based on Double61

Rounding. Prior mixed-precision approaches first train a SuperNet with predefined bit-width lists,62

then search for optimal candidate SubNets under restrictive conditions, and finally retrain or fine-tune63

them, which incurs significant time and training costs. However, we use the Hessian Matrix Trace [11]64

as a sensitivity metric for different layers to optimize the SuperNet and propose a Hessian-Aware65

Stochastic Bit-switching (HASB) strategy, inspired by the Roulette algorithm [12]. This strategy66

enables tuned probability distribution of switching bit-width across layers, assigning higher bits to67

more sensitive layers and lower bits to less sensitive ones, as shown in Figure 1 (c). And, we add the68

sensitivity to the search stage as a constraint factor. So, our approach can omit the last stage.69
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In conclusion, our main contributions can be described as:70

• Double Rounding quantization method for multi-precision is proposed, which stores a single71

integer weight to enable adaptive precision switching with nearly lossless accuracy.72

• Adaptive Learning Rate Scaling (ALRS) method for the multi-precision scheme is intro-73

duced, which effectively narrows the training convergence gap between high-precision74

and low-precision, enhancing the accuracy of low-precision models without compromising75

high-precision model accuracy.76

• Hessian-Aware Stochastic Bit-switching (HASB) strategy for one-shot mixed-precision77

SuperNet is applied, where the access probability of bit-width for each layer is determined78

based on the layer’s sensitivity.79

• Experimental results on the ImageNet1K dataset demonstrate that our proposed methods are80

comparable to state-of-the-art methods across different mainstream CNN architectures.81

2 Related Works82

Multi-Precision. Multi-Precision entails a single shared model with multiple precisions by one-shot83

joint Quantization-Aware Training (QAT). This approach can dynamically adapt uniform bit-switching84

for the entire model according to computing resources and storage constraints. AdaBits [13] is the85

first work to consider adaptive bit-switching but encounters convergence issues with 2-bit quantization86

on ResNet50 [14]. Bit-Mixer [9] addresses this problem by using the LSQ [2] quantization method87

but discards the lowest state quantized value, resulting in an accuracy decline. Multi-Precision88

joint QAT can also be viewed as a multi-objective optimization problem. Any-precision [6] and89

MultiQuant [4] combine knowledge distillation techniques to improve model accuracy. Among these90

methods, MultiQuant’s proposed "Online Adaptive Label" training strategy is essentially a form of91

self-distillation [15]. Similar to our method, AdaBits and Bit-Mixer can save an 8-bit model, while92

other methods rely on 32-bit models for bit switching. Our Double Rounding method can store the93

highest bit-width model (e.g., 8-bit) and achieve almost lossless bit-switching, ensuring a stable94

optimization process. Importantly, this leads to a reduction in training time by approximately 10% [7]95

compared to separate quantization training.96

One-shot Mixed-Precision. Previous works mainly utilize costly approaches, such as reinforcement97

learning [16; 17] and Neural Architecture Search (NAS) [18; 19; 20], or rely on partial prior knowl-98

edge [21; 22] for bit-width allocation, which may not achieve global optimality. In contrast, our99

proposed one-shot mixed-precision method employs Hessian-Aware optimization to refine a SuperNet100

via gradient updates, and then obtain the optimal conditional SubNets with less search cost without101

retraining or fine-tuning. Additionally, Bit-Mixer [9] and MultiQuant [4] implement layer-adaptive102

mixed-precision models, but Bit-Mixer uses a naive search method to attain a sub-optimal solution,103

while MultiQuant requires 300 epochs of fine-tuning to achieve ideal performance. Unlike NAS104

approaches [20], which focus on altering network architecture (e.g., depth, kernel size, or channels),105

our method optimizes a once-for-all SuperNet using only quantization techniques without altering106

the model architecture.107

3 Methodology108

3.1 Double Rounding109

Conventional separate precision quantization using Quantization-Aware Training (QAT) [23] attain110

a fixed bit-width quantized model under a pre-trained FP32 model. A pseudo-quantization node is111

inserted into each layer of the model during training. This pseudo-quantization node comprises two112

operations: the quantization operation quant(x), which maps floating-point (FP32) values to lower-113

bit integer values, and the dequantization operation dequant(x), which restores the quantized integer114

value to its original floating-point representation. It can simulate the quantization error incurred115

when compressing float values into integer values. As quantization involves a non-differentiable116

Rounding operation, Straight-Through Estimator (STE) [24] is commonly used to handle the non-117

differentiability.118

However, for multi-precision quantization, bit-switching can result in significant accuracy loss,119

especially when transitioning from higher bit-widths to lower ones, e.g., from 8-bit to 2-bit. To120
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Figure 2: Comparison of four quantization schemes:(from left to right) used in LSQ [2], AdaBits [3],
Bit-Mixer [9] and Ours Double Rounding. In all cases y = dequant(quant(x)).

mitigate this loss, prior works have mainly employed two strategies: one involves bit-switching from121

a floating-point model (32-bit) to a lower-bit model each time using multiple learnable quantization122

parameters, and the other substitutes the Rounding operation with the Floor operation, but this123

results in accuracy decline (especially in 2-bit). In contrast, we propose a nearly lossless bit-124

switching quantization method called Double Rounding. This method overcomes these limitations by125

employing a Rounding operation twice. It allows the model to be saved in the highest-bit (e.g., 8-bit)126

representation instead of full-precision, facilitating seamless switching to other bit-width models. A127

detailed comparison of Double Rounding with other quantization methods is shown in Figure 2.128

Unlike AdaBits, which relies on the Dorefa [1] quantization method where the quantization scale is129

determined based on the given bit-width, the quantization scale of our Double Rounding is learned130

online and is not fixed. It only requires a pair of shared quantization parameters, i.e., scale and131

zero-point. Quantization scales of different precisions adhere to a strict "Power of Two" relationship.132

Suppose the highest-bit and the target low-bit are denoted as h-bit and l-bit respectively, and the133

difference between them is ∆ = h− l. The specific formulation of Double Rounding is as follows:134

W̃h = clip(
⌊
W − zh

sh

⌉
,−2h−1, 2h−1 − 1) (1)

W̃l = clip(

⌊
W̃h

2∆

⌉
,−2l−1, 2l−1 − 1) (2)

Ŵl = W̃l × sh × 2∆ + zh (3)

where the symbol ⌊.⌉ denotes the Rounding function, and clip(x, low, upper) means x is limited135

to the range between low and upper. Here, W represents the FP32 model’s weights, sh ∈ R136

and zh ∈ Z denote the highest-bit (e.g., 8-bit) quantization scale and zero-point respectively. W̃h137

represent the quantized weights of the highest-bit, while W̃l and Ŵl represent the quantized weights138

and dequantized weights of the low-bit respectively.139

Hardware shift operations can efficiently execute the division and multiplication by 2∆. Note that in140

our Double Rounding, the model can also be saved at full precision by using unshared quantization141

parameters to run bit-switching and attain higher accuracy. Because we use symmetric quantization142

scheme, the zh is 0. Please refer to Section A.4 for the gradient formulation of Double Rounding.143

Unlike fixed weights, activations change online during inference. So, the corresponding scale and144

zero-point values for different precisions can be learned individually to increase overall accuracy.145

Suppose X denotes the full precision activation, and X̃b and X̂b are the quantized activation and146

dequantized activation respectively. The quantization process can be formulated as follows:147

X̃b = clip(
⌊
X − zb

sb

⌉
, 0, 2b − 1) (4)

X̂b = X̃b × sb + zb (5)

where sb ∈ R and zb ∈ Z represent the quantization scale and zero-point of different bit-widths148

activation respectively. Note that zb is 0 for the ReLU activation function.149

3.2 Adaptive Learning Rate Scaling for Multi-Precision150

Although our proposed Double Rounding method represents a significant improvement over most151

previous multi-precision works, the one-shot joint optimization of multiple precisions remains152

constrained by severe competition between the highest and lowest precisions [10; 4]. Different153

precisions simultaneously impact each other during joint training, resulting in substantial differences154
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in convergence rates between them, as shown in Figure 3 (c). We experimentally find that this155

competitive relationship stems from the inconsistent magnitudes of the quantization scale’s gradients156

between high-bit and low-bit quantization during joint training, as shown in Figure 3 (a) and (b). For157

other models statistical results please refer to Section A.6 in the appendix.158
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Figure 3: The statistics of ResNet18 on ImageNet-1K dataset. (a) and (b): The quantization scale
gradients’ statistics for the weights, with outliers removed for clarity. (c) and (d): The multi-precision
training processes of our Double Rounding without and with the ALRS strategy.

Motivated by these observations, we introduce a technique termed Adaptive Learning Rate Scaling159

(ALRS), which dynamically adjusts learning rates for different precisions to optimize the training160

process. This technique is inspired by the Layer-wise Adaptive Rate Scaling (LARS) [25] optimizer.161

Specifically, suppose the current batch iteration’s learning rate is λ, we set learning rates λb of162

different precisions as follows:163

λb = ηb

(
λ−

L∑
i=1

min
(
max_abs

(
clip_grad(∇sib, 1.0)

)
, 1.0

)
L

)
, (6)

ηb =

{
1× 10−

∆
2 , if ∆ is even

5× 10−(∆+1
2

), if ∆ is odd
(7)

where the L is the number of layers, clip_grad(.) represents gradient clipping that prevents gradient164

explosion, max_abs(.) denotes the maximum absolute value of all elements. The ∇sib denotes the165

quantization scale’s gradients of layer i and ηb denotes scaling hyperparameter of different precisions,166

e.g., 8-bit is 1, 6-bit is 0.1, and 4-bit is 0.01. Note that the ALRS strategy is only used for updating167

quantization scales. It can adaptively update the learning rates of different precisions and ensure168

that model can optimize quantization parameters at the same pace, ultimately achieving a minimal169

convergence gap in higher bits and 2-bit, as shown in Figure 3 (d).170

In multi-precision scheme, different precisions share the same model weights during joint training.171

For conventional multi-precision, the shared weight computes n forward processes at each training172

iteration, where n is the number of candidate bit-widths. The losses attained from different precisions173

are then accumulated, and the gradients are computed. Finally, the shared parameters are updated.174

For detailed implementation please refer to Algorithm A.1 in the appendix. However, we find that175

if different precision losses separately compute gradients and directly update shared parameters at176

each forward process, it attains better accuracy when combined with our ALRS training strategy.177

Additionally, we use dual optimizers to update the weight parameters and quantization parameters178

simultaneously. We also set the weight-decay of the quantization scales to 0 to achieve stable179

convergence. For detailed implementation please refer to Algorithm A.2 in the appendix.180

3.3 One-Shot Mixed-Precision SuperNet181

Unlike multi-precision, where all layers uniformly utilize the same bit-width, mixed-precision182

SuperNet provides finer-grained adaptive by configuring the bit-width at different layers. Previous183

methods typically decouple the training and search stages, which need a third stage for retraining184

or fine-tuning the searched SubNets. These approaches generally incur substantial search costs in185

selecting the optimal SubNets, often employing methods such as greedy algorithms [26; 9] or genetic186

algorithms [27; 4]. Considering the fact that the sensitivity [28], i.e., importance, of each layer187

is different, we propose a Hessian-Aware Stochastic Bit-switching (HASB) strategy for one-shot188

mixed-precision training.189

Specifically, the Hessian Matrix Trace (HMT) is utilized to measure the sensitivity of each layer. We190

first need to compute the pre-trained model’s HMT by around 1000 training images [11], as shown in191
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Figure 4: The HASB stochastic process and Mixed-precision of ResNet18 for {2,4,6,8}-bit.

Figure 4 (c). Then, the HMT of different layers is utilized as the probability metric for bit-switching.192

Higher bits are priority selected for sensitive layers, while all candidate bits are equally selected for193

unsensitive layers. Our proposed Roulette algorithm is used for bit-switching processes of different194

layers during training, as shown in the Algorithm 1. If a layer’s HMT exceeds the average HMT of195

all layers, it is recognized as sensitive, and the probability distribution of Figure 4 (b) is used for bit196

selection. Conversely, if the HMT is below the average, the probability distribution of Figure 4 (a) is197

used for selection. Finally, the Integer Linear Programming (ILP) [29] algorithm is employed to find198

the optimal SubNets. Considering each layer’s sensitivity during training and adding this sensitivity199

to the ILP’s constraint factors (e.g., model’s FLOPs, latency, and parameters), which depend on200

the actual deployment requirements. We can efficiently attain a set of optimal SubNets during the201

search stage without retraining, thereby significant reduce the overall costs. All the searched SubNets202

collectively constitute the Pareto Frontier optimal solution, as shown in Figure 4 (d). For detailed203

mixed-precision training and searching process (i.e., ILP) please refer to the Algorithm A.3 and the204

Algorithm 2 respectively.

Algorithm 1 Roulette algorithm for bit-switching
Require: Candidate bit-widths set b ∈ B, the HMT of

current layer: tl, average HMT: tm;
1: Sample r ∼ U(0, 1] from a uniform distribution;
2: if tl < tm then
3: Compute bit-switching probability of all candi-

date bi with pi = 1/n;
4: Set s = 0, and i = 0;
5: while s < r do
6: i = i+ 1;
7: s = pi + s;
8: end while
9: else

10: Compute bit-switching probability of all candi-
date bi with pi = bi/∥B∥1;

11: Set s = 0, and i = 0;
12: while s < r do
13: i = i+ 1;
14: s = pi + s;
15: end while
16: end if
17: return bi;
Note that n and L represent the number of candidate bit-widths and
model layers respectively, and ∥ · ∥1 is L1 norm.

Algorithm 2 Our searching process for SubNets
Input: Candidate bit-widths set b ∈ B, the HMT of

different layers of FP32 model: tl ∈ {T}L
l=1, the

constraint average bit-width: ω, each layer param-
eters: nl ∈ {N}L

l=1;
1: Initial searched SubNets’solutions: S = ϕ
2: Minimal objective : O =

∑L
l=1

tl
nl

· bl
3: Constraints: ω ≡

∑L
l=1 bl
L

4: The first solve: s1 = pulp.solve(O,ω) and
S.append(s1)

5: for ci in s1 do
6: for b in B[: idenx(max(s1))] do
7: if b ̸= ci then
8: Add constraint: b ≡ ci
9: Solve: s = pulp.solve(O,ω, b)

10: if s not in S then
11: S.append(s)
12: end if
13: Pop last constraint: b ≡ ci
14: end if
15: end for
16: end for
17: return S

205

4 Experimental Results206

Setup. In this paper, we mainly focus on ImageNet-1K [30] classification task using both classical207

networks (ResNet18/50 [14]) and lightweight networks (MobileNetV2 [31]), which same as previous208

works. Experiments cover joint quantization training for multi-precision and mixed precision. We209

explore two candidate bit configurations, i.e., {8,6,4,2}-bit and {4,3,2}-bit, each number represents210

the quantization level of the weight and activation layers. Like previous methods, we exclude batch211

6



normalization layers from quantization, and the first and last layers are kept at full precision. We212

initialize the multi-precision models with a pre-trained FP32 model, and initialize the mixed-precision213

models with a pre-trained multi-precision model. All models use the Adam optimizer [32] with a batch214

size of 256 for 90 epochs and use a cosine scheduler without warm-up phase. The initial learning215

rate is 5e-4 and weight decay is 5e-5. Data augmentation uses the standard set of transformations216

including random cropping, resizing to 224×224 pixels, and random flipping. Images are resized to217

256×256 pixels and then center-cropped to 224×224 resolution during evaluation.218

4.1 Multi-Precision219

Results. For {8,6,4,2}-bit configuration, the Top-1 validation accuracy is shown in Table 1. The220

network weights and the corresponding activations are quantized into w-bit and a-bit respectively.221

Our double-rounding combined with ALRS training strategy surpasses the previous state-of-the-art222

(SOTA) methods. For example, in ResNet18, it exceeds Any-Precision [6] by 2.7%(or 2.83%) under223

w8a8 setting without(or with) using KD technique [15], and outperforms MultiQuant [4] by 0.63%(or224

0.73%) under w4a4 setting without(or with) using KD technique respectively. Additionally, when225

the candidate bit-list includes 2-bit, the previous methods can’t converge on MobileNetV2 during226

training. So, they use {8,6,4}-bit precision for MobileNetV2 experiments. For consistency, we227

also test {8,6,4}-bit results, as shown in the "Ours {8,6,4}-bit" rows of Table 1. Our method achieves228

0.25%/0.11%/0.56% higher accuracy than AdaBits [3] under the w8a8/w6a6/w4a4 settings.229

Notably, our method exhibits the ability to converge but shows a big decline in accuracy on Mo-230

bileNetV2. On the one hand, the compact model exhibits significant differences in the quantization231

scale gradients of different channels due to involving DeepWise Convolution [33]. On the other hand,232

when the bit-list includes 2-bit, it intensifies competition between different precisions during training.233

To improve the accuracy of compact models, we suggest considering the per-layer or per-channel234

learning rate scaling techniques in future work.

Table 1: Top1 accuracy comparisons on multi-precision of {8,6,4,2}-bit on ImageNet-1K datasets.
’KD’ denotes knowledge distillation. The "−" represents the unqueried value.

Model Method KD Storage Epoch w8a8 w6a6 w4a4 w2a2 FP

ResNet18

Hot-Swap[34] ✗ 32bit − 70.40 70.30 70.20 64.90 −
L1[35] ✗ 32bit − 69.92 66.39 0.22 − 70.07

KURE[36] ✗ 32bit 80 70.20 70.00 66.90 − 70.30
Ours ✗ 8bit 90 70.74 70.71 70.43 66.35 69.76

Any-Precision[6] ✓ 32bit 80 68.04 − 67.96 64.19 69.27
CoQuant[7] ✓ 8bit 100 67.90 67.60 66.60 57.10 69.90

MultiQuant[4] ✓ 32bit 90 70.28 70.14 69.80 66.56 69.76
Ours ✓ 8bit 90 70.87 70.79 70.53 66.84 69.76

ResNet50

Any-Precision[6] ✗ 32bit 80 74.68 − 74.43 72.88 75.95
Hot-Swap[34] ✗ 32bit − 75.60 75.50 75.30 71.90 −

KURE[36] ✗ 32bit 80 − 76.20 74.30 − 76.30
Ours ✗ 8bit 90 76.51 76.28 75.74 72.31 76.13

Any-Precision[6] ✓ 32bit 80 74.91 − 74.75 73.24 75.95
MultiQuant[4] ✓ 32bit 90 76.94 76.85 76.46 73.76 76.13

Ours ✓ 8bit 90 76.98 76.86 76.52 73.78 76.13

MobileNetV2

AdaBits[3] ✗ 8bit 150 72.30 72.30 70.30 − 71.80
KURE[36] ✗ 32bit 80 − 70.00 59.00 − 71.30

Ours {8,6,4}-bit ✗ 8bit 90 72.42 72.06 69.92 − 71.14
MultiQuant[4] ✓ 32bit 90 72.33 72.09 70.59 − 71.88
Ours {8,6,4}-bit ✓ 8bit 90 72.55 72.41 70.86 − 71.14

Ours {8,6,4,2}-bit ✗ 8bit 90 70.98 70.70 68.77 50.43 71.14
Ours {8,6,4,2}-bit ✓ 8bit 90 71.35 71.20 69.85 53.06 71.14

235

For {4,3,2}-bit configuration, Table 2 demonstrate that our double-rounding consistently surpasses236

previous SOTA methods. For instance, in ResNet18, it exceeds Bit-Mixer [9] by 0.63%/0.7%/1.2%(or237

0.37%/0.64%/1.02%) under w4a4/w3a3/w2a2 settings without(or with) using KD technique, and238

outperforms ABN[10] by 0.87%/0.74%/1.12% under w4a4/w3a3/w2a2 settings with using KD239

technique respectively. In ResNet50, Our method outperforms Bit-Mixer [9] by 0.86%/0.63%/0.1%240

under w4a4/w3a3/w2a2 settings.241

Notably, the overall results of Table 2 are worse than the {8,6,4,2}-bit configuration for joint training.242

We analyze that this discrepancy arises from information loss in the shared lower precision model243
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(i.e., 4-bit) used for bit-switching. In other words, compared with 4-bit, it is easier to directly optimize244

8-bit quantization parameters to converge to the optimal value. So, we recommend including 8-bit for245

multi-precision training. Furthermore, independently learning the quantization scales for different246

precisions, including weights and activations, significantly improves accuracy compared to using247

shared scales. However, it requires saving the model in 32-bit format, as shown in "Ours*" of Table 2.248

Table 2: Top1 accuracy comparisons on multi-precision of {4,3,2}-bit on ImageNet-1K datasets.

Model Method KD Storage Epoch w4a4 w3a3 w2a2 FP

ResNet18

Bit-Mixer[9] ✗ 4bit 160 69.10 68.50 65.10 69.60
Vertical-layer[37] ✗ 4bit 300 69.20 68.80 66.60 70.50

Ours ✗ 4bit 90 69.73 69.20 66.30 69.76
Q-DNNs[7] ✓ 32bit 45 66.94 66.28 62.91 68.60
ABN[10] ✓ 4bit 160 68.90 68.60 65.50 −

Bit-Mixer[9] ✓ 4bit 160 69.40 68.70 65.60 69.60
Ours ✓ 4bit 90 69.77 69.34 66.62 69.76

ResNet50

Ours ✗ 4bit 90 75.81 75.24 71.62 76.13
AdaBits[3] ✗ 32bit 150 76.10 75.80 73.20 75.00

Ours* ✗ 32bit 90 76.42 75.82 73.28 76.13
Bit-Mixer[9] ✓ 4bit 160 75.20 74.90 72.70 −

Ours ✓ 4bit 90 76.06 75.53 72.80 76.13

4.2 Mixed-Precision249

Results. We follow previous works to conduct mixed-precision experiments based on the {4,3,2}-bit250

configuration. Our proposed one-shot mixed-precision joint quantization method with the HASB tech-251

nique comparable to the previous SOTA methods, as presented in Table 3. For example, in ResNet18,252

our method exceeds Bit-Mixer [9] by 0.83%/0.72%/0.77%/7.07% under w4a4/w3a3/w2a2/3MP253

settings and outperforms EQ-Net[5] by 0.2% under 3MP setting. The results demonstrate the effec-254

tiveness of one-shot mixed-precision joint training to consider sensitivity with Hessian Matrix Trace255

when randomly allocating bit-widths for different layers. Additionally, Table 3 reveals that our results256

do not achieve optimal performance across all settings. We hypothesize that extending the number of257

training epochs or combining ILP with other efficient search methods, such as genetic algorithms,258

may be necessary to achieve optimal results in mixed-precision optimization.259

Table 3: Top1 accuracy comparisons on mixed-precision of {4,3,2}-bit on ImageNet-1K dataset.
"MP" denotes average bit-width for mixed-precision. The "−" represents the unqueried value.

Model Method KD Training Searching Fine-tune Epoch w4a4 w3a3 w2a2 3MP FP

ResNet18

Ours ✗ HASB ILP w/o 90 69.80 68.63 64.88 68.85 69.76
Bit-Mixer[9] ✓ Random Greedy w/o 160 69.20 68.60 64.40 62.90 69.60

ABN[10] ✓ DRL DRL w. 160 69.80 69.00 66.20 67.70 −
MultiQuant[4] ✓ LRH Genetic w. 90 − 67.50 − 69.20 69.76

EQ-Net[5] ✓ LRH Genetic w. 120 − 69.30 65.90 69.80 69.76
Ours ✓ KD KD w/o 90 70.03 69.32 65.17 69.92 69.76

ResNet50
Ours ✗ HASB ILP w/o 90 75.01 74.31 71.47 75.06 76.13

Bit-Mixer[9] ✓ Random Greedy w/o 160 75.20 74.80 72.10 73.20 −
EQ-Net[5] ✓ LRH Genetic w. 120 − 74.70 72.50 75.10 76.13

Ours ✓ HASB ILP w/o 90 75.63 74.36 72.32 75.24 76.13

4.3 Ablation Studies260

ALRS vs. Conventional in Multi-Precision. To verify the effectiveness of our proposed ALRS train-261

ing strategy, we conduct an ablation experiment without KD, as shown in Table 4, and observe overall262

accuracy improvements, particularly for the 2bit. Like previous works, where MobileNetV2 can’t263

achieve stable convergence with {4,3,2}-bit, we also opt for {8,6,4}-bit to keep consistent. However,264

our method can achieve stable convergence with {8,6,4,2}-bit quantization. This demonstrates the265

superiority of our proposed Double-Rounding and ALRS methods.266

Multi-Precision vs. Separate-Precision in Time Cost. We statistic the results regarding the time cost267

for multi-precision compared to separate-precision quantization, as shown in Table 5. Multi-precision268

training costs stay approximate constant as the number of candidate bit-widths.269
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Table 4: Ablation studies of multi-precision, ResNet20 on CIFAR-10 dataset and other models on
ImageNet-1K dataset. Note that MobileNetV2 uses {8,6,4}-bit instead of {4,3,2}-bit.

Model ALRS {8,6,4,2}-bit {4,3,2}-bit FP
w8a8 w6a6 w4a4 w2a2 w4a4 w3a3 w2a2

ResNet20 w/o 92.17 92.20 92.17 89.67 91.19 90.98 88.62 92.30
w. 92.25 92.32 92.09 90.19 91.79 91.83 88.88 92.30

ResNet18 w/o 70.05 69.80 69.32 65.83 69.38 68.74 65.62 69.76
w. 70.74 70.71 70.43 66.35 69.73 69.20 66.30 69.76

ResNet50 w/o 76.18 76.08 75.64 70.28 75.48 74.85 70.64 76.13
w. 76.51 76.28 75.74 72.31 75.81 75.24 71.62 76.13

MobileNetV2 w/o 70.55 70.65 68.08 45.00 72.06 71.87 69.40 71.14
w. 70.98 70.70 68.77 50.43 72.42 72.06 69.92 71.14

Table 5: Training costs for multi-precision and separate-precision are averaged over three runs.

Model Dataset Bit-widths #V100 Epochs BatchSize Avg. hours Save cost (%)

ResNet20 Cifar10
Separate-bit 1 200 128 0.9 0.0
{4,3,2}-bit 1 200 128 0.7 28.6

{8,6,4,2}-bit 1 200 128 0.8 12.5

ResNet18 ImageNet
Separate-bit 4 90 256 19.0 0.0
{4,3,2}-bit 4 90 256 15.2 25.0

{8,6,4,2}-bit 4 90 256 16.3 16.6

ResNet50 ImageNet
Separate-bit 4 90 256 51.6 0.0
{4,3,2}-bit 4 90 256 40.7 26.8

{8,6,4,2}-bit 4 90 256 40.8 26.5

Pareto Frontier of Different Mixed-Precision Configurations. To verify the effectiveness of our270

HASB strategy, we conduct ablation experiments on different bit-lists. Figure 5 shows the search271

results of Mixed-precision SuperNet under {8,6,4,2}-bit, {4,3,2}-bit and {8,4}-bit configurations272

respectively. Where each point represents a SubNet. These results are obtained directly from ILP273

sampling without retraining or fine-tuning. As the figure shows, the highest red points are higher than274

the blue points under the same bit width, indicating that this strategy is effective.275
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Figure 5: Comparison of HASB and Baseline approaches for Mixed-Precision on ResNet18.

5 Conclusion276

This paper first introduces Double Rounding quantization method used to address the challenges277

of multi-precision and mixed-precision joint training. It can store single integer-weight parameters278

and attain nearly lossless bit-switching. Secondly, we propose an Adaptive Learning Rate Scaling279

(ALRS) method for multi-precision joint training that narrows the training convergence gap between280

high-precision and low-precision, enhancing model accuracy of multi-precision. Finally, our proposed281

Hessian-Aware Stochastic Bit-switching (HASB) strategy for one-shot mixed-precision SuperNet282

and efficient searching method combined with Integer Linear Programming, achieving approximate283

Pareto Frontier optimal solution. Our proposed methods aim to achieve a flexible and effective model284

compression technique for adapting different storage and computation requirements.285
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A Appendix / supplemental material383

A.1 Overview384

In this supplementary material, we present more explanations and experimental results.385

• First, we provide a detailed explanation of the different quantization types under QAT.386

• We then present a comparison of multi-precision and separate-precision on the ImageNet-1k dataset.387

• Furthermore, we provide the gradient formulation of Double Rounding.388

• And, the algorithm implementation of both multi-precision and mixed-precision training approaches.389

• Finally, we provide more gradient statistics of learnable quantization scales in different networks.390

A.2 Different Quantization Types391

In this section, we provide a detailed explanation of the different quantization types during392

Quantization-Aware Training (QAT), as is shown in Figure 6.

(a) Separate-Precision:  Each bit-width 
requires training a new network with 
separate weights by repeating multi-retrain.

(b) Multi-Precision: A shared network can be 
quantized to any bit-width at runtime without 
re-training or finetuning. All layers inside the 
network uniformly share the same bit-width.

(c) Mixed-Precision: A SuperNet whose 
individual layers can be quantized to any 
bit-width at runtime, and its searched 
subnets without re-training or fine-tuning.

8bit 2bit
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Figure 6: Comparison between different quantization types during quantization-aware training.
393

A.3 Multi-Precision vs. Separate-Precision.394

We provide the comparison of Multi-Precision and Separate-Precision on ImageNet-1K dataset.395

Table 6 shows that our Multi-Precision joint training scheme has comparable accuracy of different396

precisions compared to Separate-Precision with multiple re-train. This further proves the effectiveness397

of our proposed One-shot Double Rounding Multi-Precision method.

Table 6: Top1 accuracy comparisons on multi-precision of {8,6,4,2}-bit on ImageNet-1K datasets.

Model Method One-shot Storage Epoch w8a8 w6a6 w4a4 w2a2 FP

ResNet18
LSQ[2] ✗ {8,6,4,2}-bit 90 71.10 − 71.10 67.60 70.50

LSQ+[38] ✗ {8,6,4,2}-bit 90 − − 70.80 66.80 70.10
Ours ✓ 8-bit 90 70.74 70.71 70.43 66.35 69.76

ResNet50
LSQ[2] ✗ {8,6,4,2}-bit 90 76.80 − 76.70 73.70 76.90

Ours ✓ 8-bit 90 76.51 76.28 75.74 72.31 76.13

398

A.4 The Gradient Formulation of Double Rounding399

A general formulation for uniform quantization process is as follows:400

W̃ = clip(
⌊
W

s

⌉
+ z,−2b−1, 2b−1 − 1) (8)

Ŵ = (W̃ − z)× s (9)
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where the symbol ⌊.⌉ denotes the Rounding function, clip(x, low, upper) expresses x below low401

are set to low and above upper are set to upper. b denotes the quantization level (or bit-width),402

s ∈ R and z ∈ Z represents the quantization scale (or interval) and zero-point associated with each b,403

respectively. W represents the FP32 model’s weights, W̃ signifies the quantized integer weights, and404

Ŵ represents the dequantized floating-point weights.405

The quantization scale of our Double Rounding is learned online and not fixed. And it only needs a406

pair of shared quantization parameters, i.e., scale and zero-point. Suppose the highest-bit and the407

low-bit are denoted as h-bit and l-bit respectively, and the difference between them is ∆ = h − l.408

The specific formulation is as follows:409

W̃h = clip(
⌊
W − zh

sh

⌉
,−2h−1, 2h−1 − 1) (10)

W̃l = clip(

⌊
W̃h

2∆

⌉
,−2l−1, 2l−1 − 1) (11)

Ŵl = W̃l × sh × 2∆ + zh (12)

where sh ∈ R and zh ∈ Z denote the highest-bit quantization scale and zero-point respectively. W̃h410

and W̃l represent the quantized weights of the highest-bit and low-bit respectively. Hardware shift411

operations can efficiently execute the division and multiplication by 2∆. And the zh is 0 for the412

weight quantization in this paper. The gradient formulation of Double Rounding for one-shot joint413

training is represented as follows:414

∂Ŷ

∂sh
≃

{⌊
Y−zh

sh

⌉
− Y−zh

sh
if n < Y−zh

sh
< p,

n or p otherwise.
(13)

∂Ŷ

∂zh
≃

{
0 if n < Y−zh

sh
< p,

1 otherwise.
(14)

where n and p denote the lower and upper bounds of the integer range [Nmin, Nmax] for quantizing415

the weights or activations respectively. Y represents the FP32 weights or activations, and Ŷ represents416

the dequantized weights or activations. Unlike weights, activation quantization scale and zero-point417

of different precisions are learned independently. However, the gradient formulation is the same.418

A.5 Algorithms419

This section provides the algorithm implementations of multi-precision, one-shot mixed-precision420

joint training, and the search stage of SubNets.421

A.5.1 Multi-Precision Joint Training422

The multi-precision model with different quantization precisions shares the same model weight(e.g.,423

the highest-bit) during joint training. In conventional multi-precision, the shared weight (e.g., multi-424

precision model) computes n forward processes at each training iteration, where n is the number of425

candidate bit-widths. Then, all attained losses of different precisions perform an accumulation, and426

update the parameters accordingly. For specific implementation details please refer to Algorithm A.1.427

However, we find that if separate precision loss and parameter updates are performed directly after428

calculating a precision at each forward process, it will lead to difficulty convergence during training429

or suboptimal accuracy. In other words, the varying gradient magnitudes of quantization scales of430

different precisions make it hard to attain stable convergence during joint training. To address this431

issue, we introduce an adaptive approach (e.g., Adaptive Learning Rate Scaling, ALRS) to alter the432

learning rate for different precisions during training, aiming to achieve a consistent update pace.433

This method allows us to directly update the shared parameters after calculating the loss after every434

forward. We update both the weight parameters and quantization parameters simultaneously using435

dual optimizers. We also set the weight-decay of the quantization scales to 0 to achieve more stable436

convergence. For specific implementation details, please refer to Algorithm A.2.437
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Algorithm A.1 Conventional Multi-precision training approach
Require: Candidate bit-widths set b ∈ B;
1: Initialize: Pretrained model M with FP32 weights W , the quantization scales s including of weights sw

and activations sx, BatchNorm layers:{BN}n
b=1, optimizer:optim(W, s, wd), learning rate: λ, wd: weight

decay, CE: CrossEntropyLoss, Dtrain: training dataset;
2: For one epoch:
3: Sample mini-batch data (x,y) ∈ {Dtrain}
4: for b in B do
5: forward(M,x,y, b):
6: for each quantization layer do
7: Ŵ b = dequant(quant(W, sbw))

8: X̂b = dequant(quant(X, sbx))

9: Ob = Conv(Ŵ b, X̂b)
10: end for
11: ob = FC(W,Ob)
12: Update BNb layer
13: Compute loss: Lb = CE(ob,y)
14: Compute gradients: Lb.backward()
15: end for
16: Update weights and scales: optim.step(λ)
17: Clear gradient: optim.zero_grad();
Note that n and L represent the number of candidate bit-widths and model layers respectively.

Algorithm A.2 Our Multi-precision training approach
Require: Candidate bit-widths set b ∈ B
1: Initialize: Pretrained model M with FP32 weights W , the quantization scales s including of weights sw and

activations sx, BatchNorm layers: {BN}n
b=1, optimizers: optim1(W,wd), optim2(s, wd = 0), learning

rate: λ, wd: weight decay, CE: CrossEntropyLoss, Dtrain: training dataset;
2: For every epoch:
3: Sample mini-batch data (x,y) ∈ {Dtrain}
4: for b in B do
5: forward(M,x,y, b):
6: for each quantization layer do
7: Ŵ b = dequant(quant(W, sbw))

8: X̂b = dequant(quant(X, sbx))

9: Ob = Conv(Ŵ b, X̂b)
10: end for
11: ob = FC(W,Ob)
12: Update BNb layer
13: Compute loss: Lb = CE(ob,y)
14: Compute gradients: Lb.backward()
15: Compute learning rate: λb # please see formula (6) of the main paper
16: Update weights and quantization scales: optim1.step(λ); optim2.step(λb)
17: Clear gradient: optim1.zero_grad(); optim2.zero_grad()
18: end for
Note that n and L represent the number of candidate bit-widths and model layers respectively.

A.5.2 One-shot Joint Training for Mixed Precision SuperNet438

Unlike multi-precision joint quantization, the bit-switching of mixed-precision training is more439

complicated. In multi-precision training, the bit-widths calculated in each iteration are fixed, e.g.,440

{8,6,4,2}-bit. In mixed-precision training, the bit-widths of different layers are not fixed in each441

iteration, e.g., {8,random-bit,2}-bit, where "random-bit" is any bits of e.g., {7,6,5,4,3,2}-bit, similar442

to the sandwich strategy of [39]. Therefore, mixed precision training often requires more training443

epochs to reach convergence compared to multi-precision training. Bit-mixer [9] conducts the same444

probability of selecting bit-width for different layers. However, we take the sensitivity of each layer445

into consideration which uses sensitivity (e.g. Hessian Matrix Trace [11]) as a metric to identify the446

selection probability of different layers. For more sensitive layers, preference is given to higher-bit447

widths, and vice versa. We refer to this training strategy as a Hessian-Aware Stochastic Bit-switching448
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(HASB) strategy for optimizing one-shot mixed-precision SuperNet. Specific implementation details449

can be found in Algorithm A.3. In additionally, unlike multi-precision joint training, the BN layers450

are replaced by TBN (Transitional Batch-Norm) [9], which compensates for the distribution shift451

between adjacent layers that are quantized to different bit-widths. To achieve the best convergence452

effect, we propose that the threshold of bit-switching (i.e., σ) also increases as the epoch increases.453

Algorithm A.3 Our one-shot Mixed-precision SuperNet training approach
Require: Candidate bit-widths set b ∈ B, the HMT of different layers of FP32 model: tl ∈ {T}L

l=1, average

HMT: tm =
∑L

l=1 tl
L

;
1: Initialize: Pretrained model M with FP32 weights W , the quantization scales s including of weights sw and

activations sx, BatchNorm layers:{BN}n2

b=1, the threshold of bit-switching:σ, optimizer:optim(W, s, wd),
learning rate: λ, wd: weight decay, CE: CrossEntropyLoss, Dtrain: training dataset;

2: For one epoch:
3: Attain the threshold of bit-switching: σ = σ × epoch+1

total_epochs
4: Sample mini-batch data (x,y) ∈ {Dtrain}
5: for b in B do
6: forward(M,x,y, b, T, tm):
7: for each quantization layer do
8: Sample r ∼ U [0, 1];
9: if r < σ then

10: b = Roulette(B, tl, tm) # Please refer to Algorithm 1 of the main paper
11: end if
12: Ŵ b = dequant(quant(W, sbw))

13: X̂b = dequant(quant(X, sbx))

14: Ob = Conv(Ŵ b, X̂b)
15: end for
16: ob = FC(W,Ob)
17: Update BNb layer
18: Compute loss: Lb = CE(ob,y)
19: Compute gradients: Lb.backward()
20: Update weights and scales: optim.step(λ)
21: Clear gradient: optim.zero_grad();
22: end for
Note that n and L represent the number of candidate bit-widths and model layers respectively.

A.5.3 Efficient one-shot searching for Mixed Precision SuperNet454

After training the mixed-precision SuperNet, the next step is to select the appropriate optimal SubNets455

based on conditions, such as model parameters, latency, and FLOPs, for actual deployment and456

inference. To achieve optimal allocations for candidate bit-width under given conditions, we employ457

the Iterative Integer Linear Programming (ILP) approach. Since each ILP run can only provide458

one solution, we obtain multiple solutions by altering the values of different average bit widths.459

Specifically, given a trained SuperNet (e.g., RestNet18), it takes less than two minutes to solve460

candidate SubNets. It can be implemented through the Python PULP package. Finally, these searched461

SubNets only need inference to attain final accuracy, which needs a few hours. This forms a Pareto462

optimal frontier. From this frontier, we can select the appropriate subnet for deployment. Specific463

implementation details of the searching process by ILP can be found in Algorithm 2.464

A.6 The Gradient Statistics of Learnable Scale of Quantization465

In this section, we analyze the changes in gradients of the learnable scale for different models during466

the training process. Figure 7 and Figure 8 display the gradient statistical results for ResNet20 on467

CIFAR-10. Similarly, Figure 9 and Figure 10 show the gradient statistical results for ResNet18 on468

ImageNet-1K, and Figure 11 and Figure 12 present the gradient statistical results for ResNet50 on469

ImageNet-1K. These figures reveal a similarity in the range of gradient changes between higher-bit470

quantization and 2-bit quantization. Notably, they illustrate that the value range of 2-bit quantization471

is noticeably an order of magnitude higher than the value ranges of higher-bit quantization.472
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Figure 7: The scale gradient statistics of weight of ResNet20 on CIFAR-10 dataset. Note that the
outliers are removed for exhibition.
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Figure 8: The scale gradient statistics of activation of ResNet20 on CIFAR-10 dataset. Note that the
first and last layers are not quantized.
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Figure 9: The scale gradient statistics of weight of ResNet18 on ImageNet dataset. Note that the
outliers are removed for exhibition.
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Figure 10: The scale gradient statistics of activation of ResNet18 on ImageNet dataset. Note that the
outliers are removed for exhibition.
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Figure 11: The scale gradient statistics of weight of ResNet50 on ImageNet dataset. Note that the
outliers are removed for exhibition, and the first and last layers are not quantized.
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Figure 12: The scale gradient statistics of activation of ResNet50 on ImageNet dataset. Note that the
outliers are removed for exhibition.
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NeurIPS Paper Checklist473

1. Claims474

Question: Do the main claims made in the abstract and introduction accurately reflect the475

paper’s contributions and scope?476

Answer: [Yes]477

Justification: [TODO] Please refer to the Abstract Section and Section 1, where related478

material for the question can be found.479

Guidelines:480

• The answer NA means that the abstract and introduction do not include the claims481

made in the paper.482

• The abstract and/or introduction should clearly state the claims made, including the483

contributions made in the paper and important assumptions and limitations. A No or484

NA answer to this question will not be perceived well by the reviewers.485

• The claims made should match theoretical and experimental results, and reflect how486

much the results can be expected to generalize to other settings.487

• It is fine to include aspirational goals as motivation as long as it is clear that these goals488

are not attained by the paper.489

2. Limitations490

Question: Does the paper discuss the limitations of the work performed by the authors?491

Answer: [TODO][Yes]492

Justification: [TODO] Although our proposed methods have achieved comparable results in493

multi-precision and mixed-precision, this paper has several limitations and improvements.494

(1) Due to time and computing resource constraints, our methods are only tested on common495

CNNs-based networks and aren’t tested on ViTs-based networks. (2) For multi-precision,496

compact networks, e.g., MobileNet, still have a big drop in 2bit. We will try to use per-layer497

or per-channel adaptive learning rate adjustment in the future. (3) For mixed precision,498

relying only on one-shot ILP-based SubNets search may yield a suboptimal solution. We499

further need to combine it with other efficient search methods, e.g., genetic algorithms, to500

achieve global optimal.501

Guidelines:502

• The answer NA means that the paper has no limitation while the answer No means that503

the paper has limitations, but those are not discussed in the paper.504

• The authors are encouraged to create a separate "Limitations" section in their paper.505

• The paper should point out any strong assumptions and how robust the results are to506

violations of these assumptions (e.g., independence assumptions, noiseless settings,507

model well-specification, asymptotic approximations only holding locally). The authors508

should reflect on how these assumptions might be violated in practice and what the509

implications would be.510

• The authors should reflect on the scope of the claims made, e.g., if the approach was511

only tested on a few datasets or with a few runs. In general, empirical results often512

depend on implicit assumptions, which should be articulated.513

• The authors should reflect on the factors that influence the performance of the approach.514

For example, a facial recognition algorithm may perform poorly when image resolution515

is low or images are taken in low lighting. Or a speech-to-text system might not be516

used reliably to provide closed captions for online lectures because it fails to handle517

technical jargon.518

• The authors should discuss the computational efficiency of the proposed algorithms519

and how they scale with dataset size.520

• If applicable, the authors should discuss possible limitations of their approach to521

address problems of privacy and fairness.522

• While the authors might fear that complete honesty about limitations might be used by523

reviewers as grounds for rejection, a worse outcome might be that reviewers discover524

limitations that aren’t acknowledged in the paper. The authors should use their best525
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judgment and recognize that individual actions in favor of transparency play an impor-526

tant role in developing norms that preserve the integrity of the community. Reviewers527

will be specifically instructed to not penalize honesty concerning limitations.528

3. Theory Assumptions and Proofs529

Question: For each theoretical result, does the paper provide the full set of assumptions and530

a complete (and correct) proof?531

Answer: [Yes]532

Justification: [TODO] We display index numbers wherever formulas and theoretical support533

are needed. For example, please refer to Section 3.534

Guidelines:535

• The answer NA means that the paper does not include theoretical results.536

• All the theorems, formulas, and proofs in the paper should be numbered and cross-537

referenced.538

• All assumptions should be clearly stated or referenced in the statement of any theorems.539

• The proofs can either appear in the main paper or the supplemental material, but if540

they appear in the supplemental material, the authors are encouraged to provide a short541

proof sketch to provide intuition.542

• Inversely, any informal proof provided in the core of the paper should be complemented543

by formal proofs provided in appendix or supplemental material.544

• Theorems and Lemmas that the proof relies upon should be properly referenced.545

4. Experimental Result Reproducibility546

Question: Does the paper fully disclose all the information needed to reproduce the main ex-547

perimental results of the paper to the extent that it affects the main claims and/or conclusions548

of the paper (regardless of whether the code and data are provided or not)?549

Answer: [Yes] To ensure that our experimental results can be reproduced: (1) we describe550

the experimental training settings and algorithm pseudocode in detail in Section 4 and551

Section A.5, and (2) we also provide the code related to all experiments in this paper,552

allowing the community to improve and conduct further research.553

Justification: [TODO]554

Guidelines:555

• The answer NA means that the paper does not include experiments.556

• If the paper includes experiments, a No answer to this question will not be perceived557

well by the reviewers: Making the paper reproducible is important, regardless of558

whether the code and data are provided or not.559

• If the contribution is a dataset and/or model, the authors should describe the steps taken560

to make their results reproducible or verifiable.561

• Depending on the contribution, reproducibility can be accomplished in various ways.562

For example, if the contribution is a novel architecture, describing the architecture fully563

might suffice, or if the contribution is a specific model and empirical evaluation, it may564

be necessary to either make it possible for others to replicate the model with the same565

dataset, or provide access to the model. In general. releasing code and data is often566

one good way to accomplish this, but reproducibility can also be provided via detailed567

instructions for how to replicate the results, access to a hosted model (e.g., in the case568

of a large language model), releasing of a model checkpoint, or other means that are569

appropriate to the research performed.570

• While NeurIPS does not require releasing code, the conference does require all submis-571

sions to provide some reasonable avenue for reproducibility, which may depend on the572

nature of the contribution. For example573

(a) If the contribution is primarily a new algorithm, the paper should make it clear how574

to reproduce that algorithm.575

(b) If the contribution is primarily a new model architecture, the paper should describe576

the architecture clearly and fully.577
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(c) If the contribution is a new model (e.g., a large language model), then there should578

either be a way to access this model for reproducing the results or a way to reproduce579

the model (e.g., with an open-source dataset or instructions for how to construct580

the dataset).581

(d) We recognize that reproducibility may be tricky in some cases, in which case582

authors are welcome to describe the particular way they provide for reproducibility.583

In the case of closed-source models, it may be that access to the model is limited in584

some way (e.g., to registered users), but it should be possible for other researchers585

to have some path to reproducing or verifying the results.586

5. Open access to data and code587

Question: Does the paper provide open access to the data and code, with sufficient instruc-588

tions to faithfully reproduce the main experimental results, as described in supplemental589

material?590

Answer: [Yes]591

Justification: [TODO] Our code are available at here and the data is open source dataset.592

Guidelines:593

• The answer NA means that paper does not include experiments requiring code.594

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/595

public/guides/CodeSubmissionPolicy) for more details.596

• While we encourage the release of code and data, we understand that this might not be597

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not598

including code, unless this is central to the contribution (e.g., for a new open-source599

benchmark).600

• The instructions should contain the exact command and environment needed to run to601

reproduce the results. See the NeurIPS code and data submission guidelines (https:602

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.603

• The authors should provide instructions on data access and preparation, including how604

to access the raw data, preprocessed data, intermediate data, and generated data, etc.605

• The authors should provide scripts to reproduce all experimental results for the new606

proposed method and baselines. If only a subset of experiments are reproducible, they607

should state which ones are omitted from the script and why.608

• At submission time, to preserve anonymity, the authors should release anonymized609

versions (if applicable).610

• Providing as much information as possible in supplemental material (appended to the611

paper) is recommended, but including URLs to data and code is permitted.612

6. Experimental Setting/Details613

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-614

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the615

results?616

Answer: [Yes]617

Justification: [TODO] Our codes are available here and include all related training and test618

details.619

Guidelines:620

• The answer NA means that the paper does not include experiments.621

• The experimental setting should be presented in the core of the paper to a level of detail622

that is necessary to appreciate the results and make sense of them.623

• The full details can be provided either with the code, in appendix, or as supplemental624

material.625

7. Experiment Statistical Significance626

Question: Does the paper report error bars suitably and correctly defined or other appropriate627

information about the statistical significance of the experiments?628

Answer: [Yes]629
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Justification: [TODO] Please refer to the Section A.6 in the appendix.630

Guidelines:631

• The answer NA means that the paper does not include experiments.632

• The authors should answer "Yes" if the results are accompanied by error bars, confi-633

dence intervals, or statistical significance tests, at least for the experiments that support634

the main claims of the paper.635

• The factors of variability that the error bars are capturing should be clearly stated (for636

example, train/test split, initialization, random drawing of some parameter, or overall637

run with given experimental conditions).638

• The method for calculating the error bars should be explained (closed form formula,639

call to a library function, bootstrap, etc.)640

• The assumptions made should be given (e.g., Normally distributed errors).641

• It should be clear whether the error bar is the standard deviation or the standard error642

of the mean.643

• It is OK to report 1-sigma error bars, but one should state it. The authors should644

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis645

of Normality of errors is not verified.646

• For asymmetric distributions, the authors should be careful not to show in tables or647

figures symmetric error bars that would yield results that are out of range (e.g. negative648

error rates).649

• If error bars are reported in tables or plots, The authors should explain in the text how650

they were calculated and reference the corresponding figures or tables in the text.651

8. Experiments Compute Resources652

Question: For each experiment, does the paper provide sufficient information on the com-653

puter resources (type of compute workers, memory, time of execution) needed to reproduce654

the experiments?655

Answer: [Yes]656

Justification: [TODO] Please refer to the Table 5.657

Guidelines:658

• The answer NA means that the paper does not include experiments.659

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,660

or cloud provider, including relevant memory and storage.661

• The paper should provide the amount of compute required for each of the individual662

experimental runs as well as estimate the total compute.663

• The paper should disclose whether the full research project required more compute664

than the experiments reported in the paper (e.g., preliminary or failed experiments that665

didn’t make it into the paper).666

9. Code Of Ethics667

Question: Does the research conducted in the paper conform, in every respect, with the668

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?669

Answer: [Yes]670

Justification: [TODO] We have read the NeurIPS Code of Ethics and conform to it.671

Guidelines:672

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.673

• If the authors answer No, they should explain the special circumstances that require a674

deviation from the Code of Ethics.675

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-676

eration due to laws or regulations in their jurisdiction).677

10. Broader Impacts678

Question: Does the paper discuss both potential positive societal impacts and negative679

societal impacts of the work performed?680
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Answer: [NA]681

Justification: [TODO] Due to space limitations, this social impact aspect is not discussed682

in the main paper. This paper doesn’t involve negative societal impacts including potential683

malicious or unintended uses. Our proposed methods aim to achieve an efficient and684

effective model compression technique to flexible adaptive different storage and computation685

requirements, which are beneficial to social advancement.686

Guidelines:687

• The answer NA means that there is no societal impact of the work performed.688

• If the authors answer NA or No, they should explain why their work has no societal689

impact or why the paper does not address societal impact.690

• Examples of negative societal impacts include potential malicious or unintended uses691

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations692

(e.g., deployment of technologies that could make decisions that unfairly impact specific693

groups), privacy considerations, and security considerations.694

• The conference expects that many papers will be foundational research and not tied695

to particular applications, let alone deployments. However, if there is a direct path to696

any negative applications, the authors should point it out. For example, it is legitimate697

to point out that an improvement in the quality of generative models could be used to698

generate deepfakes for disinformation. On the other hand, it is not needed to point out699

that a generic algorithm for optimizing neural networks could enable people to train700

models that generate Deepfakes faster.701

• The authors should consider possible harms that could arise when the technology is702

being used as intended and functioning correctly, harms that could arise when the703

technology is being used as intended but gives incorrect results, and harms following704

from (intentional or unintentional) misuse of the technology.705

• If there are negative societal impacts, the authors could also discuss possible mitigation706

strategies (e.g., gated release of models, providing defenses in addition to attacks,707

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from708

feedback over time, improving the efficiency and accessibility of ML).709

11. Safeguards710

Question: Does the paper describe safeguards that have been put in place for responsible711

release of data or models that have a high risk for misuse (e.g., pretrained language models,712

image generators, or scraped datasets)?713

Answer: [NA]714

Justification: [TODO] This paper doesn’t have any high risk for misuse.715

Guidelines:716

• The answer NA means that the paper poses no such risks.717

• Released models that have a high risk for misuse or dual-use should be released with718

necessary safeguards to allow for controlled use of the model, for example by requiring719

that users adhere to usage guidelines or restrictions to access the model or implementing720

safety filters.721

• Datasets that have been scraped from the Internet could pose safety risks. The authors722

should describe how they avoided releasing unsafe images.723

• We recognize that providing effective safeguards is challenging, and many papers do724

not require this, but we encourage authors to take this into account and make a best725

faith effort.726

12. Licenses for existing assets727

Question: Are the creators or original owners of assets (e.g., code, data, models), used in728

the paper, properly credited and are the license and terms of use explicitly mentioned and729

properly respected?730

Answer: [Yes]731

Justification: [TODO] We conform to the CC-BY 4.0 license.732

Guidelines:733
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• The answer NA means that the paper does not use existing assets.734

• The authors should cite the original paper that produced the code package or dataset.735

• The authors should state which version of the asset is used and, if possible, include a736

URL.737

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.738

• For scraped data from a particular source (e.g., website), the copyright and terms of739

service of that source should be provided.740

• If assets are released, the license, copyright information, and terms of use in the741

package should be provided. For popular datasets, paperswithcode.com/datasets742

has curated licenses for some datasets. Their licensing guide can help determine the743

license of a dataset.744

• For existing datasets that are re-packaged, both the original license and the license of745

the derived asset (if it has changed) should be provided.746

• If this information is not available online, the authors are encouraged to reach out to747

the asset’s creators.748

13. New Assets749

Question: Are new assets introduced in the paper well documented and is the documentation750

provided alongside the assets?751

Answer: [NA]752

Justification: [TODO] This paper does not release new assets753

Guidelines:754

• The answer NA means that the paper does not release new assets.755

• Researchers should communicate the details of the dataset/code/model as part of their756

submissions via structured templates. This includes details about training, license,757

limitations, etc.758

• The paper should discuss whether and how consent was obtained from people whose759

asset is used.760

• At submission time, remember to anonymize your assets (if applicable). You can either761

create an anonymized URL or include an anonymized zip file.762

14. Crowdsourcing and Research with Human Subjects763

Question: For crowdsourcing experiments and research with human subjects, does the paper764

include the full text of instructions given to participants and screenshots, if applicable, as765

well as details about compensation (if any)?766

Answer: [NA]767

Justification: [TODO] This paper does not involve crowdsourcing nor research with human768

subjects.769

Guidelines:770

• The answer NA means that the paper does not involve crowdsourcing nor research with771

human subjects.772

• Including this information in the supplemental material is fine, but if the main contribu-773

tion of the paper involves human subjects, then as much detail as possible should be774

included in the main paper.775

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,776

or other labor should be paid at least the minimum wage in the country of the data777

collector.778

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human779

Subjects780

Question: Does the paper describe potential risks incurred by study participants, whether781

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)782

approvals (or an equivalent approval/review based on the requirements of your country or783

institution) were obtained?784

Answer: [NA]785
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Justification: [TODO] This paper does not involve crowdsourcing nor research with human786

subjects.787

Guidelines:788

• The answer NA means that the paper does not involve crowdsourcing nor research with789

human subjects.790

• Depending on the country in which research is conducted, IRB approval (or equivalent)791

may be required for any human subjects research. If you obtained IRB approval, you792

should clearly state this in the paper.793

• We recognize that the procedures for this may vary significantly between institutions794

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the795

guidelines for their institution.796

• For initial submissions, do not include any information that would break anonymity (if797

applicable), such as the institution conducting the review.798
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