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Abstract

The Granger framework is useful for discovering causal relations in time-varying signals.
Granger causality (GC) tools are mostly developed for densely sampled timeseries data.
A substantially different setting, particularly common in population health applications, is
the longitudinal study design, where multiple individuals are followed and sparsely observed
over time. Longitudinal studies commonly track many variables, which are likely governed
by nonlinear dynamics that might have individual-specific idiosyncrasies and exhibit both
direct and indirect causes. Furthermore, real-world longitudinal data often suffer from
widespread missingness. GC methods are not well-suited to handle these issues. In this
paper, we propose an approach named GLACIAL (Granger and LeArning-based CausalIty
Analysis for Longitudinal studies) to fill this methodological gap by marrying GC with a
multi-task neural model. GLACIAL treats individuals as independent samples and uses the
model’s average prediction accuracy on hold-out individuals to probe causal links. Input
feature dropout and model interpolation are used to efficiently learn nonlinear dynamic
relationships between a large number of variables and to handle missing values respectively.
Our experiments on synthetic and real data show GLACIAL outperforming competitive
baselines and confirm its utility.

1 Introduction

Granger causality (GC) (Granger, 1969) is a versatile and popular framework that exploits “the arrow of
time” to detect causal relations in timeseries data (Roebroeck et al., 2005; Zhang et al., 2011). In GC, we
test whether past values of one time series help in predicting future values, which allows us to infer causal
relationships. Despite its popularity, current implementations of GC are only well-suited for densely and
uniformly sampled timeseries data from one system at a time. They are not designed for longitudinal studies,
involving multiple systems (e.g., individuals). Although one could infer a causal graph for each individual and
aggregate the graphs across individuals, this approach is untenable in many longitudinal studies where each
individual only has a few observations, making the inference of each causal graph inaccurate or impossible.

Constraint-based methods such as PC or FCI (Spirtes et al., 2000), which rely on independent samples and
conditional independence tests, are also commonly used for causal discovery. These methods would use one
observation per individual and thus is not designed to detect causal relations reflected in temporal dynamics.
We believe there is a lack of methods for causal discovery in longitudinal studies that consist of multiple
individuals with sparse observations.

There are other issues that make causal discovery in longitudinal studies challenging. Longitudinal studies
usually track multiple variables and the relationships between these variables may be nonlinear, which can
be hard to detect. For instance, using linear GC to infer nonlinear relationships can be fast but may produce
wrong results (Li et al., 2018). On the other hand, nonlinear GC methods (e.g. those based on non-parametric
methods (Su & White, 2007; Marinazzo et al., 2008)) do not scale to large number of variables (Eichler, 2012).
Similarly, existing GC tests that use neural networks to infer nonlinear dynamics (Tank et al., 2021; Nauta
et al., 2019; Khanna & Tan, 2020) also face scalability issues. Furthermore, prior GC methods are, to the
best of our knowledge, all association-based. That is, they test for causal relationships via interrogating fit
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Figure 1: Overview of the proposed GLACIAL approach for longitudinal studies.

(learned) model weights. For example, in the linear GC approaches, this is achieved by testing the statistical
significance of model coefficients. As the detection power of association-based GC (Granger, 1969; Lütkepohl,
2005) diminishes with increasing number of variables Sugihara et al. (2012); Runge et al. (2019b), it may fail
to detect the weak coupling between a node and its parents, in particular when there are a lot of variables and
limited data (Runge et al., 2019a; Yuan & Shou, 2021). Another challenge of real-world longitudinal studies
is missing data. While there is no consensus about what to do about missing values (Glymour et al., 2019),
several works (Strobl et al., 2018; Tu et al., 2019) have tried to address this issue for cross-sectional data. Yet,
as far as we know, missingness is under-explored in longitudinal studies, particularly in the context of causal
discovery. Finally, GC, in its original form, does not differentiate between direct and indirect causes (Yuan
& Shou, 2021). Although, in theory, infinite history (observations) could shield off indirect causes from being
detected as edges in the output causal graph, when the number of observations per individual is small, false
positives due to indirect causes is a common practical problem.

In this work, we propose GLACIAL (Figure 1), which stands for a “Granger and LeArning-based CausalIty
Analysis for Longitudinal studies.” GLACIAL combines GC with a practical machine-learning based ap-
proach to test for causal relations between multiple variables in a longitudinal study. GLACIAL extends
GC to longitudinal studies by treating each individual’s trajectory as an independent sample, governed by a
shared causal mechanism that is reflected in the temporal dynamics. This treatment is similar to prior works
where individuals are assumed to be independent samples in longitudinal data analysis (Hernan & Robins,
2020). By applying a standard train-test setup with hold-out individuals, GLACIAL can test for effects of
causal relations in expectation. Critically, GLACIAL infers causal relationships based on interrogating pre-
dictive accuracy and not a direct analysis of model weights, which is common in existing association-based
GC methods. GLACIAL employs a single multi-task neural model, trained with input feature drop-out, to
learn nonlinear relationships between all variables in time-varying data. The model also handles missing
values using model interpolation. Thus, although neural networks have been used in the past for causal
discovery, GLACIAL efficiently tests for causal relations of a large set of variables in real-world data where
timepoints may be sampled irregularly and may contain missing values. Furthermore, GLACIAL includes
post-processing heuristics to account for indirect causes and resolve the directionality of detected ambiguous
associations. Extensive experiments on synthetic and real longitudinal data show that GLACIAL can infer
relationships accurately even in challenging real-world scenarios with sparse observations, a large number of
variables and direct causes, and a large degree of missing data. Although a specific model was used in our
experiments, GLACIAL is model-agnostic.
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2 Background

Most existing causal discovery (CD) methods are not intended for the longitudinal study design, where
multiple individuals are sparsely observed at different timepoints. CD methods designed for timeseries data
or independent samples are often used in the longitudinal setting despite potential poor performance.

Causal Discovery CD methods intended for cross-sectional studies are ill-suited for longitudinal studies.
They often fall under: constraint-based search (e.g. PC and FCI (Spirtes et al., 2000)), score-based search
(e.g. GES (Chickering, 2002)), functional causal models (FCMs, e.g. LiNGAM (Shimizu et al., 2006),
ANM (Hoyer et al., 2008; Zhang & Hyvärinen, 2009a), and PNL (Zhang & Chan, 2006; Zhang & Hyvärinen,
2009b)), or continuous optimization (e.g. NOTEARS (Zheng et al., 2018)). Search methods can scale well
if causal relations are linear (Kalisch & Bühlman, 2007; Ramsey et al., 2017) although their output may
not be informative enough (e.g. contains bidirectional edges). In contrast, by making strong assumptions
about the functional form of the causal process, FCM can better identify the causal direction (Hyvärinen &
Pajunen, 1999; Zhang et al., 2015), although FCM methods usually do not scale well (Glymour et al., 2019).
Besides, if the assumed FCM is too restrictive to be able to approximate the true data generating process,
the results may be misleading.

There are also various CD methods for timeseries such as ANLTSM (Chu et al., 2008), PCMCI(+) (Runge
et al., 2019b; Runge, 2020) (based on PC), tsFCI (Entner & Hoyer, 2010) and SVAR-(G)FCI (Malinsky
& Spirtes, 2018; 2019) (based on FCI), VAR-LiNGAM (Hyvärinen et al., 2010) (based on LiNGAM),
TiMINo (Peters et al., 2013) (based on FCM), or DYNOTEARS (Pamfil et al., 2020) (based on NOTEARS).
These methods take in consecutive blocks of observations and output a Full Time Graph (Peters et al., 2017),
which contain not only the variables in the system but also their temporally-lagged versions. Although meth-
ods for timeseries may be better than cross-sectional ones, they are still not ideal for longitudinal data where
sparse observations with potentially missing values come from more than one individual.

Granger Causality GC (Granger, 1969; 1980) checks for dependence between variables’ timeseries, after
accounting for other available information. Temporal dependence is thus linked to causation by the “Common
Cause Principle”: two dependent variables are causally related (one causes the other, or both share a
common cause) (Peters et al., 2017). Checking pairwise dependence in GC can be efficient, but often yields
false positives because other variables in the system are not accounted for. In contrast, multivariate GC can
account for common causes and therefore is more accurate but also more computationally demanding (Eichler,
2007; 2012). In practice, multivariate GC may be infeasible for a large set of variables and more efficient
approaches (Basu et al., 2015; Huang & Kleinberg, 2015) were developed to deal with this challenge. Recently,
more general GC tests based on neural networks (Tank et al., 2021; Nauta et al., 2019; Khanna & Tan, 2020)
have been proposed which outperform vector auto regressive (VAR) linear GC (Glymour et al., 2019). Scaling
these neural-network based GC methods to handle a large number of variables is still a concern.

Missing data For cross-sectional studies, missing values can be imputed, which may result in data con-
tradicting the causal processes. Alternatively, observations with missing values can be removed (list-wise
deletion), which can lead to the omission of vast amounts of valuable datapoints. Test-wise Deletion (Strobl
et al., 2018) (TDPC) is more data-efficient than list-wise deletion but may produce spurious edges when
missingness is not completely at random (Tu et al., 2019). MVPC (Tu et al., 2019) corrects TDPC’s output
to account for different missingness scenarios. To our knowledge, no existing method addresses missingness
for CD in longitudinal studies.

3 Method

Both cross-sectional CD methods (multiple individual, single timepoint data) and timeseries CD methods
(single individual, multiple timepoints data) are ill-suited for longitudinal studies (multiple individuals,
multiple timepoints data). Besides, prior methods often assume timeseries are infinitely long (i.e. unlimited
history), regularly sampled, and without missing values. Thus, they may not work for real-world datasets
when observation history per individual is limited, irregular, and riddled with missing values. Section 3.2
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shows how GLACIAL handles longitudinal data. Section 3.3 shows how GLACIAL deals with irregularly
sampled timepoints containing missing values. Section 3.4 shows GLACIAL’s post-processing strategies to
account for limited history of observed timeseries.

Causal discovery is impossible without assumptions. GLACIAL assumes causal faithfulness, no hidden
confounder, acyclicity (DAG) and no instantaneous effects (the first three assumptions are standard in CD
literature, c.f. Pearl (2009)). GLACIAL does not assume stationarity unlike linear GC.

3.1 Longitudinal Study Set-up

In a longitudinal study, there are multiple individuals who are sparsely observed for a limited number of
times. Let Xt and Yt be time-varying variables indexed with positive integer t ∈ {0, . . . T−1} = [T ]. We use
super-script notation to indicate history: Xt = {X0, . . . , Xt−1}. Ωt = Xt ∪ Yt ∪ . . . is the union of histories
of all variables. The data from individual i with Ti observations (Ti ≤ T ) is ΩTi . The whole longitudinal
dataset is {ΩTi ; i ∈ 1, . . . , N}. The number of observations, Ti, is usually less than 10 (sparse) while the
number of individuals, N , is usually less than 10000. The ΩTi matrices may contain missing values.

3.2 Granger Causality Formulation

A popular GC test is based on comparing the mean squared error (MSE) achieved by two predictors (Granger,
1980). In the GC MSE formulation, we conclude that “Y causes X” if:

δt(X|Y ) = MSE(Xt,E[Xt|Ωt \ Yt]) − MSE(Xt,E[Xt|Ωt]) > 0, ∀t ∈ [T ] (1)

where E denotes (conditional) expectations. Equation 1 simply calculates the MSE difference between two
optimal (in an MSE sense) predictors of X (also see (Granger, 1980) and Appendix B). The first predictor
(i.e. E[Xt|Ωt \ Yt]) is not given information about Y . The second predictor (i.e. E[Xt|Ωt]) is given all past
information, including about Y . Since δt(X|Y ) > 0, ∀t, Equation 1 can be adapted for longitudinal data as:

∆MSE(X|Y ) = Ei

[ 1
Ti

Ti−1∑
t=0

δt(X|Y )
]

> 0 (2)

Relying on the assumption that statistical dependence implies a causal link (Reichenbach, 1956), when past
values of Y predict future values of X (dependence): (1) X causes Y OR (2) Y causes X OR (3) X and
Y have a common cause. The fact that causes occur before effects in time rules out (1) while the no
hidden confounder assumption rules out (3). Hence, a positive test implies that “Y causes X”. Section 3.3
details how this test can be done in practice when the optimal predictors are not given. We are particularly
interested in the setting with multiple observed independent individual trajectories.

3.3 Choice of Predictor

We can approximate the MSE-optimal predictors with neural networks F and G.

δt(X|Y ; F, G) = MSE(Xt, F (Xt; Ωt \ Yt)) − MSE(Xt, G(Xt; Ωt)) (3)

∆MSE(X|Y ; F, G) = Ei

[ 1
Ti

Ti∑
t=1

δt(X|Y ; F, G)
]

(4)

To calculate δt(X|Y ; F, G), we first have to train the neural networks using a training set. Once trained, the
neural networks can be used to calculate ∆MSE(X|Y ; F, G) on hold-out test individuals. Thus, the predictors’
performance depends on the training data, optimization, network initialization, and other implementation
details. Even with the best optimizer and initialization procedure, a bad training-test split could, for instance,
result in a sub-optimal model and consequently false causal link estimates. For more robust causal discovery,
in GLACIAL, we repeat the estimation of ∆MSE(X|Y ; F, G) multiple times using different random splits of
data and test that ∆MSE is positive on average using a statistical test.

4



Under review as submission to TMLR

We use a single recurrent neural network (RNN) (Graves et al., 2009) in place of all predictors. The RNN is
trained to predict the next step values of all the variables, Ωt, given all available past values, Ωt. We adopt
the RNN model from Nguyen et al. (2020) since it implements model interpolation to handle missing values.
In particular, if there are missing values at time t, they can be replaced by the RNN prediction, Ω̂t (model
interpolation). This timepoint with interpolated values is then concatenated with Ωt to form Ωt+1 which is
subsequently used to predict values at time t+1. Missing values are ignored when calculating training loss
and estimating δt(X|Y ; F, G) on hold-out individuals (Equation 3). Training follows (Nguyen et al., 2020)
so that even data containing missing values can be used for RNN training. Note that the choice of neural
network model is not critical. Any model that forecasts future values from past values and implements model
interpolation should work in GLACIAL.

Input Feature Dropout Training separate neural networks to compute ∆MSE(X|Y ; F, G) for each vari-
able pair would create a substantial burden for applying this approach to systems with large number of
variables. This is because the number of networks required would be proportional to the number of variables
squared. Instead, we propose to train a single multi-task (i.e., multi-output) RNN, F (·; θ), to approximate
E[Xt|Ωt \ Yt] and E[Xt|Ωt], for all predicted variables Xt. The RNN acts as the former when Y is masked
out of the input vector and acts as the latter when the input is complete. To obtain a model that can produce
accurate predictions under these scenarios, during training, we augment each mini-batch by dropping out
individual variables from the input features.

Algorithm 1: GLACIAL
Input: Data splits (Dtrain

1 , Dtest
1 ), . . . , (Dtrain

n , Dtest
n )

Output: Causal graph G
// Step 1: Association detection using the GC MSE test

1 for each data split Di do
2 Fit RNN model Fi using Dtrain

i

3 for each variable pair (u, v) do
4 Calculate ∆MSE[u, v, i] using Fi and Dtest

i ;

5 for each variable pair (u, v) do
6 t-statistic, p-value = t-test(∆MSE[u, v, ∗])
7 if p-value < threshold then Add u→v to G; S[u, v] = t-statistic;

// Step 2: Orient bidirectional edges
8 for each bidirectional pair u→v and v→u in G do
9 if S[u, v] < S[v, u] then Remove u→v from G; // v→u has stronger effect

10 else Remove v→u from G; // u→v has stronger effect

// Step 3: Prune indirect causes
11 for each u→v in G do
12 for each path p = (u=w0, w1, . . . , wk=v) do
13 if S[u, v] < S[wj , wj+1] ∀j ∈ {0, . . . , k−1} then Remove u→v; break;
14 for each path p = (v=w0, w1, . . . , wk=u) do
15 if S[u, v] < S[wj , wj+1] ∀j ∈ {0, . . . , k−1} then Remove u→v; break;

Implementation Details The same settings of GLACIAL are used in all experiments. We used repeated
5-fold cross-validation to split a dataset into training, validation, and test sets with a 3:1:1 ratio. The RNN
is trained to minimize next-step prediction error using Adam (Kingma & Ba, 2014), L2 loss, and a learning
rate of 3E-4. The RNN has one hidden layer of size 256. Training was done on a NVIDIA TITAN Xp GPU.
The validation set is used for early stopping. Cross-validation is repeated 4 times, resulting in 20 different
splits of data. We find 4 repetitions to strike a good balance between robustness and speed. Running more
repetitions might slightly improve the results when missingness is severe but at a higher computational cost
(see Appendix E). We perform a t-test on the ∆MSE statistic and use the significance level threshold of 0.05.
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3.4 Post-Processing

GC assumes history of the timeseries is infinite. When observations are finite as in real-world longitudinal
studies, GC may draw wrong conclusions. E.g., consider following deterministic system:

Yt = aYt−1 + bYt−2

Xt = cYt−2.

In this system, Y causes X since manipulating Y will change the value of X. By the same logic, X is not
the cause of Y because manipulating X will not change Y .

When history is infinite, GC works as expected

E[Yt|Xt, Yt] = E[Yt|Yt] = Yt

MSE(Yt,E[Yt|Yt]) = MSE(Yt,E[Yt|Xt, Yt]) = 0
⇒ X does not cause Y (correct)

However, when only 1 past observation is given (finite history), GC reaches the wrong conclusion

MSE(Yt,E[Yt|Yt−1]) ≥ MSE(Yt,E[Yt|cYt−2, Yt−1]) ≥ MSE(Yt,E[Yt|Xt−1, Yt−1])
⇒ X causes Y (incorrect)

Thus, GC may detect edges in both direction (X → Y and Y → X) for a pair of variables when limited
history is given. It can be shown in a similar fashion that if X causes Y and Y causes Z (X is the indirect
cause of Z), Y will not be able to shield Z from X if only limited history is given. Thus, GC will also detect
edges for indirect causes in both direction (X → Z and Z → X).

In GLACIAL, we implement two additional post-processing steps to remove these false positives. Let S(X|Y )
be the statistic (e.g. the t-test) that tests for the positivity of ∆MSE from several train/test splits. Thus
S(X|Y ) can be viewed as a test for whether Y causes X.

1. Orient bidirectional edge If S(X|Y ) < S(Y |X) remove Y →X, else remove X→Y . This step is
similar to prior work such as (Hoyer et al., 2008; Zhang & Hyvärinen, 2009a; Janzing et al., 2012; Kocaoglu
et al., 2017) which leverages causal asymmetry to determine the causal direction (the direction with the
bigger effect is regarded as the causal direction). T-statistic has been shown to be informative for causal
discovery (Weichwald et al., 2020). Appendix H presents a mathematical justification for this heuristic.

2. Remove indirect edge Remove edge X→Y if there exists an alternative path (X:=U0, U1, . . . , Y :=Uk)
from X to Y or a path (Y :=U0, U1, . . . , X:=Uk) from Y to X such that

S(Y |X) < min({S(Uj+1|Uj); j ∈ 0, . . . , k−1})

Intuitively, if there is an alternative path on which the effect of the weakest edge is greater than the effect of
X→Y then X is likely an indirect cause of Y . A complete description of GLACIAL is shown in Algorithm 1.
Ablation in Section 5.2 shows the contribution of these two post-processing steps.

3.5 Runtime Complexity

Since GLACIAL uses a single multi-task RNN to check relationships between all variable pairs, the num-
ber of RNN models trained by GLACIAL is independent of the number of variables and is equal to the
number of data splits (see Algorithm 1 line 1-2). For example, with 4 repetitions of 5-fold cross-validation,
GLACIAL needs to train 20 different RNN models. This number is the same whether there are 10 or 100
variables. Obviously, having more variables will lead to longer execution time per batch but much of the com-
putation is parallelizable (as long as the batch fits into GPU memory). Therefore, the runtime complexity
is mostly dominated by the number of RNN models that must be trained.
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4 Experimental Set-up

In addition to the problems listed in Section 3, CD methods often struggle when (1) relationships are non-
linear, (2) the number of variables is large, or (3) a node has many parents. The subsequent experiments
are designed to show GLACIAL’s efficacy and to show that GLACIAL is less affected by these problems.
First, the simulations in Section 4.2 include both non-linear trajectories and linear random-walk trajecto-
ries. GLACIAL is also applied on real multivariate data (Section 4.3) which most likely include non-linear
trajectories. Second, there is a simulation with a moderate-size graph consisting of 39 nodes to demonstrate
scalability. Third, the simulation with the 39-node graph includes one node (i.e. 22) with 18 direct causes.

4.1 Baselines

We benchmark GLACIAL against both CD methods for cross-sectional data and CD methods for timeseries.
Section 5.1 shows only representative and competitive baselines (see Appendix A for the remaining baselines).

CD Methods for Cross-Sectional Data We compare against PC, FCI (Spirtes et al., 2000), GFCI (Og-
arrio et al., 2016), and Sort-N-Regress (Reisach et al., 2021) (SnR). GFCI combines GES and FCI into a single
algorithm. SnR is a simple baseline to ensure that benchmarked approaches go beyond exploiting differences
in variables’ marginal variance (Reisach et al., 2021). As these approaches assume independent observations,
only first timepoints (observations) of individuals are used. In most longitudinal studies, individuals are
guaranteed to have first timepoints (but not other timepoints). Hence, using the first timepoints will result
in the most number of independent timepoints with the least amount of missing data in real-world datasets.
Besides, using all timepoints led to worse performance in our preliminary experiments using simulated data.
Similar to Shen et al. (2020), GFCI is run multiple times (i.e. 20) using different bootstraps of individuals’
first timepoints, resulting in multiple graphs. Only edges appearing in more than half of the resultant graphs
are kept in final graph. Using a higher threshold (80%) led to worse result (see Appendix F).

CD Methods for Timeseries Data We also adopt SVAR-GFCI (Malinsky & Spirtes, 2019),
PCMCI+ (Runge, 2020), DYNOTEARS (Pamfil et al., 2020), and several GC-based approaches as baselines.
GC-based approaches include linear GC and more recent neural GC tests: cMLP and cLSTM from (Tank
et al., 2021), TCDF from (Nauta et al., 2019), SRU and eSRU from (Khanna & Tan, 2020). For linear GC1,
F-statistic was used to test for presence of edges using the same threshold as in GLACIAL. For longitudinal
data, one could either (1) estimate one causal graph for each individual and aggregate the graphs or (2)
estimate just one graph using concatenated data from all the individuals. Since (1) often fails when the
number of timepoints per individual is sparse, (2) was used instead. Causal discovery using concatenated
individuals’ data has been investigated in (Di et al., 2019; Qing et al., 2021). Besides, linear GC could output
false positives when timeseries are non-stationary (He & Maekawa, 2001). One could make the timeseries
stationary by calculating the difference or the log difference between timepoints (Stock & Watson, 2012).
However, using differences led to worse results so we report the results using the original timeseries instead.

The input to SVAR-GFCI2 and PCMCI+3 are also the concatenated timeseries from all the individuals. For
DYNOTEARS4 which can accept timeseries from multiple individuals, the timeseries are not concatenated.
The hyper-parameters of SVAR-GFCI, PCMCI+, DYNOTEARS and neural GC tests are selected based on
the suggestions in their original publications.

Missing data For data with missingness, TDPC (Strobl et al., 2018) and MVPC (Tu et al., 2019) are
used instead of GFCI. For a dataset, each algorithm is run 20 times and the results are aggregated using
the same 50% threshold. As far as we know, there is no prior work on applying causal discovery methods
to timeseries data with missing values. Therefore, we used linear interpolation to fill out missing values in
the data before applying these methods (linear/neural GC, SVAR-GFCI, PCMCI+, and DYNOTEARS). It

1https://github.com/statsmodels/statsmodels
2https://github.com/cmu-phil/tetrad
3https://github.com/jakobrunge/tigramite/
4https://github.com/quantumblacklabs/causalnex
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may not be feasible to apply more complex interpolation methods due to the limited number of timepoints
(especially after discounting missing values).
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Figure 2: Simulation. (A) 7-node graph having all basic structures (chain, fork, collider). (B) Individual
with random-walk trajectories (data before standardizing to zero mean and unit variance). Only timepoints
under vertical lines are observed. (C) Individual with sigmoid trajectories. (D) More realistic 39-node graph
resembling the RTK/RAS signaling pathway. Nodes in the same cluster have the same causal relations.

4.2 Simulated Data

The sample size in the simulations was set to 2000 individuals, roughly the size of the ADNI dataset
(see Section 4.3). Only six timepoints are extracted from each individual’s timeseries to simulate sparse
observations (see Appendix D for results with 24 timepoints). We consider two scenarios. First, the temporal
dynamics are parameterized via the sigmoid function, which is a widely used model for the trajectories
of biomarkers, e.g., in Alzheimer’s disease (Jack Jr et al., 2013). In the second scenario, we implement
random-walk series. See Appendix C for further details. As causal structure of simulated data may leak
through variables’ marginal variance, the data are standardized to zero-mean and unit-variance to prevent
CD algorithms from gaming the simulated data (Reisach et al., 2021).

Figure 2 shows the causal graphs used for generating the synthetic data. The first graph (7 nodes) contains
all the basic structures, namely chain, fork, and collider. The second graph (39 nodes) is used to demonstrate
GLACIAL’s scalability. This graph is inspired by the RTK/RAS signaling pathway in oncology and is taken
from (Sanchez-Vega et al., 2018). The second graph is a realistic target that a causal discovery algorithm
should be able to find from observational data. Since the shape of the evolution of signaling proteins is not
known, we use Gaussian random-walk as the sample path function. To simulate missingness (completely at
random; MCAR), the values for each timeseries of an individual are independently dropped at fixed rate
p ∈ {0.1, 0.3, 0.5}. Since real data missingness may be more adverse than MCAR, results on simulated
missing data are optimistic estimates of performance. The missingness rate is chosen to match the rate in
real data (see next Section). Since values from different timeseries are dropped independently, the resulted
data could contain individuals with all timepoints having at least one missing values.

4.3 Real-world Data from an Alzheimer’s Disease Study

We use ADNI (Jack Jr et al., 2008), a longitudinal study of Alzheimer’s disease (AD) and consists of 1789
individuals. Each individual in ADNI has about 7 timepoints on average. The ADNI study tracks multiple
AD biomarkers such as region-of-interest (ROI) volumes (e.g. hippocampal) derived from structural MRI
scans, cognitive tests (e.g. ADAS13), proteins (e.g. amyloid beta) derived from cerebral spinal fluid samples,
and molecular imaging that captures the brain’s metabolism (e.g. FDG PET). The missingness rates vary
for different biomarkers, ranging from 30% (ADAS13) to around 80% (FDG PET). The variables used are
shown in Figure 7c and described in detail in Appendix G.
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4.4 Metrics

F1-score, which is the harmonic mean of precision and recall, is used to quantify different approaches’
performance. Note that we assume that there is a ground-truth (directed) graph that describes causal
relations. Each method will also return a list of directed edges between variables. Precision is the ratio of
correctly identified edges over all predicted edges, while recall is the ratio of correct edges over all ground-
truth edges. A predicted edge is considered incorrect if the edge does not exist in the ground-truth graph or
the predicted direction contradicts the ground-truth direction. Thus, a predicted bidirectional edge would
be incorrect if the ground-truth edge has only one direction.

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0
0.2
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0.6
0.8
1.0

Random Walk, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.001

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0
0.2
0.4
0.6
0.8
1.0

Random Walk, Noise=1.0

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.01

SnR GFCI cLSTM eSRU DYNOTEARS Linear GC GLACIAL
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=1.0

Figure 3: Average F1-scores at different settings of sample path, lag-time and measurement noise (7-node
graph). GLACIAL outperforms baselines in most settings (see Appendix A for more comparisons).

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.00

0.25

0.50

0.75

1.00
Random Walk, Noise=0.1

SnR GFCI cLSTM eSRU DYNOTEARS Linear GC GLACIAL
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Random Walk, Noise=1.0

Figure 4: Average F1-scores at different settings of lag-time and measurement noise (39-node graph, Gaussian
random-walk). GLACIAL outperforms baselines in most settings (see Appendix A for more comparisons).

5 Experimental Results

5.1 Simulated Data

7-node graph For random-walk data, GLACIAL outperforms the baselines for various lag-times and
measurement noise levels (Figure 3, 1st column). Similarly, GLACIAL also outperforms the baselines, for
the sigmoid data (2nd and 3rd column). GLACIAL’s performance dips (3rd column) when input history (5
years) is shorter than the lag-time (6 or 7 years). This dip is more pronounced when measurement noise is
high (3rd column, bottom).
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DYNOTEARS fails to detect causal relations in systems with almost deterministic dynamics (2nd col-
umn) even though it is the best baseline. System with deterministic dynamics is also challenging for linear
GC (Peters et al., 2017) although it is slightly better than DYNOTEARS (F1-score < 0.2). Interestingly,
GLACIAL still works in these systems (F1-score = 0.6). Only GLACIAL manages to consistently beat the
strong SnR (Sort-N-Regress) baseline, demonstrating the proposed method’s strength.

39-node graph Even though DYNOTEARS is the best baseline for the 7-node graph, its performance on
the big graph is worse than linear Granger (Figure 4). GLACIAL consistently outperforms all baselines on
this big graph when the sample path is Gaussian random-walk. GLACIAL performs quite well despite the
presence of a cluster of direct causes whose contribution to the node “22” may be too small to be detected.

Rate=0.0 Rate=0.1 Rate=0.3 Rate=0.5
0.00

0.25

0.50

0.75

1.00
Random Walk, Lag=5

tdPC MVPC cLSTM eSRU DYNOTEARS Linear GC GLACIAL GLACIAL 30
Rate=0.0 Rate=0.1 Rate=0.3 Rate=0.5

Sigmoid, Lag=5

Figure 5: Average F1-scores at various levels of missing at random. Lag-time=5. Noise level = 0.1.
GLACIAL usually outperforms baselines. Running GLACIAL for more repetitions (i.e. 30 instead of 4,
denoted as GLACIAL 30; see Section 3.3) can improve performance when dealing with missing data.

Missing data Figure 5 shows F1-scores at different degrees of missingness. GLACIAL outperforms
TDPC and MVPC, CD approaches tailored for missing data, by better exploiting the temporal dynam-
ics within individuals’ timeseries. GLACIAL also outperforms CD methods for timeseries such as cLSTM
and DYNOTEARS. Although being the best baseline, DYNOTEARS often fails when the missingness level
is high (>0.3). When half of the values are missing (=0.5), GLACIAL can still infer some causal relations. As
an aside, GLACIAL’s performance on missing data can be improved with more repetitions (see Appendix E).

5.2 GLACIAL’s Post-processing Ablation

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0
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1.0
Random Walk, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
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Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.1
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Step 1 Step 1+2 Step 1+2+3
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=1.0

Figure 6: Contribution from GLACIAL’s heuristics to F1-scores (7-node graph simulation).

GLACIAL’s first step tests for edges in the causal graph by comparing the difference in MSE on hold-out
individuals. However, when test individuals are only sparsely observed for a limited number of times, this
step may find spurious edges (edges from effect to cause or edges between indirect cause, e.g. a grand-parent,
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Table 1: GLACIAL’s results vary little with different hyper-parameters. Lag-time=5. Noise level = 0.1.
L: number of layers, D: size of hidden layer, R: learning rate (R1: 1E-3, R2: 3E-4, R3: 1E-4)

Simulation L1-D256-R2 L1-D128-R2 L1-D512-R2 L2-D256-R2 L1-D256-R1 L1-D256-R3
Random-walk 0.97±0.06 0.96±0.06 0.96±0.06 0.96±0.06 0.92±0.09 0.97±0.06
Sigmoid 0.92±0.00 0.92±0.09 0.91±0.08 0.94±0.03 0.92±0.00 0.92±0.00

and effect). To address this problem, GLACIAL has two additional heuristics: one (Step 2) to remove edges
from effect to cause and another (Step 3) to prune edges between indirect cause and effect. Figure 6 shows
the contribution of these two post-processing heuristics to F1-scores at various lag-times and noise levels
(7-node graph simulation). The first heuristic (Step 2) consistently leads to better results. While the second
heuristic (Step 3) is beneficial most of the time, it can sometime result in performance degradation. Thus,
when applying GLACIAL to real data, it is recommended to compare the outputs with and without the
second heuristic to decide which output is more plausible.

5.3 GLACIAL’s Hyper-parameter Sensitivity Ablation

Since GLACIAL uses neural network for inference, ones may think that its results are sensitive to the choice
of hyper-parameters. We analyzed GLACIAL’s performance as the hyper-parameters vary. Table 1 shows the
performance of GLACIAL while varying (1) the number of hidden layers, (2) the size of the hidden layer(s),
and (3) the learning rate used. GLACIAL’s results seem quite robust to the choice of hyper-parameters.

(a) Only ROI vol-
umes

(b) ROI volumes and cognitive
tests

(c) Extend set of variables

Figure 7: GLACIAL’s predicted interaction of ADNI biomarkers. ROI volumes are in red, cognitive tests
are in black, and the rest are in blue. ABETA: amyloid beta, PTAU: phosphorylated tau. Edge weights are
frequencies at which edges were detected in multiple runs.

5.4 Results on ADNI Data

The output of applying GLACIAL to different sets of ADNI biomarkers are shown in Figure 7. Edge weights
denote the frequencies at which edges were detected in multiple runs. Most of the edges are consistently
detected across different runs with the exception of “Hippocampus → MidTemp” (67%, Figure 7a) and
“Fusiform → ABETA” (65%, Figure 7c). Although GLACIAL’s neural model assumes MCAR and miss-
ingness in ADNI data may be more adverse than that, GLACIAL’ result seems promising. There is a high
degree of agreement between the 3 graphs which all show the “Ventricle” is a source in the causal graph
and “Fusiform” is at the end of the chain. The presence of the edge “Hippocampus → Entorhinal” is also
consistent with literature. In comparison, baselines’ outputs are less interpretable (Figure 8; more results
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are in Appendix G). The outputs of DYNOTEARS and linear Granger contain hardly any edge between
ROI volumes while the outputs of cLSTM and eSRU have bidirectional edges.

(a) cLSTM (b) eSRU

(d) Linear GC(c) DYNOTEARS

Figure 8: Baseline approaches’ predicted interaction of ADNI biomarkers

6 Discussion

Longitudinal studies, in which multiple individuals are sparsely observed for a limited number of times, are
particularly common in population health applications. Longitudinal studies often track many variables,
which are likely governed by nonlinear dynamics that might have individual-specific idiosyncrasies. Yet, lon-
gitudinal studies are not amenable to the popular Granger causality (GC) analysis, since GC was developed
to analyze a single multivariate densely sampled timeseries. Furthermore, real-world longitudinal data often
suffer from widespread missingness. We developed GLACIAL which combines the GC framework with a
machine learning based prediction model to address this need. GLACIAL treats individuals as independent
samples and uses average prediction accuracy on hold-out individuals to test for causal relations.

GLACIAL exploits a single multi-task neural network trained with input feature dropout to efficiently probe
links. GLACIAL places no restriction on the design of the neural network predictor. This flexibility allows
future extensions of our work. For example, Transformers (Vaswani et al., 2017) or Neural ODEs (Chen
et al., 2018) can be used instead of the RNN architecture.

Limitations and Future Work Although we showed GLACIAL working well in many settings (varying
lag-times, noise levels, and missingness degree), there are some questions remained that need further inves-
tigation. We focused on real-valued variables since they are the most common but extending GLACIAL to
discrete variables by adopting techniques in (Peters et al., 2010; Cai et al., 2018; Huang et al., 2018) would
make GLACIAL analysis applicable to more longitudinal studies. Furthermore, studying GLACIAL’s be-
haviors under missingness other than MCAR is important despite GLACIAL outputting plausible graphs on
possibly non-MCAR data (ADNI). Besides, GLACIAL assumes that there is no feedback, hidden confounder,
or instantaneous effect. Thus, before applying GLACIAL, it is critical to verify whether these assumptions
hold to ensure that causal relations inferred by GLACIAL are valid. The third assumption in particular
requires that the sampling resolution is high enough to capture transient changes (e.g. impulses) or temporal
orderings between causal pairs with short time lags. Although causal discovery when some assumptions are
violated has been studied in the past (for example, presence of hidden confounders Spirtes et al. (2000) or
presence of instantaneous effects (Danks & Plis, 2013; Gong et al., 2015; 2017)), extending these techniques
to longitudinal studies is still an open question. We leave these questions for future work.

Broader Impact Statement

Since GLACIAL is based on Granger causality framework, GLACIAL also assumes that there is no hidden
confounders and no instantaneous effects. Thus, causal relations inferred by GLACIAL should be interpreted
with caution, especially when these assumptions do not hold, to avoid misleading conclusions.
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