
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BREAKING THE log(1/∆2) BARRIER: BETTER BATCHED
BEST ARM IDENTIFICATION WITH ADAPTIVE GRIDS

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the problem of batched best arm identification in multi-armed
bandits, where we aim to identify the best arm from a set of n arms while mini-
mizing both the number of samples and batches. We introduce an algorithm that
achieves near-optimal sample complexity and features an instance-sensitive batch
complexity, which breaks the log(1/∆2)

1 barrier. The main contribution of our
algorithm is a novel sample allocation scheme that effectively balances exploration
and exploitation for batch sizes. Experimental results indicate that our approach is
more batch-efficient across various setups. We also extend this framework to the
problem of batched best arm identification in linear bandits and achieve similar
improvements.

1 INTRODUCTION

In online learning, it is common to process data in batches each with a fixed policy, as frequently
policy changes may incur significant additional costs. For example, in clinical trials, patients are
typically treated the same at a time, since every policy switch would trigger a separate approval
process (Thompson, 1933; Robbins, 1952). In crowd-sourcing, it takes time for the crowd to answer
questions, and thus a small number of rounds of interaction with the crowd is critical in time-sensitive
applications (Kittur et al., 2008). Similar phenomena occur in compiler optimization (Ashouri et al.,
2019), hardware placements (Mirhoseini et al., 2017), database optimization (Krishnan et al., 2018),
etc. Therefore, the design of batch-efficient learning algorithms is of central importance in online
learning. In this paper, we study the following problem.

Best Arm Identification in Multi-Armed Bandits. In multi-armed bandits (MAB), we have
a set of n arms, each associated with a reward distribution N (µi, 1), where µi is an unknown
mean. Pulling the i-th arm gives a reward sampled from its reward distribution. In the problem of
best arm identification in MAB (BAI-M), the goal is the identify the arm with the highest mean
µ∗ = maxi∈[n] µi with success probability (1 − δ) for a given δ using the minimum number of
pulls/samples.2 We assume that there exists a unique best arm µ∗ among the n arms.

Batched Learning. In the batched model, learning progresses in rounds, where the set of arms to
pull must be decided at the beginning of each round. Let t1(= 1), t2, . . . , tM denote the starting time
steps of the M batches. For convenience, we define tM+1 = T + 1, where T is the final time step.
The i-th batch spans from time steps ti to (ti+1 − 1), and we refer to (ti+1 − ti) as the size of the
i-th batch. There are two variations of this model: the first is the fixed grid, where t1, . . . , tM are
determined at the at the very beginning of the learning process, and the second is the adaptive grid,
where ti can be chosen based on the rewards observed up to time (ti − 1).

In this paper, we focus on the adaptive grid setting and investigate the design of batched algorithms
for BAI-M. We will also extend our results to best arm identification in linear bandits (BAI-L), with
its formal definition deferred to Section 4.

1∆2 is the difference of means between the best arm and the second best arm.
2In this paper, we consider the fixed-confidence variant of BAI-M. The other variant is referred to as

fixed-budget, where given a sample budget T , we want to identify the best arm with the smallest error probability.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Sample and Batch Complexity. For a batched learning algorithm, we define its sample complexity
as the total number of arm pulls required to identify the best arm, and its batch complexity as the total
number of batches needed to accomplish this task.

It is well-known that for BAI-M, the sample complexity of the algorithm can be made instance-
sensitive. That is, the sample complexity can be written as a function of the input parameters, which
can be much better than the minimax/instance-independent bound for many inputs. Let I = {µi}ni=1
be an input instance for BAI-M. W.l.o.g., assume that µ1 > µ2 ≥ . . . ≥ µn. Let ∆i = µ1 − µi
be the mean gap between the best arm and the i-th best arm. Several algorithms (Even-Dar et al.,
2002; Even-Dar et al., 2006; Audibert et al., 2010; Kalyanakrishnan et al., 2012; Karnin et al., 2013;
Jamieson et al., 2014; Carpentier & Locatelli, 2016; Chen et al., 2017) are able of achieving sample
complexities on the order of Õ(HI), where ‘˜’ hides some logarithmic factors, and

HI ≜
n∑
i=2

1

∆2
i

(1.1)

is called the instance sample complexity of the input I . Among these algorithms, the successive
elimination (SE) algorithm proposed in Even-Dar et al. (2002) can be naturally adapted to the fixed
grid batched setting with a batch complexity of log(1/∆2).

Preserving the optimal sample complexity HI , the bound log(1/∆2) has been proven as nearly
minimax-optimal for the batch complexity of BAI-M, even in the adaptive grid setting (Tao et al.,
2019).3 However, this does not exclude the possibility of designing instance-sensitive batched
algorithms that outperform the successive elimination algorithm for many inputs. In this paper, we
try to address the following question:

In the adaptive grid setting, can we design bandit algorithms for BAI-M that achieve nearly optimal
sample complexity while breaking the log(1/∆2) barrier for batch complexity?

1.1 OUR CONTRIBUTIONS

In this paper, we answer the above question affirmatively. We propose new algorithms for batched
best arm identification for both multi-armed bandits and linear bandits. Both algorithms achieve
a smaller batch complexity for many inputs (and are never worse for all inputs) compared to the
state-of-the-art algorithms (Even-Dar et al., 2002; Fiez et al., 2019a).

Our contributions are summarized in the followings: First, we propose an instance-sensitive quantity
RI to capture the batch complexity of an instance I in MAB.
Definition 1.1 (Instance-sensitive batch complexity of MAB). Set L̄0 = 1, U0 = ∅, and C = 15

√
2.

We recursively define for r = 1, 2, . . . the quantities

L̄r = 4L̄r−1 +
1

n− |Ur−1|
∑

j∈Ur−1

1

∆2
j

, and Ur =

{
j : ∆j ≥

C√
L̄r

}
. (1.2)

We stop when Ur = [n] \ {1}. Let RI be the value of r when we stop.4

Intuitively speaking, L̄r represents the pull budget on each remaining arm in the r-th batch. Definition
1.1 introduces adaptive grids for batch sizes that are instance-dependent (as they depend on the gaps
∆j). This contrasts with successive elimination, which uses fixed grids L̄r = 4r; see Section 3 for a
detailed explanation. It is easy to see that log(1/∆2) is an upper bound of RI . We will shortly give
examples showing that for some instances I , the gap between RI and log(1/∆2) can be fairly large.
We further provide the following upper bound for RI :

RI ≤ O(α+ log(HI/n)), (1.3)
3Tao et al. (2019) showed that to achieve Õ(HI) time complexity in the O(1)-agent collaborative learning

model, Ω
(
log 1

∆2
/ log log 1

∆2

)
rounds of communication is necessary. This lower bound can be straightfor-

wardly translated to the batched learning model, proving an Ω
(
log 1

∆2
/ log log 1

∆2

)
batch lower bound under

sample complexity Õ(HI).
4We note that setting C to be any positive constant will not change the asymptotic value of RI . For the sake

of convenience in the analysis, we choose C = 15
√
2.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Ex. 1

Ex. 2

Ex. 3

1
2 − 1

2
1
2 − 1

4
1
2 − 1

8
1
2 − 1√

n
µ∗ = 1

2

L̄1 L̄2

U1

L̄1 L̄2

U1

L̄1 L̄logn−1

U1

L̄2 L̄3

LSE
1 LSE

logn−1LSE
2 LSE

3

U2 U3 Ulogn−1

. . .

. . .

. . .

Figure 1: Visualization of the three examples. The detailed description of three examples are listed
from Ex. 1 to Ex. 3. Each suboptimal arm is represented by a disk (with slight shifts to avoid
overlapping), while the best arm is represented by a square. LSE

i represents the average number of
arm pulls by successive elimination, and L̄i represents the average number of arm pulls by IS-SE. Ui
represents the set of eliminated arm in the i-th batch. In all three examples, successive elimination
needs Θ(log n) batches. However, for the first two examples, IS-SE only needs O(1) batches. For
the third example, IS-SE shares the same batch complexity as successive elimination.

where α denotes the number of indices i such that Ui ̸= Ui+1. It is not difficult to see that both terms
in (1.3) are no larger than log(1/∆2).

Second, we propose a new algorithm named Instance-Sensitive Successive Elimination (IS-SE), which
achieves nearly optimal sample complexity Õ(HI) and batch complexity O(RI). IS-SE utilizes the
arm elimination framework similar to successive elimination, but updates its batch size according
to Definition 1.1. We note that due to the inherent randomness in the arm pulls, it is not feasible to
design an algorithm that strictly follows Definition 1.1. Consequently, we cannot compute L̄r values
precisely, and this inaccuracy will propagate and accumulate with each successive batch. Therefore,
we need new ideas to simulate the recursion process described in Definition 1.1.

Third, we extend the definition of RI to the best arm identification in linear bandits, and propose the
Instance-Sensitive RAGE (IS-RAGE) algorithm as an counterpart of IS-SE. We show that IS-RAGE
finds the best arm with nearly optimal sample complexity as well as an improved batch complexity.

Examples. To show that our instance-dependent batch complexity RI for MAB is always no worse
than and often significantly outperform the state-of-the-art batch complexity log(1/∆2), we present
a few examples; see Figure 1 for their visualizations.

Ex. 1 The best arm has mean 1
2 ; (n− 2) arms have mean

(
1
2 −

1
2

)
, and 1 arm has mean

(
1
2 −

1√
n

)
.

For this instance, RI = O(1), while log(1/∆2) = log
√
n = Θ(log n).

Ex. 2 The best arm has mean 1
2 ;
(
n−log2 n+1

)
arms have mean

(
1
2 −

1
2

)
; 1 arm has mean

(
1
2 −

1
4

)
;

1 arm has mean
(
1
2 −

1
8

)
; . . ., and 1 arm has mean

(
1
2 −

1√
n

)
. For this instance, RI = O(1),

while log(1/∆2) = log
√
n = Θ(log n).

Ex. 3 Let x = 3n−2
4 = Θ(n). The best arm with mean 1

2 ; x arms with mean
(
1
2 −

1
2

)
; x

4 arms

with mean
(
1
2 −

1
4

)
; . . .; and 1 arm with mean

(
1
2 −

1√
n

)
. For this instance, RI = O(log n),

which is comparable to log(1/∆2) = log
√
n = Θ(log n).

Notations and Conventions. We use lower case letters to denote scalars and vectors, and upper
case letters to denote matrices. We denote by [n] the set {1, . . . , n}. For a vector x ∈ Rd and a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

positive semi-definite matrix Σ ∈ Rd×d, we denote by ∥x∥2 the vector’s Euclidean norm and define
∥x∥Σ =

√
x⊤Σx. Unless otherwise stated, log x refers to the logarithm of x with base 2.

For convenience, in MAB, given a subset of arms A ⊆ [n], we define the partial instance complexity
of A to be H(I ′), where I ′ = A ∪ {µ∗}.

2 RELATED WORK

A rich body of research exists on bandits, reinforcement learning, and online learning problems in the
batched model. We review the most relevant ones to our work.

Batched best arm identification has been studied in both multi-armed bandits (Jun et al., 2016;
Agarwal et al., 2017; Jin et al., 2019) and linear bandits (Fiez et al., 2019b; Soare et al., 2014a).
However, the batch complexities in those algorithms are not instance-sensitive. Recently, Jin et al.
(2023) studied settings where δ approaches 0, deriving optimal sample and batch complexities for
this setting. They also studied the finite δ scenario, noting that in this case, the batch complexity of
the proposed algorithms is not instance-sensitive.

The other basic problem in bandits theory is regret minimization. The early work UCB2 (Auer et al.,
2002) for regret minimization in multi-armed bandits can be implemented in log T batches where T is
the time horizon. Through a sequence of papers (Perchet et al., 2016; Gao et al., 2019; Esfandiari et al.,
2019), almost optimal regret-batch tradeoffs have been established for both minimax and instance-
dependent regret. Cesa-Bianchi et al. (2013) studied a setting where one can change the policy at any
time. Jin et al. (2021) considered the scenario in which the time horizon T is not known in advance,
as well as batch algorithms in the asymptotic regret setting. Several papers (Kalkanli & Özgür, 2021;
Karbasi et al., 2021; Karpov & Zhang, 2021) studied batched Thompson sampling for multi-armed
bandits. Regret minimization has also been studied for linear (contextual) bandits (Esfandiari et al.,
2019; Han et al., 2020; Ruan et al., 2021; Zhang et al., 2021), among which Zhang et al. (2021)
obtained almost optimal regret-batch tradeoff for almost all settings.

We also note that there is a strong connection between the batched model and the collaborative
learning (CL) model, which has gained attention in recent years. Notable works include: (Hillel
et al., 2013; Tao et al., 2019) on BAI w.r.t. sample complexity and round complexity tradeoffs;
Karpov et al. (2020) on top-m best arm identifications; Wang et al. (2019) on regret minimization
w.r.t. sample complexity and communication cost tradeoffs; and Karpov & Zhang (2023) on BAI
w.r.t. sample complexity and communication cost tradeoffs; Karpov & Zhang (2024) on regret
minimization w.r.t. sample complexity and round complexity tradeoffs. In particular, the batched
model is essentially equivalent to the non-adaptive version of the CL model. Tao et al. (2019)
showed that in the non-adaptive CL model, there is an algorithm for fixed-confidence BAI that
achieves almost optimal sample complexity using log(1/∆2) rounds (for worst-case input), where
the round complexity is almost tight, up to a log log(1/∆2) factor. When the upper bound result is
adapted to the batched model, we get an algorithm with log(1/∆2) batch complexity, which is not
instance-sensitive.

3 INSTANCE-DEPENDENT BATCHED ALGORITHM FOR MULTI-ARMED
BANDITS

In this section, we present our batched algorithm IS-SE for MAB and analyze its complexities.

3.1 THE ALGORITHM

Our algorithm is based on successive elimination (SE) with a refined scheme to update the batch
sizes. We include the details of IS-SE in Algorithm 1.

We start by describing the SE algorithm and then introduce our algorithm, emphasizing the key
differences. The SE algorithm can be seen as a special realization of Algorithm 1 with βsample = 0.
At r-th batch, we denote Sr as the set of arms that have not been eliminated yet. In each batch,
SE follows a round-robin approach, pulling each arm in the set Sr for roughly Lr times (up to a
logarithmic factor). After the arm pulls, SE estimates the reward mean for each arm and eliminates

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Instance-Sensitive Successive Elimination (IS-SE)

Require: a set of arms X , confidence parameter βconf, sample complexity parameter βsample, and
grid parameter βgrid.

1: Let S1 ← [n], r ← 1, L1 ← βgrid, δ1 ← 3δ
π2 ;

2: while |Sr| > 1 do
3: for each arm i ∈ Sr do
4: pull arm i for Lr log(r2n/δ1) times; let p̂ri be the empirical mean of arm i ;
5: end for
6: let p̂r∗ ← maxi∈Sr p̂

r
i , and let ϵri ← p̂r∗ − p̂ri ;

7: delete the arm set Or ⊆ Sr such that for each i in Sr for which ϵri > βconf/
√
Lr ;

8: set Sr+1 ← Sr \Or, and set

Lr+1 ← βgridLr +
βsample

|Sr+1|

r∑
s=1

∑
j∈Os

(ϵsj)
−2 ;

9: r ← r + 1 ;
10: end while
Ensure: the arm in Sr .

those whose estimated mean is at least βconf/
√
Lr below the empirical best arm, where βconf is a

parameter controlling the confidence level for eliminating suboptimal arms. SE then sets the number
of pulls for the next batch using a simple multiplication rule: Lr+1 := βgridLr, where βgrid > 1 is a
parameter that controls the batch-sample complexity tradeoff.

Following the analysis in Even-Dar et al. (2002), we can show that SE finds the best arm with high
probability using βgrid · Õ(HI) pulls and O(logβgrid

(1/∆2)) batches. By selecting βgrid as a constant,
e.g., βgrid = 4, we recover the result in Even-Dar et al. (2002). Our main observation is that such
a batch update rule may be too conservative. We can incorporate an additional term into the batch
update scheme that decreases the batch complexity for many input instances without increasing the
overall sample complexity.

Our approach. In IS-SE (Algorithm 1) at Line 8, we introduce in the r-th batch an additional budget∑r
s=1

∑
j∈Os

(ϵsj)
−2, which represents the estimated instance complexity of the set of eliminated

arms in the first r batches (i.e., arms in [n] \ Sr+1); we then uniformly distribute this additional
budget to the set of remaining arms Sr+1, scaled by the parameter βsample. Intuitively, we can think
that in order to eliminate arms in [n] \ Sr+1, one has to spend at least

∑r
s=1

∑
j∈Os

(ϵsj)
−2 pulls.

Therefore, it would not be a big waste to use this amount of budget for the next batch.

3.2 THE ANALYSIS

The following theorem suggests that Algorithm 1 is able to find the best arm and its sample complexity
only suffers an additional log nmin{log n, log(1/∆2)} factor compared with the optimal sample
complexity. Moreover, its batch complexity outperforms log(1/∆2).

Theorem 3.1. Select βconf = 5
√
2, βsample = 25/9 and βgrid = 4. With probability 1− δ, Algorithm

1 satisfies the following conditions:

1. (Correctness) Algorithm 1 returns the best arm.

2. (Batch complexity) Define {L̄r} and {Ur} as in (1.2) (Definition 1.1). Let RI to be the minimal
r ∈ N satisfying |Ur| = n − 1. Then the batch complexity of Algorithm 1 is bounded by RI .
Furthermore, suppose that 0 = r0 ≤ r1 < · · · < rα = RI satisfying ∀1 ≤ i ≤ α,Uri ̸= Uri+1.
Then RI ≤ α+ log 451

450
(450HI/n) = O(log(1/∆2)).

3. (Sample complexity) Algorithm 1 has a sample complexity of

O

((
log(n/δ) + log log∆−1

2

)
logmin{n,∆−1

2 } ·HI

)
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We provide a proof sketch here and leave the full proof to Appendix A.

Proof Sketch. For sample complexity, we start by showing that with high probability, the additional
term

∑r
s=1

∑
j∈Os

(ϵsj)
−2 at Line 8 approximates the partial instance complexity over the eliminated

arms, that is,
∑r
s=1

∑
j∈Os

∆−2
j , up to some constant. We then show that the additional sample

budget
∑r
s=1

∑
j∈Os

(ϵsj)
−2 included at each update of Lr+1 is not overly costly. Specifically, we

prove that the sum of these terms only contributes an extra logmin{n,∆−1
2 }HI to the overall sample

complexity.

For batch complexity, we align the number of batches r that IS-SE uses with the batches defined in
Definition 1.1. A major challenge is to deal with the randomness introduced by the sampling steps in
IS-SE. We use induction to bound Lr by L̄r and ∪ri=1Oi by Ur.

For the inequality RI ≤ α + log 451
450

(450HI/n), we show that in each batch, we either eliminate
more arms (i.e., Ur ̸= Ur+1), or the estimated instance complexity

∑
i∈[n](ϵ

r
i)

−2 doubles. These
proof techniques may be of independent interest.

We make some remarks regarding Theorem 3.1.

Remark 3.2. IS-SE finds the best arm with Õ(HI) sample complexity and at most α+ log(HI/n)
batch complexity. Note that α ≤ log(1/∆2) due to the fact that Lr+1 > 4Lr and HI/n ≤ 1/∆2

2.
Therefore, the batch complexity is always no more than log(1/∆2).

Remark 3.3. Although IS-SE achieves both instance-sensitive sample complexity Õ(HI) and batch
complexity RI , it does not need either HI or RI as its input.

Remark 3.4. One might argue that IS-SE is not necessarily superior to SE because its sample
complexity exceeds HI by some logarithmic factors, and similar improvements in batch com-
plexity might be achieved by adjusting the βgrid parameter in SE. However, for any choice of
βgrid = poly log(n/(δ∆2)), the batch complexity of SE can only be bounded by O(logβgrid

(1/∆2)) =

O(log(1/∆2)/ log log(n/(δ∆2))), which for many input instances, such as Ex. 1 and Ex. 2, is still
much worse than RI .

4 INSTANCE-DEPENDENT BATCH COMPLEXITY FOR LINEAR BANDITS

In this section, we extend our instance-dependent batched MAB algorithm to the linear bandits setting.
In best arm identification in linear bandits (BAI-L), we again have a set of n arms, but now each arm
is associated with a d-dimensional attribute vector. Let xi ∈ Rd denote the context associated with
the i-th arm, and we use X to denote the collection of all contexts. We assume ∥xi∥2 ≤ 1 for all arms.
Given an error probability δ, our goal is to identify an arm x∗ = argmaxx∈X x

⊤θ∗ with probability
(1− δ) using the smallest number of arm pulls, where θ∗ ∈ Rd is an unknown vector representing
the hidden linear model, and each pull of an arm x returns a value x⊤θ∗ + ϵ, where ϵ ∼ N (0, 1).

We introduce a few more notations. Let Y(S) := {x− x′ : ∀x, x′ ∈ S, x ̸= x′} and let Y∗(S) :=
{x∗ − x : ∀x ∈ S \ {x∗}}. We will use the following optimal design for a given set A and its
corresponding value.
Definition 4.1. Given the arm set X ⊆ Rd satisfying |X| = n and a test set A ⊆ Rd, we define the
optimal design of A by λ(A), which is

λ(A) := argmin
λ∈∆X

max
y∈A
∥y∥2(∑x∈X λxxx⊤)−1 , where ∆X :=

{
λ ∈ R|X| : λ ≥ 0,

∑
x∈X

λx = 1
}
.

We also define the optimal design value of A by ρ(A) := maxy∈A,λ=λ(A) ∥y∥2(∑x∈X λxxx⊤)−1 .

Our algorithm relies on the Round function introduced by (Allen-Zhu et al., 2021; Fiez et al., 2019a).
This function outputs a multiset of size N from the input arm set X with specific approximation
guarantees.
Definition 4.2 (Allen-Zhu et al. (2021); Fiez et al. (2019a)). There is a function Round(λ,N,X, Y)
that outputs a multiset (x1, ..., xN), where xi ∈ X for all i ∈ [N] and N is the total number of arms,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Instance-Sensitive RAGE (IS-RAGE)

Require: a set of arms X , confidence parameter βconf, sample complexity parameter βsample, and
grid parameter βgrid.

1: Let r = 1, S1 = X,L1 = βgrid, λ∗1 ← λ(Y(S1)), ρ1 ← ρ(Y(S1)) ;
2: while |Sr| > 1 do
3: set δr ← δ/r2 and Nr ← 4max{2 log(|Sr|2/δr)ρrLr, d} ;
4: set {x1r, . . . , xNr

r } ← Round(λ∗r , Nr, X,Y(Sr)), where Round() is defined in Definition 4.2 ;
5: pull x1r, . . . , x

Nr
r and obtain observed rewards cir ∼ N ((θ∗)⊤xir, 1); let

θr ←

(
Nr∑
i=1

xir(x
i
r)

⊤

)−1 Nr∑
i=1

xirc
i
r ;

6: set p̂rx ← θ⊤r x, p̂r∗ ← maxx∈Sr p̂
r
x, and ϵrx ← p̂r∗ − p̂rx ;

7: set the elimination set Or ← {x ∈ Sr|ϵrx ≥ βconf/
√
Lr}, and set ϵx ← ϵrx ;

8: let Sr+1 ← Sr \Or, λ∗r+1 ← λ(Y(Sr+1)), and ρr+1 ← ρ(Y(Sr+1)) ;
9: let Tr satisfy that βTr

grid ≤ Lr < βTr+1
grid and set

Lr+1 ← βgridLr +

∑Tr

t=1 β
t
grid · ρ(Y(X \ {x ∈ ∪rs=1Os : ϵx > βsample ·

√
β−t

grid}))︸ ︷︷ ︸
It

ρ(Y(X \ ∪rs=1Os))
; (4.1)

10: r ← r + 1 ;
11: end while
Ensure: the arm in Sr .

and Y is the measurement set. If N > d, then the output multiset satisfies

max
y∈Y
∥y∥2

(
∑N

i xix⊤
i)−1 ≤

2

N
max
y∈Y
∥y∥2(∑x∈X λxxx⊤)−1 .

We define a value ψ∗ to represent the instance complexity of BAI-L, analogous to how HI character-
izes the instance complexity for BAI-M.

Definition 4.3 (Soare et al. (2014b); Fiez et al. (2019a)). We define ψ∗ ≜ ψ∗(X) as follows:

ψ∗ := min
λ∈∆X

max
x∈X\{x∗}

∥x− x∗∥2(∑x′∈X λx′x′(x′)⊤)−1

(x∗ − x)⊤θ∗
.

It has been shown that ψ∗ is the instance-sensitive lower bound of the instance complexity of BAI-L,
with certain existing algorithms like RAGE achieving this bound up to logarithmic factors (Soare
et al., 2014b; Fiez et al., 2019a).

4.1 THE ALGORITHM

Our algorithm IS-RAGE is described in Algorithm 2, which is built upon the RAGE algorithm
proposed by Fiez et al. (2019a).

RAGE can essentially be seen as an implementation of Algorithm 2 with βsample = 0. At round r,
RAGE maintains a set Sr that includes the optimal arm x∗ with high probability. It allocates a budget
Nr based on observations from the previous (r − 1) rounds, and then calls the Round function (as
defined in Definition 4.2) to generate a multiset of arms Xr = {x1r, . . . , xNr

r }. RAGE pulls each
arm in Xr and computes θr using ordinary least-squares (OLS) over the arm set and the reward set.
Based on θr, it calculates the suboptimality gap ϵrx for each x ∈ Sr and eliminates arms with large ϵrx.
RAGE then continues to the next round with a reduced arm set Sr+1 = Sr \Or, where Or is the set
of arms eliminated in round r.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Our approach. Similar to IS-SE, IS-RAGE (Algorithm 2) introduced an additional sample budget
term at (4.1) when allocating the sample budget per arm for the next batch. The first term in the
right hand side of (4.1) is the same as that in RAGE, which aims to double the current number
of pulls for each arm. For the second term, we uniformly distribute the estimated partial instance
complexity of all eliminated arms (represented by It in (4.1)) to the set of remaining arms Sr+1, where
ρ(Y(X \ ∪rs=1Os)) represents the “effective” cardinality of Sr+1 for BAI-L. To better understand
why It approximates the partial instance complexity of all eliminated arms, we have the following
lemma.
Lemma 4.4. For any L > 0, we have L · ρ(Y(z ∈ X : ∆z ≤ 15/

√
L)) ≤ 900ψ∗, where ψ∗ is

defined in Definition 4.3.

Roughly speaking, by selecting L = βtgrid, Lemma 4.4 shows that It approximates the total instance
complexity ψ∗ over the whole arm set X , which naturally serves as an upper bound of the partial
instance complexity of eliminated arms x ∈ ∪rs=1Os. We claim that such an algorithm design is
necessary for linear bandits due to the fact that arms in linear bandits are often linearly dependent,
while arms in MAB are independent.
Remark 4.5. We note that the hyperparameter βsample governs how the updated Lr+1 relates to the
partial instance complexity of the eliminated arms. As βsample increases, each It in (4.1) also scales
up, functioning similarly to βsample in IS-SE.

4.2 THE ANALYSIS

We try to show that IS-RAGE achieves the instance complexity ψ∗ up to some logarithmic factors,
with a better batch complexity. Similar to Definition 1.1, we define the instance-sensitive batch
complexity for linear bandits as follows. For simplicity, we abuse the notations and reuse RI , Lr, L̄r
for linear bandits.
Definition 4.6. Define a sequence L̄r = 4T̄r for some integer T̄r as follows. Let Ur := {x|∆x >

15/
√
L̄r} and

L̂r+1 ← 4L̄r +

∑T̄r

t=1 4
t · ρ(Y(X \ {x ∈ Ur : ∆x > 15 · 2−t}))

ρ(Y(X \ Ur))
, (4.2)

and we select L̄r+1 = 4T satisfying 4T ≤ L̂r+1 < 4T+1. Denote RI to be the minimal r satisfying
Ur = X .

Generally speaking, the second term of the RHS in (4.2) gives an approximation of the partial instance
complexity of arms in Ur. Ideally, we would like to use a definition similar to ψ∗ to directly define
the partial instance complexity of arms in Ur. However, since x∗ is unknown to the agent, we are
unable to compute ψ∗ directly.

We have the following theorem regarding Algorithm 2,
Theorem 4.7. With probability at least 1− δ, Algorithm 2 satisfies the following conditions:

1. (Correctness) Algorithm 2 returns the optimal arm µ1.

2. (Batch complexity) Algorithm 2 runs at most RI batches where RI is defined in Definition 4.6.
Furthermore, RI can be bounded as

RI ≤ α+ log 5
4

900 log2(1/∆2)ψ
∗

ρ(Y∗(X))
,

where α is the number of different Ur’s, and ψ∗ is defined in Definition 4.3.

3. (Sample complexity) Algorithm 2 has a sample complexity of

O(ψ∗ log2(1/∆2) log(|X|/δ) + log(1/∆2)d).

We provide a proof sketch here and leave the full proof to Appendix B. The proof follows a similar
approach to that of Theorem 3.1, but involves more technical details due to the added complexity of
linear bandits.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) SE v.s. IS-SE, B1(n) (b) SE v.s. IS-SE, B2(n) (c) SE v.s. IS-SE, B3(n)

(d) RAGE v.s. IS-RAGE, B1(n) (e) RAGE v.s. IS-RAGE, B2(n) (f) RAGE v.s. IS-RAGE, B3(n)

Figure 2: Sample complexity v.s. number of batches.

Proof Sketch. Similar to the proof to IS-SE, we first prove that ϵrx serves as a good approximation
of the suboptimality gap ∆x under a high probability event. For batch complexity, we align the
number of batches r with the batches RI we have defined in Definition 4.6. We still use induction to
bound Lr ≥ L̄r and Ur ⊆ ∪rs=1Os to deal with the randomness introduced by the sampling steps in
IS-RAGE. Unlike IS-SE, due to the definition of It, we force L̄r to be the power of 4 to make sure
the induction step can be proceeded, which makes our analysis slightly different from that of IS-SE.
To show that RI ≤ α+log 5

4

900 log2(1/∆2)ψ
∗

ρ(Y∗(X)) , we adapt a similar strategy as IS-SE with a new bound
on the partial instance complexity of linear bandits. Finally, to prove the sample complexity result, we
show that the additional sample complexity introduced by the summation of It can be upper bounded
by polylog(|X|/δ)ψ∗, which suggests that the sample complexity of IS-RAGE is the same as ψ∗ up
to some logarithmic factors.

Remark 4.8. Theorem 4.7 shows that IS-RAGE can find the best arm with Õ(ψ∗) sample complexity,
which is only log(1/∆2) worse than RAGE Fiez et al. (2019a). Meanwhile, it only requires O(α+

log ψ∗

ρ(Y∗(X)) + log log(1/∆2)) number of batches. We can verify that both α and log ψ∗

ρ(Y∗(X)) are
smaller than log(1/∆2), which suggests that our bound on the batch complexity is tighter.

5 EXPERIMENTS

We run experiments on both synthetic data and real-world data to validate the effectiveness of our
proposed algorithm.

5.1 SYNTHETIC DATA

We test our proposed algorithms (IS-SE and IS-RAGE) with baseline algorithms (SE and RAGE)
over synthetic data here.

Bandit setting. We evaluate our algorithm using the three examples introduced earlier. These
examples are denoted as B1(n), B2(n), and B3(n), corresponding to Ex. 1, Ex. 2, and Ex. 3,
respectively, where n represents the number of arms in each case. When the agent selects an arm
with a mean reward α, the environment returns an observation α+ ϵ, where ϵ ∼ N(0, 0.1). For the
multi-armed bandit setting, we test our algorithm on each Bi(n) with n = 1000. In the linear bandit
setting, we set the dimension d = n and define the arm set as X = {ei}ni=1, where ei represents
the i-th basis vector in n-dimensional space. Due to memory constraints, we test the linear bandit
algorithms with n = 500.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Algorithms. We compare IS-SE (Algorithm 1) with SE across different parameter configurations
on various bandit instances. For both SE and IS-SE, we set the confidence level δ = 0.1. Specifically,
we evaluate SE with different values of βgrid, and IS-SE with varying selections of both βgrid and
βsample. Note that SE is equivalent to IS-SE when βsample = 0. For SE, we fix βconf = 1 and test it
with βgrid ∈ {2, 3, ..., 8}. For IS-SE, we also set βconf = 1 and test it with βgrid ∈ {2, 3, ..., 8} and
βsample ∈ {0.5, 1, 1.5, 2}.
We also compare IS-RAGE (Algorithm 2) with RAGE. Specifically, for both RAGE and IS-RAGE,
we set the βconf = 1 and the confidence level δ = 0.1. Note that RAGE is equivalent to IS-RAGE
when βsample = 0. For RAGE, we test it with βgrid ∈ {2, 3, ..., 8}. For IS-RAGE, we test it with
βgrid ∈ {2, 3, ..., 8} and βsample ∈ {0.5, 1, 1.5, 2}.
For each parameter set, we run the algorithms 10 times, reporting the mean and variance of the
number of batches and sample complexity needed to identify the best arm.

Results. The results are recorded in Figure 2. For simplicity, we report the results of IS-SE with
βgrid = 5 for all three instances, and we report the results of IS-RAGE with βsample = 1 as well. In the
first two bandit instances B1(n) and B2(n), our IS-SE and IS-RAGE consistently outperforms SE and
RAGE. This indicates that, for the same sample complexity, IS-SE and IS-RAGE are more efficient
on allocating samples across batches, resulting in lower batch complexity compared to SE and RAGE.
This aligns with our analysis in the introduction, where we showed that IS-SE achieves an O(1) batch
complexity, while SE has an O(log n) batch complexity. For the third bandit instance B3(n), the
results of SE and IS-SE can hardly be separated, so do RAGE and IS-RAGE. This suggests IS-SE
and IS-RAGE do not yield a better sample-batch tradeoff compared with SE and RAGE, which also
aligns our analysis in the introduction.

5.2 REAL DATA

Figure 3: SE v.s. IS-SE on Movie-
lens25M

We also evaluate our algorithms on the Movielens25M
dataset5, which contains 25 million ratings for 60,000
movies by 160,000 users. We formulate this as a multi-
armed bandit (MAB) problem by selecting the top 1,000
movies with the most ratings and treating each movie as
an arm. The reward for pulling an arm corresponds to the
negative rating given by a user for the associated movie.
To accelerate the sampling process, we consider only the
first 50 ratings for each movie across all users.

We compare SE and IS-SE on the Movielens25M dataset.
Each algorithm is tested with βgrid ∈ {2, 4, 6, 8} and
βsample ∈ {0.5, 1, 1.5, 2}. For each parameter configu-
ration, we run the algorithms 10 times and report the mean
and variance of the number of batches and the sample
complexity required to identify the best arm. The results
are shown in Figure 3. We observe that IS-SE consistently outperforms SE in terms of the sample
complexity-batch complexity trade-off, highlighting the effectiveness of our algorithm.

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed algorithms for best arm identification in multi-armed and linear
bandits, achieving near-optimal sample complexities along with instance-sensitive batch complexities.
Our batch complexities can be significantly better than log(1/∆2) for many input instances, where
the latter is minimax-optimal up to a double-logarithmic factor. Given the importance of batched
algorithms in online learning, we believe that exploring algorithms with instance-sensitive batch
complexity could be an interesting direction for other bandit and online learning problems. A couple
of immediate questions arise from this work. First, it would be valuable to analyze the average batch
complexity of our algorithms on typical input distributions. Second, it would be beneficial to run our
experiments on larger datasets to better assess their practicality in real-world applications.

5https://grouplens.org/datasets/movielens/25m/

10

https://grouplens.org/datasets/movielens/25m/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna. Learning with limited rounds
of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons. In
COLT, pp. 39–75, 2017.

Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal discrete optimization for
experimental design: A regret minimization approach. Mathematical Programming, 186:439–478,
2021.

Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. A survey
on compiler autotuning using machine learning. ACM Comput. Surv., 51(5):96:1–96:42, 2019.

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed
bandits. In COLT, pp. 41–53, 2010.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2-3):235–256, 2002.

Alexandra Carpentier and Andrea Locatelli. Tight (lower) bounds for the fixed budget best arm
identification bandit problem. In COLT, pp. 590–604, 2016.

Nicolò Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning with switching costs and other
adaptive adversaries. In NIPS, pp. 1160–1168, 2013.

Lijie Chen, Jian Li, and Mingda Qiao. Towards instance optimal bounds for best arm identification.
In COLT, pp. 535–592, 2017.

Hossein Esfandiari, Amin Karbasi, Abbas Mehrabian, and Vahab S. Mirrokni. Batched multi-armed
bandits with optimal regret. CoRR, abs/1910.04959, 2019.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. PAC bounds for multi-armed bandit and markov
decision processes. In COLT, pp. 255–270, 2002.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-armed bandit and markov
decision processes. In International Conference on Computational Learning Theory, pp. 255–270.
Springer, 2002.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping conditions
for the multi-armed bandit and reinforcement learning problems. Journal of Machine Learning
Research, 7(Jun):1079–1105, 2006.

Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian Ratliff. Sequential experimental design for
transductive linear bandits. Advances in neural information processing systems, 32, 2019a.

Tanner Fiez, Lalit Jain, Kevin G. Jamieson, and Lillian J. Ratliff. Sequential experimental design for
transductive linear bandits. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), NeurIPS, pp. 10666–10676, 2019b.

Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits problem.
In NeurIPS, 2019.

Yanjun Han, Zhengqing Zhou, Zhengyuan Zhou, Jose H. Blanchet, Peter W. Glynn, and Yinyu Ye.
Sequential batch learning in finite-action linear contextual bandits. CoRR, abs/2004.06321, 2020.

Eshcar Hillel, Zohar Shay Karnin, Tomer Koren, Ronny Lempel, and Oren Somekh. Distributed
exploration in multi-armed bandits. In NIPS, pp. 854–862, 2013.

Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil’ UCB : An optimal
exploration algorithm for multi-armed bandits. In COLT, pp. 423–439, 2014.

Tianyuan Jin, Jieming Shi, Xiaokui Xiao, and Enhong Chen. Efficient pure exploration in adaptive
round model. In NeurIPS, pp. 6605–6614, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tianyuan Jin, Pan Xu, Xiaokui Xiao, and Quanquan Gu. Double explore-then-commit: Asymptotic
optimality and beyond. In Mikhail Belkin and Samory Kpotufe (eds.), COLT, volume 134 of
Proceedings of Machine Learning Research, pp. 2584–2633. PMLR, 2021.

Tianyuan Jin, Yu Yang, Jing Tang, Xiaokui Xiao, and Pan Xu. Optimal batched best arm identification.
arXiv preprint arXiv:2310.14129, 2023.

Kwang-Sung Jun, Kevin G. Jamieson, Robert D. Nowak, and Xiaojin Zhu. Top arm identification
in multi-armed bandits with batch arm pulls. In Arthur Gretton and Christian C. Robert (eds.),
AISTATS, volume 51 of JMLR Workshop and Conference Proceedings, pp. 139–148. JMLR.org,
2016.

Cem Kalkanli and Ayfer Özgür. Batched thompson sampling. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), NeurIPS, pp.
29984–29994, 2021.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. Pac subset selection in
stochastic multi-armed bandits. In ICML, pp. 227–234, 2012.

Amin Karbasi, Vahab S. Mirrokni, and Mohammad Shadravan. Parallelizing thompson sampling. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), NeurIPS, pp. 10535–10548, 2021.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In ICML, pp. 1238–1246, 2013.

Nikolai Karpov and Qin Zhang. Batched thompson sampling for multi-armed bandits. CoRR,
abs/2108.06812, 2021. URL https://arxiv.org/abs/2108.06812.

Nikolai Karpov and Qin Zhang. Communication-efficient collaborative best arm identification. In
Brian Williams, Yiling Chen, and Jennifer Neville (eds.), AAAI, pp. 8203–8210. AAAI Press, 2023.

Nikolai Karpov and Qin Zhang. Communication-efficient collaborative regret minimization in multi-
armed bandits. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), AAAI, pp.
13076–13084. AAAI Press, 2024.

Nikolai Karpov, Qin Zhang, and Yuan Zhou. Collaborative top distribution identifications with
limited interaction (extended abstract). In FOCS, pp. 160–171. IEEE, 2020.

Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing user studies with mechanical turk. In
Mary Czerwinski, Arnold M. Lund, and Desney S. Tan (eds.), CHI, pp. 453–456. ACM, 2008.

Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and Ion Stoica. Learning to
optimize join queries with deep reinforcement learning. CoRR, abs/1808.03196, 2018.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen
Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement optimization with
reinforcement learning. In ICML, pp. 2430–2439, 2017.

Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg. Batched bandit problems.
The Annals of Statistics, 44(2):660–681, 2016.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58(5):527–535, 1952.

Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and learning
distributional optimal design. In Samir Khuller and Virginia Vassilevska Williams (eds.), STOC

’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021, pp. 74–87. ACM, 2021.

Marta Soare, Alessandro Lazaric, and Rémi Munos. Best-arm identification in linear bandits. In
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger
(eds.), NeurIPS, pp. 828–836, 2014a.

12

https://arxiv.org/abs/2108.06812

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Marta Soare, Alessandro Lazaric, and Rémi Munos. Best-arm identification in linear bandits.
Advances in Neural Information Processing Systems, 27, 2014b.

Chao Tao, Qin Zhang, and Yuan Zhou. Collaborative learning with limited interaction: Tight bounds
for distributed exploration in multi-armed bandits. In David Zuckerman (ed.), FOCS, pp. 126–146.
IEEE Computer Society, 2019.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, and Liwei Wang. Distributed bandit learning: How much
communication is needed to achieve (near) optimal regret. CoRR, abs/1904.06309, 2019.

Zihan Zhang, Xiangyang Ji, and Yuan Zhou. Almost optimal batch-regret tradeoff for batch linear
contextual bandits. CoRR, abs/2110.08057, 2021. URL https://arxiv.org/abs/2110.
08057.

A PROOF OF THEOREM 3.1

We now prove Theorem 3.1. We need the following technical lemma which characterizes the
concentration properties of subgaussian random variables.
Lemma A.1 (Corollary 5.5 in Lattimore & Szepesvári (2020)). Assume that X1, . . . , Xn are inde-
pendent, σ-subguassian random variables centered around µ. Then for any ϵ > 0

P(µ̂ ≥ µ+ ϵ) ≤ exp

(
− nϵ2

2σ2

)
and P(µ̂ ≤ µ− ϵ) ≤ exp

(
− nϵ2

2σ2

)
,

where µ̂ = 1/n
∑n
t=1Xt. We often use the following equalivent inequality: we have

P
(
|µ̂− µ| ≤

√
2σ log(2/δ)

n

)
≥ 1− δ.

Next we start our main proof. We divide our proof into two parts. In the first part, we prove that our
algorithm can find the optimal arm, and we bound the sample complexity for our algorithm to find
the optimal arm. In the second part, we prove that our algorithm enjoys a better batch complexity
compared with the vanilla log(1/∆2).

A.1 PROOF OF CORRECTNESS OF THEOREM 3.1

Proof of Correctness of Theorem 3.1. For any fixed arm i at batch r, we have

P
(
|p̂ri − µi| ≥

√
2

Lr

)
≤ 2 exp

(
−1

2
· Lr ·

2 log(r2n/δ1)

Lr

)
≤ 2δ1
r2n

.

Applying the union bound over all arms and all batches, we have

P

⋂
r≥1

⋂
i∈[n]

{
|p̂ri − µi| ≥

√
2

Lr

} ≤∑
r>1

(
n · 2δ1

r2n

)
=
π2δ1
3

.

Let µ∗r
= argmaxi∈Sr

p̂ri . Therefore, with probability at least π2δ1/3, we have for all r > 1,

p̂r∗ −
√

2

Lr
≤ µ∗r

≤ µ1 ≤ p̂r1 +
√

2

Lr
,

Therefore, with probability at least 1− π2δ1/3 = 1− δ, Algorithm 1 will return the best arm.

For simplicity, we denote the event defined in (A.1) as E , i.e.,

E :=
⋂
r≥1

⋂
i∈[n]

{
|p̂ri − µi| ≥

√
2

Lr

}
.

13

https://arxiv.org/abs/2110.08057
https://arxiv.org/abs/2110.08057

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 PROOF OF BATCH COMPLEXITY OF THEOREM 3.1

Proof of Batch Complexity of Theorem 3.1. We condition on event E . First, by Line 8 of Algorithm 1
and the fact that 1

3∆j ≤ ϵrj ≤ 5
3∆j , we have

Lr+1 ≥ 4Lr + f(∪rs=1Os) where f(A) :=

∑
j∈A 1/∆2

j

n− |A|
.

Recall the two “virtual” sequences {L̄r} and {Ur} we have defined in (1.2). We prove by induction
that for all r,

Ur ⊆ ∪rs=1Os and (A.1)
Lr ≥ L̄r . (A.2)

Assuming that both (A.1) and (A.2) hold for step r, we first prove that (A.2) holds for step (r + 1):

Lr+1 ≥ 4Lr + f(∪rs=1Os) ≥ 4L̄r + f(Ur) = L̄r+1,

where the second inequality uses the induction hypothesis.

We next prove that (A.1) holds for step (r + 1). To this end, we consider the set of eliminated arms
Or+1. Note that by our algorithm design, Or+1 satisfies

Or+1 := {j ∈ [n]\ ∪rs=1 Os | ϵr+1
j > 5

√
2/
√
Lr+1}.

We also know that for any j ∈ Ur+1, j satisfies that ∆j > 15
√
2/L̄r+1 based on the definition of

Ur+1. By (A.2), we have ∆j > 15
√
2/Lr+1. By ϵr+1

j ≥ 1
3∆j , we further have ϵr+1

j > 5
√

2/Lr+1.

We now consider any j ∈ Ur+1. If j ∈ ∪rs=1Os, then we directly have j ∈ ∪r+1
s=1Os. Otherwise, we

have
j ∈ ([n]\ ∪rs=1 Os) ∩ {j : ϵr+1

j > 5
√
2/Lr+1} = Or+1,

which again suggests j ∈ ∪r+1
s=1Os. Therefore, (A.1) holds for (r + 1). Consequently, both (A.1) and

(A.2) hold for every r > 0.

By (A.2), the total number of batches can be bounded by the smallest r satisfying L̄r ≥ 1/∆2
2. Note

that L̄r is a fixed sequence. Let R be the smallest r satisfying L̄r ≥ 1/∆2
2, which is the batch

complexity we want to further bound.

Consider the quantity

Hr := L̄r(n− |Ur|) +
∑
j∈Ur

450

∆2
j

,where Ur := {j : ∆j > 15
√

2/L̄r}.

By definition of Hr, we have H0 = n and HR+1 = 450H .

We first observe that {Hr} is an increasing sequence.

L̄r+1(n− |Ur+1|) +
∑

j∈Ur+1

450

∆2
j

≥ L̄r(n− |Ur+1|) +
∑

j∈Ur+1

450

∆2
j

= L̄r(n− |Ur|) + L̄r(|Ur| − |Ur+1|) +
∑
j∈Ur

450

∆2
j

+
∑

j∈Ur+1/Ur

450

∆2
j

≥ L̄r(|Ur| − |Ur+1|) + (|Ur| − |Ur+1|)L̄r + L̄r(n− |Ur|) +
∑
j∈Ur

450

∆2
j

≥ L̄r(n− |Ur|) +
∑
j∈Ur

450

∆2
j

,

where the first inequality holds since {L̄r} is an increasing sequence, and the second inequality holds
since for any j /∈ Ur, we have ∆j ≤ 15

√
2/L̄r by the definition of Ur.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We next show that when Ur+1 = Ur, we have that Hr+1 ≥ 451
450Hr. Note that

L̄r+1(n− |Ur+1|) +
∑

j∈Ur+1

450

∆2
j

= L̄r+1(n− |Ur|) + L̄r+1(|Ur| − |Ur+1|) +
∑
j∈Ur

450

∆2
j

+
∑

j∈Ur+1/Ur

450

∆2
j

= 4L̄r(n− |Ur|) +
∑
j∈Ur

451

∆2
j

+ L̄r+1(|Ur| − |Ur+1|) +
∑

j∈Ur+1/Ur

450

∆2
j

= 4L̄r(n− |Ur|) +
∑
j∈Ur

451

∆2
j

≥ 451

450

L̄r(n− |Ur|) + ∑
j∈Ur

450

∆2
j

 .

Therefore, suppose that 0 = r0 ≤ r1 < · · · < rα = R satisfying ∀1 ≤ i ≤ α,Uri ̸= Uri+1. For any
1 ≤ i ≤ α and any ri ≤ r < ri+1, we have

Hri+1
≥ 451

450
Hri+1−1 ≥ · · · ≥

(
451

450

)ri+1−ri−1

Hri+1 ≥
(
451

450

)ri+1−ri−1

Hri ,

which gives

ri+1 − ri ≤ 1 + logHri+1 − logHri .

Taking the summation, we have R ≤ α+ log 451
450

(450H/n).

A.3 PROOF OF SAMPLE COMPLEXITY OF THEOREM 3.1

Proof of Sample Complexity of Theorem 3.1. We derive the sample complexity under event E . We
know that at the r-th batch, all j ∈ Sr satisfy

|ϵrj −∆j | ≤ |p̂r∗ − µ∗|+ |p̂rj − µj | ≤ 2

√
2

Lr
.

Thus, for all j ∈ Or, we always have

∆j ≥ ϵrj − |ϵrj −∆j | ≥ 3

√
2

Lr
,

which means 1
3∆j ≤ ϵrj ≤ 5

3∆j . Note that Lr+1 ≥ 4Lr guarantees that the number of arm pulls in
Sr+1 at the (r + 1)-th batch is at least 4 times larger than that at the r-th batch. Assume arm i is
eliminated at the ri-th batch. The total number of pulls of arm i can be bounded by

Ni ≤ 2 log(r2i n/δ1)Lri ≤ O
(
(log(n/δ) + log log∆−1

2)Lri
)
.

Therefore, we only need to bound
∑n
i=1 Lri .

We divide Lri into two parts Ii1 and Ii2, and bound them separately.

Lri ≤
ri−1∑
s=1

∑
j∈Os

1

|Sri |[ϵsj]2︸ ︷︷ ︸
Ii1

+4Lri−1︸ ︷︷ ︸
Ii2

.

Bounding term
∑
i>1 I

i
1. We take the summation of Ii1 (i = 2, . . . , n) to bound the total sample

complexity:
n∑
i=2

Ii1 =

n∑
i=2

ri−1∑
s=1

∑
j∈Os

1

|Sri |[ϵsj]2
≤ 9

n∑
i=2

ri−1∑
s=1

∑
j∈Os

1

|Sri |∆2
j

,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where the inequality holds since for all j ∈ Os, we have 1
3∆j ≤ ϵsj ≤ 5

3∆j . Next, note that
|Sr| = |Or|+ ...+ |OB |, where B is the total number of batches. We have

n∑
i=2

ri−1∑
s=1

∑
j∈Os

1

|Sri |∆2
j

=

B−1∑
s=1

|Os|
|Ss|

s∑
t=1

∑
j∈Ot

1

∆2
j

≤
B−1∑
s=1

|Os|
|Ss|

∑
j>1

1

∆2
j

≤ min{log n,B}
∑
j>1

1

∆2
j

,

where the last inequality holds since for each s, |Os| ≤ |Ss|, and

|Os|
|Ss|

≤
|Os|−1∑
k=0

1

|Ss| − k
.

Bounding term
∑
i>1 I

i
2. By the definition of ri and under the event E , we have

∆i ≤ ϵri−1
i + |ϵri−1

i −∆i| ≤ 5

√
2

Lri−1
+ 2

√
2

Lri−1
= 7

√
2

Lri−1
,

where the second inequality holds because the i-th arm will not be eliminated at the (ri − 1)-th batch.
Therefore, we have Lri−1 ≤ 2

∆2
i

, which suggests

∑
i>1

Ii2 ≤ O
(∑
i>1

1

∆2
i

)
.

Combining the two parts and using the fact that ri = O(log(1/∆2)), the total sample complexity is
bounded by

2
∑
i≥2

Lri · log(r2i n/δ1) ≤ O

((
log(n/δ) + log log∆−1

2

)∑
i≥2

Lri

)

≤ O

((
log(n/δ) + log log∆−1

2

)
logmin{n,∆−1

2 }
∑
i≥2

1

∆2
2

)
.

B PROOF OF THEOREM 4.7

Like Theorem 3.1, we prove our theorem for its correctness, batch complexity and sample complexity.
We have the following lemma:

Lemma B.1 (Section 2.2 in Fiez et al. (2019a)). Given a set Y ⊆ Rd, for any fixed design x1, ..., xN
(multiset) as well as their stochastic reward R1, ..., RN satisfying Ri ∼ θ⊤∗ xi +N (0, 1), let θ̂t be
the OLS estimate. Then

P
(
∀y ∈ Y, y⊤(θ∗ − θ̂t) ≥ ∥y∥(∑N

i=1 xix⊤
i)−1 · 2

√
log(|Y |/δ)

)
≤ δ. (B.1)

We define the event E as follows E = ∩Er, where

Er :=
{
∀y ∈ Y(Sr), (θr − θ∗)⊤y ≤ ∥y∥(∑x∈Xr

xx⊤)−1 · 2
√
log(|Y(Sr)|/δr)

}
(B.2)

Lemma B.1 suggests that Er holds with probability at least 1− δr, therefore we have E holds w.p. at
least 1−

∑
r δr ≥ 1− δ.

Next we assume E holds. We show that 1/3∆x ≤ ϵx ≤ 5/3∆x. First we have

|ϵrx −∆x| = |θ⊤r (xr∗ − x)− θ⊤∗ (x∗ − x)|. (B.3)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

To further bound it, for any x ∈ Sr, we have

θ⊤r (x
r
∗ − x)− θ⊤∗ (x∗ − x) = (θr − θ∗)⊤(xr∗ − x) + θ⊤∗ (x

r
∗ − x∗)

≤ (θr − θ∗)⊤(xr∗ − x)

≤ max
y∈Y(Sr)

∥y∥(∑N
i=1 xix⊤

i)−1 · 2
√
log(|Sr|2/δ), (B.4)

where we use Lemma B.1 and the fact that xr∗ ∈ Sr. Next, we further have

θ⊤r (x
r
∗ − x)− θ⊤∗ (x∗ − x) = θ⊤r (x

r
∗ − x∗)− (θ∗ − θr)⊤(x∗ − x)

≥ −(θ∗ − θr)⊤(x∗ − x)

≥ − max
y∈Y(Sr)

∥y∥(∑N
i=1 xix⊤

i)−1 · 2
√
log(|Sr|2/δ), (B.5)

where we use the fact that θ⊤r (x
r
∗ − x∗) ≥ 0. Therefore, for any x ∈ Sr, we have

|ϵrx −∆x| ≤ 4 max
y∈Y(Sr)

∥y∥(∑N
i=1 xix⊤

i)−1 ·
√

log(|Sr|/δ) ≤ 2
√

log(|Sr|2/δ)(1 + ϵ)ρr/Nr. (B.6)

Then for all x ∈ Or, we always have

∆x ≥ ϵx − |ϵx −∆x| ≥ 3
√
log(|Sr|2/δ)(1 + ϵ)ρr/Nr ≥ 3/2 · |ϵx −∆x|,

which means 1/3∆x ≤ ϵx ≤ 5/3∆x.

B.1 PROOF OF CORRECTNESS OF ALGORITHM 2

Proof of Correctness of Algorithm 2. Suppose E holds. Let xr∗ be the x with maxx p̂
r
x. Assume that

x∗ ∈ Sr. Then we want to prove that x∗ ∈ Sr+1 with high probability. Actually we have with
probability 1− δr,

ϵrx∗
= θ⊤∗ (x

r
∗ − x∗) + (θr − θ∗)⊤(xr∗ − x∗)

≤ (θr − θ∗)⊤(xr∗ − x∗)

≤ max
y∈Y(Sr)

∥y∥(∑x∈Xr
xx⊤)−1 · 2

√
log(|Y(Sr)|/δr)

≤ max
y∈Y(Sr)

∥y∥(∑x∈Xr
(λ∗

r)xxx
⊤)−1 · 2

√
(1 + ϵ) log(|Y(Sr)|/δr)/Nr

≤ 2
√
log(|Sr|2/δr)(1 + ϵ)ρr/Nr

< 5/
√
Lr, (B.7)

where the first inequality holds since x∗ maximizes θ⊤∗ x, the second one holds due to Lemma B.1 and
the fact that xr∗, x∗ ∈ Sr, the third one holds due to the ROUND function, the fourth one holds since
|Y(Sr)| ≤ |Sr|2 and the definition of ρr, the last one holds due to the definition of Nr. Therefore,
we know that x∗ will not be discarded at round r under E .

B.2 PROOF OF BATCH COMPLEXITY OF ALGORITHM 2

We first have the following lemma, which restates Lemma 4.4.
Lemma B.2. For any L > 0, we have

L · ρ(Y(z ∈ X : ∆z ≤ 15/
√
L)) ≤ 900ψ∗. (B.8)

Proof. We have

L · ρ(Y(X \ {x : ∆x > 15/
√
L}))

= L · min
λ∈∆X

max
y∈Y(X\{x:∆x>15/

√
L})
∥y∥2(∑x∈X λxxx⊤)−1

≤ 4 · L · min
λ∈∆X

max
y∈X\{x:∆x>15/

√
L}
∥y − x∗∥2(∑x∈X λxxx⊤)−1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

≤ 4 · 225 · min
λ∈∆X

max
y∈X\{x:∆x>15/

√
L}

∥y − x∗∥2(∑x∈X λxxx⊤)−1

∆2
y

≤ 4 · 225 · min
λ∈∆X

max
y∈X

∥y − x∗∥2(∑x∈X λxxx⊤)−1

∆2
y

= 900 · ψ∗, (B.9)

where the first inequality holds since maxa,b∈A ∥a− b∥ ≤ 2maxa∈A ∥a− c∥ for some set A, some
c ∈ A and some metric ∥ · ∥; the second one holds since for any y ∈ X \ {x : ∆x > 15 · /

√
L}, we

have L ≤ 225/∆2
y .

Now we start to prove batch complexity of Algorithm 2.

Proof of batch complexity of Algorithm 2. Suppose E holds. Similar to the MAB setting, we use
induction to prove the batch complexity of Algorithm 2. Recall that Tr satisfies that 4Tr ≤ Lr <
4Tr+1 and

Lr+1 ← 4Lr +

∑Tr

t=1 4
t · ρ(Y(X \ {x ∈ ∪rs=1Os : ϵx > 2−t · 5/3}))

ρ(Y(X \ ∪rs=1Os))

≥ 4Lr +

∑Tr

t=1 4
t · ρ(Y(X \ {x ∈ ∪rs=1Os : ∆x > 2−t}))

ρ(Y(X \ ∪rs=1Os))
, (B.10)

where we use the fact that ϵx ≤ 5/3∆x under the event. We define the virtual sequence L̄r as follows:
T̄r satisfies that L̄r = 4T̄r and

L̂r+1 ← 4L̄r +

∑T̄r

t=1 4
t · ρ(Y(X \ {x ∈ Ur : ∆x > 15 · 2−t}))

ρ(Y(X \ Ur))
, Ur := {x|∆x > 15/

√
L̄r}.

(B.11)

and we select L̄r+1 = 4T satisfying 4T ≤ L̂r+1 < 4T+1.

Next, we use induction to prove that

L̄r ≤ Lr, (B.12)
Ur ⊆ ∪rs=1Os. (B.13)

Suppose both (B.12) and (B.13) hold for 1, ..., r. For r + 1, we first prove (B.12) holds.

Since (B.13) holds for r, we have Ur ⊆ ∪rs=1Os. Note that by the definition of T̄r, we have another
definition of Ur, which is Ur = {x|∆x > 15 · 2−T̄r}. Therefore, for all t ≤ T̄r, we have

{x ∈ Ur : ∆x > 15 · 2−t} = {x : ∆x > 15 · 2−t}. (B.14)

Meanwhile, since Ur ⊆ ∪rs=1Os, we have

{x ∈ Ur : ∆x > 15 · 2−t} ⊆ {x ∈ ∪rs=1Os : ∆x > 15 · 2−t} ⊆ {x : ∆x > 15 · 2−t}. (B.15)

Therefore, combining (B.14) and (B.15), we have {x ∈ Ur : ∆x > 15 · 2−t} = {x ∈ ∪rs=1Os :
∆x > 15 · 2−t}. Then we have

ρ(Y(X \ {x ∈ ∪rs=1Os : ∆x > 15 · 2−t})) = ρ(Y(X \ {x ∈ Ur : ∆x > 15 · 2−t})). (B.16)

Since (B.12) holds for r, it suggests that T̄r ≤ Tr. Then following (B.10), we have

Lr+1 ≥ 4Lr +

∑Tr

t=1 4
t · ρ(Y(X \ {x ∈ ∪rs=1Os : ∆x > 15 · 2−t}))

ρ(Y(X \ ∪rs=1Os))

≥ 4L̄r +

∑T̄r

t=1 4
t · ρ(Y(X \ {x ∈ ∪rs=1Os : ∆x > 15 · 2−t}))

ρ(Y(X \ Ur))

= 4L̄r +

∑T̄r

t=1 4
t · ρ(Y(X \ {x ∈ Ur : ∆x > 15 · 2−t}))

ρ(Y(X \ Ur))

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

≥ L̄r+1, (B.17)

where the second inequality holds since Ur ⊆ ∪rs=1Os and Tr ≥ T̄r, the last inequality holds due to
the definition of L̄r+1. Thus, we prove that (B.12) for r + 1.

Next we show that (B.13) also holds for r + 1. Consider Or+1, whose definition is

Or+1 := {x ∈ X \ ∪rs=1Os|ϵr+1
x > 5/

√
Lr+1}. (B.18)

For any x ∈ Ur+1, we have x ∈ Ur+1 ⇒ ϵr+1
x > 5/

√
Lr+1, which can be derived as follows:

x ∈ Ur+1 ⇔ ∆x ≥ 15/
√
L̄r+1 ⇒ ∆x ≥ 15/

√
Lr+1 ⇒ ϵr+1

x > 5/
√
Lr+1. (B.19)

We now consider any x ∈ Ur+1. If x ∈ ∪rs=1Os, the induction is done. Otherwise, we have x ∈ Or+1

by definition, which again suggests that x ∈ ∪r+1
s=1Os. Then (B.13) also holds for r + 1.

Next we only consider the sequence L̄r := 4T̄r . We consider the sequence

Hr :=

T̄r∑
t=1

4t · ρ(Y(X \ {x ∈ Ur : ∆x > 15 · 2−t})), Ur = {x : ∆x > 15/
√
L̄r}. (B.20)

Based on Hr, we have the definition of L̂r+1, which is

L̂r+1 = 4L̄r +Hr/ρ(Y(X \ Ur)), 1/4 · L̂r+1 ≤ L̄r+1 < L̂r+1. (B.21)

First we would like to show that Hr ≤ Hr+1. It is obivious since T̄r+1 > T̄r due to the fact that
L̄r+1 ≥ 4L̄r.

Next we would like to show that 4 · ρ(Y∗(X)) ≤ Hr ≤ 900 log2(1/∆2)ψ
∗. For the left hand side,

note that
Hr ≥ H1 = 4 · ρ(Y(X)) ≥ 4 · ρ(Y∗(X)). (B.22)

For any t ≤ T̄r we have
4t · ρ(Y(X \ {x ∈ Ur : ∆x > 15 · 2−t})) = 4t · ρ(Y(X \ {x : ∆x > 15 · 2−t})) ≤ 900 · ψ∗,

where the inequality holds due to (B.8). Therefore, Hr ≤ 900ψ∗(T̄r) ≤ 900 log2(1/∆2)ψ
∗ where

we use the vacous bound that T̄r ≤ log2(1/∆2).

Finally, we show that for any r satisfying when Ur = Ur+1, we have Hr+1 ≥ 5/4 ·Hr. We have

Hr+1 =

T̄r+1∑
t=1

4t · ρ(Y(X \ {x ∈ Ur+1 : ∆x > 15 · 2−t}))

=

T̄r+1∑
t=1

4t · ρ(Y(X \ {x ∈ Ur : ∆x > 15 · 2−t}))

≥ L̄r+1 · ρ(Y(X \ Ur)) +
T̄r∑
t=1

4t · ρ(Y(X \ {x ∈ Ur : ∆x > 15 · 2−t}))

≥ 1

4
·
T̄r∑
t=1

4t · ρ(Y(X \ {x ∈ Ur : ∆x > 15 · 2−t}))

+

T̄r∑
t=1

4t · ρ(Y(X \ {x ∈ Ur : ∆x > 15 · 2−t}))

≥ 5

4
·Hr, (B.23)

where the first inequality holds since L̄r+1 = 4T̄r+1 , the second one holds due to the definition of
L̄r+1, the last one holds trivially. Therefore, it is easy to bound R as

R ≤ α+ log5/4(900
log2(1/∆2)ψ

∗

ρ(Y∗(X))
), (B.24)

where α is the number of different Ur.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.3 PROOF OF SAMPLE COMPLEXITY OF ALGORITHM 2

To prove the sample complexity, we first show the following lemma holds, which includes several
claims.

Lemma B.3. Suppose E holds. Then for any r, we have the following claim:

Sr+1 = (X \ ∪rs=1Os) ⊆ {z ∈ X : ∆z ≤ 15/
√
Lr}. (B.25)

Furthermore, for any t ≤ Tr, we have

(X \ {x ∈ ∪rs=1Os : ∆x > 5 · 2−t}) ⊆ {z ∈ X : ∆z ≤ 15 · 2−t}. (B.26)

Proof. (B.25) holds since z /∈ ∪rs=1Os ⇒ ϵrz ≤ 5/
√
Lr, which suggests that ∆z ≤ 15/

√
Lr by

the fact that ϵrz >
1
3∆z . To show (B.26), we fix r and t ≤ Tr, and note that for any z ∈ X \ {x ∈

∪rs=1Os : ∆x > 5 · 2−t}, we have either

1. z /∈ ∪rs=1Os, or

2. z ∈ ∪rs=1Os and ∆z ≤ 5 · 2−t.

For the first case, we have ∆z ≤ 15/
√
Lr by (B.25). Using the definition of Tr (4Tr ≤ Lr < 4Tr+1),

we have Lr ≥ 4t, which further suggests that ∆z ≤ 15 · 2−t. For the second case, we always have
∆z ≤ 5 · 2−t ≤ 15 · 2−t. Therefore, (B.26) holds.

Next we start to prove the sample complexity of Algorithm 2.

Proof of sample complexity of Algorithm 2. Suppose E holds. Recall the definition of Lr+1, we have

Lr+1 = 4Lr +

∑Tr

t=1 4
t · ρ(Y(X \ {x ∈ ∪rs=1Os : ϵx > 2−t · 5/3}))

ρ(Y(X \ ∪rs=1Os))

≤ 4Lr +

∑Tr

t=1 4
t · ρ(Y(X \ {x ∈ ∪rs=1Os : ∆x > 5 · 2−t}))

ρ(Y(X \ ∪rs=1Os))
,

≤ 4Lr +

∑Tr

t=1 4
t · ρ(Y({z ∈ X : ∆z ≤ 15 · 2−t}))

ρ(Y(X \ ∪rs=1Os))
, (B.27)

where for the first inequality, we use the fact ϵx > 1
3∆x, and the second one holds due to (B.26).

Now, we start to bound Nr+1, which is

Nr+1 = 4max{2 log(|Sr+1|2/δr+1)ρr+1Lr+1, d}
≤ 4d+ 16 log(|X|/δr+1)ρr+1Lr+1

= 4d+ 16 log(|X|/δr+1)ρ(Y(X \ ∪rs=1Os))

·
(
4Lr +

∑Tr

t=1 4
t · ρ(Y({z ∈ X : ∆z ≤ 15 · 2−t}))

ρ(Y(X \ ∪rs=1Os))

)
= 4d+ 16 log(|X|/δr+1)

·
(
4Lrρ(Y(X \ ∪rs=1Os)) +

Tr∑
t=1

4t · ρ(Y({z ∈ X : ∆z ≤ 15 · 2−t}))
)

≤ 4d+ 16 log(|X|/δr+1)

·
(
4Lrρ(Y({z ∈ X : ∆z ≤ 15/

√
Lr})) +

Tr∑
t=1

4t · ρ(Y({z ∈ X : ∆z ≤ 15 · 2−t}))
)

≤ 4d+ 16 log(|X|/δr+1)

(
3600ψ∗ + Tr · 900ψ∗

)
, (B.28)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

where the second inequality holds due to (B.25) and the last one holds due to (B.8). Therefore, by
(B.28), let B denote the total number of batches which is always bounded by log(1/∆2), we have

N = 4ρ(Y(X)) +

B−1∑
r=1

Nr+1 ≤ O(ψ∗ log2(1/∆2) log(|X|/δ) + log(1/∆2)d),

where we use the fact that ρ(Y(X)) ≤ d, which is the standard property of design ρ (see Section 21.1
in Lattimore & Szepesvári (2020)).

21

	Introduction
	Our contributions

	Related work
	Instance-Dependent Batched Algorithm for Multi-Armed Bandits
	The Algorithm
	The Analysis

	Instance-Dependent Batch Complexity for Linear Bandits
	The Algorithm
	The Analysis

	Experiments
	Synthetic data
	Real data

	Conclusion and Future Work
	Proof of Theorem 3.1
	Proof of correctness of Theorem 3.1
	Proof of Batch Complexity of Theorem 3.1
	Proof of Sample Complexity of Theorem 3.1

	Proof of Theorem 4.7
	Proof of Correctness of Algorithm 2
	Proof of batch complexity of Algorithm 2
	Proof of sample complexity of Algorithm 2

