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ABSTRACT

This paper presents two models - called global and local models - of neural-
networks applicable to neural networks of arbitrary width, depth and topology,
assuming only finite-energy neural activations. The first model is exact (un-
approximated) and global (applicable for arbitrary weights), casting the neural
network in reproducing kernel Banach space (RKBS). This leads to a width-
independent (under usual scaling) bound on the Rademacher complexity of neural
networks in terms of the spectral-norm of the weight matrices, which is depth-
independent for sufficiently small weights. For illustrative purposes we consider
how this bound may be applied to untrained networks with LeCun, He and Glo-
rot initialization, discuss their connect to width and depth dependence in the
Rademacher complexity bound, and suggest a modified He initialization that gives
a depth-independent Rademacher complexity bound whp. The second model is
exact and local, casting the change in neural network function resulting from a
bounded change in weights and biases (ie. a training step) in reproducing kernel
Hilbert space (RKHS) with a well-defined local-intrinsic neural kernel (LiNK).
The neural tangent kernel (NTK) is shown to be a first-order approximation of the
LiNK, so the local model gives insight into how the NTK model may be gener-
alized outside of the over-parameterized limit. Analogous to the global model, a
bound on the Rademacher complexity of network adaptation is obtained from the
local model. Throughout the paper (a) dense feed-forward ReLU networks and (b)
residual networks (ResNet) are used as illustrative examples and to provide insight
into their operation and properties.

1 INTRODUCTION

The application of reproducing kernel Hilbert space (RKHS (Aronszajn, 1950)) and reproducing
kernel Banach space (RKBS (Lin et al., 2022; Der & Lee, 2007; Zhang et al., 2009; Zhang & Zhang,
2012; Song et al., 2013; Sriperumbudur et al., 2011; Xu & Ye, 2014)) theory to the study of neural
networks has a long history (Neal, 1996; Weinan et al., 2019; Parhi & Nowak, 2021; Lee et al., 2018;
Matthews et al., 2018; Rahimi & Benjamin, 2009; Bach, 2014; 2017; Daniely et al., 2016; Daniely,
2017; Cho & Saul, 2009; Bartolucci et al., 2021; Spek et al., 2022). Neural tangent kernels (NTKs)
are an exemplar of this approach, modeling training using a first-order (tangent) model. This approach
has led to a wide body of work on convergence and generalization (Du et al., 2019b; Allen-Zhu et al.,
2019; Du et al., 2019a; Zou et al., 2020; Zou & Gu, 2019; Arora et al., 2019b;a; Cao & Gu, 2019),
mostly focused on the wide-network (over-parameterized) limit. In parallel, there is a growing body
of work investigating the uniform convergence, complexity, and capacity of neural networks under
various regimes (Neyshabur et al., 2015; 2018; 2019; 2017; Harvey et al., 2017; Bartlett et al., 2017;
Golowich et al., 2018; Arora et al., 2018; Allen-Zhu et al., 2018; Dräxler et al., 2018; Li & Liang,
2018; Nagarajan & Kolter, 2019b; Zhou et al., 2019).

Nevertheless, as noted in eg. (Arora et al., 2019b; Lee et al., 2019; Bai & Lee, 2019), there are
limits to the descriptive powers of NTK models. A gap has been observed between NTK-based
predictions and actual performance (Arora et al., 2019b; Lee et al., 2019), and the validity of NTK
models naturally breaks down outside of the over-parameterized limit, which has led to attempts to
generalize NTK models outside of the over-parameterized - for example (Bell et al., 2023) use an
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exact pathwise kernel, while (Shilton et al., 2023) presented an exact model for dense feedforward
neural networks with smooth activations in RKBS, (Bartolucci et al., 2023; Sanders, 2020; Parhi &
Nowak, 2021; Unser, 2021; 2019) have explored links to RKBS, and (Bai & Lee, 2019) explored
higher-order approximations. However the assumptions made (smoothness, over-parameterization
etc) and approximations used limit application and raise the question of whether it is possible to
instead formulate exact, non-approximate models for neural networks that may be used for similar
ends. With regard to uniform convergence, some authors such as (Nagarajan & Kolter, 2019a) have
argued that such methods may be unable to explain generalization for neural networks at all due to the
behavior of the Rademacher complexity (Bartlett & Mendelson, 2002; Steinwart & Christman, 2008).

In this paper we simultaneously address two questions, namely: (1) is it possible to formulate an
exact (non-approximate) model for a wide class of neural networks, thereby avoiding entirely the
question of gaps between real performance and model prediction; and (2) can such a model be used
to derive general, non-vacuous, training-independent bounds on uniform convergence. We address
both questions with the following contributions:

1. Exact global model: for arbitrary neural network topologies with arbitrary weights and
biases and finite-energy activations, we construct a model that recasts neural networks and
bilinear products in a reproducing kernel Banach space (RKBS). This leads to:
(a) Rademacher Complexity Bound: using the global model, we bound the Rademacher

complexity as a function of the spectral-norms of the weight matrices. We show that
this bound is width-independent for standard weight-scaling, and depth-independent in
the unbiased case for small weight matrices if the neural activations are L-Lipschitz.
For networks satisfying this constraints, we prove that the Rademacher complexity is
bounded asRN (F) ≤ 1√

N
for training set size N .

(b) Rademacher Complexity of Randomly Initialized Networks: we discuss the
Rademacher complexity of randomly initialized networks, in particular following Le-
Cun, He and Glorot initialization. We analyse the width- and depth- dependence of the
Rademacher complexity bound for these initializations and present modified He and
Glorot initializations for whichRN (F) ≤ 1√

N
with high probability.

2. Exact local model: again for arbitrary neural network topologies with arbitrary weights
and biases and finite-energy activations, we construct a model that recasts the change in
neural network operation due to a (spectral-norm) bounded change in weights and biases in
a reproducing kernel Hilbert space (RKHS), with a locally-intrinsic neural kernel (LiNK)
defined by the network topology, neural activations and initial weights. This leads to:
(a) Rademacher Complexity Bound: analogous to the global model, the local model

leads to a bound on the Rademacher complexity as a function of the spectral-norms of
the change to the weight matrices.

(b) Connection with NTK: we prove that the NTK is a first-order approximation LiNK
in our local model, casting light on higher-order generalization of NTK models.

The paper is organized as follows. We first discuss the underlying scope and setting of the paper,
and the relevant notions and notations used (section 2), as well as related work (section 3). The
necessary mathematical background on Hermite polynomials is provided in section 4, including some
discussion regarding how this will inform our contribution. We present out global model in section
5 before proceeding to use this model to derive bounds on Rademacher complexity in section 5.2.
We finish by presenting our local model in section 6, which is applied to the problem of uniform
convergence in section 6.2.

1.1 MATHEMATICAL NOTATION AND INDEXING CONVENTIONS

We use N = {0, 1, 2, . . .}, Nn = {0, 1, 2, . . . , n − 1}, Z+ = {1, 2, 3, . . .}. |A| is the number of
elements in set A. Span(X ) is the linear span of X . [a]+ = max{a, 0}. f (n) is the nth derivative of
f . L2(R, e−x2

)={τ : R→ R |
∫∞
∞ |τ(ζ)|2e−ζ2

dζ <∞} is the set of finite-energy functions. Hek
are the (probabilist’s) Hermite polynomials (k ∈ N). Hek = Hek(0) are the Hermite numbers.

Column vectors are denoted a,b, . . ., with elements ai, bj , . . .. |a| and sgn(a) are the element-wise
absolute and sign. ‖a‖2 = (

∑
i |ai|2)1/2 is the Euclidean norm. Matrices are denoted A,B, . . .,

with elements Ai,i′ , rows Ai:, and columns A:i′ . A �B is the Hadamard product. A ⊗B is the
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Kronecker product. A⊗k = A ⊗ A ⊗ k times. . . ⊗A is the Kronecker power. diagi(Ai) is a block-
diagonal matrix with diagonal blocks Ai. ‖A‖2 = supx:‖x‖2=1 ‖Ax‖2 is the spectral norm.

〈·, ·〉 denotes an inner-product, where 〈a,a′〉g =
∑
i giaia

′
i for metric g > 0, and unless otherwise

stated 〈a,a′〉 = 〈a,a′〉1. 〈·, ·] denotes a bi-linear product, where 〈a,a′]g =
∑
i giaia

′
i for (indefinite)

metric g, and we follow the convention 〈A,a′]g = [〈A:j ,a
′]g]j , 〈A,a′]G = [〈A:j ,a

′]G:j
]j .

Indexing: ̃, j ∈ ND index nodes in the computational graph. ı̃j ∈ NH̃[j] and ij ∈ NH[j] index
inputs and outputs to node j, respectively, where H̃ [j] and H [j] are the fan-in and fan-out of that
node. P[j] is the antecedent set of node j (set of nodes feeding into node j), and p[j] = |P[j]| the
node’s in-degree. Node D − 1 is the output node, and j = −1 indicates the (virtual) input node.

2 SETTING AND ASSUMPTIONS

In this paper we will deal with neural networks defined by directed acyclic graphs (aka computational
skeletons) as per (Daniely et al., 2016), as this description is flexible enough to allow us to study both
simple, fully-connected feed-forward networks such as ReLU and also non-trivial topologies such
residual networks (ResNet). In this scheme networks are characterized by nodes and edges, ie.:

1. Nodes: a set of D nodes, indexed by j ∈ ND, where node j = D − 1 is the output node
and we include a virtual input node indexed as j = −1. A described shortly, a node j is
characterized by a weight matrix W[j] ∈ RH̃[j]×H[j]

(sometimes split into individual sub-
matrices W[̃,j] ∈ RH[̃]×H[j]

per incoming edge) and bias vector b[j] ∈ RH[j]

.
2. Edges: a set of directed edges (̃ → j) ∈ (ND ∪ {−1}) × ND characterized by neural

activation functions τ [̃,j] : R→ R, joining nodes to form a directed acyclic graph (DAG).

Given an input x, data flows from the virtual input node j = −1, along the the edges and through the
nodes of the DAG to the output node j = D − 1, as defined by the recursive equation:

f (x; Θ) = x[D−1]

∣∣∣∣∣∣∣
x̃[j] =

[
x̃[̃,j]

]
̃∈P̃[j] , x̃

[̃,j] = τ [̃,j](x[̃])

x[j] = W[j]Tx̃[j] + γb[j](
=
∑
̃∈P̃[j] W[̃,j]Tx̃[̃,j] + γb[j]

)
 ∀j ∈ ND, ̃ ∈ P̃[j]

x[−1] = x
(1)

For node j we define the antecedent set P̃[j] ⊂ ND ∪ {−1}, so the node has in-degree p̃[j] = |P̃[j]|,
fan-out H [j] (with input dimension H [−1] = n and output dimension H [D−1] = m) and fan-in
H̃ [j] =

∑
̃∈P̃[j] H

[̃]. In constructing our models we assume:

1. Bounded inputs: ‖x‖2 ≤ 1.
2. Finite weights and biases: ‖W[j]‖2, ‖b[j]‖2 <∞.

3. Finite activations: τ [̃,j] ∈ L2(R, e−ζ2

)={τ : R→ R |
∫∞
∞ |τ(ζ)|2e−ζ2

dζ <∞}.

We let Θ = {W[j],b[j] : j ∈ ND} denote the collection of all weights and biases. We also denote the
set of inputs satisfying the bounded input assumption X, and the set of weights and biases satisfying
the finiteness assumption W, so f : X×W→ Rm. Given a training set D = {(x{i},y{i}) ∈ Rn ×
Rm : i ∈ NN}we assume the goal is to minimize the risk (for lossL, regularizer r, trade-off λ ∈ R+):

Θ? = argmin
Θ∈W

∑
i L
(
f
(
x{i}; Θ

)
− y{i}

)
+ λr (Θ) (2)

When constructing and analysing the network for the global model, for all j ∈ ND, ̃ ∈ P[j] we find
it convenient to define a nominal upper bounds µ[̃,j] on the spectral norm of the weight matrices and
β[j] on the Euclidean norm of the biases:∥∥W[̃,j]

∥∥
2
≤ µ[̃,j] and

∥∥b[j]
∥∥

2
≤ β[j] (3)

Similarly for the local model (and in the analysis of the global model) we find it convenient to define
a nominal bound µ[j] so that ‖W[j]‖2 ≤ µ[j]. Building these into the model helps us to simplify
our results later. It is important to note that these are convenience factors only and may be as large
as necessary to satisfy (3). The only restriction we make here is that µ[̃,j] and β[j] must be finite.

3
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For example for randomly-initialized, untrained neural networks we may derive appropriate, high-
probability upper bounds µ[̃,j] and β[j] by considering the distribution from which the weights and
biases are drawn. In the usual case W [j]

ı̃j ,ij
∼ N (0, σ[j]2) we have that ‖W[̃,j]

:ij
‖22 ∼ σ[j]2χ2

H[̃] , so:∥∥∥W[̃,j]
:ij

∥∥∥2

2
≤ σ[j]2

(
H [̃] + 2

√
H [̃] ln

(
DH[j]

2ε

)
+ 2 ln

(
DH[j]

ε

))
(4)

whp ≥ 1− ε simultaneously ∀j, ij (see eg. (Laurent & Massart, 2000, Lemma 1, pg 1325)). From
this we may derive bounds for several standard initialization schemes, for example:

1. LeCun (σ[j]2 = 1
H[j] ): µ[̃,j]2 = H[̃]

H[j] + 2
√
H[̃]

H[j] ln
(
DH[j]

2ε

)
+ 2

H[j] ln
(
DH[j]

ε

)
.

2. He (σ[j]2 = 1

H̃[j]
): µ[̃,j]2 = H[̃]

H̃[j]
+ 2
√
H[̃]

H̃[j]
ln
(
DH[j]

2ε

)
+ 2

H̃[j]
ln
(
DH[j]

ε

)
.

3. Glorot (σ[j]2 = 1

H[j]+H̃[j]
): µ[̃,j]2 = H[̃]

H[j]+H̃[j]
+ 2

√
H[̃]

H[j]+H̃[j]
ln
(
DH[j]

2ε

)
+ 2

H[j]+H̃[j]
ln
(
DH[j]

ε

)
.

To illustrate our results we use the following network topologies (Glorot et al., 2011; He et al., 2016):

1. Feedforward ReLU: fully connected, unbiased, layerwise, feedforward, ReLU activations:
P̃[j] ={j−1}, γ = 0 ∀j; τ [j−1,j](ζ) = [ζ]+ ∀j 6= 0, D−1; τ [−1,0](ζ)=τ [D−2,D−1](ζ)=ζ .

2. Residual Network (ResNet): unbiased, alternating ReLU/skip network with D ∈ 2Z+:
P̃[j] = {j − 1} ∀j even; P̃[j] = {j − 1, j − 2}, W[j] = [W

[j]
C ; 1

2I] ∀j odd; γ = 0 ∀j;
τ [j−1,j](ζ) = [ζ]+ ∀j 6= 0, D−1; τ [j−2,j](ζ) = ζ ∀j odd; τ [−1,0](ζ)=τ [D−2,D−1](ζ) = ζ .

3 RELATED WORK

The use of kernel methods to model neural networks dates to at least (Neal, 1996). Fixing all weights
and biases except for node j and defining feature map ϕ[j](x) = [x̃[j]; γ], the network can be written
as f(x; Θ) = q[j]([W[j]T; b[j]]ϕ[j](x),x) for fixed q[j], and (2) becomes kernel regression with
NNGP (neural-network Guassian process) kernel:

Σ[j] (x,x′) = Ek
[
ϕ

[j]
k (x)ϕ

[j]
k (x′)

]
= Ej̃∈P̃[j]

[
Σ[̃,j] (x,x′)

]
Σ[̃,j] (x,x′) = γ2 + Ei̃

[
x̃

[̃,j]
i̃

x̃
′[̃,j]
i̃

] (5)

In the wide limit, for suitable initialization, (5) is deterministic (dependent on the distribution Θ ∼ ν),
and it can be demonstrated that x[j](·) ∼ GP(0,Σ[j]) (Neal, 1996; Lee et al., 2018; Matthews et al.,
2018; Garriga-Alonso et al., 2019; Novak et al., 2019). This is the NNGP model, and may be used to
eg. derive insights into the types of function the network is best suited to model. The NNGP kernel
for our ReLU example is the arc-cosine kernel (Cho & Saul, 2009).

To model training, neural tangent kernels (NTKs (Jacot et al., 2018; Arora et al., 2019b)) form the
basis of a first-order approximation of the behavior of a neural network as the weights and biases
vary about their initialization Θ, i.e. f(x; Θ + ∆Θ) ≈ f(x; Θ) + ∆ΘT∇Θf(x; Θ). Training is cast
as kernel regression using the neural tangent kernel (NTK), recursively defined as:

KNTK (x,x′) = Ek
[
∇Θk f(x; Θ)T∇Θk f(x′; Θ)

]
= K

[D−1]
NTK (x,x′)

K
[j]
NTK (x,x′) = Σ[̃] (x,x′) + E̃∈P̃[j]

[
θ[̃,j] (x,x′)K

[̃]
NTK (x,x′)

]
θ[̃,j] (x,x′) = Ei̃

[〈
τ [̃,j](1)

(
x

[̃]
i̃

)
τ [̃,j](1)

(
x
′[̃]
i̃

)〉]
∀̃ ∈ P̃[j]

 ∀j (6)

and K [−1]
NTK (x,x′) = 0. The NTK model is accurate for small variations in weights/biases (the lazy

regime). In the infinitely wide limit the NTK is deterministic, and weights/biases remain close to their
initial values, leading to the gradient flow model where weights flow rather than change in discrete
steps during training. This approach gives insight in areas including convergence and generalization
(Du et al., 2019b; Allen-Zhu et al., 2019; Du et al., 2019a; Zou et al., 2020; Zou & Gu, 2019; Arora
et al., 2019b;a; Cao & Gu, 2019).

Beyond this first-order model, while NTKs have made significant progress, a gap has been observed

4
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s φ̃[̃,j] (x) = 1
φ̃

a[̃,j]〈 1
2 〉

(0)k

[(
k
l

) 1
2

(√
s[̃,j]−1

(
φ̃

2
)
φ[̃] (x)

)⊗l]
1≤l≤k


k≥1

Ψ̃
[̃,j]
:i̃

(Θ) = φ̃

∣∣∣a[̃,j]
(0)k

∣∣∣ 1
2

(kl) 1
2

 1√
s[̃,j]−1

(
φ̃

2
)Ψ

[̃]
:i̃

(Θ)

⊗l


1≤l≤k


k≥1

g̃[̃,j] =
[[

Hek−lg
[̃]⊗l]

1≤l≤k

]
k≥1

∀̃ ∈ P̃[j]

φ[j] (x) = 1√
γ2+1

[
γ[√

H[̃]

H̃[j]
φ̃[̃,j] (x)

]
̃∈P̃[j]

]

Ψ[j] (Θ) =
√
γ2 + 1


b[j]T +

∑
̃∈P̃[j]

τ [̃,j](0)
γ 1T

H[̃]W
[̃,j]

diag̃∈P̃[j]

(√
H̃[j]

H[̃] φ̃Ψ̃[̃,j] (Θ) W[̃,j]

)


g[j] =

[
1[

g̃[̃,j]
]
̃∈P̃[j]

]
N

or
m

B
ou

nd
s

∥∥∥φ̃[̃,j] (x)
∥∥∥2

2
∈
[
φ̃

[̃,j]2

↓ = 1

φ̃
2 s

[̃,j]
(
s[̃,j]−1

(
φ̃

2
)
φ

[̃]2
↓

)
, φ̃

[̃,j]2
= 1
]

∥∥∥Ψ̃[̃,j] (Θ)
∥∥∥2

2
≤ ψ̃

[̃,j]2
= φ̃

2
s[̃,j]

(
1

s[̃,j]−1
(
φ̃

2
)ψ[̃]2

)
∥∥∥Ψ̃[̃,j] (Θ)

∥∥∥2

He[τ ]
≤ ψ̃˜[̃,j]2 =

sup
φ

[̃]
↓ ≤φ

[̃]≤1

−ψ˜ [̃]≤ψ˜ [̃]≤ψ˜ [̃]

{
φ̃

2
τ [̃,j]

(
φ[̃]ψ˜[̃]

)2

s[̃,j]
(
s[̃,j]−1

(
φ̃

2
)
φ[̃]2

)
}

∥∥φ[j] (x)
∥∥2

2
∈

[
φ

[j]2
↓ = 1

γ2+1

(
γ2 +

∑
̃∈P̃[j]

H[̃]

H̃[j]
φ̃

[̃,j]2

↓

)
, φ[j]2 =1

]
∥∥Ψ[j] (Θ)

∥∥2

2
≤ψ[j]2 =

(
γ2 + 1

)((
β[j]+

µ[j]|τ [̃,j](0)|
γ

)2

+
∑
̃∈P[j]

H̃[j]

H[̃] ψ̃
[̃,j]2

µ[̃,j]2

)
∥∥Ψ[j] (Θ)

∥∥2

He[τ ]
≤ψ˜[j]2 =

(
γ2 + 1

)((
β[j]+

µ[j]|τ [̃,j](0)|
γ

)2

+
∑
̃∈P[j]

H̃[j]

H[̃] ψ̃˜[̃,j]2µ[̃,j]2

)
µ[j] = max

̃∈P̃[̃,j]

µ[̃,j] φ[−1](x) = x, Ψ[−1](Θ) = In, g[−1] = 1n
φ

[−1]2
↓ = 0, φ[−1]2 = ψ[−1]2 = ψ˜[−1]2 = 1 (φ̃ ∈ R+ arbitrary)

f (x; Θ) = 〈Ψ (Θ) ,φ (x)]g
φ = φ[D−1],Ψ = Ψ[D−1],g = g[D−1]

φ↓ = φ
[D−1]
↓ , φ = φ[D−1]], ψ = ψ[D−1], ψ˜ = ψ˜[D−1]

Figure 1: Recursive definition of the global dual and bounds. See theorem 1, section 5 for details.

between NTK-based predictions and actual performance (Arora et al., 2019b; Lee et al., 2019). One
approach to bridging this gap is to construct higher-order or exact models. Works in this direction
include (Bai & Lee, 2019), which presented a higher-order approximation; (Bell et al., 2023), which
used a pathwise kernel; and (Shilton et al., 2023), which used an RKBS model.1

4 HERMITE REPRESENTATION OF NEURAL ACTIVATIONS

The (probabilist’s) Hermite polynomials are given by (Abramowitz et al., 1972; Morse & Feshbach,
1953; Olver et al., 2010; Courant & Hilbert, 1937) Hek(ζ) = (−1)keζ

2/2 dk

dζk
e−ζ

2/2 ∀k ∈ N and

form an orthogonal basis of L2(R, e−x2

). Both models we present here make use of the Hermite
transform of the activations. For all edges (̃, j) in the network we define centered activations:

τ [̃,j] (ζ; ξ) = τ [̃,j] (ξ + ζ)− τ [̃,j] (ξ)

which is simply a shifted form of the original activation τ [̃,j]. By assumption τ [̃,j] ∈ L2(R, e−ζ2

),
so τ [j′,j](·, ξ) ∈ L2(R, e−ζ2

) and hence the Hermite transform exists and is denoted:

τ [̃,j] (ζ; ξ) =
∑
k≥0 a

[̃,j]
(ξ)kHek (ζ)

=
∑
k≥1 a

[̃,j]
(ξ)k

∑k
l=1

(
k
l

)
Hek−lζ

l
(7)

where:
a

[̃,j]
(ξ)k = 1√

2πk!

∫∞
−∞ τ [̃,j] (ζ; ξ)Hek (ζ) e−ζ

2/2dζ (8)

and Hek = Hek(0) are the (probabilist’s) Hermite numbers. Note that in the second form of τ [̃,j] we
use the additivity properties of the Hermite polynomials (see Appendix A).

For linear activations τ(ζ) = ζ then trivially a(ξ)k = δk,0. For ReLU activations τ(ζ) = [ζ]+, and as
shown in Appendix A.3 (the general case ∀ξ ∈ R is more complex - see Appendix A.3):

a(0)k =

{
(−1)p+1

√
2π(2p−1)2pp!

if k = 2p, p ∈ Z+

1
2δk,1 otherwise

(9)

5 GLOBAL DUAL MODEL IN REPRODUCING KERNEL BANACH SPACE

In this section we derive a dual model for the network described, where by global we mean not
constructed about some weight initialization. Our derivation is similar to (Shilton et al., 2023), but

1In a similar vein, (Bartolucci et al., 2023; Sanders, 2020; Parhi & Nowak, 2021; Unser, 2021; 2019) explore
the link to RKBS theory, though excepting (Unser, 2019) they only consider shallow networks.
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based on a Hermite polynomial expansion rather than a Taylor series, making it applicable to a wider
range of activation functions with fewer caveats. Our key result for this section is:2

Theorem 1. Let f : X×W→ Rm be a neural network (1) satisfying our assumptions, φ̃ ∈ R+. Then:

f (x; Θ) = 〈Ψ (Θ) ,φ (x)]g (10)

with feature maps Ψ : W → W = span(Ψ(W)) and φ : X → X = span(φ(X)) and metric g
defined in Figure 1, where ‖Ψ(Θ)‖2 ≤ ψ and φ↓ ≤ ‖φ(x)‖2 ≤ φ = 1 ∀Θ ∈W,x ∈ X. Moreover:

‖f (x; Θ)‖2 ≤ ‖Ψ (Θ)‖He[τ ] ‖φ (x)‖2 , ‖Ψ‖
2
He[τ ] = sup

x∈X

‖〈Ψ,φ(x)]g‖22
‖φ(x)‖2

(11)

where ‖Ψ(Θ)‖He[τ ] ≤ ψ˜ ∀Θ ∈W, as per definitions in Figure 1.

See Appendix B for a proof of this theorem. Intuitively, this result may be derived recursively,
starting from the input node and progressing to the output, using the Hermite expansion of the
activation for the edges. The operator-norm based bound (11) is included here due to the fact that
the indefinite metric prevents us from naively bound ‖f(x; Θ)‖2 in terms of φψ using the Cauchy-
Schwarz inequality (as may be required e.g. when bounding Rademacher complexity).

Note that the norm-bound in Theorem 1 is defined in terms of the magnitude functions for each edge:

s[̃,j] (ζ) =
∑
k≥0

∣∣∣a[̃,j]
(0)k

∣∣∣ (1 + ζ)
k −

∑
k≥0

∣∣∣a[̃,j]
(0)k

∣∣∣ (12)

The magnitude functions converge everywhere, are origin-crossing, monotonically increasing and
superadditive on R+ - for details see Appendix A.2. For linear activations s(ζ) = ζ, and for ReLU
activations, as shown in Appendix A.3:

s (ζ) = 1
2ζ
(

erfi
(

1+ζ√
2

)
+ 1
)

+ 1√
2π

(
e

1
2 − e 1

2 (1+ζ)2
)

+ 1
2

(
erfi
(

1+ζ√
2

)
− erfi

(
1√
2

))
(13)

5.1 IMPLICATION: NEURAL NETWORKS IN REPRODUCING KERNEL BANACH SPACE

A reproducing kernel Banach space is defined as:
Definition 1 (Reproducing kernel Banach space (RKBS)). A reproducing kernel Banach space on
a set X is a Banach space F of functions f : X → Y for which the point evaluation functionals
δx(f) = f(x) on F are continuous (i.e. ∀x ∈ X ∃Cx ∈ R+ such that ‖δx(f)‖2 ≤ Cx‖f‖F ∀f ∈ F ).

This definition is somewhat generic, so (Lin et al., 2022)3 study the special case:

B =
{

f (·; Θ) = 〈Ψ (Θ) ,Φ (·)]W×X
∣∣Θ ∈W

}
(14)

where Φ : X→ X is a data feature map, Ψ : W→W is a weight feature map, X andW are Banach
spaces, and 〈·, ·]W×X :W ×X → Rm is continuous. The following result follows from theorem 1:4

Theorem 2. The set F = {f(·; Θ) : Rn → Rm|Θ ∈W} of networks (1) satisfying our assumptions
forms a RKBS of form (14), where ‖f(·; Θ)‖F = ‖Ψ(Θ)‖He[τ ] ≤ ψ˜ and Cx = ‖φ(x)‖2 ≤ φ.

5.2 APPLICATION: BOUNDING RADEMACHER COMPLEXITY

The global dual formulation may be used to bound Rademacher complexity, which in turn bounds
the uniform convergence properties of the network class (Bartlett & Mendelson, 2002; Steinwart
& Christman, 2008) (that is, the rate at which the empirical risk approaches the actual risk as a
function of dataset size N ). Assuming x ∼ ν, the Rademacher complexity is defined asRN (F) =
EνEε[supf∈F

1
N

∑
i∈NN εif(xi)] for Rademacher random variables εi ∈ {±1}. We have:

2When reading the norm-bounds on the feature maps in this theorem it is important to recall that β[j] and
µ[̃,j] are convenience factors representing an upper bounds on the value of ‖b[j]‖2 and ‖W[̃,j]‖2, respectively.
We assume these are finite, but in general their value will depend on weight-initialization, dataset complexity
and regularization (if any is used).

3See e.g. (Der & Lee, 2007; Lin et al., 2022; Zhang et al., 2009; Zhang & Zhang, 2012; Song et al., 2013;
Sriperumbudur et al., 2011; Xu & Ye, 2014) for other perspectives.

4Note that the RKBS defined in theorem 2 is non-reflexive, which appears to rule out a trivial representor
theory based on this dual in the global case (Lin et al., 2022).
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Theorem 3. The set F = {f(·; Θ) : Rn → R|Θ ∈W} of networks (1) satisfying our assumptions
has Rademacher complexity bounded byRN (F) ≤ 1√

N
φψ˜ = 1√

N
ψ˜ (definitions as per Figure 1).

The proof follows the usual template (see e.g. (Bartlett & Mendelson, 2002)) using our feature map,
with (11) used instead of the Cauchy-Schwarz inequality (Appendix D). Intuititvely, we may think
of the recursive bounds ψ̃˜[j], ψ˜[̃,j] on the weight feature map in terms of signal flow in a electrical
circuit, precisely (with reference to figure 1):

1. A signal ψ˜[−1] = 1 enters the network at the input node ̃ = −1.

2. The outgoing edge from node (̃, j) amplifies this signal:

ψ̃˜[̃,j] =

√√√√ sup
φ

[̃]
↓ ≤φ

[̃]≤1

−ψ˜ [̃]≤ψ˜ [̃]≤ψ˜ [̃]

{
φ̃

2
τ [̃,j]

(
φ[̃]ψ˜[̃]

)2

s[̃,j]
(
s[̃,j]−1

(
φ̃

2
)
φ[̃]2

)
}

(15)

3. Subsequent nodes j combine signals from incoming edges (̃, j) into an offset weighted sum:

ψ˜[j]2 =
(
γ2 + 1

)((
β[j] + 1

γµ
[j]
∣∣τ [̃,j](0)

∣∣)2

+
∑
̃∈P[j]

H̃[j]

H[̃] ψ̃˜[̃,j]2µ[̃,j]2

)
(16)

4. The signal propogates (steps 2-3) to the output D − 1. The overall output is ψ˜[D−1].

For Lipschitz activations (ie. most activations) we can simplify step 2 with the following theorem:

Theorem 4. For L-Lipschitz neural activations, in the limit ψ̃ → 0+ (recall that ψ̃ ∈ R+), we
have that ψ˜[j]2 = (γ2 + 1)((β[j] + 1

γµ
[j]|τ [̃,j](0)|)2 + L2

∑
̃∈P[j]

H̃[j]

H[̃]ψ˜[̃]2µ[̃,j]2) ∀j, which in the

ubiased case this simplifies to ψ˜[j]2 = L2
∑
̃∈P[j]

H̃[j]

H[̃]ψ˜[̃]2µ[̃,j]2.

from which we obtain the corollary for unbiased networks:5

Corollary 5. Let F = {f(·; Θ) : Rn → R|Θ ∈ W} be the set of networks (1) with zero bias γ =

τ [̃,j](0) = 0, and µ[̃,j]2 ≤ H[̃]

L2H̃[̃]
∀j, ̃ ∈ P[j], Rademacher complexity is boundedRN (F) ≤ 1√

N
.

This shows that Rademacher complexity is depth-independent for sufficiently small network weights,
but exponential in depth (the longest path in the network) for large weights; and that width dependence
will scale with the product of µ[̃,j] along the longest path. To gain further insight it is worth
considering the Rademacher complexity of unbiased, randomly networks W [j]

ı̃j ,ij
∼ N (0, σ[j]2). We

will consider the depth and width dependence of the complexity bound separately:

• Depth dependence: from (4) and corollary 5, the Rademacher complexity will be depth-
independent and satisfyRN (F) ≤ 1√

N
whp ≥ 1− ε if:

σ[j]2 ≤ 1

L2

(
H̃[j]+2 H̃[j]√

H[̃]
ln
(
DH[j]

2ε

)
+2 H̃

[j]

H[̃]
ln
(
DH[j]

ε

)) (17)

Note that this is a modified He initialization accounting for neural activation slope (through
L) and correction terms for network topology H̃[j]

H[̃] , node count D and fan-out H [j]. A
similar modified Glorot initialization follows trivially.

• Width dependence: ignoring depth, we observe that for Glorot (and modified He/Glorot)
initialization RN (F) ∼ O(1). LeCun and He initialization behave similarly if H [j] � H̃ [j],
but LeCun initialization may scale arbitrarily at the output node (H [D−1] = m, while H̃ [j]

is arbitrary), and He initialization may be analogously badly behaved at the input.

With regard to our ReLU and ResNet examples (see section 2), both will have Rademacher complexity
RN (F) ≤ 1√

N
if the spectral norm of all weight matrices is less than 1 (ReLU) or 1

2 (ResNet). This
will also hold for random ReLU/ResNet networks whp for modified He (17) (or Glorot) initialization.

5In general the condition in the corollary is (γ2+1)((β[j]+ 1
γ
µ[j]|τ [̃,j](0)|)2+L2∑

̃∈P[j]
H̃[j]

H[̃] µ
[̃,j]2) ≤ 1.

7
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Incoming Edge Feature Map Node Feature Map

Fe
at

ur
e

M
ap

s
φ̃

[̃,j]
∆ (x) = 1

T
[̃,j]

(ω̃)η

 1
ηk

[(√
ρ

[̃,j]2
(ω̃)η φ

[̃]
∆ (x)

)⊗l]
1≤l≤k


k≥1

Ψ̃
[̃,j]
∆:i̃

(Θ) = T
[̃,j]
(ω̃)η

ηk
(√ 1

ρ
[̃,j]2

(ω̃)η

Ψ
[̃]
∆:i̃

(Θ)

)⊗l
1≤l≤k


k≥1

G̃
[̃,j]
∆:i̃

(x) =

[
a

[̃,j](
x

[̃]
i̃

)
k

[(
k
l

)
Hek−lG

[̃]
∆:i̃

(x)
⊗l
]

1≤l≤k

]
k≥1

φ
[j]
∆ (x) =

√
1

γ2+1


γ

1√
2

[√
H[̃]

H̃[j]

1
ω̃[̃,j] x̃

[̃,j]
]
̃∈P̃[j]

1√
2

[√
H[̃]

H̃[j]
φ̃

[̃,j]
∆ (x)

]
̃∈P̃[j]



Ψ
[j]
∆ (Θ) =

√
γ2 + 1


∆b[j]T

√
2 diag̃∈P̃[j]

(√
H̃[j]

H[̃] ω̃
[̃,j]∆W[̃,j]

)
√

2 diag̃∈P̃[j]

(√
H̃[j]

H[̃] Ψ̃
[̃,j]
∆ (Θ)

(
W[̃,j] + ∆W[̃,j]

))


G
[j]
∆ (x) =

 1T
H[̃]

diag̃∈P̃[j] (IH[̃]) 1
H̃

[j]1T
H[j]

diag̃∈P̃[j]

(
G̃

[̃,j]
∆ (x)

)
1
H̃

[j]1T
H[j]



B
ou

nd
s

∥∥∥φ̃[̃,j]
∆ (x)� G̃

[̃,j]
∆:i̃

(x)
∥∥∥2

2
≤ 1 ∀i̃∥∥∥Ψ̃[̃,j]

∆ (Θ)
∥∥∥2

2
≤ ψ̃

[̃,j]2

∆ = T
[̃,j]2
(ω̃)η ŝη

(
γ2+1

ρ
[̃,j]2

(ω̃)η

ψ
[̃]2
∆

)
∥∥∥φ[j]

∆ (x)�G
[j]
∆:ij

(x)
∥∥∥2

2
≤ φ[j]2

∆ = 1 ∀ij∥∥∥Ψ[j]
∆ (Θ)

∥∥∥2

2
≤ ψ[j]2

∆ =
(
γ2 + 1

)(
β

[j]2
∆ + 2

∑
̃∈P[j]

H̃[j]

H[̃]

(
ω̃[̃,j]2µ

[̃,j]2
∆ +

(
µ[̃,j]2 + µ

[̃,j]2
∆

)
ψ̃

[̃,j]2

∆

))
ω̃[j] = max

̃∈P̃[j]

ω̃[̃,j], T
[j]
(ω̃)η = max

̃∈P̃[j]

T
[̃,j]
(ω̃)η, ψ̃

[j]

∆ = max
̃∈P̃[j]

ψ̃
[̃,j]

∆ φ
[−1]
∆ (x) = 00, Ψ

[−1]
∆ (Θ) = G

[−1]
∆ (x) = 10×n, φ

[−1]2
∆ = ψ

[−1]2
∆ = 0

f (x; Θ + ∆Θ) = f (x; Θ) + ∆f (x; ∆Θ)

∆f (x; ∆Θ) = 〈Ψ∆ (∆Θ) ,φ∆ (x)]G∆(x)

φ∆ = φ
[D−1]
∆ ,Ψ∆ = Ψ

[D−1]
∆ ,G∆ = G

[D−1]
∆

φ∆ = φ
[D−1]
∆ , ψ∆ = ψ

[D−1]
∆

Figure 2: Recursive definition of local dual and bounds. See theorem 6, section 6 for details.

More generally in uniform convergence analysis we must consider how the weight-norm µ[̃,j] evolves
or increases during training. It is difficult to draw firm conclusions about this without delving into the
specifics of training, however in the lazy regime, or otherwise given sufficiently strong regularization,
we would expect that this norm-bound should remain close to its initialization value, potentially
indicating good uniform-convergence behavior for a wide class of neural networks.

6 LOCAL DUAL MODEL IN REPRODUCING KERNEL HILBERT SPACE

When considering training or network adaptation it is better to model the change in the network rather
than the network in-toto. To this end, in this section we present an exact (non-approximate) local
RKHS model. Let Θ be the initial weight and biases and ∆Θ the change in weights and biases -
so ∆Θ might be a training step, multiple steps, or even the complete training process after random
initialization. Let x̃[j],x[j] denote the pre-activation (input) and post-activation (output) of node
j with initial weights Θ given input x; and ∆x̃[j],∆x[j] the change in same due to the change in
weights ∆Θ. The change in network operation is denoted ∆f : X×W∆ → Rm:

f (x; Θ + ∆Θ) = f (x; Θ) + ∆f (x; ∆Θ) , (18)

For the purposes of this analysis we augment our previous assumptions with in section 2 with:

4. Bounded activation: ‖x̃[̃,j]‖2 ≤ ω̃[̃,j] ∀̃ ∈ P̃[j] (note that ω̃[̃,j] ≤ φ̃[̃,j]ψ̃˜[̃,j]).

5. Bounded weight and bias steps: ‖∆W[̃,j]‖2 ≤ µ[̃,j]
∆ ≤ µ[̃,j], ‖∆b[j]‖2 ≤ β[j]

∆ .

satisfying (20) (details in and after Theorem 6). Note that, unlike the parameters µ[̃,j], β[j] in our
global model which may be arbitrarily large and as such do not place any restriction on the network
which may be modeled, the parameters µ[̃,j]

∆ , β
[j]
∆ bounding step must satisfy (20) and are constrained

themselves and subsequently constrain the size of step that can be modeled by the local model.

We define W∆ to be the set of all weight-steps satisfying these assumptions. The parameter ω̃[̃,j] is
a bound on the magnitude of the output of edge (̃ → j) in our initial network ∀x ∈ X. With this
prequel, we have the following local analogue of theorem 1 (see proof in Appendix C):6

Theorem 6. Let ∆f : X×W∆ → Rm be the change in neural network operation (18). Then:

∆f (x; ∆Θ) = 〈Ψ∆ (∆Θ) ,φ∆ (x)]G∆(x) (19)

with feature maps φ∆ : X → X∆ = span(φ∆(X)), Ψ∆ : W∆ → W∆ = span(Ψ∆(W∆)) and
metric G∆(x) as per Figure 2, where ‖φ∆(x)�G∆:iD−1

(x)‖2 ≤ φ∆ ∀iD−1 and ‖Ψ∆(∆Θ)‖2 ≤

6The decision to use a position dependent metric G∆ here is largely stylistic. We could of course absorb
G∆ into φ∆ without substantively changing our results.
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ψ∆ ∀x ∈ X, ∆Θ ∈W∆. Moreover ‖Ψ∆(∆Θ)‖2 ≤ ψ∆ = S2
η < 1 if ∀j:

µ
[̃,j]2
∆ + 1

2p̃[j]ω̃[j]2 β
[j]2
∆ ≤ u[j]2

4p̃[j]ω̃[j]2 : u[j]2 = min
̃:j∈P̃[̃]

ρ
[j,̃]2

(ω̃[j,̃])η

{
R2
η, ŝ
−1
η

(
u[̃]2

8p̃[̃]µ[̃]2

)}
(20)

We emphasise that this exactly models the change in the neural network without approximation so
long as conditions in the theorem are met. This is in contrast to the NTK model, which is a first-order
approximation whose accuracy will decrease as the step-size increases (e.g. for narrower networks).

In constructing Theorem 6 we use the rectified activation functions and their envelopes, respectively:

τ̂ [̃,j]
η (ζ; ξ, ξ′) =

∑
k≥1

a
[̃,j]

(ξ)k
a

[̃,j]

(ξ′)k
η2k

∑k
l=1

(
k
l

)2
He2

k−lζ
l

τ̂ [̃,j]
η

(
ζ;ω[̃,j]

)
= sup
|ξ|,|ξ′|≤ω[̃,j]

τ̂ [̃,j]
η (ζ; ξ, ξ′) = sup

|ξ|≤ω[̃,j]

τ̂ [̃,j]
η (ζ; ξ, ξ)

(21)

where ξ, ξ′ ∈ [−ω[̃,j], ω[̃,j]] are the centers of the rectified activation functions (the initial activation
for some input about which our model is constructed) and η ∈ (0, 1) is fixed. Unlike the magnitude
functions, the rectified activations have a finite ROC |τ̂ [̃,j]

η (ζ; ξ, ξ′)| ≤ T [̃,j]2
(ξ,ξ′)η ∀|ζ| ≤ ρ

[̃,j]2
(ξ,ξ′)η, and

likewise |τ̂ [̃,j]
η (ζ;ω[̃,j])| ≤ T

[̃,j]2

(ω[̃,j])η
∀|ζ| ≤ ρ

[̃,j]2

(ω[̃,j])η
(see Appendix A.2). The rectified activation

envelopes are origin crossing, monotonically increasing and superadditive. We also define:

ŝη (ζ) =
∑
k≥1η

2k
∑

1≤l≤kζ
l = ζ

1−ζ

(
η2

1−η2 − ζη2

1−ζη2

)
which converges as given ∀|ζ| < R2

η < 1, whereon |ŝη (ζ) | ≤ S2
η =

R2
η

1−R2
η

( η2

1−η2 −
η2R2

η

1−η2R2
η

).

It is difficult to obtain a closed-form expression for the rectified activation or its envelope for the
ReLU, but they are relatively straightforward to calculate, as are their convergence bounds. Figure 3
in Appendix A.3 shows a sample of various rectified activations for the ReLU with different centers.

6.1 IMPLICATION: NEURAL NETWORK CHANGE IN REPRODUCING KERNEL HILBERT SPACE

A vector-valued (v-v) reproducing kernel Hilbert space is defined as follows (Aronszajn, 1950;
Steinwart & Christman, 2008; Shawe-Taylor & Cristianini, 2004; Mercer, 1909; Micchelli & Pontil,
2005; Caponnetto & De Vito, 2007; Reisert & Burkhardt, 2007; Carmeli et al., 2005; Schwartz, 1964):
Definition 2 (Reproducing kernel Hilbert space (RKHS)). A v-v reproducing kernel Hilbert spaceH
on a set X is a Hilbert space F of functions f : X→ Rm for which the point evaluation functionals
δx(f) = f(x) on F are continuous (∀x ∈ X ∃Cx ∈ R+ s.t. ‖δx(f)‖2 ≤ Cx‖f‖F ∀f ∈ F).

For an RKHS, Reisz representor theory implies that ∀x ∈ X ∃ unique Kx ∈ F × Rm such that
〈f(x),v〉 = 〈f ,Kxv〉H ∀v ∈ Rm. From this, the kernel K : X× X→ Rm×m is defined as:

K (x,x′) =
[ 〈

Kxδ
[D−1]
(iD−1),Kx′δ

[D−1]
(i′D−1)

〉
H

]
iD−1,i

′
D−1

, where δ[j]
(k) = [δk,ij ]ij

Moore-Aronszajn theorem allows us to run the argument in reverse: any symmetric, positive definite
K : X× X→ Rm×m uniquely defines an RKHS,HK for which K is the kernel. From theorem 6:
Theorem 7. The set F∆ ={∆f(·; ∆Θ) : Rn → Rm|∆Θ ∈ W∆} of changes in network behavior
satisfying our assumptions, including the bound, lies in an RKHS HK (that is, F∆ ⊂ HK) with
kernel K = ImKLiNK, where KLiNK = K [D−1], is the Local-intrinsic Neural Kernel (LiNK), ∀j:

K [j](x,x′) = p[j]

γ2+1 E
̃∈P̃[j]

[
H[̃]

ω̃[̃,j]2 Σ[̃,j](x,x′)+ H[̃]

T
[̃,j]2

(ω̃)η

E
i̃

[
τ̂ [̃,j]
η

(
ρ

[̃,j]2
(ω̃)ηK

[̃](x,x′);x
[̃]
i̃
, x
′[̃]
i̃

)]]
(22)

and K [−1](x,x′) = 0 and Σ[j](x,x′) is the NNGP kernel. Moreover:

lim
η→1

Ei̃
[
τ̂ [̃,j]
η

(
ρ

[̃,j]2
(ω̃)ηK

[̃] (x,x′) ;x
[̃]
i̃
, x
′[̃]
i̃

)]
=
∑
q≥1

θ
[̃,j]
q (x,x′)

(
ρ

[̃,j]2
(ω̃)ηK

[̃] (x,x′)
)q

θ
[̃,j]
q (x,x′) = Ei̃

[
1
q!τ

[̃,j](q)
(
x

[̃]
i̃

)
1
q!τ

[̃,j](q)
(
x
′[̃]
i̃

)] (23)

(here θ[̃,j]
q (x,x′) is the raw covariance of the qth derivative of link (̃, j)’s activation given x, x′.)
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The proof is requres two steps - step one is to apply the kernel trick (after some preliminaries), while
step two uses Mertens’ theorem to obtain the final result - see Appendix C.3 for details. We observe
that the NTK is essentially (with some additional scaling factors) a first-order (in q) approximation of
the LiNK - if we take the limit η → 1 then to first order the LiNK is approximately:

K [j](x,x′) ≈ p[j]

γ2+1 E
̃∈P̃[j]

[
H[̃]

ω̃[̃,j]2 Σ[̃,j] (x,x′) +
ρ

[̃,j]2

(ω̃)η
H[̃]

T
[̃,j]2

(ω̃)η

θ
[̃,j]
1 (x,x′)K [̃] (x,x′)

]
recalling KLiNK = K [D−1], where:

θ
[̃,j]
1 (x,x′) = Ei̃

[
τ [̃,j](1)

(
x

[̃]
i̃

)
τ [̃,j](1)

(
x
′[̃]
i̃

)]
which is essentially the NTK (6) with some additional scale factors. Assuming random initialization
the LiNK is well-defined for almost all x ∈ X if τ [̃,j] ∈ C∞ for almost all x ∈ X. Note however
that F∆ ⊂ HK - ie. F∆ is not an RKHS in general, but rather a subspace inside of one. Nor can
we meaningfully replace F∆ with its span or completion, as this will contain elements that do not
correspond to physically realizable networks. This is clear from Figure 2, where the weight-feature
map Ψ∆ maps the network weights onto a (non-flat) subspace of `2(N)m, no column of which
coincides with the subspace of same onto which φ∆ maps input space. Thus in general the LiNK
cannot be naively used as a basis for a representor theory in terms of the training dataset.

6.2 APPLICATION: BOUNDING RADEMACHER COMPLEXITY FOR ADAPTATION

Like the global model, an obvious application of the local dual model is the bounding of Rademacher
complexity. The following result may be viewed as the local analogue of our previous bound:

Theorem 8. The set F∆ = {∆f(·; ∆Θ) : Rn → R|∆Θ ∈ W∆} of change in neural-network
operation satisfying (20) has Rademacher complexityRN (F) ≤ 1√

N
φ∆ψ∆ (defined in Figure 2).

The proof follows the template of (Bartlett & Mendelson, 2002) using the local feature map and the
Cauchy-Schwarz inequality (see Appendix D). Assuming an unbiased network φ∆ = 1, and the
Rademacher complexity bound is determined by the recursive equation:

ψ
[j]2
∆ =

(
γ2 + 1

)(
β

[j]2
∆ + 2

∑
̃∈P[j]

H̃[j]

H[̃]

(
ω̃[̃,j]2µ

[̃,j]2
∆ +

(
µ[̃,j]2 + µ

[̃,j]2
∆

)
T

[̃,j]2
(ω̃)η ŝη

(
γ2+1

ρ
[̃,j]2

(ω̃)η

ψ
[̃]2
∆

)))

The width-dependence of the bound is dependent on the width-dependence of µ[̃,j] and µ[j]
∆ , but

unfortunately there appears to be an unavoidably exponential depth-dependancy not present in the
global model as ŝη is positive and increasing on R+. In future work we hope to use this theorem to
explain how methods such as LoRA (Hu et al., 2021) achieve better performance in terms of uniform
convergence properties with restricted weight update rank (and hence the spectral norm of the weight-
matrix changes). Moreover it may be interesting in future investigation to explore if spectral analysis
of the LiNK could be used to bound local Rademacher complexity (Cortes et al., 2013; Bartlett et al.,
2005), as previous investigations in RKHS using this approach give bounds up to O( 1

N ).

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have presented two models of neural networks and neural network training for neural
network of arbitrary width, depth and topology. First we presented an exact (non-approximated)
RKBS model of the overall network in the form of a bilinear product between a data- and weight-
feature map. We have used this model to construct a bound on Rademacher complexity, and for
Lipschitz activations we have given conditions under which the Rademacher complexity is depth-
independent, and how diffierent initialization schemes can achieve RN (F) ≤ 1√

N
. The second model

we have presented models the change in the neural network due to a bounded change in weights
and biases. This model cast the change in RKHS with the local-intrinsic neural kernel (LiNK). We
have shown that this can be used to bound Rademacher complexity for network adaptation. We have
also discussed the role of weight initialization and implications for feedforward ReLU networks and
residual networks (ResNets), and presented the local intrinsic neural kernel for the ResNet.
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Felix Dräxler, Kambis Veschgini, Manfred Salmhofer, and Fred A. Hamprecht. Essentially no
barriers in neural network energy landscape. In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, 2018.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–1685.
PMLR, 2019a.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In Conference on Learning Representations, 2019b.

Adria Garriga-Alonso, Carl E. Rasmussen, and Laurence Aitchison. Deep convolutional networks as
shallow gaussian processes. In International Conference on Learning Representations, pp. 1–16,
May 2019.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323. JMLR Workshop and Conference Proceedings, 2011.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. In COLT, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Academic Press, London,
2000.

Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension bounds for
piecewise linear neural networks. In Proceedings of the 30th Conference on Learning Theory,
COLT 2017, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Einar Hille. Contributions to the theory of Hermitian series. II. The representation problem. Trans.
Amer. Math. Soc., 47:80–94, 1940.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pp. 8571–
8580, 2018.

B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. The
Annals of Statistics, 28(5):1302 – 1338, 2000.

Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as gaussian processes. In In International Conference on
Learning Representations, 2018.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems, 2018.

Rongrong Lin, Haizhang Zhang, and Jun Zhang. On reproducing kernel banach spaces: Generic
definitions and unified framework of constructions. Acta Mathematica Sinica, English Series, 2022.

Alexander G. de G. Matthews, Mark Rowland, Jiri Hron, Richard E. Turner, and Zoubin Ghahramani.
Gaussian process behaviour in wide deep neural networks. arXiv e-prints, 2018.

James Mercer. Functions of positive and negative type, and their connection with the theory of
integral equations. Transactions of the Royal Society of London, 209(A), 1909.

Charles A. Micchelli and Massimiliano Pontil. On learning vector-valued functions. Neural computa-
tion, 17(1):177–204, 2005.

Philip M. Morse and Herman Feshbach. Methods of Theoretical Physics. McGraw-Hill, 1953.

Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain gener-
alization in deep learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dé Buc, E. Fox,
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A PROPERTIES OF HERMITE POLYNOMIALS

The (probabilist’s) Hermite polynomials are given by (Abramowitz et al., 1972; Morse & Feshbach,
1953; Olver et al., 2010; Courant & Hilbert, 1937):

Hek (ζ) = (−1)
k
e
ζ2

2
dk

dζk
e−

ζ2

2 ∀k ∈ N

or, explicitly:
Hek (ζ) = k!

∑
0≤2p≤k

(−1)p

2pp!(k−2p)!ζ
k−2p ∀k ∈ N (24)

and form an orthogonal basis of L2(R, e−x2

). Thus for any f ∈ L2(R, e−x2

) there exist Hermite
coefficients a0, a1, . . . ∈ R (i.e. the Hermite transform of f ) so that:

f (ζ) =
∑
k∈N

akHek (ζ) ∀ζ ∈ R

where:
ak = 1

k!
√

2π

∫∞
−∞ f (ζ) e−

ζ2

2 Hek (ζ) dζ

This series representation converges everywhere on the real line. Moreover (Hille, 1940; Boyd, 1980)
this series converges on a strip Sρ = {z ∈ C : −ρ < Im(z) < ρ} of width ρ about the real axis in
the complex plane, where:7

ρ = − lim sup
k→∞

1√
2k+1

log

(∣∣∣∣ ak√
k!
√
π

∣∣∣∣) (25)

The Hermite numbers derive from the Hermite polynomials:8

Hek , Hek (0) =

{
0 if k odd
k!

( k2 )!

(
− 1

2

) k
2 if k even

It is well known that (see e.g. (Morse & Feshbach, 1953)):

Hek (ζ + ξ) =
∑

0≤l≤k

(
k
l

)
Hek−l (ζ) ξl

and so:
Hek (ζ) =

∑
0≤l≤k

(
k
l

)
Hek−lζ

l

It follows that, taking care not to change or order of summation (remember this is an alternating series):

f (ζ) =
∞∑
k=0

ak
k∑
l=0

(
k
l

)
Hek−lζ

l

Next we derive a helpful property involving rectified Hermite expansions. Let f ∈ L2(R, e−x2

),
f(0) = 0, then:

f (x) =
∞∑
k=1

akHe (x) =
∞∑
k=1

ak
k∑
l=1

(
k
l

)
Hek−lx

l

Denoting the imaginary element i:

f (ix) =
∞∑
k=1

ak
k∑
l=1

(
k
l

)
Hek−l (ix)

l

=
∞∑
k=1

ak
k−1∑
l=0

(
k
k−l
)
Hel (ix)

k−l

=
∞∑
k=1

ikak
k−1∑
l=0

(
k
k−l
) (

ilHel
)
xk−l

7Note that (Hille, 1940; Boyd, 1980) use the normalized physicist’s Hermite polynomials. The additional
scale factor here arises in the translation to the un-normalized probabilist’s Hermite polynomials used here.

8Typically the Hermite numbers are defined from the physicist’s Hermite polynomials, but as we use the
Probabilist’s form we find these more convenient.
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Recall that Hel = 0 for l = 1, 3, 5, . . ., and sgn(He2p) = (−1)p. Therefore

f (ix) =
∞∑
k=1

ikak
k−1∑
l=0

(
k
k−l
)
|Hel|xk−l

=
∞∑
k=1

ikak
k∑
l=1

(
k
l

)
|Hek−l|xl

and so:

Im (f (ix)) =
∑

k=1,3,5,...

(−1)
b k2 c ak

k∑
l=1

(
k
l

)
|Hek−l|xl

Re (f (ix)) =
∑

k=2,4,6,...

(−1)
b k2 c ak

k∑
l=1

(
k
l

)
|Hek−l|xl

Im (f (ix)) + Re (f (ix)) =
∞∑
k=1

(−1)
b k2 c ak

k∑
l=1

(
k
l

)
|Hek−l|xl (26)

Finally we make some observations regarding derivatives that will be required later. Let f ∈
L2(R, e−x2

), f(0) = 0. Then:

f (x) =
∞∑
k=1

ak
k∑
l=1

(
k
l

)
Hek−lx

l

and subsequently:

f (1) (x) =
∞∑
k=1

ak
k∑
l=1

l
(
k
l

)
Hek−lx

l−1

=
∞∑
k=1

ak
k∑
l=1

l k!
l!(k−l)!Hek−lx

l−1

=
∞∑
k=1

ak
k∑
l=1

k (k−1)!
(l−1)!(k−l)!Hek−lx

l−1

=
∞∑
k=1

ak
k∑
l=1

k
(
k−1
l−1

)
Hek−lx

l−1

=
∞∑
k=0

(k + 1)ak+1

k−1∑
l=0

(
k
l

)
Hek−lx

l

and:

f (2) (x) =
∞∑
k=0

(k + 1)ak+1

k−1∑
l=1

(l − 1)
(
k
l

)
Hek−lx

l−1

=
∞∑
k=0

(k + 1)ak+1

k−1∑
l=1

(l − 1) k!
l!(k−l)!Hek−lx

l−1

=
∞∑
k=0

(k + 1)ak+1

k−1∑
l=1

k (k−1)!
(l−l)!(k−l)!Hek−lx

l−1

=
∞∑
k=1

(k + 1)ak+1

k−1∑
l=1

k (k−1)!
(l−l)!(k−l)!Hek−lx

l−1

=
∞∑
k=0

(k + 1)(k + 2)ak+2

k−2∑
l=0

(
k
l

)
Hek−lx

l

and so on to:

f (n) (x) =
∞∑
k=0

(k+n)!
k! ak+n

k−n∑
l=0

(
k
l

)
Hek−lx

l

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.1 ACTIVATION FUNCTIONS

Following the previous method we introduce our notation for the activation functions. Recall
τ [̃,j] ∈ L2(R, e−x2

) by assumption. Subsequently τ [̃,j] ∈ L2(R, e−x2

), where:

τ [̃,j] (ζ; ξ) = τ [̃,j] (ξ + ζ)− τ [̃,j] (ξ) =
∑
k∈N

a
[̃,j]
(ξ)kHek (ζ) ∀ζ ∈ R+

=
∞∑
k=0

a
[̃,j]
(ξ)k

k∑
l=0

(
k
l

)
Hek−lζ

l

=
∞∑
k=1

a
[̃,j]
(ξ)k

k∑
l=1

(
k
l

)
Hek−lζ

l

(27)

(in the final step we use that τ [̃,j](0; ξ) = 0) with coefficients:

a
[̃,j]
(ξ)k = 1

k!
√

2π

∫∞
−∞ τ [̃,j] (ζ; ξ) e−

ζ2

2 Hek (ζ) dζ

which converges on a strip S
ρ

[̃,j]

(ξ)

= {z ∈ C : −ρ[̃,j]
(ξ) < Im(z) < ρ

[̃,j]
(ξ) } of width ρ[̃,j]

(ξ) about the real

axis in the complex plane, where:

ρ
[̃,j]
(ξ) = − lim sup

k→∞

1√
2k+1

log

(∣∣∣∣ a
[̃,j]

(ξ)k√
k!
√
π

∣∣∣∣)
A.2 RECTIFIED ACTIVATION FUNCTIONS

Recall that the rectified activation functions are defined as:

τ̂ [̃,j]
η (ζ; ξ, ξ′) =

∞∑
k=1

a
[̃,j]

(ξ)k
a

[̃,j]

(ξ′)k
η2k

k∑
l=1

(
k
l

)2
He2

k−lζ
l

where η ∈ (0, 1) is fixed. To understand the convergence of this function, observe that:

τ̂ [̃,j]
η (ζ; ξ, ξ′) ≤ max

ξ′′∈{ξ,ξ′}

∞∑
k=1

k∑
l=1

∣∣∣∣a[̃,j]

(ξ′′)k
ηk

(
k
l

)
Hek−l

√
ζl
∣∣∣∣2

which is the 2-norm of a sequence. Hence:

τ̂ [̃,j]
η (ζ; ξ, ξ′) ≤ max

ξ′′∈{ξ,ξ′}

( ∞∑
k=1

k∑
l=1

∣∣∣∣
∣∣∣a[̃,j]

(ξ′′)k

∣∣∣
ηk

(
k
l

)
|Hek−l|

√
ζl
∣∣∣∣)2

Thus is suffices to study the convergence of:

γ[̃,j] (λ; ξ) =
∞∑
k=1

∣∣∣a[̃,j]

(ξ)k

∣∣∣
ηk

k∑
l=1

(
k
l

)
|Hek−l|λl

which in turn bounds:

τ̂ [̃,j]
η (ζ; ξ, ξ′) ≤ max

{
γ[̃,j]

(√
ζ; ξ
)2
, γ[̃,j]

(√
ζ; ξ′

)2}
Using (26):

γ[̃,j] (λ; ξ) = Re
(
γ[̃,j] (iλ; ξ)

)
+ Im

(
γ[̃,j] (iλ; ξ)

)
where:

γ[̃,j] (λ; ξ) =
∞∑
k=1

∣∣∣a[̃,j]

(ξ)k

∣∣∣
ηk

k∑
l=1

(
k
l

)
Hek−lλ

l

which, using (25), is convergent for:

|λ| < L
[̃,j]
(ξ) < − lim sup

k→∞

1√
2k+1

(
ln

∣∣∣∣a[̃,j]

(ξ)k

ηk

∣∣∣∣)
whereon: ∣∣γ[̃,j] (λ; ξ)

∣∣ ≤M [̃,j]
(ξ) = γ[̃,j]

(
L

[̃,j]
(ξ) ; ξ

)
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and we conclude that τ̂ [̃,j]
η (ζ; ξ, ξ′) is convergent for:

|ζ| ≤ ρ[̃,j]2
(ξ)η = min

{
− lim sup

k→∞

1√
2k+1

ln

∣∣∣∣a[̃,j]

(ξ)k

ηk

∣∣∣∣ ,− lim sup
k→∞

1√
2k+1

ln

∣∣∣∣a[̃,j]

(ξ)k

ηk

∣∣∣∣}2

whereon:
τ̂ [̃,j]
η (ζ; ξ, ξ′) ≤ T [̃,j]2

(ξ)η = τ̂ [̃,j]
η

(
ρ

[̃,j]2
(ξ)η ; ξ, ξ′

)
The envelope is convergent for:

|ζ| < ρ
[̃,j]2
(ω)η = inf

|ξ|,|ξ′|≤ω
ρ

[̃,j]2
(ξ,ξ′)η

whereon:
T

[̃,j]2
(ω)η = τ̂ [̃,j]

η

(
ρ

[̃,j]2
(ω)η ;ω

)
Finally:

ŝη (ζ) =
∞∑
k=1

η2k
k∑
l=1

ζl = ζ
1−ζ

∞∑
k=1

η2k
(
1− ζk

)
= ζ

1−ζ

( ∞∑
k=1

η2k −
∞∑
k=1

(ζη2)k
)

= ζ
1−ζ

(
η2

1−η2 − ζη2

1−ζη2

)
is convergent ∀|ζ| < R2

η < 1, with max value of S2
η =

R2
η

1−R2
η

( η2

1−η2 −
η2R2

η

1−η2R2
η

) thereon.

A.3 RELU ACTIVATION FUNCTION

In this section we derive the Hermite-polynomial expansion of the centered ReLU activation function:

τ [ReLU] (ζ; ξ) = τ [ReLU] (ξ + ζ)− τ [ReLU] (ξ)

=

{
ζ + ξ if ζ > −ξ
0 otherwise − [ξ]+

=
∞∑
k=0

a
[̃,j]
(ξ)kHek (ζ)

We find it convenient to work in terms of the physicists Hermite polynomials Hk to suit (Gradshteyn
& Ryzhik, 2000). Using this:

a
[ReLU]
(ξ)k = 1√

2πk!

∫∞
−ξ (ζ + ξ) e−

ζ2

2 Hek (ζ) dζ − 1√
2πk!

∫∞
−∞ [ξ]+ e

− ζ
2

2 Hek (ζ) dζ

= 1√
2πk!

∫∞
−ξ (ζ + ξ) e−

ζ2

2
1√
2
kHk

(
ζ√
2

)
dζ − 1√

2πk!

∫∞
−∞ [ξ]+ e

− ζ
2

2
1√
2
kHk

(
ζ√
2

)
dζ

=
√

2
π

1
k!

∫∞
−
√

2 ξ√
2

(
ζ√
2

+ ξ√
2

)
e
−
(
ζ√
2

)2

1√
2
kHk

(
ζ√
2

)
d ζ√

2
−
√

2
π

1
k!

∫∞
−∞

[
ξ√
2

]
+
e
−
(
ζ√
2

)2

1√
2
kHk

(
ζ√
2

)
d ζ√

2

=
√

2
π

1√
2
k
k!

∫∞
− ξ√

2

(
ζ + ξ√

2

)
e−ζ

2

Hk (ζ) dζ −
√

2
π

1√
2
k
k!

∫∞
−∞

[
ξ√
2

]
+
e−ζ

2

Hk (ζ) dζ

=
√

2
π

1√
2
k
k!

∫∞
− ξ√

2

e−ζ
2

ζHk (ζ) dζ + 1√
π

1√
2
k
k!
ξ
∫∞
− ξ√

2

e−ζ
2

Hk (ζ) dζ − 1√
π

1√
2
k
k!

[ξ]+
∫∞
−∞ e−ζ

2

Hk (ζ) dζ

Using the recursion and derivative properties, for k > 1:

ζHk (ζ) = 1
2Hk+1 (ζ) + 1

2H
′
k (ζ)

= 1
2Hk+1 (ζ) + kHk−1 (ζ)

and hence, using (Gradshteyn & Ryzhik, 2000, (7.373)):

a
[ReLU]
(ξ)k = k+1√

π
1√

2
k+1

(k+1)!

∫∞
− ξ√

2

e−ζ
2

Hk+1 (ζ) dζ + 1√
π

1√
2
k−1

(k−1)!

∫∞
− ξ√

2

e−ζ
2

Hk−1 (ζ) dζ + . . .

. . .+ 1√
π

1√
2
k
k!
ξ
∫∞
− ξ√

2

e−ζ
2

Hk (ζ) dζ − 1√
π

1√
2
k
k!

[ξ]+
∫∞
−∞ e−ζ

2

Hk (ζ) dζ

= k+1√
π

1√
2
k+1

(k+1)!

∫∞
− ξ√

2

e−ζ
2

Hk+1 (ζ) dζ + 1√
π

1√
2
k−1

(k−1)!

∫∞
− ξ√

2

e−ζ
2

Hk−1 (ζ) dζ + . . .

. . .+ 1√
π

1√
2
k
k!
ξ
∫∞
− ξ√

2

e−ζ
2

Hk (ζ) dζ − δk,2p 1√
π

1√
2
2p

(2p)!
[ξ]+

∫∞
−∞ e−ζ

2

H2p (ζ) dζ

= k+1√
π

1√
2
k+1

(k+1)!

∫∞
− ξ√

2

e−ζ
2

Hk+1 (ζ) dζ + 1√
π

1√
2
k−1

(k−1)!

∫∞
− ξ√

2

e−ζ
2

Hk−1 (ζ) dζ + . . .

. . .+ 1√
π

1√
2
k
k!
ξ
∫∞
− ξ√

2

e−ζ
2

Hk (ζ) dζ
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Using (Gradshteyn & Ryzhik, 2000, (7.373)) we have:

a
[ReLU]
(ξ)k = 1√

π
1√

2
k+1

(k+1)!
(k + 1)

(
e−

ξ2

2 Hk

(
− ξ√

2

)
− e−∞

2

2 Hk

(
∞√

2

))
+ . . .

. . . 1√
π

1√
2
k−1

(k−1)!

(
e−

ξ2

2 Hk−2

(
− ξ√

2

)
− e−∞

2

2 Hk−2

(
∞√

2

))
+ . . .

. . . 1√
π

1√
2
k
k!
ξ
(
e−

ξ2

2 Hk−1

(
− ξ√

2

)
− e−∞

2

2 Hk−1

(
∞√

2

))
= 1√

2π
e−

ξ2

2

(
k+1√

2
k
(k+1)!

Hk

(
− ξ√

2

)
+ 1√

2
k−2

(k−1)!
Hk−2

(
− ξ√

2

)
+ 1√

2
k−1

k!
ξHk−1

(
− ξ√

2

))
If k = 2p and p > 0 then, noting that Hk(0) =

√
2
k
Hek:

a
[ReLU]
(ξ)2p = 1√

2π
e−

ξ2

2

(
1√

2
2p

(2p+1)!
(2p+ 1)H2p

(
− ξ√

2

)
+ 1√

2
2p−2

(2p−1)!
H2p−2

(
− ξ√

2

)
+ 1√

2
2p−1

(2p)!
ξH2p−1

(
− ξ√

2

))
= 1√

2π
e−

ξ2

2

(
1√

2
2p

(2p+1)!
(2p+ 1)H2p

(
ξ√
2

)
+ 1√

2
2p−2

(2p−1)!
H2p−2

(
ξ√
2

)
− 1√

2
2p−1

(2p)!
ξH2p−1

(
ξ√
2

))
= (−1)p+1

√
2π(2p−1)2pp!

e−
ξ2

2

(
(−1)p+1(2p−1)p!

(2p)! H2p

(
ξ√
2

)
+ (−1)p+12p!

(2(p−1))! H2p−2

(
ξ√
2

)
− (−1)p+1(p−1)!√

2(2(p−1))!
ξH2p−1

(
ξ√
2

))(
= (−1)p+1

√
2π(2p−1)2pp!

e−
ξ2

2

(
(−1)p+1(2p−1)p!

(2p)! H2p (0) + (−1)p+12p!
(2(p−1))! H2p−2 (0)

)
, if ξ = 0

)(
= (−1)p+1

√
2π(2p−1)2pp!

e−
ξ2

2

(
(−1)p+1(2p−1)p!

(2p)! 2pHe2p + (−1)p+12p!
(2(p−1))! 2p−1He2p−2

)
, if ξ = 0

)(
= (−1)p+1

√
2π(2p−1)2pp!

e−
ξ2

2

(
(−1)p+1(2p−1)p!

(2p)! 2p (−1)p(2p)!
2pp! + (−1)p+12p!

(2(p−1))! 2p−1 (−1)p+1(2p−2)!
(p−1)!2p−1

)
, if ξ = 0

)(
= (−1)p+1

√
2π(2p−1)2pp!

, if ξ = 0
)

If k = 2p+ 1 and p > 0 then:

a
[ReLU]
(ξ)2p+1 = 1√

2π
e−

ξ2

2

(
1√

2
2p+1

(2p+2)!
(2p+ 2)H2p+1

(
− ξ√

2

)
+ 1√

2
2p−1

(2p)!
H2p−1

(
− ξ√

2

)
+ 1√

2
2p−2

(2p−1)!
ξH2p−2

(
− ξ√

2

))
= 1√

2π
e−

ξ2

2

(
− 1√

2
2p+1

(2p+2)!
(2p+ 2)H2p+1

(
ξ√
2

)
− 1√

2
2p−1

(2p)!
H2p−1

(
ξ√
2

)
+ 1√

2
2p−2

(2p−1)!
ξH2p−2

(
ξ√
2

))
= 1√

2π
e−

ξ2

2

(
−

√
2

2p+1(2p+1)!H2p+1

(
ξ√
2

)
−

√
2

2p(2p)!H2p−1

(
ξ√
2

)
+ 1

2p−1(2p−1)!ξH2p−2

(
ξ√
2

))
(= 0 if ξ = 0)

For the cases k = 0, 1 we use the result:∫ b
a
xme−x

2

dx = 1
2Γ
(
m+1

2 , a2
)
− 1

2Γ
(
m+1

2 , b2
)

and so: ∫∞
a
xme−x

2

dx = 1
2Γ
(
m+1

2 , a2
)

In the case k = 0:

a
[ReLU]
(ξ)0 =

√
2
π

∫∞
− ξ√

2

ζe−ζ
2

dζ + 1√
π
ξ
∫∞
− ξ√

2

e−ζ
2

dζ − [ξ]+

= 1√
2π

Γ
(

1, ξ
2

2

)
+ 1

2
√
π
ξΓ
(

1
2 ,

ξ2

2

)
− [ξ]+(

= 1√
2π

if ξ = 0
)

and in the case k = 1:

a
[ReLU]
(ξ)1 = 2√

π

∫∞
− ξ√

2

ζ2e−ζ
2

dζ +
√

2
π ξ
∫∞
− ξ√

2

ζe−ζ
2

dζ

= 1√
π

Γ
(

3
2 ,

ξ2

2

)
+ 1√

2π
ξΓ
(

1, ξ
2

2

)(
= 1

2 if ξ = 0
)

Next we derive the magnitude functions for the ReLU. Using integration by parts, we see that:
1√
2π

∫ x
c

1
ζ2

(
e

1
2 ζ

2 − 1
)
dζ = 1√

2π
1√
2

∫ x
c

2
ζ2

(
e

1
2 ζ

2 − 1
)
d ζ√

2

= 1√
2π

1√
2

∫ x√
2
c√
2

1
ζ2

(
eζ

2 − 1
)
dζ

= − 1√
2π

1
x

(
e

1
2x

2 − 1
)

+ 1√
2π

1
c

(
e

1
2 c

2 − 1
)

+ 1√
π

∫ x√
2
c√
2

eζ
2

dζ

= − 1√
2π

1
x

(
e

1
2x

2 − 1
)

+ 1√
2π

1
c

(
e

1
2 c

2 − 1
)

+ 1
2

2√
π

∫ x√
2
c√
2

eζ
2

dζ

= − 1√
2π

1
x

(
e

1
2x

2 − 1
)

+ 1
2erfi

(
x√
2

)
− 1

2

(
erfi
(

c√
2

)
− 1√

2π
2
c

(
e

1
2 c

2 − 1
))
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Figure 3: The ReLU magnitude activation and associated functions - ReLU activation τ [ReLU] (top
left), magnitude s[ReLU] (top right), rectified activation τ̂ [ReLU]

η for various ξ, ξ′ pairs (bottom left)
and its envelope (bottom right) for ξ, ξ′ ∈ [−2, 2]. Note that η = 0.75 for all plots.

So:
∞∑
k=1

∣∣∣a[ReLU]
k

∣∣∣xk = 1
2x+ 1√

2π

∞∑
p=1

x2p

(2p−1)2pp!

= 1
2x+ 1√

2π
x
∞∑
p=1

x2p−1

(2p−1)2pp!

= 1
2x+ 1√

2π
x
∫ x
c

(
∂
∂ζ

∞∑
p=1

ζ2p−1

(2p−1)2pp!

)
dζ

= 1
2x+ 1√

2π
x
∫ x
c

(
∞∑
p=1

ζ2p−2

2pp!

)
dζ

= 1
2x+ 1

2
√

2π
x
∫ x
c

(
∞∑
p=1

1
p!

(
1
2ζ

2
)p−1

)
dζ

= 1
2x+ 1√

2π
x
∫ x
c

1
ζ2

(
∞∑
p=1

1
p!

(
1
2ζ

2
)p)

dζ

= 1
2x+ 1√

2π
x
∫ x
c

1
ζ2

(
e

1
2 ζ

2 − 1
)
dζ

= 1
2x
(

erfi
(
x√
2

)
+ 1− erfi

(
c√
2

)
+ 1√

2π
2
c

(
e

1
2 c

2 − 1
))

+ 1√
2π

(
1− e 1

2x
2
)

Select c so that the first derivative is 1
2x:

−erfi
(

c√
2

)
+ 1√

2π
2
c

(
e

1
2 c

2 − 1
)

= 0 if c = 0

Hence:

s[ReLU] (x) ,
∞∑
k=1

∣∣∣a[ReLU]
k

∣∣∣ (1 + x)
k −

∞∑
k=1

∣∣∣a[ReLU]
k

∣∣∣
= 1

2 (1 + x)
(

erfi
(

1+x√
2

)
+ 1
)

+ 1√
2π

(
1− e 1

2 (1+x)2
)
− 1

2

(
erfi
(

1√
2

)
+ 1
)
− 1√

2π

(
1− e 1

2

)
= 1

2x
(

erfi
(

1+x√
2

)
+ 1
)

+ 1√
2π

(
e

1
2 − e 1

2 (1+x)2
)

+ 1
2

(
erfi
(

1+x√
2

)
− erfi

(
1√
2

))
(28)
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B PROOF OF THE GLOBAL DUAL MODEL

Here we prove the validity of the global dual model presented in the paper. Recall that the dual model
has the form (Theorem 1, equation (10)):

f (x; Θ) = 〈Ψ (Θ) ,φ (x)]g (29)

where, as per Figure 1, Ψ = Ψ[D−1], φ = φ[D−1], g = g[D−1] and, given the base case Ψ[−1](Θ) =
1n, φ[−1](x) = x, g[−1] = 1n, the recursive definition of the feature maps and metric is proposed:

Ψ̃
[̃,j]
:i̃

(Θ) = φ̃

∣∣∣a[̃,j]
(0)k

∣∣∣ 1
2

(k
l

) 1
2

(√
1

s[̃,j]−1
(
φ̃

2
)Ψ

[̃]
:i̃

(Θ)

)⊗l
1≤l≤k


k≥1

φ̃[̃,j] (x) = 1
φ̃

a[̃,j]〈 1
2 〉

(0)k

[(
k
l

) 1
2

(√
s[̃,j]−1

(
φ̃

2
)
φ[̃] (x)

)⊗l]
1≤l≤k


k≥1

g̃[̃,j] =
[[

Hek−lg
[̃]⊗l]

1≤l≤k

]
k≥1

(30)

∀̃ ∈ P̃[j] (the feature map transforms associated with the edges of the graph) and:

Ψ[j] (Θ) =
√
γ2 + 1

 b[j]T + υ
[j]T
τ

diag
̃∈P̃[j]

(√
H̃[j]

H[̃] Ψ̃
[̃,j] (Θ) W[̃,j]

) 
φ[j] (x) =

√
1

γ2+1

[
γ[√

H[̃]

H̃[j]
Φ̃[̃,j] (x)

]
̃∈P̃[j]

]

g[j] =

[
1[

g̃[̃,j]
]
̃∈P̃[j]

]
(31)

(the feature map transforms associated with the nodes of the graph) where υ
[j]
τ =∑

̃∈P̃[j]

τ [̃,j](0)
γ W[̃,j]T1H[̃] . Our approach to demonstrating that this is true is to prove that, given

some input x ∈ X then, for all edges (̃→ j):

x̃[̃,j] − 1H[̃]τ [̃,j] (0) =
〈
Ψ̃[̃,j] (Θ) , φ̃[̃,j] (x)

]
g̃[̃,j]

(32)

and likewise for all nodes j:

x[j] =
〈
Ψ[j] (Θ) ,φ[j] (x)

]
g[j] (33)

Base case: By the definition of the base case, we have:

x[−1] =
〈
Ψ[−1] (Θ) ,φ[−1] (x)

]
g[−1] = x

Node case: Assume (32) is true. Then, using (31), we have that:〈
Ψ[j] (Θ) ,φ[j] (x)

]
g[j] = γb[j] +

∑
̃∈P̃[j]

(
W[̃,j]T1H[̃]τ [̃,j] (0) + W[̃,j]Tx̃[̃,j] −W[̃,j]T1H[̃]τ [̃,j] (0)

)
= γb[j] +

∑
̃∈P̃[j]

W[̃,j]Tx̃[̃,j]

= x[j]
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Edge case: Assume (33) is true. Then, using (30), we have that:〈
Ψ̃[̃,j] (Θ) , φ̃[̃,j] (x)

]
g̃[̃,j]

=

[〈
Ψ̃

[̃,j]
:i̃

(Θ) , φ̃[̃,j] (x)
]
g̃[̃,j]

]
i̃

=

[∑
k≥1

a
[̃,j]
(0)k

∑
1≤l≤k

(
k
l

)
Hek−l

〈
Ψ

[j]
:i̃

(Θ)
⊗l
,φ[j] (x)

⊗l
]
g[j]⊗l

]
i̃

=

[∑
k≥1

a
[̃,j]
(0)k

∑
1≤l≤k

(
k
l

)
Hek−l

〈
Ψ

[j]
:i̃

(Θ) ,φ[j] (x)
]l
g[j]

]
i̃

=

[∑
k≥1

a
[̃,j]
(0)k

∑
1≤l≤k

(
k
l

)
Hek−lx

[̃]l
i̃

]
i̃

=

[∑
k≥0

a
[̃,j]
(0)k

∑
0≤l≤k

(
k
l

)
Hek−lx

[̃]l
i̃
−
∑
k≥0

a
[̃,j]
(0)k

∑
0≤l≤k

(
k
l

)
Hek−l0

l

]
i̃

=
[
τ [̃,j]

(
x

[̃]
i̃

)
− τ [̃,j] (0)

]
i̃

= x̃[̃,j] − 1H[̃]τ [̃,j] (0)

The desired result (29) then follows by identifying the output node j = D − 1.

B.1 NORM-BOUNDS FOR THE GLOBAL DUAL MODEL

Our proof of the norm-bounds of the global model follows the same model as our proof of the validity
of said model. We want to prove the bounds∥∥∥φ̃[̃,j] (x)

∥∥∥2

2
∈
[
φ̃

[̃,j]2

↓ = 1

φ̃
2 s

[̃,j]
(
s[̃,j]−1

(
φ̃

2
)
φ

[̃]2
↓

)
, φ̃

[̃,j]2
= 1
]

∥∥∥Ψ̃[̃,j] (Θ)
∥∥∥2

2
≤ ψ̃

[̃,j]2
= φ̃

2
s[̃,j]

(
1

s[̃,j]−1
(
φ̃

2
)ψ[̃]2

)
∥∥∥Ψ̃[̃,j] (Θ)

∥∥∥2

He[τ ]
≤ ψ̃˜[̃,j]2 =

sup
φ

[̃]
↓ ≤φ

[̃]≤1

−ψ˜ [̃]≤ψ˜ [̃]≤ψ˜ [̃]

{
φ̃

2
τ [̃,j]

(
φ[̃]ψ˜[̃]

)2

s[̃,j]
(
s[̃,j]−1

(
φ̃

2
)
φ[̃]2

)
} (34)

∥∥φ[j] (x)
∥∥2

2
∈

[
φ

[j]2
↓ = 1

γ2+1

(
γ2 +

∑
̃∈P̃[j]

H[̃]

H̃[j]
φ̃

[̃,j]2

↓

)
, φ[j]2 = 1

]
∥∥Ψ[j] (Θ)

∥∥2

2
≤ ψ[j]2 =

(
γ2 + 1

)((
β[j] +

µ[j]|τ [̃,j](0)|
γ

)2

+
∑
̃∈P̃[j]

H̃[j]

H[̃] ψ̃
[̃,j]2µ[̃,j]2

)
∥∥Ψ[j] (Θ)

∥∥2

He[τ ]
≤ ψ˜[j]2 =

(
γ2 + 1

)((
β[j] +

µ[j]|τ [̃,j](0)|
γ

)2

+
∑
̃∈P̃[j]

H̃[j]

H[̃] ψ̃˜[̃,j]2µ[̃,j]2

)
(35)

with the base-cases ‖φ[−1](x)‖22 ∈ [φ
[−1]2
↓ = 0, φ[−1]2 = 1], ‖Ψ[−1](Θ)‖22 ≤ ψ[−1]2 = 1 and

‖Ψ[−1](Θ)‖2He[τ ] ≤ ψ˜[−1]2 = 1. We proceed as follows:

Base case: By the definition of the base case, using our assumptions, we have:∥∥φ[−1] (x)
∥∥2

2
= ‖x‖22 ≤ 1 = φ[−1]2

∥∥Ψ[−1] (Θ)
∥∥2

2
= ‖In‖22 ≤ 1 = ψ[−1]2

∥∥Ψ[−1] (Θ)
∥∥2

He[τ ]
= sup

x∈X

∥∥∥∥∥
〈

φ[−1](x)

‖φ[−1](x)‖
2

,Ψ[−1] (Θ)

]
g

∥∥∥∥∥
2

2

= sup
x∈X

∥∥∥∥ φ[−1](x)

‖φ[−1](x)‖
2

∥∥∥∥2

2

≤ 1 = ψ˜[−1]2
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Node case: Assume (34) is true. Then, using our assumptions, we have that:

∥∥φ[j] (x)
∥∥2

2
= 1

γ2+1

∥∥∥∥∥
[

γ[√
H[̃]

H̃[j]
Φ̃[̃,j] (x)

]
̃∈P̃[j]

]∥∥∥∥∥
2

2

= 1
γ2+1

(
γ2 +

∑
̃∈P̃[j]

H[̃]

H̃[j]

∥∥∥φ̃[̃,j] (x)
∥∥∥2

2

)

∈

[
φ

[j]2
↓ = 1

γ2+1

(
γ2 +

∑
̃∈P̃[j]

H[̃]

H̃[j]
φ̃

[̃,j]2

↓

)
, φ[j]2 = 1

]

∥∥Ψ[j] (Θ)
∥∥2

2
=
(
γ2 + 1

) ∥∥∥∥∥∥∥
 b[j]T + υ

[j]T
τ

diag
̃∈P̃[j]

(√
H̃[j]

H[̃] Ψ̃
[̃,j] (Θ) W[̃,j]

) 
∥∥∥∥∥∥∥

2

2

≤
(
γ2 + 1

)((∥∥b[j]
∥∥

2
+
∥∥∥υ[j]

τ

∥∥∥
2

)2

+
∑
̃∈P̃[j]

H̃[j]

H[̃]

∥∥∥Ψ̃[̃,j] (Θ) W[̃,j]
∥∥∥2
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Edge case: Assume (35) is true. Then, using our assumptions and the definition (12), and using that
the magnitude function is increasing on R+, we have that:
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where the final bound in this sequence is simply the definition of the norm in question with the range
of the supremum expanded to the known bound on this range.

The desired result follows by identifying the output node j = D−1. We note that the bounds φ̃ ∈ R+

may be chosen arbitrarily here.

C PROOF OF THE LOCAL DUAL MODEL

We now repeat the proof from the previous section B for the local model. Recall that the dual model
has the form (Theorem 1, equation (10)):

∆f (x; ∆Θ) = 〈Ψ∆ (∆Θ) ,φ∆ (x)]G∆(x)

=

[〈
Ψ∆:iD−1

(∆Θ) ,φ∆ (x)
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]
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(36)

where, as per Figure 2, Ψ∆ = Ψ
[D−1]
∆ , φ∆ = φ

[D−1]
∆ , G∆ = G

[D−1]
∆ and, given the base case

Ψ
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∆ (x) = 00 G
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(37)

∀̃ ∈ P̃[j] (the feature map transforms associated with the edges of the graph) and:

φ
[j]
∆ (x) =
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γ

1√
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1
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Ψ
[j]
∆ (Θ) =



∆b[j]T√
2p̃[j] diag

̃∈P̃[j]

(
ω̃[̃,j]IH[̃]

)
∆W[j]√

2p̃[j] diag
̃∈P̃[j]

(
ψ̃

[̃,j]

∆ Ψ̃
[̃,j]
∆ (Θ)

) (
W[j] + ∆W[j]

)


G
[j]
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∆ (x)
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

(38)

(the feature map transforms associated with the nodes of the graph). Our approach to demonstrating
that this is true is to prove that, given some input x ∈ X then, for all edges (̃→ j):

∆x̃[̃,j] =
〈
Ψ̃

[̃,j]
∆ (∆Θ) , φ̃

[̃,j]
∆ (x)

]
G̃

[̃,j]
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and likewise for all nodes j:

∆x[j] =
〈
Ψ

[j]
∆ (∆Θ) ,φ

[j]
∆ (x)

]
G

[j]
∆ (x)

(40)
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Base case: By the definition of the base case, we have:

∆x[−1] =
〈
Ψ

[−1]
∆ (∆Θ) ,φ

[−1]
∆ (x)

]
G

[−1]
∆ (x)
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Node case: Assume (39) is true. Then, using (38), we have that:〈
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(
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)
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Edge case: Assume (40) is true. Then, using (37) and (27), we have that:〈
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The desired result (36) then follows by identifying the output node j = D − 1.

C.1 NORM-BOUNDS FOR THE LOCAL DUAL MODEL

Our proof of the norm-bounds of the local model follows the same model as our proof of the validity
of said model. We want to prove the bounds∥∥∥φ̃[̃,j]
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Edge case: Assume (42) is true. Then, using our assumptions and the definition (21) of the rectified
activation function and it’s increasing (on R+) envelope, we have that:

∥∥∥φ̃[̃,j]
∆ (x)� G̃

[̃,j]
∆:i̃

(x)
∥∥∥2

2
=

∥∥∥∥∥∥∥
a

[̃,j]2(
x
[̃]
i̃

)
k

ηk

(k
l

)
Hek−l

(
ρ

[̃,j]2

(ω̃[̃,j])η

γ2+1

) l
2

φ
[̃]
∆ (x)

⊗l �G
[̃]
∆:i̃

(x)
⊗l


1≤l≤k


k≥1

∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥∥
a

[̃,j](
x
[̃]
i̃

)
k

ηk

(kl)Hek−l

(ρ
[̃,j]2

(ω̃[̃,j])η

γ2+1

) l
2

φ
[̃]
∆ (x)�G

[̃]
∆:i̃

(x)

⊗l


1≤l≤k


k≥1

∥∥∥∥∥∥∥∥
2

2

=
∑
k≥1

a
[̃,j]2(
x
[̃]
i̃

)
k

η2k

∑
1≤l≤k

(
k
l

)2
He2

k−l

(
ρ

[̃,j]2

(ω̃[̃,j])η

γ2+1

∥∥∥φ[̃]
∆ (x)�G

[̃]
∆:i̃

(x)
∥∥∥2

2

)l
= τ̂ [̃,j]

η

(
ρ

[̃,j]2

(ω̃[̃,j])η

γ2+1

∥∥∥φ[̃]
∆ (x)�G

[̃]
∆:i̃

(x)
∥∥∥2

2
;x

[̃]
i̃
, x

[̃]
i̃

)

≤ τ̂ [̃,j]
η

(
ρ

[̃,j]2

(ω̃[̃,j])η

γ2+1

∥∥∥φ[̃]
∆ (x)�G

[̃]
∆:i̃

(x)
∥∥∥2

2
; ω̃[̃,j]

)
≤ τ̂ [̃,j]

η

(
ρ

[̃,j]2

(ω̃[̃,j])η
; ω̃[̃,j]

)
≤ T [̃,j]2

(ω̃[̃,j])η
= φ̃

[̃,j]2

∆

∥∥∥Ψ̃[̃,j]
∆ (∆Θ)

∥∥∥2

2
= max

i̃

∥∥∥∥∥∥∥
ηk

( γ2+1

ρ
[̃,j]2

(ω̃[̃,j])η

) l
2 (

Ψ
[̃]
∆:i̃

(∆Θ)
)⊗l

1≤l≤k


k≥1

∥∥∥∥∥∥∥
2

2

= max
i̃

ŝη

(
γ2+1

ρ
[̃,j]2

(ω̃[̃,j])η

∥∥∥Ψ[̃]
∆:i̃

(∆Θ)
∥∥∥2

2

)

= ŝη

(
γ2+1

ρ
[̃,j]2

(ω̃[̃,j])η

∥∥∥Ψ[̃]
∆ (∆Θ)

∥∥∥2

2

)

≤ ŝη

(
γ2+1

ρ
[̃,j]2

(ω̃[̃,j])η

ψ
[̃]2
∆

)
= ψ̃

[̃,j]2

∆

(43)

The desired result follows by identifying the output node j = D − 1.

C.2 CONVERGENCE REGION OF LOCAL DUAL MODEL

Here we prove the bounds on the change in weights and biases for which the local dual model holds
as state in theorem 6. The goal is to place bounds on µ[j]

∆ , β
[j]
∆ to ensure that:

1

ρ
[̃,j]2

(ω̃[̃,j])η

∥∥∥Ψ[̃]
∆ (∆Θ)

∥∥∥2

2
≤ 1

ρ
[̃,j]2

(ω̃[̃,j])η

ψ
[̃]2
∆ ≤ R2

η

∀̃ ∈ P̃[j], ∀j in (43). This result suffices to ensure that ‖Ψ̃[̃,j]
∆ (∆Θ)� G̃

[̃,j]
:ij
‖22 ≤ 1 converges, and

subsequently that both feature maps are convergent, allowing us to conclude that the model is well-
defined (convergent) and enabling e.g. our bound on Rademacher complexity to be derived.
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We aim to find the largest possible µ[̃,j]
∆ , β

[j]
∆ such that:

1

ρ
[̃,j]2

(ω̃[̃,j])η

ψ
[̃]2
∆ ≤ R2

η

∀j : ̃ ∈ P̃[j]. So we require that:

ψ
[̃]2
∆ ≤ min

j:̃∈P̃[j]

ρ
[̃,j]2

(ω̃[̃,j])η
R2
η (44)

Recall that:

ψ
[̃]2
∆ =

(
γ2 + 1

)(
β

[̃]2
∆ + 2

∑
q∈P[̃]

H̃[̃]

H[q]

(
µ

[q,̃]2
∆ ω̃[q,̃]2 + 2µ[q,̃]2ψ̃

[q,̃]2

∆

))
Thus our condition becomes:(

β
[̃]2
∆ + 2

∑
q∈P[̃]

H̃[̃]

H[q]µ
[q,̃]2
∆ ω̃[q,̃]2

)
+ 4

∑
q∈P[̃]

H̃[̃]

H[q]µ
[q,̃]2ψ̃

[q,̃]2

∆ ≤ min
j:̃∈P̃[j]

ρ
[̃,j]2

(ω̃[̃,j])

γ2+1 R2
η

Selecting d[̃] ∈ (0, 1) ∀j we can simplify the requirement to:(
γ2 + 1

) (
β

[̃]2
∆ + 2p[̃]µ

[̃]2
∆ ω̃[̃]2

)
≤ d[̃]ψ

[̃]2
∆

and:

4p[̃]µ[̃]2ψ̃
[̃]2

∆ ≤
(
1− d[̃]

)
min
j:̃∈P̃[j]

ρ
[̃,j]2

(ω̃[̃,j])

γ2+1 R2
η

Re-ordering, we find:

4p̃[̃]µ[̃]2ŝη

(
1

ρ
[̃′,̃]2

(ω̃[̃′,̃])η

ψ
[̃′]2
∆

)
≤
(
1− d[̃]

)
ψ

[̃]2
∆ ∀̃′ ∈ P̃[̃]

and after cleaning up and re-indexing:

ψ
[j]2
∆ ≤ ρ[j,̃]2

(ω̃[j,̃])η
ŝ−1
η

(
1

4p̃[̃]µ[̃]2

(
1− d[̃]

)
ψ

[̃]2
∆

)
∀̃ : j ∈ P̃[̃]

so, overall:
ψ

[j]2
∆ ≤ min

̃:j∈P̃[̃]

ρ
[j,̃]2

(ω̃[j,̃])η

{
R2
η, ŝ
−1
η

(
1

4p̃[̃]µ[̃]2

(
1− d[̃]

)
ψ

[̃]2
∆

)}
and so sufficient conditions are:(

β
[j]2
∆ + 2p[j]ω̃[j]2µ

[j]2
∆

)
≤ d[j]u[j]2

where:
u[j]2 = min

̃:j∈P̃[̃]

ρ
[j,̃]2

(ω̃[j,̃])η

{
R2
η, ŝ
−1
η

(
1

4p̃[̃]µ[̃]2

(
1− d[̃]

)
ψ

[̃]2
∆

)}
and the final result follows by setting d[j] = 1

2 ∀j.

C.3 RKHS FORM OF LOCAL MODEL

Our goal in this section is to derive the LiNK kernel from the Local dual model. For reason that will
become apparent we find it convenient to work with a slight variant of the local dual feature map
with minor re-scaling, namely:

φ̃
[̃,j]
∆ (x) = 1

T
[̃,j]

(ω̃)η

 1
ηk

[(√
ρ

[̃,j]2
(ω̃)η φ

[̃]
∆ (x)

)⊗l]
1≤l≤k


k≥1

G̃
[̃,j]
∆:i̃

(x) =

[
a

[̃,j](
x

[̃]
i̃

)
k

[(
k
l

)
Hek−lG

[̃]
∆:i̃

(x)
⊗l
]

1≤l≤k

]
k≥1

(45)
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∀̃ ∈ P̃[j] and:

φ
[j]
∆ (x) =

√
1

γ2+1


γ

1√
2

[√
H[̃]

H̃[j]

1
ω̃[̃,j] x̃

[̃,j]
]
̃∈P̃[j]

1√
2

[√
H[̃]

H̃[j]
φ̃

[̃,j]
∆ (x)

]
̃∈P̃[j]



G
[j]
∆ (x) =


1T
H[̃]

diag
̃∈P̃[j]

(IH[̃]) 1
H̃

[j]1T
H[j]

diag
̃∈P̃[j]

(
G̃

[̃,j]
∆ (x)

)
1
H̃

[j]1T
H[j]


(46)

We have already demonstrated that the necessary conditions for functions in our space to like in
an RKHS, so it remains derive the kernel representing this space. To this end we recall that Reisz
representor theory implies that ∀x ∈ X ∃ unique Kx ∈ F × Rm such that 〈f(x),v〉 = 〈f ,Kxv〉H
∀v ∈ Rm; from which the kernel may be obtained using:

K (x,x′) =
[ 〈

Kxδ
[D−1]
(iD−1),Kx′δ

[D−1]
(i′D−1)

〉
H

]
iD−1,i

′
D−1

where δ[j]
(k) = [δk,ij ]ij . Thus our first task is to find such a Kx. Recall:

∆f (x) =
(
Ψ

[D−1]
∆ (Θ)�G

[D−1]
∆ (x)

)T

φ
[D−1]
∆ (x)

and so:

〈∆f (x) ,v〉 = ∆f (x)
T

v

= φ
[D−1]
∆ (x)

T
(
Ψ

[D−1]
∆ (Θ)�G

[D−1]
∆ (x)

)
v

=
∑
k,i′D−1

φ
[D−1]
∆k (x)

(
Ψ

[D−1]
∆k,i′D−1

(Θ)G
[D−1]
∆k,i′D−1

(x)
)
vi′D−1

=
∑
k,i′D−1

Ψ
[D−1]
∆k,i′D−1

(Θ)
(
φ

[D−1]
∆k (x)G

[D−1]
∆k,i′D−1

(x) vi′D−1

)
=
∑
k,i′D−1

Ψ
[D−1]
∆k,i′D−1

(Θ)
(∑

i′′D−1
δi′D−1,i

′′
D−1

φ
[D−1]
∆k (x)G

[D−1]
∆k,i′′D−1

(x) vi′′D−1

)
= 〈f ,Kxv〉

where we have denoted:

f =
[
Ψ

[D−1]
∆k,iD−1

(Θ)
]

(k,iD−1)

Kx =
[
δiD−1,i′D−1

φ
[D−1]
∆k (x)G

[D−1]
∆k,i′D−1

(x)
]

(k,iD−1),i′D−1

We may therefore proceed to derive the kernel as follows, letting 〈·, ·〉H be the standard inner product:

KiD−1,i′D−1
(x,x′) =

[〈[
δĩ′D−1 ,̃i

′′
D−1

φ
[D−1]
∆k (x)G

[D−1]

∆k,̃i′′D−1

(x)

]
(k,̃i′D−1),̃i′′D−1

[
δiD−1 ,̃i′′D−1

]
ĩ′′D−1

,[
δĩ′D−1 ,̃i

′′
D−1

φ
[D−1]
∆k (x′)G

[D−1]

∆k,̃i′′D−1

(x′)

]
(k,̃i′D−1),̃i′′D−1

[
δi′D−1 ,̃i

′′
D−1

]
ĩ′′D−1

〉
H

]
iD−1,i′D−1

=

[〈[
δĩ′D−1,iD−1

φ
[D−1]
∆k (x)G

[D−1]
∆k,iD−1

(x)
]

(k,̃i′D−1)
,

[
δĩ′D−1,i

′
D−1

φ
[D−1]
∆k (x′)G

[D−1]
∆k,i′D−1

(x′)
]

(k,̃i′D−1)

〉
H

]
iD−1,i′D−1

=

 ∑
k,̃i′D−1

δĩ′D−1,iD−1
φ

[D−1]
∆k (x)G

[D−1]
∆k,iD−1

(x) δĩ′D−1,i
′
D−1

φ
[D−1]
∆k (x′)G

[D−1]
∆k,i′D−1

(x′)


iD−1,i′D−1

=

[
δiD−1,i′D−1

∑
k

φ
[D−1]
∆k (x)G

[D−1]
∆k,iD−1

(x)φ
[D−1]
∆k (x′)G

[D−1]
∆k,i′D−1

(x′)

]
iD−1,i′D−1

= δiD−1,i′D−1
K

[D−1]
iD−1

(x,x′)
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where:

K
[j]
ij

(x,x′) =
〈
φ

[j]
∆ (x)�G

[j]
∆:ij

(x) ,φ
[j]
∆ (x′)�G

[j]
∆:ij

(x′)
〉

= 1
γ2+1

(
γ2 + 1

2

∑
̃∈P̃[j]

H[̃]

H̃[j]

1
ω̃[̃,j]2

〈
x̃[̃,j], x̃′[̃,j]

〉
+ . . .

. . . + 1
2

∑
̃∈P̃[j]

H[̃]

H̃[j]

∑
i̃

〈
φ̃

[̃,j]
∆ (x)� G̃

[̃,j]
∆:i̃

(x) , φ̃
[̃,j]
∆ (x′)� G̃

[̃,j]
∆:i̃

(x′)
〉)

= 1
γ2+1

(
γ2 + 1

2

∑
̃∈P̃[j]

H[̃]

H̃[j]

1
ω̃[̃,j]2

〈
x̃[̃,j], x̃′[̃,j]

〉
+ . . .

. . . + 1
2

∑
̃∈P̃[j]

H[̃]

H̃[j]

1

T
[̃,j]2

(ω̃)η

∑
i̃

∑
k≥1

a
[̃,j](
x
[̃]
i̃

)
k

a
[̃,j](
x
′[̃]
i̃

)
k

η2k

∑
1≤l≤k

(
k
l

)
He2

k−l

(
ρ

[̃,j]2
(ω̃)η

〈
φ

[̃]
∆ (x)�G

[̃]
∆:i̃

(x) ,φ
[̃]
∆ (x′)�G

[̃]
∆:i̃

(x′)
〉)l

= 1
γ2+1

(
γ2 +

∑
̃∈P̃[j]

H[̃]

H̃[j]

1
ω̃[̃,j]2

〈
x̃[̃,j], x̃′[̃,j]

〉
+ . . .

. . . +
∑
̃∈P̃[j]

H[̃]

H̃[j]

1

T
[̃,j]2

(ω̃)η

∑
i̃

∑
k≥1

a
[̃,j](
x
[̃]
i̃

)
k

a
[̃,j](
x
′[̃]
i̃

)
k

η2k

∑
1≤l≤k

(
k
l

)
He2

k−l

(
ρ

[̃,j]2
(ω̃)ηK

[̃]
i̃

(x,x′)
)l

= 1
γ2+1

(
γ2 +

∑
̃∈P̃[j]

H[̃]

H̃[j]

1
ω̃[̃,j]2

〈
x̃[̃,j], x̃′[̃,j]

〉
+
∑
̃∈P̃[j]

H[̃]

H̃[j]

1

T
[̃,j]2

(ω̃)η

∑
i̃

τ̂ [̃,j]
η

(
ρ

[̃,j]2
(ω̃)ηK

[̃]
i̃

(x,x′) ;x
[̃]
i̃
, x
′[̃]
i̃

))
So, noting that this is independent of ij , we find that f ∈ HK, where K = IKLiNK, where
KLiNK = K

[D−1]
LiNK is defined recursively:

K
[j]
LiNK (x,x′) = 1

γ2+1

( ∑
̃∈P̃[j]

H[̃]

ω̃[̃,j]2 Σ[̃,j] (x,x′) +
∑
̃∈P̃[j]

H[̃]

H̃[j]

1

T
[̃,j]2

(ω̃)η

∑
i̃

τ̂ [̃,j]
η

(
ρ

[̃,j]2
(ω̃)ηK

[̃]
LiNK (x,x′) ;x

[̃]
i̃
, x
′[̃]
i̃

))
with K [−1]

LiNK(x,x′) = 0.

Recall that:

τ̂ [̃,j]
η (ζ; ξ, ξ′) =

∞∑
k=1

a
[̃,j]

(ξ)k
a

[̃,j]

(ξ′)k
η2k

k∑
l=1

(
k
l

)2
He2

k−lζ
l

We aim to express:
τ̂ [̃,j]
η (ζ; ξ, ξ′) =

∑
q
τ̂ [̃,j]
η,q (ζ; ξ, ξ′)

where τ̂ [̃,j]
η,q (ζ; ξ, ξ′) = b(ξ, ξ′)ζq . As noted previously, if:

f (x) =
∞∑
k=0

ak
k∑
l=0

(
k
l

)
Hek−lx

l

then:

f (q) (x) =
∞∑
k=0

(k+q)!
k! ak+q

k−q∑
l=0

(
k
l

)
Hek−lx

l

Working toward the general case:

τ̂
[̃,j]
η,1 (ζ; ξ, ξ′) = ζ

∞∑
k=1

a
[̃,j]

(ξ)k
a

[̃,j]

(ξ′)k
η2k

(
k
1

)2
He2

k−1

= ζ
∞∑

k,k′=0

δk,k′
a

[̃,j]

(ξ)k+1

ηk+1

(
k+1

1

)
Hek

a
[̃,j]

(ξ′)k′+1

ηk′+1

(
k′+1

1

)
Hek′

and:

τ̂
[̃,j]
η,2 (ζ; ξ, ξ′) = ζ2

∞∑
k=2

a
[̃,j]

(ξ)k
a

[̃,j]

(ξ′)k
η2k

(
k
2

)2
He2

k−2

= ζ2
∞∑

k,k′=0

δk,k′
a

[̃,j]

(ξ)k+2

ηk+2

(
k+2

2

)
Hek

a
[̃,j]

(ξ′)k′+2

ηk′+2

(
k′+2

2

)
Hek′
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and so on, so:

τ̂ [̃,j]
η,q (ζ; ξ, ξ′) = ζq

∞∑
k=q

a
[̃,j]

(ξ)k
a

[̃,j]

(ξ′)k
ηqk

(
k
q

)2
He2

k−q

= ζq
∞∑

k,k′=0

δk,k′
a

[̃,j]

(ξ)k+q

ηk+q

(
k+q
q

)
Hek

a
[̃,j]

(ξ′)k′+q

ηk′+q

(
k′+q
q

)
Hek′

= 1
q!2 ζ

q
∞∑

k,k′=0

δk,k′
a

[̃,j]

(ξ)k+q

ηk+q

(k+q)!
k! Hek

a
[̃,j]

(ξ′)k′+q

ηk′+q
(k′+q)!
k′! Hek′

= 1
q!2 ζ

q
∞∑

k,k′=0

δk,k′
k−q∑
l=0

k′−q∑
l′=0

δl,l′

(
a

[̃,j]

(ξ)k+q

ηk+q

(k+q)!
k!

(
k
l

)
Hek−l0

l

)(
a

[̃,j]

(ξ′)k′+q

ηk′+q
(k′+q)!
k′!

(
k′

l′

)
Hek′−l′0

l′
)

= ζq

(
1
q!

∞∑
k=0

a
[̃,j]

(ξ)k+q

ηk+q

(k+q)!
k!

k−q∑
l=0

(
k
l

)
Hek−l0

l

)
·

(
1
q!

∞∑
k′=0

a
[̃,j]

(ξ′)k′+q

ηk′+q
(k′+q)!
k′!

k′−q∑
l′=0

(
k′

l′

)
Hek′−l′0

l′

)
= 1

q!τ
[̃,j](q)
η (0; ξ) 1

q!τ
[̃,j](q)
η (0; ξ′) ζq

where · is the Cauchy product and in the final step we have used Mertens’ theorem for Cauchy
products, and:

τ
[̃,j]
η (ζ; ξ) =

∞∑
k=1

a
[̃,j]

(ξ)k

ηk

k∑
l=1

(
k
l

)
Hek−lζ

l

Finally, we see that, in the limit η → 1:

τ̂ [̃,j]
η,q (ζ; ξ, ξ′) = 1

q!τ
[̃,j](q) (0; ξ) 1

q!τ
[̃,j](q) (0; ξ′) ζq

which leads to the simplified form of the LiNK:

K
[j]
LiNK (x,x′) = 1

γ2+1

( ∑
̃∈P̃[j]

H[̃]

ω̃[̃,j]2 Σ[̃,j] (x,x′) + . . .

. . . +
∑
̃∈P̃[j]

H[̃]

H̃[j]

1

T
[̃,j]2

(ω̃)η

∞∑
q=1

∑
i̃

1
q!τ

[̃,j](q)
(

0;x
[̃]
i̃

)
1
q!τ

[̃,j](q)
(

0;x
′[̃]
i̃

)(
ρ

[̃,j]2
(ω̃)ηK

[̃]
LiNK (x,x′)

)q)

with K [−1]
LiNK(x,x′) = 0. With some cleanup:

K
[j]
LiNK (x,x′) = 1

γ2+1

(
E̃∈P̃[j]

[
H[̃]

ω̃[̃,j]2 Σ[̃,j] (x,x′)
]

+ . . .

. . . +E̃∈P̃[j]

[
H[̃]

T
[̃,j]2

(ω̃)η

∞∑
q=1

Ei̃
[

1
q!τ

[̃,j](q)
(
x

[̃]
i̃

)
1
q!τ

[̃,j](q)
(
x
′[̃]
i̃

)]
K

[̃]
LiNK (x,x′)

q

])

with K [−1]
LiNK(x,x′) = 0.

D RADEMACHER COMPLEXITY BOUNDS - PROOF OF THEOREMS 3, 4 AND 8

In this supplementary we prove theorems relating to the Rademacher complexity of neural networks
for the global and local models.

Theorem 3 The set F = {f(·; Θ) : Rn → R|Θ ∈ W} of networks (1) satisfying our assumptions
has Rademacher complexity bounded byRN (F) ≤ 1√

N
φψ˜ (definitions as per Figure 1).

Proof. Let F be the set of attainable neural networks (scalar output) and ε a Rademacher random
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variable. Let x ∼ ν. Then the Rademacher complexity is bounded as:

RN (F) , EνEε

[
sup
f∈F

1
N

∑
k εkf (xk)

]
=Global Dual 1

NEνEε
[

sup
Θ∈W

∑
k εk 〈Ψ (Θ) ,φ (xk)]g

]
= 1

NEνEε
[

sup
Θ∈W

〈Ψ (Θ) ,
∑
k εkφ (xk)]g

]
≤Operator norm 1

NEνEε
[

sup
Θ∈W

‖Ψ (Θ)‖He[τ ]

√
‖
∑
k εkφ (xk)‖2

2

]
≤Norm Bound

ψ

ÑEν
[
Eε
√
‖
∑
k εkφ (xk)‖2

2

]
≤Jensen

ψ

ÑEν
[√

Eε ‖
∑
k εkφ (xk)‖2

2

]
={Eεεkεl=δk,l}

ψ

ÑEν
[√∑

k ‖φ (xk)‖22

]
≤Norm Bound

ψ

ÑEν
[√

Nφ2
]

=
φψ˜√
N

Theorem 4 Let F = {f(·; Θ) : Rn → R|Θ ∈ W} be the set of unbiased networks (1) with L-
Lipschitz activations satisfying our assumptions. ThenRN (F) ≤ maxS∈S

∏
j∈S L

2p̃[j]µ[j], where
S is the set of all input-output paths in the network graph.

Proof. Observe from Figure 1 that:

φ̃
[̃,j]2

ψ̃˜[̃,j]2 ≤ φ[̃]2

s[̃,j]
(
s[̃,j]−1

(
φ̃

[̃,j]2
)
φ[̃]2

)L2φ̃
[̃,j]2

ψ˜[̃]2

Note that the numerator of the factional part is linearly increasing while the denominator is superlin-
early increasing, so we may pessimise this bound as:

φ̃
[̃,j]2

ψ̃˜[̃,j]2 ≤ φ[̃]2

s[̃,j]
(
s[̃,j]−1

(
φ̃

[̃,j]2
)
φ[̃]2

)L2φ̃
[̃,j]2

ψ˜[̃]2

≤ lim
φ[̃]→0

φ[̃]2

s[̃,j]
(
s[̃,j]−1

(
φ̃

[̃,j]2
)
φ[̃]2

)L2φ̃
[̃,j]2

ψ˜[̃]2 = 1

a
[̃,j]
0 s[̃,j]−1

(
φ̃

[̃,j]2
)L2φ̃

[̃,j]2
ψ˜[̃]2

As φ̃
[̃,j]2

is a free parameter here we can let φ̃
[̃,j]2

→ 0, in which limit φ̃
[̃,j]2

ψ̃˜[̃,j]2 ≤ L2ψ˜[̃]2 ≤

L2p[̃]µ[̃]2
∑

˜̃∈P̃[̃] φ̃
[̃̃,̃]2

ψ̃˜ [̃̃,̃]2. The result follows recursively, then upper bounding with the path-
wise product.

Theorem 8 The set F∆ = {∆f(·; ∆Θ) : Rn → R|∆Θ ∈W∆} of change in neural-network opera-
tion satisfying (20) has Rademacher complexityRN (F) ≤ 1√

N
φ∆ψ∆ (defined in Figure 2).

Proof. Let F∆ be the set of attainable changes in neural networks (scalar output) and ε a Rademacher
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random variable. Let x ∼ ν. Then the Rademacher complexity is bounded as:

RN (F∆) , EνEε

[
sup

∆f∈F

1
N

∑
k εk∆f (xk)

]
=Local Dual 1

NEνEε
[

sup
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∑
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]
= 1
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∑
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]
≤Cauchy Schwarz 1
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√
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2

]
≤Norm Bound ψ∆

N Eν
[
Eε
√
‖
∑
k εkφ∆ (xk)‖2

2

]
≤Jensen ψ∆

N Eν
[√
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2

]
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N Eν
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= φ∆ψ∆√

N
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