
Generalization in Federated Learning:
A Conditional Mutual Information Framework

Ziqiao Wang 1 Cheng Long 2 Yongyi Mao 3

Abstract

Federated learning (FL) is a widely adopted
privacy-preserving distributed learning frame-
work, yet its generalization performance remains
less explored compared to centralized learning.
In FL, the generalization error consists of two
components: the out-of-sample gap, which mea-
sures the gap between the empirical and true risk
for participating clients, and the participation gap,
which quantifies the risk difference between par-
ticipating and non-participating clients. In this
work, we apply an information-theoretic analy-
sis via the conditional mutual information (CMI)
framework to study FL’s two-level generalization.
Beyond the traditional supersample-based CMI
framework, we introduce a superclient construc-
tion to accommodate the two-level generaliza-
tion setting in FL. We derive multiple CMI-based
bounds, including hypothesis-based CMI bounds,
illustrating how privacy constraints in FL can im-
ply generalization guarantees. Furthermore, we
propose fast-rate evaluated CMI bounds that re-
cover the best-known convergence rate for two-
level FL generalization in the small empirical risk
regime. For specific FL model aggregation strate-
gies and structured loss functions, we refine our
bounds to achieve improved convergence rates
with respect to the number of participating clients.
Empirical evaluations confirm that our evaluated
CMI bounds are non-vacuous and accurately cap-
ture the generalization behavior of FL algorithms.
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1. Introduction
Federated learning (FL) has emerged as the most widely
adopted distributed learning framework, enabling multiple
(potentially spatially distributed) clients to collaboratively
train a global model (McMahan et al., 2017; Yang et al.,
2019; Li et al., 2020; Kairouz et al., 2021). Unlike central-
ized learning, FL utilizes the computational resources of all
participating clients while avoiding the need to aggregate
all data in a single location before training. This not only re-
duces the resource overhead associated with data collection
but also enhances privacy protection.

In an FL framework, a central server distributes a global
model to all participating clients for local training. In con-
trast to centralized learning—where data typically follow a
single distribution—local data on different clients often arise
from heterogeneous distributions. The server then aggre-
gates the updated local models to form a new global model,
which is redistributed for further training; this iterative pro-
cess continues until convergence. While the convergence
properties of FL have been extensively studied, such as in
(Karimireddy et al., 2020; Li et al., 2020; Mitra et al., 2021;
Yun et al., 2021; Wang & Ji, 2022), the study of its gen-
eralization performance has only recently gained attention
(Mohri et al., 2019; Chen et al., 2021; Yagli et al., 2020;
Barnes et al., 2022; Hu et al., 2023; Huang et al., 2023;
Sefidgaran et al., 2022; 2024; Sun et al., 2024; Gholami
& Seferoglu, 2024) and remains relatively underexplored.
Moreover, most FL generalization studies focus only on the
generalization error of participating clients, overlooking the
model’s ability to generalize to unseen clients.

Recently, Yuan et al. (2022) introduces a two-level gener-
alization framework, where client distributions are drawn
from a meta-distribution. Under this framework, the gen-
eralization error is decomposed into two components: the
out-of-sample gap, measuring the gap between empirical
and true risk for participating clients, and the participation
gap, capturing the difference in true risks between partici-
pating and non-participating clients. This broader definition
extends the commonly used out-of-sample gap and is espe-
cially relevant in cross-device FL scenarios, where clients
are sampled from a large and dynamic population.
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Among many analytic tools, information-theoretic general-
ization analysis, pioneered by (Russo & Zou, 2016; 2019;
Xu & Raginsky, 2017), has the advantage of accounting
for both the data distribution and the learning algorithm,
often giving tighter generalization bounds compared to
distribution-independent or algorithm-independent methods.
The original mutual information (MI)-based generalization
bounds in (Xu & Raginsky, 2017; Bu et al., 2020) have
been applied to FL in (Yagli et al., 2020; Barnes et al., 2022;
Zhang et al., 2024). However, it is well-known that these
MI-based bounds suffer from unboundedness although the
true generalization error can be small (Bassily et al., 2018).
To address this issue, Steinke & Zakynthinou (2020) pro-
poses the conditional mutual information (CMI) framework,
which introduces a “supersample” construction. Here, an
auxiliary “ghost sample” is drawn alongside the original
training sample, and a sequence of Bernoulli random vari-
ables determines which data points are used for training.
The CMI between these Bernoulli variables and the hypoth-
esis (e.g., model parameters), conditioned on the supersam-
ple, serves as a generalization measure. This construction
ensures bounded CMI terms due to bounded entropy of
Bernoulli variables, inherently leading to tighter generaliza-
tion bounds compared to the standard MI-based methods, as
shown in Haghifam et al. (2020). The CMI framework has
seen multiple refinements, including fast-rate and numeri-
cally tight bounds (Harutyunyan et al., 2021; Hellström &
Durisi, 2022a; Wang & Mao, 2023a;c; 2024b; Dong et al.,
2024). Despite the success of these CMI bounds, their
effectiveness in capturing FL generalization is still not es-
tablished.

In this work, we provide the first CMI generalization frame-
work for FL in the two-level generalization setting. Inspired
by the supersample-based CMI framework, we introduce
an additional “superclient” construction, where clients are
grouped into two sets, and Bernoulli random variables de-
termine their participation. This symmetric structure en-
ables a CMI-based characterization of the participation
gap, while the out-of-sample gap is analyzed using stan-
dard supersample-based CMI techniques as in Steinke &
Zakynthinou (2020). Our main contributions are as follows:

• Based on our superclient and supersamples construc-
tion, We derive the first CMI-based generalization
bound (cf. Theorem 3.1) for FL, consisting of two
terms: (i) the CMI between the hypothesis and the
Bernoulli variable governing client participation, and
(ii) the CMI between the hypothesis and the Bernoulli
variable governing training data membership. These
terms reveal that FL models generalize well to un-
seen clients when they leak minimal information about
training data membership and client participation. Fur-
thermore, we show that differential privacy constraints
at both local and global levels naturally imply gen-

eralization (cf. Lemma 3.2). In the special case of
identical client data distributions, the bound reduces
to a single CMI term (cf. Corollary 3.2), aligning
with intuition. We also extend our framework to high-
probability bounds (cf. Theorem 3.2) and excess risk
analysis (cf. Theorem 3.3).

• To improve the bound’s convergence rate, we derive
evaluated CMI (e-CMI) bounds (cf. Theorem 4.1), us-
ing techniques from Wang & Mao (2023c). These
bounds not only recover the best-known FL conver-
gence rate in the low empirical risk regime, as shown
in Hu et al. (2023), but also provide significant practi-
cal advantages. Unlike hypothesis-based CMI bounds
that involve high-dimensional random variables, e-
CMI bounds only require computing CMI between
one-dimensional random variables, making them much
easier to estimate in practice.

• We extend our analysis to scenarios where model ag-
gregation strategies (e.g., model averaging) and struc-
tured loss functions play a role. Specifically, follow-
ing Barnes et al. (2022), we derive a CMI bound un-
der Bregman loss and show that both the participa-
tion gap and out-of-sample gap exhibit fast-rate con-
vergence with respect to the number of participating
clients (cf. Theorem 5.1). Further, inspired by Gho-
lami & Seferoglu (2024), we establish a sharper CMI
bound under strongly convex and smooth loss func-
tions (cf. Theorem 5.2), demonstrating even faster de-
cay rates for out-of-sample gap.

• To verify our results, we conduct FL experiments us-
ing FedAvg (McMahan et al., 2017) on two datasets.
We show that our e-CMI bounds are numerically non-
vacuous and effectively capture the generalization be-
havior of FL.

2. Preliminaries
Notations Throughout this paper, unless otherwise stated,
we use capital letters (e.g., X) to denote random vari-
ables and the corresponding lowercase letters (e.g., x)
to denote realized values. Let PX be the distribution
of X , and PX|Y the conditional distribution of X given
Y . When conditioning on a specific realization, we write
PX|Y=y or simply PX|y. We also use EX and EPX

in-
terchangeably to denote the expectation over X ∼ PX ,
whenever the underlying distribution is clear. Similarly,
EX|Y=y (or EX|y) denotes the expectation with respect to
X ∼ PX|Y=y. Let DKL(P ||Q) be the Kullback–Leibler
(KL) divergence between P and Q. Let I(X;Y ) ≜
DKL(PX,Y ||PXPY ) be the mutual information (MI) be-
tween X and Y , and I(X;Y |Z) the conditional mutual in-
formation (CMI) between X and Y given Z. Following Ne-
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grea et al. (2019), we define the disintegrated mutual infor-
mation for Iz(X;Y ) ≜ DKL(PX,Y |Z=z||PX|Z=zPY |Z=z),
and note that I(X;Y |Z) = EZ

[
IZ(X;Y )

]
.

Federated Learning Problem Setup We consider a fed-
erated learning (FL) setup with K participating clients. Let
Z be the instance space, W the hypothesis space, and C a
(possibly infinite) set of all potential clients. Each client
c ∈ C has a local data distribution µc on Z . Following Yuan
et al. (2022), we assume that there is a distribution D on
C, referred to as “meta-distribution” in Yuan et al. (2022),
and that K participating clients c1, c2, . . . , cK are drawn
independently from D. We will write client ci (i ∈ [K])
simply as i for simplicity, e.g., write the distribution µci

of client i as µi. Let Si = {Zi,j}nj=1 with Zi,j
i.i.d∼ µi

denote the training dataset for client i, where for simplic-
ity we have assumed that the training sets have the same
size across all clients. In FL, each client i applies a local
algorithm Ai : Zn → W , described by the conditional
distribution PWi|Si

, to produce a local model Wi = Ai(Si).
Note that Ai may differ across clients. These local models
{Wi}Ki=1 are then transmitted to a central server, which ap-
plies an aggregation algorithm to produce a global model
W . Hence, an FL algorithm A is composed of all the lo-
cal algorithms together with the model aggregation proce-
dure. Denote S = ∪i∈[K]Si. The overall FL algorithm
A is then conceptually characterized by a conditional dis-
tribution PW |S , which takes the collective training sample
S as input and outputs a hypothesis W ∈ W . Formally,
A : ZnK → W . We measure the quality of W using a loss
function ℓ : W ×Z → R+

0 .

Generalization Error We adopt the two-level generaliza-
tion framework introduced in (Yuan et al., 2022; Hu et al.,
2023), where the ultimate goal in FL is set to minimizing
the true risk for unseen or non-participating clients. Con-
cretely, for any hypothesis w ∈ W , the global true risk (or
population risk) is defined as

LD(w) ≜ Eµ∼DEZ∼µ [ℓ(w,Z)].

For the i-th participating client, we define its true risk and
empirical risk as Lµi

(w) ≜ EZ∼µi
[ℓ(w,Z)] and LSi

(w) ≜
1
n

∑n
j=1 ℓ(w,Zi,j), respectively. For the sake of simplicity,

we treat each client equally, then we define the average
client true risk for the participating clients as

Lµ[m]
(w) ≜

1

K

K∑
i=1

Lµi(w) =
1

K

K∑
i=1

EZ′
i∼µi

[ℓ(w,Z ′
i)],

where Z ′
i ∼ µi is an independent testing instance from

the i-th participating client’s distribution µi. Likewise, the

average client empirical risk is given by

LS(w) ≜
1

K

K∑
i=1

LSi(w) =
1

Kn

K∑
i=1

n∑
j=1

ℓ(w,Zi,j),

which serves as a practical proxy for the average client true
risk of w because data distributions are unknown in real
scenarios. Finally, for an FL algorithm A, we define its
expected generalization error as

ED(A) ≜ EW [LD(W )]− EW,S [LS(W )].

CMI Framework for FL We now adapt the supersam-
ple construction of Steinke & Zakynthinou (2020) to an
FL setting by introducing a superclient and corresponding
supersamples for each client. Let µ̃ be a K × 2 matrix,
namely the superclient, whose entries are drawn indepen-
dently from the meta-distribution D. We index the columns
of µ̃ by {0, 1} and denote the i-th row by µ̃i = (µ̃i,0, µ̃i,1).
Next, we construct a supersample for each client distribu-
tion in µ̃. For example, the supersample Z̃i,0 ∈ Zn×2 for
µ̃i,0 has its entries drawn i.i.d. from µ̃i,0. We index the
columns of Z̃i,0 by {0, 1}, and write Z̃i,0

j = (Z̃i,0
j,0, Z̃

i,0
j,1)

for the j-th row. The same construction applies for all
the other client distributions in µ̃. Thus, we have one su-
perclient matrix µ̃ and 2K supersample matrices in total.
To determine which client distributions participate in the
training, we introduce a random variable V = {Vi}Ki=1,
where each Vi is drawn i.i.d. from Unif({0, 1}) and is in-
dependent of µ̃. If Vi = 0, then the client distribution µ̃i,0

is included in the participating client set, and µ̃i,1 is non-
participating; if Vi = 1, the opposite holds. For each client
distribution, we further introduce U i,b = {U i,b

j }nj=1 (with

b ∈ {0, 1}), where each U i,b
j

i.i.d.∼ Unif({0, 1}) is indepen-
dent of Z̃i,b. These variables specify which column in the
supersample is used for training versus testing. For instance,
when U i,0

j = 0, Z̃i,0
j,0 is part of the training set, and Z̃i,0

j,1 is
used for local testing; if U i,0

j = 1, these roles are reversed.
Let V i = 1 − Vi. The set of participating client distribu-
tions is then µ̃V = {µ̃i,Vi}Ki=1, and the set of corresponding
supersamples is dentoed by Z̃V = {Z̃i,Vi}Ki=1, while the
non-participating client distributions are µ̃V = {µ̃i,V i

}Ki=1

with supersamples Z̃V . Similarly, for each participating
distribution µ̃i,b, define U

i,b

j = 1−U i,b
j . Its training sample

(i.e. Si) is Z̃i,b
Ui,b = {Z̃i,b

j,Ui,b
j

}nj=1, and the corresponding

test sample is Z̃i,b

U
i,b = {Z̃i,b

j,U
i,b
j

}nj=1.

Notably, the supersamples for the non-participating clients,
although well defined, are actually irrelevant, as none of
those data are used in training. To improve readability, Ap-
pendix A provides a visualization of our superclient and
supersample construction (cf. Figure 2), along with a sum-
mary of notations (cf. Table 1).
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3. Hypothesis-based CMI Bound
As previously discussed, generalization in FL involves two
levels: (i) generalizing from participating clients to unseen
clients, and (ii) generalizing from the training data to unseen
data of the participating clients. Following (Yuan et al.,
2022; Hu et al., 2023), we separate these two levels of
generalization through the following decomposition:

ED(A) =EW [LD(W )]− EW,µ[K]

[
Lµ[K]

(W )
]︸ ︷︷ ︸

EPG(A):Participation Gap

+ EW,µ[K]

[
Lµ[K]

(W )
]
− EW,S [LS(W )]︸ ︷︷ ︸

EOG(A):Out-of-Sample Gap

. (1)

The participation gap, denoted as EPG(A), quantifies the
difference in test performance between non-participating
and participating clients. The out-of-sample gap (also called
participation error in (Hu et al., 2023)), denoted as EOG(A),
represents the average of the local generalization gaps over
the K participating clients. Note that most existing FL
generalization studies focus primarily on EOG(A) (Yagli
et al., 2020; Barnes et al., 2022; Chor et al., 2023; Sefidgaran
et al., 2022; 2024; Sun et al., 2024).

Under our construction of the superclient and supersamples
in FL, the following lemma will be handy in our analysis.

Lemma 3.1. The participation gap EPG(A) can be rewrit-
ten as

1

K

K∑
i=1

E
[
(−1)Vi

(
ℓ(W, Z̃i,1

1,U
i,1
1

)− ℓ(W, Z̃i,0

1,U
i,0
1

)

)]
,

where the expectation is taken over PZ̃i,Ui,W,Vi
, Z̃i =

(Z̃i,0, Z̃i,1) and U i = (U i,0, U i,1).

The our-of-sample gap EOG(A) can be rewritten as

1

Kn

K∑
i=1

n∑
j=1

E
[
(−1)U

i,Vi
j

(
ℓ(W, Z̃i,Vi

j,1 )− ℓ(W, Z̃i,Vi

j,0 )
)]

,

where the expectation is taken over P
Z̃i,Vi,U

i,Vi
j ,W

.

Remark 3.1. Notably, by the symmetric property of
superclient and supersamples, Lemma 3.1 indicates that
1
K

∑K
i=1 (−1)Vi

(
ℓ(W, Z̃i,1

1,U
i,1
1

)− ℓ(W, Z̃i,0

1,U
i,0
1

)

)
and

1
Kn

∑K
i=1

∑n
j=1(−1)U

i,Vi
j

(
ℓ(W, Z̃i,Vi

j,1 )− ℓ(W, Z̃i,Vi

j,0 )
)

are unbiased estimators for EPG(A) and EOG(A), respec-
tively. We remark that the subscript index “1” in Z̃i,1

1,U
i,1
1

and Z̃i,0

1,U
i,0
1

can be replaced with any other j ∈ [n], as the

participation gap does not depend on the order of elements
in the testing datasets. Furthermore, if the algorithm is

symmetric—meaning W does not depend on the order of
elements in the local training sets, a common assumption
used in stability-based generalization analysis (Bousquet &
Elisseeff, 2002)—then the averaging over n data points in
EOG(A) can also be omitted.

3.1. First CMI Bound

The bounding steps for ED(A) closely follow those in stan-
dard centralized analysis, once Lemma 3.1 has been estab-
lished.

We are now in a position to present the first CMI bound for
FL.
Theorem 3.1. Assume ℓ(·, ·) ∈ [0, 1], the following bound
holds

|ED(A)| ≤ 1

K

K∑
i=1

EZ̃i,Ui

√
2IZ̃i,Ui(W ;Vi)

+
1

Kn

K∑
i=1

n∑
j=1

EZ̃i,Vi

√
2IZ̃i,Vi(W ;U i,Vi

j ).

The bound consists of two terms, each providing an up-
per bound for EPG(A) and EOG(A), respectively. No-
tably, both CMI terms in the bound preserve the prop-
erties of the standard CMI from Steinke & Zakynthinou
(2020). For example, I z̃

i,ui

(W ;Vi) ≤ H(V i) = log 2 and
I z̃

i,vi(W ;U i,Vi

j ) ≤ H(U i,Vi

j ) = log 2, where H(·) denotes
the Shannon entropy (Thomas & Joy, 2006). Consequently,
unlike previous MI-based FL generalization bounds (Yagli
et al., 2020; Barnes et al., 2022; Zhang et al., 2024) that can
grow unbounded (see Bassily et al. (2018)), our CMI-based
bound in Theorem 3.1 is strictly bounded.

Furthermore, if both CMI terms are zero, then the algo-
rithm’s output is independent of its input (i.e., independent
of the chosen participating clients and their local training
data). In contrast, if they achieve their upper bounds, the
algorithm reveals all membership information about the
clients and their local training sets. Specifically, the first
CMI term quantifies how well one can infer the membership
of the “participating client set” from the output hypothesis
when (z̃i, ui) are known, whereas the second term quantifies
how well one can infer the membership of the “local training
set” when (z̃i, vi) are given. Clearly, if the FL algorithm A
enforces privacy constraints that make these inferences (i.e.
determining Vi and U i,Vi

j ) difficult, then both CMI terms
remain small, resulting in a small generalization error; in
other words, privacy implies generalization in FL. Inspired
by (Cuff & Yu, 2016; Barnes et al., 2022), when FL algo-
rithms are differentially private (Dwork et al., 2006a;b), this
connection is formally established in the following lemma.
Lemma 3.2. If each local algorithm Ai is ϵi-differentially
private, and the overall FL algorithm A is ϵ′-differentially
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private, then

1

K

K∑
i=1

EZ̃i,Ui

√
IZ̃i,Ui(W ;Vi) ≤

√
min{ϵ′, (eϵ′ − 1)ϵ′}

K
,

1

n

n∑
j=1

EZ̃i,Vi

√
IZ̃i,Vi(W ;U i,Vi

j ) ≤
√

min{ϵi, (eϵi − 1)ϵi}
n

.

Remark 3.2. Combining Lemma 3.2 with Theorem 3.1

implies the bound |ED(A)| ≤ O
(√

ϵ′

K + 1
K

∑K
i=1

√
ϵi
n

)
,

showing that A admits a valid generalization guarantee
under differential privacy. We remark that it is possible to
obtain ϵ′ using all ϵi for certain FL algorithm, as studied in
Kairouz et al. (2015). If we let ϵi = ϵ for all i, then we ob-

tain |ED(A)| ≤ O
(√

ϵ′

K +
√

ϵ
n

)
. Barnes et al. (2022)

also provides a privacy-based result bounding EOG(A),
showing that when certain model aggregation strategies
and loss functions are used, EOG(A) ≤ O

(
1
K

√
ϵ
n

)
. We

will discuss their setting in Section 5.

Let Z̃ = {Z̃i}Ki=1 be the collection of all supersamples and
U = {U i}Ki=1 be the collection of all Bernoulli variables
for determining sample usage. The following CMI bound
follows from Jensen’s inequality and the chain rule of MI.
Corollary 3.1. Assume ℓ(·, ·) ∈ [0, 1], then the following
bound holds

|ED(A)| ≤

√
2I(W ;V |Z̃, U)

K
+

√
2I(W ;U |Z̃, V )

Kn
.

Hence, we achieve a rate of order1 O
(

1√
K

+ 1√
Kn

)
. Re-

cently, Zhang et al. (2024, Theorem 5.1) presents a MI-

based FL bound of the form O
(√

I(W ;µ[K])

K +
√

I(W ;S)
Kn

)
,

which is the input-output mutual information (IOMI) (Xu &
Raginsky, 2017) version of our Corollary 3.1. Since CMI is
always no larger than the corresponding IOMI counterpart
(Haghifam et al., 2020, Theorem 2.1), our bound is always
tighter than Zhang et al. (2024, Theorem 5.1). Additionally,
as a by-product, we also provide a novel IOMI bound for
FL in Theorem C.2 in Appendix.

Before moving on, let us consider the i.i.d. (homogeneous)
FL setting. Intuitively, if all clients share the same data dis-
tribution, then the first CMI term—which bounds EPG(A)—
should vanish. In particular, when each µi is identical, Vi no
longer influences the algorithm’s output distribution once
Z̃i and U i are given. The corollary below formalizes this
intuition.

1In this paper, due to the absence of explicit decay rates for
the CMI or MI terms, we often follow previous works by simply
treating these terms as O(1) when stating order-wise behavior.
However, it should be noted that the actual decay of the bound is
likely to be faster than the rate presented.

Corollary 3.2. If |C| = 1, then we have

|ED(A)| ≤

√
2I(W ;U |Z̃)

Kn
.

Corollary 3.2 recovers the standard CMI bound of Steinke
& Zakynthinou (2020) when the total dataset size is Kn. It
also highlights that the first term in Corollary 3.1 quantifies
the effect of heterogeneity on FL generalization.

3.2. High Probability CMI Bounds

Our previous bounds are all provided on the expected gen-
eralization error. However, classical learning theory often
focuses on high-probability (PAC-style) bounds (Shalev-
Shwartz & Ben-David, 2014). In what follows, we establish
a high-probability CMI-based generalization bound for FL.
Specifically, the theorem below is the high-probability ana-
log of Corollary 3.1, featuring a square-root dependence.

Theorem 3.2. Assume ℓ(·, ·) ∈ [0, 1], and let PW |Z̃,U,V

be the the conditional distribution of W given (Z̃, U, V ).

Let PW |Z̃,U = EV

[
PW |Z̃,U,V

]
and let PW |Z̃,V =

EU

[
PW |Z̃,V,U

]
. Then, with probability at least 1 − δ

under the draw of (Z̃, U, V ), the generalization error∣∣∣EW |Z̃,U,V [LD(W )−LS(W ))]
∣∣∣ is upper bounded by√√√√2DKL

(
PW |Z̃,U,V ||PW |Z̃,U

)
+ 2 log

√
K
δ

K − 1

+

√√√√2DKL

(
PW |Z̃,U,V ||PW |Z̃,V

)
+ 2 log

√
Kn
δ

Kn− 1
.

Notice that the second term in the bound has the rate
O( 1√

Kn
) matching the PAC-Bayesian bound of Sefidgaran

et al. (2024, Theorem 3.1) for a bounded loss.

3.3. Excess Risk Bound

In addition to standard generalization error, we now
study the excess risk for FL. Specifically, let w∗ =
argminw∈W Eµ∼DEZ∼µ [ℓ(w,Z)] be a global risk mini-
mizer under the meta-distribution D. Note that w∗ may not
be unique. The expected excess risk is then

EER(A) ≜ EW [LD(W )]− Eµ∼DEZ∼µ [ℓ(w
∗, Z)].

Moreover, we focus on the ERM setting, i.e., the FL algo-
rithm A outputs a hypothesis W that minimizes the empiri-
cal risk LS(W ) for the participating clients. The expected
generalization bound and high-probability generalization
bound for ERM FL algorithm’s excess risk are given next.
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Theorem 3.3. Assume ℓ(·, ·) ∈ [0, 1], then for any ERM FL
learning algorithm A, the following bound holds

EER(A) ≤

√
2I(W ;V |Z̃, U)

K
+

√
2I(W ;U |Z̃, V )

Kn
.

Furthermore, with probability at least 1− δ under the draw
of (Z̃, U, V ),

∣∣∣EW |Z̃,U,V [LD(W )−EZ [ℓ(w∗, Z)]]
∣∣∣ ≤ Ξ +

√
log 2

δ

2Kn
,

where Ξ is the upper bound given in Theorem 3.2.

Thus, in the absence of additional assumptions, the excess
risk for the ERM algorithm exhibits an O( 1√

K
+ 1√

Kn
)

convergence rate.

4. Fast-rate Evaluated CMI Bounds
The above bounds show a rate of O( 1√

K
+ 1√

Kn
), we now

improve this rate. Thanks to the symmetric property of su-
perclient and supersamples, we are able to adopt the single-
loss technique from Wang & Mao (2023c). This gives us
a variant of the evaluated CMI (e-CMI) bound (Steinke &
Zakynthinou, 2020; Hellström & Durisi, 2022a).

Theorem 4.1. Assume ℓ(·, ·) ∈ [0, 1]. Denote the random
variables L̄+

i = ℓ(W, Z̃i,0

1,U
i,0
1

) and Li+
j = ℓ(W, Z̃i,Vi

j,0 ),

then there exist constants C1, C2, C3, C4 ∈ {C1, C2 >
1, C3, C4 > 0|e−2C3C1 + e2C3 ≤ 2, e−2C4C2 + e2C4 ≤ 2}
such that the following bound holds,

EW [LD(W )] ≤C1C2EW,S [LS(W )] +

K∑
i=1

I(L̄+
i ;Vi)

C3K

+

K∑
i=1

n∑
j=1

C1I(L
i+
j ;U i,Vi

j |Vi)

C4Kn
.

Notably, the square-root functions are removed from the
CMI terms, at the cost of a multiplicative factor C1C2 to
the average client empirical risk EW,S [LS(W )]. Another
advantage of the e-CMI bound is that it involves only one-
dimensional random variables, unlike the hypothesis-based
CMI bound, where W is a high-dimensional random vari-
able. This makes e-CMI significantly easier to estimate in
practice. Moreover, by the data-processing inequality, a
fast-rate hypothesis-based CMI bound is established below.

Corollary 4.1. Assume ℓ(·, ·) ∈ [0, 1], then there exist
constants C1, C2, C3, C4 satisfying the conditions in Theo-

rem 4.1 such that the following bound holds,

EW [LD(W )] ≤C1C2EW,S [LS(W )] +
I(W ;V |Z̃, U)

C3K

+
C1I(W ;U |Z̃, V )

C4Kn
.

When the average empirical risk EW,S [LS(W )] is suf-
ficiently small, this bound suggests a fast rate of order
O
(

1
K + 1

Kn

)
. Unlike (Barnes et al., 2022; Gholami &

Seferoglu, 2024), our fast-rate result does not require any
specific loss function structure beyond boundedness. Simi-
lar fast-rate behavior of generalization error under additional
conditions (e.g., Bernstein condition, uniform entropy on
W) is also observed by Hu et al. (2023) for Lipschitz losses.
In fact, we expect our fast-rate bounds could be extended
(e.g., via the variance-based and sharpness-based analyses
in (Wang & Mao, 2023c; Dong et al., 2024) or binary-KL
bound in (Hellström & Durisi, 2022a;b; Hellström & Guedj,
2024)), relaxing the need for strictly small empirical risk.

5. CMI Bounds for Model Aggregation in FL
In the previous analysis, the learning algorithm A is treated
as a black-box, where only the inputs and outputs of the
algorithm are considered. In this section, we extend the
analysis to account for interactions and communications
between clients by incorporating model aggregation in FL.
Here, we follow the setting in Barnes et al. (2022), where
the aggregation is simply the average of all local models,
namely W = 1

K

∑K
i=1 Wi, which corresponds to the Fe-

dAvg algorithm (McMahan et al., 2017). Note that the
results obtained in this section can be easily generalized to
the case of uneven weights, which corresponds to the setting
in agnostic federated learning (Mohri et al., 2019).

To demonstrate that increasing the number of clients K
can significantly reduce the generalization error of an FL
algorithm in certain scenarios, Barnes et al. (2022) assumes
a Bregman loss. Specifically, for a strictly convex function
f : Rd → R, the Bregman divergence between x, y ∈ Rd

is defined as: Df (x, y) ≜ f(x) − f(y) − ⟨∇f(y), x − y⟩
(Bregman, 1967). A Bregman loss is then defined based on
the Bregman divergence, i.e. ℓ(w, z) = Df (w, z).

While Barnes et al. (2022) proves that |EOG(A)| decays
with a fast rate with respect to K, the following result shows
that under a Bregman loss, the overall generalization er-
ror |ED(A)| for an FL algorithm using model averaging
achieves such a fast convergence rate with respect to K,
namely both |EOG(A)| and |EPG(A)| exhibit this fast rate.
Theorem 5.1. Let ℓ(w, z) = Df (w, z), and assume that

(i) (−1)V
′
i

(
ℓ(Wi, z̃

i,1

1,ūi,1
1

)− ℓ(Wi, z̃
i,0

1,ūi,0
1

)
)

is σ2
i -sub-

Gaussian under PV ′
i
⊗ PWi|z̃i,ui for any i,
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(ii) (−1)U
′i,vi
j

(
ℓ(Wi, z̃

i,vi
j,1 )− ℓ(Wi, z̃

i,vi
j,0 )

)
is σ̃2

i,j-sub-
Gaussian under P

U ′i,vi
j |vi

⊗ PWi|z̃i,vi for any i, j.

Then, for A using model averaging,

|ED(A)| ≤ 1

K2

K∑
i=1

EZ̃i,Ui

√
2σ2

i I
Z̃i,Ui(Wi;Vi)

+
1

K2n

K∑
i=1

n∑
j=1

EZ̃i,Vi

√
2σ2

i,jI
Z̃i,Vi(Wi;U

i,Vi

j ).

Remark 5.1. The assumptions given in (i-ii) are weaker
than the boundedness assumption for the loss function, as
if ℓ is bounded, then the difference between two losses is
also bounded, which is guaranteed to be sub-Gaussian.
In the case of heavy-tailed losses, additional techniques
such as truncation (Dong et al., 2024) would be required
to ensure the results hold. Furthermore, Theorem 5.1 can
be interpreted as an end-to-end generalization bound for
a single round of FedAvg. Extending it to a multi-round
setting is straightforward by following the same approach
used in Barnes et al. (2022, Corollary 3).

Compared to the results in Section 3, Theorem 5.1 intro-
duces two notable distinctions. First, the global CMI terms
(i.e., CMI based on W ) are replaced by local CMI terms
(i.e., CMI based on Wi). Second, an additional 1

K factor
appears in the bound, resulting in a faster convergence rate.
While the data-processing inequality indicates that global
CMI terms are smaller than local CMI terms, the specific
model aggregation strategy and loss function allow us to
explicitly observe this fast-rate behavior.

Particularly, in this setting, we rely solely on local pri-
vacy constraints to guarantee generalization. For exam-
ple, if each Ai is ϵ-differentially private for all i, then
we obtain |ED(A)| ≤ O

(
1
K

√
ϵ
K + 1

K

√
ϵ
n

)
, where the

derivation is nearly the same to Lemma 3.2, and the max-
imum value of the sub-Gaussian variance proxies is con-
sidered. This result clearly improves upon the bounds in
Section 3 (cf. Remark 3.2). Additionally, Barnes et al.
(2022) also presents a communication constraint-based re-
sult, which can also be applied to the overall FL general-
ization error. Specifically, if each client i can only trans-
mit B bits of information to the central server, then each
Wi can take at most 2B distinct values after quantization.
In this case, IZ̃

i,Ui

(Wi;Vi) ≤ H(Wi) ≤ B log 2 and
I(Wi;U

i,Vi |Z̃i, Vi) ≤ B log 2. As a result, the general-

ization error is bounded by |ED(A)| ≤ O
(√

B
K + 1

K

√
B
n

)
.

Although many popular loss functions, such as the squared
loss and KL divergence, can be regarded as special cases
of Bregman divergence (Yamane et al., 2023), the Breg-
man loss Df (w, z) used above requires w and z to have the
same dimension. This requirement may limit its applicabil-

ity beyond nonparametric algorithms. Recently, Gholami
& Seferoglu (2024) achieves an even faster decay rate for
|EOG(A)| by using a smooth and strongly convex loss func-
tion. Building on their assumptions and techniques, we
extend this analysis in an information-theoretic framework.
Additionally, we assume that each participating client’s lo-
cal algorithm is an interpolating algorithm (i.e., achieving
zero empirical risk). This leads to the following result.

Theorem 5.2. Let ℓ(·, ·) ∈ [0, 1] be L-smooth and α-
strongly convex in W , and let Ai be an interpolating al-
gorithm for each client i. Let γ = 2L

α log 2 , then

|EOG(A)| ≤ γ

K3n

K∑
i=1

n∑
j=1

I(Wi;U
i,Vi

j |Z̃i, Vi)

+
2
√
γ

K2n

K∑
i=1

n∑
j=1

√
E [ℓ(W,Zi,j)]I(Wi;U

i,Vi

j |Z̃i, Vi).

Clearly, the decay rate with respect to K in this bound is
even faster than that for |EOG(A)| in Theorem 5.1. Note that
the boundedness assumption can be relax to sub-Gaussianity
(i.e., an “almost bounded” case). The assumption of an in-
terpolating algorithm is also practical due to the widespread
use of overparameterized deep neural networks in modern
deep learning scenarios.

Regarding the local CMI term I(Wi;U
i,Vi

j |Z̃i, Vi) in The-
orem 5.2, note that in our single-round setting, the local
model is trained independently and does not communicate
with other clients. As a result, the CMI term associated with
client i is, by construction, independent of the CMI terms of
other clients. It reflects only the relationship between a sin-
gle client’s data and its corresponding model and therefore
does not, in general, provide a direct or definitive measure
of cross-client data heterogeneity. However, if the data dis-
tribution itself is governed by a heterogeneity parameter, as
in the experimental setup of Sun et al. (2024), then the value
of this CMI term may indeed vary with that parameter, as it
ultimately depends on the underlying data distribution.

Moreover, the use of smooth and strongly convex loss func-
tions, often employed to ensure the linear convergence of
gradient descent (GD), has also been studied in the con-
text of personalized FL generalization. For example, Chen
et al. (2021) shows that if the data heterogeneity—measured
as the minimum average (squared) L2 distance between
global model parameters and optimal local parameters—
is mild, then FedAvg achieves minimax optimality. In
Theorem 5.2, data heterogeneity is captured by the factor
E [ℓ(W,Zi,j)] in the second term of the bound. In fact, if Ai

does not interpolate the training data, this factor is replaced
by E [ℓ(W,Zi,j)] − E [ℓ(Wi, Zi,j)]. When this factor van-
ishes, i.e., when data heterogeneity is negligible, the second
term (which contains the square-root function) becomes neg-
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ligible, and the first term (with a faster rate, e.g., O
(

B
K2

)
for a communication constraint) dominates the bound. This
observation aligns with Chen et al. (2021), showing that
FedAvg performs better when data heterogeneity is low.

Additionally, we remark that extending a similar analysis to
bound |EPG(A)| is not straightforward. This would require
that, for each client, there exists a minimizer that achieves
a zero-gradient signal for any unseen local data, which is
generally not guaranteed.

6. Empirical Verification
In this section, we empirically evaluate the effectiveness of
our CMI bounds by comparing them to the expected gener-
alization gap. Specifically, we estimate the fast-rate e-CMI
bound for FL, as presented in Theorem 4.1, referred to as
the Fast-rate Bound in our experiments. Additionally, due
to the challenges associated with estimating MI when deal-
ing with high-dimensional random variables, we compute
an evaluated version of the CMI bound from Theorem 3.1.
This e-CMI bound, derived in Theorem G.1 (in Appendix),
serves as a lower bound for Theorem 3.1 and is denoted
as the Square-root Bound in our experiments. Our experi-
mental setup, particularly the construction of supersamples,
closely follows previous works (Harutyunyan et al., 2021;
Hellström & Durisi, 2022a; Wang & Mao, 2023c; 2024b;
Dong et al., 2024), and we construct the superclient in a sim-
ilar manner. For the FL learning process, we implement Fe-
dAvg following the federated training protocol of McMahan
et al. (2017), with modifications to reduce computational
overhead. We conduct image classification experiments on
two datasets: MNIST (LeCun et al., 2010) and CIFAR-10
(Krizhevsky, 2009). The details of our experimental setup
and results are presented below.

6.1. Experiment Setup

For the MNIST digit recognition task, we train a CNN
with approximately 170K parameters. Each local training
algorithm Ai trains this model using GD. For CIFAR-10,
we use the same CNN model from McMahan et al. (2017),
which has approximately 106 parameters. As also discussed
in McMahan et al. (2017), the SOTA models, such as vision
transformers (ViTs) (Dosovitskiy et al., 2021), achieve over
99% accuracy on CIFAR-10. However, since our focus is
on verifying generalization bounds rather than achieving
SOTA performance, training a ViT-scale model would be
unnecessarily costly. Therefore, a simple CNN suffices for
our purpose. Each local training algorithm Ai trains the
CNN model using mini-batch SGD.

For both of the classification tasks, clients train locally for
five epochs per round before sending their models to the
central server, with training spanning 300 communication

rounds (which reduces the commonly used 1000 rounds to
lower computational costs). Additionally, we apply a patho-
logical non-IID data partitioning scheme as in McMahan
et al. (2017): data are sorted by label, split into 200 shards
of size 300, and each client is randomly assigned 2 shards,
and we evaluate prediction error as our performance metric,
i.e. we utilize the zero-one loss function to compute gener-
alization error. During training, we use cross-entropy loss
as a surrogate to enable optimization with gradient-based
methods. Since we pre-define the non-participating clients
from the superclient, all participating clients are included in
every round of training.

The complete experiment details including other hyperpa-
rameter settings and CMI estimation can be found in Ap-
pendix H.
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Figure 1: Verification of bounds on MNIST and CIFAR-
10. (a-b) Results on MNIST with different n and K. (c-d)
Results on CIFAR-10 with different n and K.

6.2. Results

Figure 1 presents the estimated expected generalization gap
alongside our CMI bounds. Notably, both CMI bounds
are non-vacuous, meaning they remain below the upper
bound of the loss function (i.e., 1). More importantly, they
effectively capture the generalization behavior of the FL
learning algorithm and are numerically very close to the ex-
pected generalization gap. For MNIST, where the algorithm
achieves a small training error, the fast-rate bound from The-
orem 4.1 performs significantly better than the square-root
CMI bound in Theorem 3.1 in this low empirical risk regime.
On CIFAR-10, since we use a simple CNN model and limit
the number of communication rounds, the empirical risk
remains non-negligible. In this case, we observe that the
evaluated version of Theorem 3.1 outperforms Theorem 4.1
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in most settings. While the tightness of e-CMI bounds in
standard centralized i.i.d. learning has been observed in pre-
vious works (Harutyunyan et al., 2021; Hellström & Durisi,
2022a; Wang & Mao, 2023c; Dong et al., 2024), our results
confirm that CMI bounds remain numerically tight in FL.

7. Other Related Literature
Federated Learning Methods FedAvg (McMahan et al.,
2017) is one of the earliest and most widely used FL algo-
rithms. However, its performance degrades significantly in
non-i.i.d. settings. To mitigate this issue, FedProx (Li et al.,
2020) introduces a regularization term, ||w − wi||, which
helps stabilize updates and reduce divergence among local
models. In fact, the squared form of this regularization term
naturally arises in the derivation of our Theorem 5.2 (see
Appendix F.2), and when the CMI term in Theorem 5.2 is
small, this regularization term also tends to be small. An-
other approach, SCAFFOLD (Karimireddy et al., 2020),
tackles data heterogeneity using variance reduction tech-
niques to improve convergence. FedOpt (Reddi et al., 2021)
extends adaptive optimization methods to FL, enabling more
efficient learning dynamics, while FedNova (Wang et al.,
2020) introduces a normalized averaging scheme to mitigate
objective inconsistencies while preserving fast training con-
vergence. More recently, leveraging information-theoretic
analysis, FedMDMI (Zhang et al., 2024) incorporates a
global model-data MI term as a regularizer to improve gen-
eralization performance. Beyond these methods, numerous
other FL algorithms have been proposed, we refer readers to
(Huang et al., 2024; Solans et al., 2024) for recent advances.

Generalization Theory in Federated Learning Recent
research has increasingly focused on understanding gener-
alization in FL. In addition to works in (Chen et al., 2021;
Hu et al., 2023; Yagli et al., 2020; Barnes et al., 2022; Gho-
lami & Seferoglu, 2024; Zhang et al., 2024), which we have
discussed throughout the paper, several other studies pro-
vide new insights. Sefidgaran et al. (2022; 2024) introduce
rate-distortion-based generalization bounds for FL, with
Sefidgaran et al. (2024) demonstrating that increasing the
frequency of communication rounds does not always reduce
generalization error and, in some cases, may even degrade
generalization performance. Stability-based generalization
analysis has also been explored in FL. For instance, Sun et al.
(2024) analyze the impact of data heterogeneity, conclud-
ing that greater heterogeneity leads to higher generalization
error. It is also worth noting that generalization theory in
meta-learning is closely related to FL. Particularly, personal-
ized FL can be viewed as a variant of meta-learning (Fallah
et al., 2020). In fact, our CMI framework is inspired in
part by a recent CMI-based generalization bound for meta-
learning proposed in Hellström & Durisi (2022b). However,
our results are not directly comparable to theirs due to a

key difference in problem setup: their meta-learning frame-
work requires the meta-learner (i.e., the global model W )
to be further trained on the test tasks (i.e., previously non-
participating clients), whereas in FL, the global model is
evaluated directly on unseen clients without any additional
local fine-tuning. To enable a direct comparison with Hell-
ström & Durisi (2022b), our CMI framework would need
to be extended to the personalized FL setting, where local
adaptation of the global model is permitted.

8. Concluding Remarks
In this paper, we present novel CMI bounds for FL in the
two-level generalization setting. Empirical results show that
our e-CMI bounds are numerically non-vacuous. Future re-
search directions include exploring the relationship between
model aggregation frequency and local updates through
CMI analysis, and extending our framework to accommo-
date unbounded loss functions beyond the sub-Gaussianity.
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Appendices
The structure of the Appendix is outlined as follows. The appendix begins with begins with a figure illustrating the
superclient and supersample construction, followed by a table summarizing the key notations used throughout the paper.
Section B presents a collection of technical lemmas essential for our analysis. In Section C, we provide IOMI generalization
bounds for FL. Sections D, E, and F contain detailed proofs of our theoretical results. Additionally, an extra eCMI result is
presented in Section G. For further details regarding the experimental setup, refer to Section H.

A. Visualization of CMI Framework in FL and Notation Summary
Figure 2 illustrates the superclient and supersample construction used in our CMI framework for FL. For clarity and ease of
reference, Table 1 compiles the key notations used throughout the paper.

Meta-Distribution D

Superclient µ̃

Draw K × 2 clients

µ̃1,0 µ̃1,1

µ̃2,0 µ̃2,1

...
...

µ̃K,0 µ̃K,1

V1 = 0

V2 = 1

Vi

VK = 0

Participating Clients (Selected by V )

Generate Supersamples

e.g., Supersample Z̃ i,Vi ∼ µ̃i,Vi

Z̃i,Vi
1,0 Z̃i,Vi

1,1

Z̃i,Vi
2,0 Z̃i,Vi

2,1

...
...

Z̃i,Vi
n,0 Z̃i,Vi

n,1

U i,Vi
1 = 0

U i,Vi
2 = 0

U i,Vi
i

U i,Vi
n = 1

Training Samples Si Test Samples

Z̃i,Vi

Ui,Vi
Z̃i,Vi

U
i,Vi

Figure 2: Illustration of the Superclient and Supersample Construction in FL

B. Technical Lemmas and Additional Definitions
The following lemmas are widely used in our paper.
Lemma B.1 (Donsker-Varadhan variational representation of KL divergence (Donsker & Varadhan, 1983)). Let Q, P be
probability measures on Θ, for any bounded measurable function f : Θ → R, we have DKL(Q||P ) = supf Eθ∼Q [f(θ)]−
lnEθ∼P [exp f(θ)].
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Table 1: Summary of Notations

Notation Description

Z,W, C Instance space, hypothesis space, and set of all possible clients
D Meta-distribution over clients
µi Local data distribution for client i
K, n Number of participating clients, dataset size per client
Si, S Training dataset of client i, union of all training datasets
Ai,A Local learning algorithm, global FL algorithm

PWi|Si
, PW |S Conditional distributions of local and global models given training data

LD(W ) Global true risk (population risk)
Lµi(W ) True risk of participating client i

LSi
(W ), LS(W ) Empirical risk of client i, average empirical risk for all participating clients
ED(A) Expected generalization error
EPG(A) Participation gap
EOG(A) Out-of-sample gap
EER(A) Expected excess risk

µ̃ Superclient matrix drawn from meta-distribution D
Z̃i,b Supersample for client distribution µ̃i,b where b ∈ {0, 1}
Z̃i (Z̃i,0, Z̃i,1)
Z̃ Collection of all supersamples {Z̃i}Ki=1

Vi Bernoulli variable determining client participation in i-th row of µ̃
U i,b
j Bernoulli variable determining training data in j-th row of supersample Z̃i,b

V = {Vi}Ki=1 Bernoulli random variables indicating client participation
U i (U i,0, U i,1)

U = {U i}Ki=1 Bernoulli random variables determining sample usage in supersamples
V i, U

i,b

j Complementary Bernoulli variables for participation and sample selection
Z̃i,b
Ui,b , Z̃

i,b

U
i,b Training and test samples from supersample drawn from i-th row, b-th column of µ̃

Z̃i,b

j,Ui,b
j

, Z̃i,b

j,U
i,b
j

The j-th elements in training and test samples from i-th row, b-th column of µ̃

W Global model aggregated from local models {Wi}Ki=1

Wi Local model produced by client i
w∗ Global risk minimizer under D

Lemma B.2 (Hoeffding’s Lemma (Hoeffding, 1963)). Let X ∈ [a, b] be a bounded random variable with mean µ. Then,

for all t ∈ R, we have E
[
etX
]
≤ etµ+

t2(b−a)2

8 .

Lemma B.3 (Hoeffding’s inequality (Hoeffding, 1963)). Let X1, . . . , Xm be independent random variables with Xi taking
values in [ai, bi] for all i ∈ [m]. Then, for any ϵ > 0, the following inequalities hold for Sm =

∑m
i=1 Xi:

Pr (|Sm − E [Sm]| ≥ ϵ) ≤ 2e
− −2ϵ2∑m

i=1
(bi−ai)

2
.

Information-Theoretic Generalization Bound The original information-theoretic bound in Xu & Raginsky (2017) is for
centralized learning, or a single data distribution equivalently, and the key component in the bound is the mutual information
between the output W and the entire input sample S. This result is given as follows:

Lemma B.4 (Xu & Raginsky (2017, Theorem 1.)). Let the size of training dataset S be n. Assume the loss ℓ(w,Z) is
σ-sub-Gaussian2 for any w ∈ W , then the generalization error for the learning algorithm A is upper bounded by

|E(A)| ≤
√

2σ2

n
I(W ;S).

2A random variable X is σ-sub-Gaussian if for any λ ∈ R, logE exp (λ (X − EX)) ≤ λ2σ2/2. Note that a bounded loss is
guaranteed to be sub-Gaussian.
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Definition B.1 (Differential Privacy (Dwork et al., 2006b;a)). . An algorithm A : Zn → W is (ϵ, δ)-differentially private
(DP) if, for any two data sets s, s′ ∈ Zn that differ in a single element and for any measurable set W ⊂ W ,

Pr[A(s) ∈ W ] ≤ eϵ · Pr[A(s′) ∈ W ] + δ.

If δ = 0, A is ϵ-differentially private.

C. Input-Output Mutual Information (IOMI) Generalization Bound
In fact, the IOMI bound in Lemma B.4 can be directly applied to the FL setting, leading to the following bound on EOG(A).
Theorem C.1. For each i ∈ [K], assume the loss ℓ(w,Z) is σi-subGaussian with respect to Z ∼ µi for any w ∈ W . Let
σmax = max{σi}Ki=1, then the out-of-sample gap of FL learning algorithm A is upper bounded by

|EOG(A)| ≤
√

2σ2
max

nK
I(W ;S1:K). (2)

Clearly, increasing the amount of data per client improves generalization performance. More importantly, the key term
I(W ;S1:K) in the bound suggests that if the hypothesis W contains minimal information about the training data S1:K of
the clients (i.e. I(W ;S1:K) is small), then the FL algorithm A will exhibit a small out-of-sample gap. This aligns with a
desirable property of federated learning: good client privacy implies good generalization. This relationship is also discussed
in Lemma 3.2.

To further tighten the generalization bound for EOG(A), we adopt techniques introduced by Bu et al. (2020), along with
similar developments from Wang & Mao (2023b) for bounding EPG(A).
Theorem C.2. For each i ∈ [K], assume the loss ℓ(w,Z) is σi-subGaussian under any µ ∼ D for all w ∈ W , then the
generalization error of FL learning algorithm A is upper bounded by

|ED(A)| ≤ 1

K

K∑
i=1

√
2σ2DKL(PZ ||µi) +

1

nK

K∑
i=1

n∑
j=1

√
2σ2I(W ;Zi,j), (3)

where PZ is the data distribution induced by the meta-distribution, e.g., PZ(Z = z) =
∫
µ
µ(Z = z)dD(µ).

The proof of this theorem follows directly from the techniques in Bu et al. (2020, Proposition 1) and Wang & Mao (2023b,
Theorem 4.1).

Compared to the CMI bounds, this bound has its own distinctive advantage: the first term explicitly characterizes how
the divergence between client distributions affects the participation gap. This provides a clearer understanding of how
heterogeneity in client distributions impacts the generalization performance of FL algorithms. In addition, this result will
ultimately lead to a gradient-norm-based regularizer when SGD or SGLD is used (Wang & Mao, 2024a) and hints at a
potential feature alignment mechanism in the KL sense for clients.

D. Omitted Proofs in Section 3
D.1. Proof of Lemma 3.1

Proof. First, due to the symmetric property of superclient construction, we have

EPG(A) =EW [LD(W )]− EW,µ[K]

[
Lµ[K]

(W )
]

=EW,µ,Z [ℓ(W,Z)]− 1

K

K∑
i=1

EW,µi,Z′
i
[ℓ(W,Z ′

i)]

=
1

K

K∑
i=1

Eµ̃,W,Vi

[(
Lµ̃i,V i

(W )− Lµ̃i,Vi
(W )

)]
=

1

K

K∑
i=1

Eµ̃,W,Vi

[
(−1)Vi

(
Lµ̃i,1

(W )− Lµ̃i,0
(W )

)]
. (4)
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For example, if Vi = 0, then Lµ̃i,1
(W ) is the testing error of non-participating client µ̃i,1, and Lµ̃i,0

(W ) is the
local testing error of participating client µ̃i,0. In addition, Vi = 1 will switch the roles of clients µ̃i,1 and µ̃i,0,
and still reflect the gap of testing errors between non-participating client and participating client. In other words,
1
K

∑K
i=1(−1)Vi

(
Lµ̃i,1

(W )− Lµ̃i,0
(W )

)
in Eq. (4) is an unbiased estimator of EPG(A).

Furthermore, notice that, by definition, we have

Eµ̃,W,Vi

[
(−1)ViLµ̃i,1(W )

]
=Eµ̃,W,Vi,Z∼µ̃i,1

[
(−1)Viℓ(W,Z)

]
=EW,Vi,Z̃i,1,Ui,1

j

[
(−1)Viℓ(W, Z̃i,1

j,U
i,1
j

)

]
, (5)

and

Eµ̃,W,Vi

[
(−1)ViLµ̃i,0

(W )
]
=Eµ̃,W,Vi,Z∼µ̃i,0

[
(−1)Viℓ(W,Z)

]
=EW,Vi,Z̃i,0,Ui,0

j

[
(−1)Viℓ(W, Z̃i,0

j,U
i,0
j

)

]
, (6)

where j in both equations can be arbitrary index from [n]. We will simply let j = 1 from now on.

Note that the expectation over µ̃ does not need to explicitly appear in Eq. (5-6) as evaluating function ℓ does not rely on the
random variable µ̃.

Consequently, plugging Eq. (5-6) into Eq. (4) will give us the desired result:

EPG(A) =
1

K

K∑
i=1

EZ̃i,Ui,W,Vi

[
(−1)Vi

(
ℓ(W, Z̃i,1

1,U
i,1
1

)− ℓ(W, Z̃i,0

1,U
i,0
1

)
)

]
.

Then similarly, according to the symmetric property of supersample construction, we have

EOG(A) =EW,µ[K]

[
Lµ[K]

(W )
]
− EW,S [LS(W )]

=
1

K

K∑
i=1

EW,µi,Z′
i
[ℓ(W,Z ′

i)]−
1

Kn

K∑
i=1

n∑
j=1

EW,µi,Zi,j [ℓ(W,Zi,j)]

=
1

Kn

K∑
i=1

n∑
j=1

E
Z̃i,W,Vi,U

i,Vi
j

[
(−1)U

i,Vi
j

(
ℓ(W, Z̃i,Vi

j,1 )− ℓ(W, Z̃i,Vi

j,0 )
)]

. (7)

This completes the proof.

D.2. Proof of Theorem 3.1

Proof. We start from bounding the participation gap.

Let g(z̃i, ui, w, vi) = (−1)vi
(
ℓ(w, z̃i,1

1,ui,1
1

)− ℓ(w, z̃i,0
1,ui,0

1

)
)

. To apply Lemma B.1, we let f = t ·g for t > 0 in Lemma B.1,

and let V ′
i be an independent copy of Vi (i.e. PV ′

i
= PVi and V ′

i ⊥⊥ W |z̃i, ui), then

EW,Vi|z̃i,ui

[
g(z̃i, ui,W, Vi)

]
≤ inf

t>0

I(W ;Vi|Z̃i = z̃i, U i = ui) + logEW,V ′
i |z̃i,ui

[
etg(z̃

i,ui,W,V ′
i )
]

t
. (8)

Since V ′
i is independent of W, Z̃i and U i, we have

EV ′
i

[
g(z̃i, ui, w, V ′

i )
]
= EV ′

i

[
(−1)V

′
i

(
ℓ(w, z̃i,1

1,ui,1
1

)− ℓ(w, z̃i,0
1,ui,0

1

)
)]

= 0

for any w, z̃i and ui. Ergo,
EW |z̃i,ui

[
EV ′

i

[
g(z̃i, ui,W, V ′

i )
]]

= 0.
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In addition, as the loss is bounded in [0, 1], we know that g(·, ·, ·, ·) ∈ [−1, 1].

Thus, g(z̃i, ui,W, V ′
i ) is a zero-mean random variable bounded in [−1, 1] for a fixed pair of (z̃i, ui). By Lemma B.2, we

have

EW,V ′
i |z̃i,ui

[
etg(z̃

i,ui,W,V ′
i )
]
≤ e

t2

2 . (9)

Plugging the above into Eq. (8),

EW,Vi|z̃i,ui

[
g(z̃i, ui,W, Vi)

]
≤ inf

t>0

I(W ;Vi|Z̃i = z̃i, U i = ui) + t2

2

t
(10)

=

√
2I(W ;Vi|Z̃i = z̃i, U i = ui),

where we choose t =

√
2I(W ;Vi|Z̃i = z̃i, U i = ui) in the last equation.

Recall the formulation of EPG(A) in Lemma 3.1 and by Jensen’s inequality for the absolute value function, the upper bound
for participation gap is obtained:

|EPG(A)| ≤ 1

K

K∑
i=1

EZ̃i,Ui

∣∣∣EW,Vi|Z̃i,Ui

[
(−1)Vi

(
ℓ(W, Z̃i,1

1,Ui,1
1

)− γ(W, Z̃i,0

1,Ui,0
1

)
)]∣∣∣

≤ 1

K

K∑
i=1

EZ̃i,Ui

√
2IZ̃i,Ui(W ;Vi). (11)

We then process similar procedure for the out-of-sample gap.

Let h(z̃i, vi, w, u
i,vi
j ) = (−1)u

i,vi
j

(
ℓ(w, z̃i,vij,1 )− ℓ(w, z̃i,vij,0 )

)
. To apply Lemma B.1, we let f = t · h for t > 0 in

Lemma B.1, and let U be an independent copy of U (i.e. PU = PU ′ and U ′ ⊥⊥ W |z̃i, vi), then

E
W,U

i,vi
j |z̃i,vi

[
h(z̃i, vi,W,U i,vi

j )
]
≤ inf

t>0

I(W,U i,vi
j |Z̃i = z̃i, Vi = vi) + logE

W,U ′i,vi
j |z̃i,vi

[
eth(z̃

i,vi,W,U ′i,vi
j )

]
t

. (12)

Since U ′ is independent of W, Z̃i and Vi, we have

E
U ′i,vi

j

[
h(z̃i, vi, w, U

′i,vi
j )

]
= E

U ′i,vi
j

[
(−1)U

′i,vi
j

(
ℓ(w, z̃i,vij,1 )− ℓ(w, z̃i,vij,0 )

)]
= 0

for any w, z̃i and vi. Hence,
EW |z̃i,vi

[
E
U ′i,vi

j

[
h(z̃i, vi,W,U ′i,vi

j )
]]

= 0.

Again, since the loss is bounded in [0, 1], we know that h(·, ·, ·, ·) ∈ [−1, 1].

Thus, h(z̃i, vi,W,U ′i,vi
j ) is a zero-mean random variable bounded in [−1, 1] for a fixed pair of (z̃i, vi). By Lemma B.2, we

have

E
W,U ′i,vi

j |z̃i,vi

[
eth(z̃

i,vi,W,U ′i,vi
j )

]
≤ e

t2

2 . (13)

Plugging the above into Eq. (12),

E
W,U

i,vi
j |z̃i,vi

[
h(z̃i, vi,W,U i,vi

j )
]
≤ inf

t>0

I(W,U i,vi
j |Z̃i = z̃i, Vi = vi) +

t2

2

t
(14)

=
√
2I(W ;U i,vi

j |Z̃i = z̃i, Vi = vi),
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where we choose t =
√
2I(W ;U i,vi

j |Z̃i = z̃i, Vi = vi) in the last equation.

Recall the formulation of EOG(A) in Lemma 3.1 and by Jensen’s inequality for the absolute value function, the upper bound
for out-of-sample gap is obtained:

|EOG(A)| ≤ 1

Kn

K∑
i=1

n∑
j=1

EZ̃i,Vi

∣∣∣EW,U
i,Vi
j |Z̃i,Vi

[
(−1)U

i,Vi
j

(
ℓ(W, Z̃i,Vi

j,1 )− ℓ(W, Z̃i,Vi

j,0 )
)]∣∣∣

≤ 1

Kn

K∑
i=1

n∑
j=1

EZ̃i,Vi

√
2IZ̃i,Vi(W ;U i,Vi

j ). (15)

Combining Eq. (11) and Eq. (15), we have

|ED(A)| ≤ |EPG(A)|+ |EOG(A)|

≤ 1

K

K∑
i=1

EZ̃i,Ui

√
2IZ̃i,Ui(W ;Vi) +

1

Kn

K∑
i=1

n∑
j=1

EZ̃i,Vi

√
2IZ̃i,Vi(W ;U i,Vi

j ).

This completes the proof.

D.3. Proof of Lemma 3.2

Proof. First, by the Jensen’s inequality and the chain rule of MI, we have

1

K

K∑
i=1

EZ̃i,Ui

√
2IZ̃i,Ui(W ;Vi) ≤

√
2

K
I(W ;V |Z̃, U), (16)

1

n

n∑
j=1

EZ̃i,Vi

√
2IZ̃i,Vi(W ;U i,Vi

j ) ≤
√

2

n
I(W ;U i,Vi |Z̃i, Vi). (17)

The detailed application of Jensen’s inequality and the chain rule of MI for obtaining the above inequalities are deferred to
the proof for Corollary 3.1.

In FL, given (Z̃i, Vi), U i,Vi −Wi −W forms a Markov chain. Thus, by the data-processing inequality, we have

I(W ;U i,Vi |Z̃i, Vi) ≤I(Wi;U
i,Vi |Z̃i, Vi). (18)

In addition, by the chain rule, we notice that

I(W ;V, Z̃, U) = I(W ;V |Z̃, U) + I(W ; Z̃, U).

Since the training dataset S is determined by (V, Z̃, U), i.e. S = ∪K
i=1Z̃

i,V
Ui,V , we have I(W ;V, Z̃, U) = I(W ;S, V, Z̃, U) =

I(W ;S). Then, due to the non-negativity of MI, I(W ; Z̃, U) ≥ 0, we have

I(W ;V |Z̃, U) ≤ I(W ;S). (19)

Similarly, notice that
I(Wi;U

i,Vi , Z̃i, Vi) = I(Wi;U
i,Vi |Z̃i, Vi) + I(Wi; Z̃

i, Vi),

Since the training dataset Si is determined by (Vi, Z̃
i, U i,Vi), i.e. Si = Z̃i,V

Ui,V , we have I(Wi;Vi, Z̃
i, U i,Vi) =

I(W ;Si, Vi, Z̃
i, U i,Vi) = I(W ;Si). Then, due to the non-negativity of MI, I(Wi; Z̃

i, Vi) ≥ 0, we have

I(Wi;U
i,Vi |Z̃i, Vi) ≤ I(Wi;Si). (20)
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Recall that each local algorithm Ai is ϵi-differentially private, and the overall FL algorithm A is ϵ′-differentially private,.
By the definition of differential privacy (see Definition B.1), for any two local datasets si and s′i differing by a single data
point, and for any two aggregated datasets s and s′ differing by a single data point, we have:

P (wi|si) ≤eϵiP (wi|s′i), (21)

P (w|s) ≤eϵ
′
P (w|s′). (22)

The following development is similar to Barnes et al. (2022, Corollary 1).

I(W ;S) =

∫
w,s

dP (w, s) log
dP (w|s)
dP (w)

=

∫
w,s

dP (w, s) log
dP (w|s)

ES′ [dP (w|S′)]

≤
∫
w,s

dP (w, s) log
dP (w|s)

infs′ dP (w|s′)

≤
∫
w,s

dP (w, s)ϵ′ = ϵ′.

where the last inequality is by Eq. (22). On the other hand,

I(W ;S) ≤DKL (PW,S ||PWPS) + DKL (PWPS ||PW,S)

=

∫
w,s

dP (w)dP (s)

(
dP (w|s)
dP (w)

− 1

)
log

dP (w|s)
dP (w)

≤
∫
w,s

dP (w)dP (s)

(
dP (w|s)

infs′ dP (w|s′)
− 1

)
log

dP (w|s)
infs′ dP (w|s′)

≤
∫
w,s

dP (w)dP (s)
(
eϵ

′
− 1
)
ϵ′

=
(
eϵ

′
− 1
)
ϵ′.

Hence,

I(W ;S) ≤ min{ϵ′, (eϵ
′
− 1)ϵ′}. (23)

The similar procedures can be applied to I(Wi;Si), which will give us

I(Wi;Si) ≤ min{ϵi, (eϵi − 1) ϵi}. (24)

Putting Eq.(16-20) and Eq. (23-24) together, we have

1

K

K∑
i=1

EZ̃i,Ui

√
IZ̃i,Ui(W ;Vi) ≤

√
min{ϵ′, (eϵ′ − 1)ϵ′}

K
,

1

n

n∑
j=1

EZ̃i,Vi

√
IZ̃i,Vi(W ;U i,Vi

j ) ≤
√

min{ϵi, (eϵi − 1)ϵi}
n

.

This completes the proof.

D.4. Proof of Corollary 3.1

Proof. We first apply Jensen’s inequality to the bound in Theorem 3.1,

ED(A) ≤

√√√√ 2

K

K∑
i=1

I(W ;Vi|Z̃i, U i) +

√√√√ 2

Kn

K∑
i=1

n∑
j=1

I(W ;U i,Vi

j |Z̃i, Vi). (25)
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For the first term in Eq. (25), notice that

I(W ;Vi|Z̃i, U i) =H(Vi)−H(Vi|W, Z̃i, U i),

I(W ;Vi|Z̃, U) =H(Vi)−H(Vi|W, Z̃, U).

Since conditioning reduces entropy, H(Vi|W, Z̃, U) ≤ H(Vi|W, Z̃i, U i), we have I(W ;Vi|Z̃i, U i) ≤ I(W ;Vi|Z̃, U).

Then, by the chain-rule of mutual information, we have

I(W ;V |Z̃, U) =

K∑
i=1

I(W ;Vi|Z̃, U, V[i−1]).

Given that Vi is i.i.d. sampled and is independent of Z̃ and U , we know that I(V[i−1];Vi|Z̃, U) = 0. Hence,

I(W ;V |Z̃, U) =

K∑
i=1

I(W ;Vi|Z̃, U, V[i−1]) + I(V[i−1];Vi|Z̃, U)

=

K∑
i=1

I(W,V[i−1];Vi|Z̃, U)

=

K∑
i=1

I(W ;Vi|Z̃, U) + I(V[i−1];Vi|Z̃, U,W )

≥
K∑
i=1

I(W ;Vi|Z̃, U),

where the last inequality is by the non-negativity of mutual information.

Consequently, √√√√ 2

K

K∑
i=1

I(W ;Vi|Z̃i, U i) ≤
√

2

K
I(W ;V |Z̃, U). (26)

We then focus on the second term in Eq. (25), notice that

I(W ;U i,Vi

j |Z̃i, Vi) =H(U i,Vi

j |Vi)−H(U i,Vi

j |W, Z̃i, Vi),

I(W ;U i,Vi

j |Z̃, V ) =H(U i,Vi

j |V )−H(U i,Vi

j |W, Z̃, V ).

Since Vi is i.i.d. sampled and U i,Vi

j is independent of V \ Vi, i.e. the rest of Vk for k ̸= i, we have H(U i,Vi

j |Vi) =

H(U i,Vi

j |V ). Moreover, according to conditioning reduces entropy, H(U i,Vi

j |W, Z̃, V ) ≤ H(U i,Vi

j |W, Z̃i, Vi), we have
I(W ;U i,Vi

j |Z̃i, Vi) ≤ I(W ;U i,Vi

j |Z̃, V ).

Then, by the chain-rule of mutual information, we have

I(W ;U i,Vi |Z̃, V ) =
n∑

j=1

I(W ;U i,Vi

j |Z̃, V, U i,Vi

[j−1]).

For a given V , U i,Vi

j is i.i.d. sampled and is independent of Z̃ and other U i,Vi

k for k ̸= i, we know that
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I(U i,Vi

[j−1];U
i,Vi

j |Z̃, V ) = 0. Hence,

I(W ;U i,Vi |Z̃, V ) =

n∑
j=1

I(W ;U i,Vi

j |Z̃, V, U i,Vi

[j−1]) + I(U i,Vi

[j−1];U
i,Vi

j |Z̃, V )

=

n∑
j=1

I(W,U i,Vi

[j−1];U
i,Vi

j |Z̃, V )

=

n∑
j=1

I(W ;U i,Vi

j |Z̃, V ) + I(U i,Vi

[j−1];U
i,Vi

j |Z̃, V,W )

≥
n∑

j=1

I(W ;U i,Vi

j |Z̃, V ),

where the last inequality is by the non-negativity of mutual information.

Therefore, we have √√√√ 2

Kn

K∑
i=1

n∑
j=1

I(W ;U i,Vi

j |Z̃i, Vi) ≤

√√√√ 2

Kn

K∑
i=1

I(W ;U i,Vi |Z̃, V ). (27)

Let U i = (U i,Vi , U i,V i), then again by the chain-rule of mutual information, we have

I(W ;U |Z̃, V ) =

K∑
i=1

I(W ;U i|Z̃, V, U [i−1]) =

K∑
i=1

I(W ;U i,Vi |Z̃, V, U [i−1]),

where the last equation is by the independence between W and U i,V i , namely I(W ;U i,V i |Z̃, V, U [i−1], U i,Vi) = 0.

Similarly, for a given V , U i,Vi is i.i.d. sampled and is independent of Z̃ and other Uk for k ̸= i, we know that
I(U [i−1];U i,Vi |Z̃, V ) = 0. Hence,

I(W ;U |Z̃, V ) =

K∑
i=1

I(W ;U i,Vi |Z̃, V, U [i−1]) + I(U [i−1];U i,Vi |Z̃, V )

=

K∑
i=1

I(W,U [i−1];U i,Vi |Z̃, V )

=

K∑
i=1

I(W ;U i,Vi |Z̃, V ) + I(U [i−1];U i,Vi |Z̃, V,W )

≥
K∑
i=1

I(W ;U i,Vi |Z̃, V ). (28)

Thus, plugging Eq. (28) into Eq. (27), we have√√√√ 2

Kn

K∑
i=1

n∑
j=1

I(W ;U i,Vi

j |Z̃i, Vi) ≤

√
2I(W ;U |Z̃, V )

Kn
. (29)

Combining Eq. (26) and Eq. (29) together will complete the proof.
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D.5. Proof of Corollary 3.2

Proof. Since all data in Z̃ are i.i.d., the conditional distribution PW |Vi,Z̃i,Ui is now invariant to Vi, namely PW |Vi=0,Z̃i,Ui =

PW |Vi=1,Z̃i,Ui =
1
2PW |Vi=0,Z̃i,Ui +

1
2PW |Vi=1,Z̃i,Ui = PW |Z̃i,Ui . Consequently,

I(W ;Vi|Z̃i, U i) = EZ̃i,Ui

[∫
w,vi

dP (w, vi|Z̃i, U i) log
dP (w|vi, Z̃i, U i)

dP (w|Z̃i, U i)

]
= 0,

which can imply the first term in Corollary 3.1 vanish.

D.6. Proof of Theorem 3.2

Proof. Again, we start from bounding the participation gap. We let

g(z̃, u, w, v) =
K − 1

2

(
1

K

K∑
i=1

(−1)vi
(
ℓ(w, z̃i,1

1,ūi,1
1

)− ℓ(w, z̃i,0
1,ūi,0

1

)
))2

.

Then, we apply Lemma B.1

EW |V,Z̃,U

[
g(Z̃, U,W, V )

]
≤ DKL

(
PW |Z̃,U,V ||PW |Z̃,U

)
+ logEW |Z̃,U

[
eg(Z̃,U,W,V )

]
. (30)

Let V ′ be an independent copy of V . By Markov’s inequality, we have the following bound with the probability at least
1− δ under the draw of (Z̃, U, V ′)

EW |V,Z̃,U

[
g(Z̃, U,W, V )

]
≤ DKL

(
PW |Z̃,U,V ||PW |Z̃,U

)
+ log

EW,Z̃,UEV ′

[
eg(Z̃,U,W,V ′)

]
δ

. (31)

Since V ′ is independent of W, Z̃ and U , the random variable ζ = 1
K

∑K
i=1 (−1)V

′
i

(
ℓ(w, z̃i,1

1,ūi,1
1

)− γ(w, z̃i,0
1,ūi,0

1

)
)

has zero

mean for any given (w, z̃, u), namely EV ′ [ζ] = 0. Additionally, for the fixed (w, z̃, u), ζ is the the arithmetic average of
K independent terms, each with bounded range [−1, 1]. Hence, ζ is a sub-Gaussian random variable with variance proxy
1/
√
K. By Wainwright (2019, Thm. 2.6.(IV)), we have

EV ′

[
e

K−1
2 ζ2

]
≤

√
K.

Plugging the above inequality into Eq. (31), we have

EW |V,Z̃,U

[
g(Z̃, U,W, V )

]
≤ DKL

(
PW |Z̃,U,V ||PW |Z̃,U

)
+ log

√
K

δ
.

Then by Jensen’s inequality,

K − 1

2

(
EW |V,Z̃,U

[
1

K

K∑
i=1

(−1)Vi

(
ℓ(W, Z̃i,1

1,U
i,1
1

)− ℓ(W, Z̃i,0

1,U
i,0
1

)

)])2

≤ DKL

(
PW |Z̃,U,V ||PW |Z̃,U

)
+ log

√
K

δ
.

Consequently, with probability at least 1− δ,

∣∣∣∣∣EW |Z̃,U,V

[
LD(W )− 1

K

K∑
i=1

ℓ(W, Z̃i,Vi

1,U
i,Vi
1

)

]∣∣∣∣∣ ≤
√√√√2DKL

(
PW |Z̃,U,V ||PW |Z̃,U

)
+ 2 log

√
K
δ

K − 1
. (32)

Furthermore, for out-of-sample gap, we let

h(z̃, u, w, v) =
nK − 1

2

 1

Kn

K∑
i=1

n∑
j=1

E
z̃i,vi,u

i,vi
j ,w

[
(−1)u

i,vi
j

(
ℓ(w, z̃i,vij,1 )− ℓ(w, z̃i,vij,0 )

)]2

.
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Applying Lemma B.1

EW |V,Z̃,U

[
h(Z̃, U,W, V )

]
≤DKL

(
PW |Z̃,U,V ||PW |Z̃,V

)
+ logEW |Z̃,V

[
eh(Z̃,U,W,V )

]
. (33)

Let U ′ be an independent copy of U . By Markov’s inequality, we have the following with the probability at least 1 − δ
under the draw of (Z̃, U ′, V )

EW |V,Z̃,U

[
h(Z̃, U,W, V )

]
≤DKL

(
PW |Z̃,U,V ||PW |Z̃,V

)
+ log

EW,Z̃,V EU ′

[
eh(Z̃,U ′,W,V )

]
δ

. (34)

Since U ′ is independent of W, Z̃ and V , the random variable ζ ′ = 1
Kn

∑K
i=1

∑n
j=1(−1)U

i,vi
j

(
ℓ(w, z̃i,vij,1 )− ℓ(w, z̃i,vij,0 )

)
has zero mean for any given (w, z̃, v), namely EU ′ [ζ ′] = 0. Additionally, for the fixed (w, z̃, v), ζ ′ is the the arithmetic
average of Kn independent terms, each with bounded range [−1, 1]. Hence, ζ ′ is a sub-Gaussian random variable with
variance proxy 1/

√
Kn. By Wainwright (2019, Thm. 2.6.(IV)), we have

EV ′

[
e

Kn−1
2 ζ

′2
]
≤

√
Kn.

Plugging the above inequality into Eq. (34), we have

EW |V,Z̃,U

[
h(Z̃, U,W, V )

]
≤ DKL

(
PW |Z̃,U,V ||PW |Z̃,V

)
+ log

√
Kn

δ
.

By Jensen’s inequality,

Kn− 1

2

EW |V,Z̃,U

 1

Kn

K∑
i=1

n∑
j=1

(−1)U
i,Vi
j

(
ℓ(W, Z̃i,Vi

j,1 )− ℓ(W, Z̃i,Vi

j,0 )
)2

≤ DKL

(
PW |Z̃,U,V ||PW |Z̃,V

)
+ log

√
Kn

δ
.

Therefore, with probability at least 1− δ,

∣∣∣∣∣∣EW |V,Z̃,U

 1

Kn

K∑
i=1

n∑
j=1

(−1)U
i,Vi
j

(
ℓ(W, Z̃i,Vi

j,1 )− ℓ(W, Z̃i,Vi

j,0 )
)∣∣∣∣∣∣ ≤

√√√√2DKL

(
PW |Z̃,U,V ||PW |Z̃,V

)
+ 2 log

√
Kn
δ

Kn− 1
.

(35)

Combining Eq. (32) and Eq. (35), with probability at least 1− 2δ under the draw of (Z̃, U, V ), we have

∣∣∣EW |Z̃,U,V [LD(W )− LS(W )]
∣∣∣

≤

∣∣∣∣∣EW |Z̃,U,V

[
LD(W )− 1

K

K∑
i=1

ℓ(W, Z̃i,Vi

1,U
i,Vi
1

)

]∣∣∣∣∣+
∣∣∣∣∣∣EW |Z̃,U,V

 1

Kn

K∑
i=1

n∑
j=1

(
ℓ(W, Z̃i,Vi

j,U
i,Vi
j

)− ℓ(W, Z̃i,Vi

j,U
i,Vi
j

)

)∣∣∣∣∣∣
≤

√√√√2DKL

(
PW |Z̃,U,V ||PW |Z̃,U

)
+ 2 log

√
K
δ

K − 1
+

√√√√2DKL

(
PW |Z̃,U,V ||PW |Z̃,V

)
+ 2 log

√
Kn
δ

Kn− 1
.

Finally, let δ → δ/2 will complete the proof.
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D.7. Proof of Theorem 3.3

Proof. We first notice that

EER(A) =EW [LD(W )]− Eµ∼DEZ∼µ [ℓ(w
∗, Z)]

=EW [LD(W )]− EW,S [LS(W )] + EW,S [LS(W )]− Eµ∼DEZ∼µ [ℓ(w
∗, Z)]

≤EW [LD(W )]− EW,S [LS(W )] + ES [LS(w
∗)]− Eµ∼DEZ∼µ [ℓ(w

∗, Z)]

=ED(A),

where the first inequality is due to the fact that W is the empirical risk minimizer of S, and the last equality holds because
ES [LS(w

∗)] = 1
Kn

∑K
i=1

∑n
j=1 EZi,j

[ℓ(w∗, Zi,j)] = EZ [ℓ(w∗, Z)].

Recall the generalization bound in Corollary 3.1,

EER(A) ≤ ED(A) ≤ |ED(A)| ≤

√
2I(W ;V |Z̃, U)

K
+

√
2I(W ;U |Z̃, V )

Kn
.

This gives us the expected excess risk bound.

For the high-probability bound,

EW |Z̃,U,V [LD(W )− LS(W )]

=EW |Z̃,U,V [LD(W )− Eµ∼DEZ∼µ [ℓ(w
∗, Z)] + Eµ∼DEZ∼µ [ℓ(w

∗, Z)]− LS(W )]

=EW |Z̃,U,V [LD(W )− Eµ∼DEZ∼µ [ℓ(w
∗, Z)]]− (EW |Z̃,U,V [LS(W )− Eµ∼DEZ∼µ [ℓ(w

∗, Z)]]︸ ︷︷ ︸
B1

).

Hence,

EW |Z̃,U,V [LD(W )− Eµ∼DEZ∼µ [ℓ(w
∗, Z)]] = EW |Z̃,U,V [LD(W )− LS(W )] +B1.

The first gap in RHS, EW |Z̃,U,V [LD(W )− LS(W )], can be upper bounded by Theorem 3.2.

We further process the B1 term,

B1 =EW |Z̃,U,V [LS(W )− ES [LS(w
∗)] + ES [LS(w

∗)]− Eµ∼DEZ∼µ [ℓ(w
∗, Z)]]

≤EW |Z̃,U,V [LS(w
∗)− Eµ∼DEZ∼µ [ℓ(w

∗, Z)]]

=LS(w
∗)− Eµ∼DEZ∼µ [ℓ(w

∗, Z)]

=
1

nK

n∑
i=1

K∑
j=1

ℓ(w∗, Zi,j)− EZ [ℓ(w∗, Z)].

where the inequality holds because W is the empirical risk minimizer of S.

Note that each Zi,j is independently drawn. Therefore, by Hoeffding’s inequality (cf. Lemma B.3), we have, with probability
at least 1− δ,

B1 ≤

√
log 2

δ

2nK
.

This completes the proof.

E. Omitted Proof in Section 4
E.1. Proof of Theorem 4.1

To prove Theorem 4.1, we first need the following lemma as the main ingredient.
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Lemma E.1. Let the constants C1, C2 > 0. The following equations hold for the weighted participation gap and weighted
out-of-sample gap,

EW [LD(W )]− (1 + C1)EW,µ[K]

[
Lµ[K]

(W )
]
=
2 + C1

K

K∑
i=1

EL̄+
i ,ε̃i

[
ε̃iL̄

+
i

]
, (36)

EW,µ[K]

[
Lµ[K]

(W )
]
− (1 + C2)EW,S [LS(W )] =

2 + C2

Kn

K∑
i=1

n∑
j=1

E
L+i

j ,ε̃
i,Vi
j ,Vi

[
ε̃i,Vi

j L+i
j

]
, (37)

respectively, where ε̃i = (−1)V i − C1

C1+2 and ε̃i,Vi

j = (−1)U
i,Vi
j − C1

C1+2 are two shifted Rademacher variable with the
same mean − C1

C1+2 .

Proof of Lemma E.1. Let L̄−
i = ℓ(W, Z̃i,1

1,U
i,1
1

), then

EW [LD(W )]− (1 + C1)EW,µ[K]

[
Lµ[K]

(W )
]

=
1

K

K∑
i=1

EZ̃i,Ui,W,Vi

[
ℓ(W, Z̃i,V i

1,U
i,V i
1

)− (1 + C1)ℓ(W, Z̃i,Vi

1,U
i,Vi
1

)

]

=
1

K

K∑
i=1

EZ̃i,Ui,W,Vi

[(
1 +

C1

2

)(
ℓ(W, Z̃i,V i

1,U
i,V i
1

)− ℓ(W, Z̃i,Vi

1,U
i,Vi
1

)

)
− C1

2
ℓ(W, Z̃i,V i

1,U
i,V i
1

)− C1

2
ℓ(W, Z̃i,Vi

1,U
i,Vi
1

)

]

=
2 + C1

2K

K∑
i=1

[
EL̄−

i ,Vi

[
(−1)ViL̄−

i − C1

C1 + 2
L̄−
i

]
+ EL̄+

i ,Vi

[
−(−1)ViL̄+

i − C1

C1 + 2
L̄+
i

]]
.

By the symmetric property of superclient, it is easy to see that, no matter in the homogeneous setting or the heterogeneous
setting, EL̄−

i ,Vi

[
(−1)ViL̄−

i − C1

C1+2 L̄
−
i

]
= EL̄+

i ,Vi

[
−(−1)ViL̄+

i − C1

C1+2 L̄
+
i

]
holds, we then have

EW [LD(W )]− (1 + C1)EW,µ[K]

[
Lµ[K]

(W )
]

=
2 + C1

K

K∑
i=1

EL̄+
i ,V i

[
(−1)V iL̄+

i − C1

C1 + 2
L̄+
i

]

=
2 + C1

K

K∑
i=1

EL̄+
i ,ε̃i

[
ε̃iL̄

+
i

]
. (38)

For the second part, the decomposition is nearly the same. In particular, let Li−
j = ℓ(W, Z̃i,Vi

j,1 ), then

EW,µ[K]

[
Lµ[K]

(W )
]
− (1 + C2)EW,S [LS(W )]

=
1

Kn

K∑
i=1

n∑
j=1

E
Z̃i,Vi,U

i,Vi
j ,W

[
ℓ(W, Z̃i,Vi

j,U
i,Vi
j

)− ℓ(W, Z̃i,Vi

j,U
i,Vi
j

)

]

=
2 + C2

2Kn

K∑
i=1

n∑
j=1

[
E
Li−

j ,Vi,U
i,Vi
j

[
(−1)U

i,Vi
j Li−

j − C2

C2 + 2
Li−
j

]
+ E

Li+
j ,Vi,U

i,Vi
j

[
−(−1)U

i,Vi
j Li+

j − C2

C2 + 2
Li+
j

]]

=
2 + C2

Kn

K∑
i=1

n∑
j=1

E
Li+

j ,Vi,U
i,Vi
j

[
(−1)U

i,Vi
j Li+

j − C2

C2 + 2
Li+
j

]

=
2 + C2

Kn

K∑
i=1

n∑
j=1

E
Li+

j ,Vi,ε̃
i,Vi
j

[
ε̃i,Vi

j Li+
j

]
.

This completes the proof.
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We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Recall Lemma B.1, let g = t(C1 + 2)ε̃iL̄
+
i , and let ε̃′i be an independent copy of ε̃i, then

I(L̄+
i ;Vi) = I(L̄+

i ; ε̃i) =DKL

(
PL̄+

i ,ε̃i
||PL̄+

i
Pε̃′i

)
≥ sup

t>0
EL̄+

i ,ε̃i

[
t(C1 + 2)ε̃iL̄

+
i

]
− logEL̄+

i ,ε̃′i

[
et(C1+2)ε̃′iL̄

+
i

]

=sup
t>0

EL̄+
i ,ε̃i

[
t(C1 + 2)ε̃iL̄

+
i

]
− log

EL̄+
i

[
e−2t(C1+1)L̄+

i + e2tL̄
+
i

]
2

, (39)

where we use the fact that ε̃′i is independent of L̄+
i , and P (ε̃i =

2
C1+2 ) = P (ε̃i =

−2(C1+1)
C1+2 ) = 1

2 .

Notice that e−2t(C1+1)L̄+
i +e2tL̄

+
i is the summation of two convex function, which is still a convex function, so the maximum

value of this function is achieved at the endpoints of the bounded domain. Recall that L̄+
i ∈ [0, 1], we now consider two

cases:

i) when L̄+
i = 0, we have e−2t(C1+1)L̄+

i + e2tL̄
+
i = 2;

ii) when L̄+
i = 1, we select t such that e−2t(C1+1) + e2t ≤ 2. Note that this inequality implies that t ≤ log 2

2 .

Hence, let t = C3, and let the values of C1, C3 be taken from the domain of {C1, C3|C1, C3 > 0, e−2C3(C1+1)+e2C3 ≤ 2},
so the inequality

EL̄+
i

[
e−2C3(C1+1)L̄+

i + e2C3L̄
+
i

]
2

≤ 1 (40)

will hold. Under this condition, by re-arranging the terms in Eq. (39), we have

(C1 + 2)EL̄+
i ,ε̃i

[
ε̃iL̄

+
i

]
≤ I(L̄+

i ;Vi)

C3
.

Plugging the inequality above into Eq. (37), we have

EW [LD(W )]− (1 + C1)EW,µ[K]

[
Lµ[K]

(W )
]
=

2 + C1

K

K∑
i=1

EL̄+
i ,ε̃i

[
ε̃iL̄

+
i

]
≤

K∑
i=1

I(L̄+
i ;Vi)

C3m
.

Thus, the following inequality can be obtained,

EW [LD(W )] ≤ min
C1,C3>0,e2C3+e−2C3(C1+1)≤2

(1 + C1)EW,µ[K]

[
Lµ[K]

(W )
]
+

K∑
i=1

I(L̄+
i ;Vi)

C3m
. (41)

Following the similar development, we can also obtain

EW,µ[K]

[
Lµ[K]

(W )
]
− (1 + C2)EW,S [LS(W )]

=
2 + C2

Kn

K∑
i=1

n∑
j=1

E
L+i

j ,ε̃
i,Vi
j ,Vi

[
ε̃i,Vi

j L+i
j

]

≤
K∑
i=1

n∑
j=1

I(L+i
j ;U i,Vi

j )

C4Kn
.

This is equivalent to

EW,µ[K]

[
Lµ[K]

(W )
]
≤ min

C2,C4>0,e2C4+e−2C4(C2+1)≤2
(1 + C2)EW,S [LS(W )] +

K∑
i=1

n∑
j=1

I(L+i
j ;U i,Vi

j )

C4Kn
. (42)

Finally, substituting Eq. (42) into Eq. (41) and re-assigning C1 = C1 + 1 and C2 = C2 + 1 will complete the proof.
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E.2. Proof of Corollary 4.1

Proof. In fact, the generalization bound in Corollary 4.1 can be similarly proved as in Theorem 4.1 with unpacking the
random variables L̄+

i = ℓ(W, Z̃i,0

1,U
i,0
1

) and Li+
j = ℓ(W, Z̃i,Vi

j,0 ) during the development, which are functions of (W, Z̃i, U i)

and (W, Z̃i, Vi), respectively.

Alternatively, notice that

I(L̄+
i ;Vi|Z̃i, U i) + I(Vi; Z̃

i, U i) = I(L̄+
i , Z̃

i, U i;Vi) = I(L̄+
i ;Vi) + I(Z̃i, U i;Vi|L̄+

i ).

Since I(Vi; Z̃
i, U i) = 0, we have I(L̄+

i ;Vi) ≤ I(L̄+
i ;Vi|Z̃i, U i). By the data-processing inequality, we further obtain

I(L̄+
i ;Vi|Z̃i, U i) ≤ I(W ;Vi|Z̃i, U i).

Analogously, we can also obtain I(Li+
j ;U i,Vi

j |Vi) ≤ I(W ;U i,Vi

j |Vi, Z̃
i). The remaining steps are the same as in the proof

of Corollary 3.1.

F. Omitted Proof in Section 5
F.1. Proof of Theorem 5.1

The most important ingredient for proving Theorem 5.1 is the following lemma.

Lemma F.1. Let ℓ(w, z) = Df (w, z), we have

EPG(A) =
1

K2

K∑
i=1

EZ̃i,Ui,Wi,Vi

[
(−1)Vi

(
ℓ(Wi, Z̃

i,1

1,U
i,1
1

)− ℓ(Wi, Z̃
i,0

1,U
i,0
1

)

)]

EOG(A) =
1

K2n

K∑
i=1

n∑
j=1

E
Z̃i,Vi,U

i,Vi
j ,Wi

[
(−1)U

i,Vi
j

(
ℓ(Wi, Z̃

i,Vi

j,1 )− ℓ(Wi, Z̃
i,Vi

j,0 )
)]

.

Proof of Lemma F.1. Considering the participation gap. The i-th participating client µi uses a training sample Si to train a
local model Wi, then if this client is replaced by another client, µ′

i, which uses its own training sample S′
i, then the provided

local model is denoted as W (i). In this case, we denote the new aggregation model W (i) = 1
K

(∑
k ̸=i Wk +W ′

i

)
.

Then, let Z̄ ′
i = Z̃i,V i

1,U
i,V i
1

be the testing data from non-participating client µ̃i,V i
and let Z̄i = Z̃i,Vi

1,U
i,Vi
1

be the testing data

from participating client µ̃i,Vi
. Notice that

ℓ(W, Z̄ ′
i)− ℓ(W, Z̄i) =ℓ(A(S), Z̄ ′

i)− ℓ(A(S), Z̄i)

ℓ(W, Z̄ ′
i)− ℓ(W (i), Z̄ ′

i) =ℓ(A(S), Z̄ ′
i)− ℓ(A(Si), Z̄ ′

i),

where Si = (S \ Si) ∪ S′
i.

Under our assumption that the i-th client always uses the same algorithm Ai, the key observation is that
Eµ[K],Z̄i,A

[
ℓ(A(S), Z̄i)

]
= Eµ[K]\i,µ

′
i,Z̄

′
i,A
[
ℓ(A(Si), Z̄ ′

i)
]
, where, with an abuse of the notation, we also use A to denote

the inherent randomness of algorithm. Then, we have the following

EPG(A) =
1

K

K∑
i=1

EZ̃i,Ui,W,Vi

[
ℓ(W, Z̄ ′

i)− ℓ(W, Z̄i)
]

=
1

K

K∑
i=1

EZ̃i,Ui,W,W (i),Vi

[
ℓ(W, Z̄ ′

i)− ℓ(W (i), Z̄ ′
i)
]
.
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Recall that ℓ(w, z) = Df (w, z), we have

E
[
ℓ(W, Z̄ ′

i)− ℓ(W (i), Z̄ ′
i)
]

=E
[
f(W )− f(Z̄ ′

i)− ⟨∇f(Z̄ ′
i),W − Z̄ ′

i⟩ −
(
f(W (i))− f(Z̄ ′

i)− ⟨∇f(Z̄ ′
i),W

(i) − Z̄ ′
i

)]
=E

[
⟨∇f(Z̄ ′

i),W
(i) −W ⟩

]
,

where the last equation is due to the fact that W and W (i) have the same marginal distribution, namely ED,PA [f(W )] =
ED,PA

[
f(W (i))

]
.

Since W (i) = 1
K

(∑
k ̸=i Wk +W ′

i

)
and W = 1

K

∑K
i=1 Wi, they only differ at i-th local model, we have W (i) −W =

1
K (W ′

i −Wi). Consequently,

E
[
ℓ(W, Z̄ ′

i)− ℓ(W (i), Z̄ ′
i)
]
=

1

K
E
[
⟨∇f(Z̄ ′

i),W
′
i −Wi⟩

]
=

1

K
E
[
⟨∇f(Z̄ ′

i),W
′
i − Z̄ ′

i − (Wi − Z̄ ′
i)⟩+ f(Z̄ ′

i)− f(Z̄ ′
i) + f(Wi)− f(W ′

i )
]

=
1

K
E
[
ℓ(Wi, Z̄

′
i)− ℓ(Wi, Z̄i)

]
,

where we use E [f(Wi)] = E [f(W ′
i )] in the second equality.

Therefore,

EPG(A) =
1

K2

K∑
i=1

EZ̃i,Ui,Wi,Vi

[(
ℓ(Wi, Z̃

i,V i

1,U
i,V i
1

)− ℓ(Wi, Z̃
i,Vi

1,U
i,Vi
1

)

)]

=
1

K2

K∑
i=1

EZ̃i,Ui,Wi,Vi

[
(−1)Vi

(
ℓ(Wi, Z̃

i,1

1,U
i,1
1

)− ℓ(Wi, Z̃
i,0

1,U
i,0
1

)

)]
.

For out-of-sample gap, we now consider keeping the i-th participating client µi unchanged, but the j-th data in its training
sample Si is replaced by another i.i.d. sampled data Z ′

i,j ∼ µi, then the provided local model is denoted as W ′
i,j . In this

case, we denote the new aggregation model W (i,j) = 1
K

(∑
k ̸=i Wk +W ′

i,j

)
.

Recall that ℓ(w, z) = Df (w, z), for each participating client µ̃i,Vi , we have

1

n

n∑
j=1

E
[
ℓ(W,Z ′

i,j)− ℓ(W,Zi,j)
]

=
1

n

n∑
j=1

E
[
ℓ(W,Z ′

i,j)− ℓ(W (i,j), Z ′
i,j)
]

=
1

n

n∑
j=1

E
[
f(W )− f(Z ′

i,j)− ⟨∇f(Z ′
i,j),W − Z ′

i,j⟩ −
(
f(W (i,j))− f(Z ′

i,j)− ⟨∇f(Z ′
i,j),W

(i,j) − Z ′
i,j

)]
=
1

n

n∑
j=1

E
[
⟨∇f(Z ′

i,j),W
(i,j) −W ⟩

]
,

where the last equation is by E [f(W )] = E
[
f(W (i,j))

]
.

Since W (i,j) = 1
K

(∑
k ̸=i Wk +W ′

i,j

)
and W = 1

K

∑K
i=1 Wi, they still only differ at i-th local model, we have W (i,j) −
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W = 1
K

(
W ′

i,j −Wi

)
. Consequently,

1

n

n∑
j=1

E
[
ℓ(W,Z ′

i,j)− ℓ(W,Zi,j)
]

=
1

Kn

n∑
j=1

E
[
⟨∇f(Z ′

i,j),W
′
i,j −Wi⟩

]
=

1

Kn

n∑
j=1

E
[
⟨∇f(Z ′

i,j),W
′
i,j − Z ′

i,j − (Wi − Z ′
i,j)⟩+ f(Z ′

i,j)− f(Z ′
i,j) + f(Wi)− f(W ′

i,j)
]

=
1

nK

n∑
j=1

E
[
ℓ(Wi, Z

′
i,j)− ℓ(W ′

i,j , Z
′
i,j)
]

=
1

nK

n∑
j=1

E
[
ℓ(Wi, Z

′
i,j)− ℓ(Wi, Zi,j)

]
,

where in the last equality we use the fact that E
[
ℓ(W ′

i,j , Z
′
i,j)
]
= E [ℓ(Wi, Zi,j ].

Therefore,

EOG(A) =
1

Kn

K∑
i=1

n∑
j=1

EW,µi

[
ℓ(W,Z ′

i,j)− ℓ(W,Zi,j)
]

=
1

K2n

K∑
i=1

n∑
j=1

E
Z̃i,Vi,U

i,Vi
j ,Wi

[
ℓ(Wi, Z̃

i,Vi

j,U
i,Vi
j

)− ℓ(Wi, Z̃
i,Vi

j,U
i,Vi
j

)

]

=
1

K2n

K∑
i=1

n∑
j=1

E
Z̃i,Vi,U

i,Vi
j ,Wi

[
(−1)U

i,Vi
j

(
ℓ(Wi, Z̃

i,Vi

j,1 )− ℓ(Wi, Z̃
i,Vi

j,0 )
)]

.

This completes the proof.

Proof of Theorem 5.1. Having Lemma F.1 in hand, the development for proving the bound in Theorem 5.1 nearly follows
the same procedure in the proof of Theorem 3.1.

The main difference lies in bounding the cumulant generating function, where Theorem 3.1 uses Lemma B.2 for bounded
random vairable, i.e. Eq. (9) and Eq. (13), here we use the definition of sub-Gaussian random variable. We denote

A1 =(−1)V
′
i

(
ℓ(Wi, z̃

i,1

1,ūi,1
1

)− ℓ(Wi, z̃
i,0

1,ūi,0
1

)
)
,

A2 =(−1)U
′i,vi
j

(
ℓ(Wi, z̃

i,vi
j,1 )− ℓ(Wi, z̃

i,vi
j,0 )

)
.

Notice that due to the conditional independence between Wi and V ′
i , and the conditional independence Wi and U ′i,vi

j , A1

and A2 both have zero mean. Therefore, by the definition of sub-Gaussian random variable,

EWi,V ′
i |z̃i,ui

[
etA1

]
≤e

t2σ2
i

2 , (43)

E
Wi,U ′i,vi

j |z̃i,vi

[
etA2

]
≤e

t2σ2
i,j

2 . (44)

Eq. (43-44) are used to replace Eq. (9) and Eq. (13), respectively. The remaining steps are the same with the proof of
Theorem 3.1, see Appendix D.2, that is, we can obtain that∣∣∣∣EZ̃i,Ui,Wi,Vi

[
(−1)Vi

(
ℓ(Wi, Z̃

i,1

1,U
i,1
1

)− ℓ(Wi, Z̃
i,0

1,U
i,0
1

)

)]∣∣∣∣ ≤EZ̃i,Ui

√
2IZ̃i,Ui(Wi, Vi),∣∣∣EZ̃i,Vi,U

i,Vi
j ,Wi

[
(−1)U

i,Vi
j

(
ℓ(Wi, Z̃

i,Vi

j,1 )− ℓ(Wi, Z̃
i,Vi

j,0 )
)]∣∣∣ ≤EZ̃i,Vi

√
2IZ̃i,Vi(Wi, U

i,Vi

j ).

Finally, plugging the above bounds into the inequalities in Lemma F.1 will complete the proof.
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F.2. Proof of Theorem 5.2

Proof. First, the smoothness and strong convexity of loss function indicate that, for any z,

Smoothness: ℓ(w1, z) ≤ ℓ(w2, z) + ⟨∇ℓ(w2, z), w1 − w2⟩+
L

2
||w1 − w2||2, ∀w1, w2 ∈ W.

Strong Convexity: ℓ(w1, z) ≥ ℓ(w2, z) + ⟨∇ℓ(w2, z), w1 − w2⟩+
α

2
||w1 − w2||2, ∀w1, w2 ∈ W.

The following development is inspired by Gholami & Seferoglu (2024).

For each participating client µ̃i,Vi
, we have

1

n

n∑
j=1

E
[
ℓ(W,Z ′

i,j)− ℓ(W,Zi,j)
]
=
1

n

n∑
j=1

E
[
ℓ(W,Z ′

i,j)− ℓ(W (i,j), Z ′
i,j)
]

≤ 1

n

n∑
j=1

E
[
⟨∇ℓ(W (i,j), Z ′

i,j),W −W (i,j)⟩+ L

2
||W −W (i,j)||2

]

=
1

Kn

n∑
j=1

E
[
⟨∇ℓ(W (i,j), Z ′

i,j),Wi −W ′
i,j⟩
]
+

L

2K2n

n∑
j=1

E
[
||Wi −W ′

i,j ||2
]

≤ 1

Kn

n∑
j=1

√
E
[∣∣∣∣∇ℓ(W (i,j), Z ′

i,j)
∣∣∣∣2]E [∣∣∣∣Wi −W ′

i,j

∣∣∣∣2]+ L

2K2n

n∑
j=1

E
[∣∣∣∣Wi −W ′

i,j

∣∣∣∣2],
(45)

where the first inequality is by the smoothness of ℓ(w, z) and the last inequality is by Cauchy-Schwarz inequality.

Again, by the smoothness property and ∇ℓ(W ′
i,j , Z

′
i,j) = 0, we have

E
[∣∣∣∣∣∣∇ℓ(W (i,j), Z ′

i,j)
∣∣∣∣∣∣2] =E

[∣∣∣∣∣∣∇ℓ(W (i,j), Z ′
i,j)−∇ℓ(W ′

i,j , Z
′
i,j)
∣∣∣∣∣∣2]

≤2LE
[
ℓ(W (i,j), Z ′

i,j)− ℓ(W ′
i,j , Z

′
i,j)
]

=2LE [ℓ(W,Zi,j)− ℓ(Wi, Zi,j)]. (46)

In addition, by the strong convexity and ∇ℓ(W ′
i,j , Z

′
i,j) = 0, we have

E
[∣∣∣∣Wi −W ′

i,j

∣∣∣∣2] ≤ 2

α
E
[
ℓ(Wi, Z

′
i,j)− ℓ(W ′

i,j , Z
′
i,j)
]

=
2

α
E
[
ℓ(Wi, Z

′
i,j)− ℓ(Wi, Zi,j)

]
. (47)

Plugging Eq. (46-47) into Eq. (45), we have

1

n

n∑
j=1

E
[
ℓ(W,Z ′

i,j)− ℓ(W,Zi,j)
]

≤ 2

Kn

n∑
j=1

√
L

α
E [ℓ(W,Zi,j)− ℓ(Wi, Zi,j)]E

[
ℓ(Wi, Z ′

i,j)− ℓ(Wi, Zi,j)
]
+

L

αK2n

n∑
j=1

E
[
ℓ(Wi, Z

′
i,j)− ℓ(Wi, Zi,j)

]
≤ 2

Kn

n∑
j=1

√
L

α
E [ℓ(W,Zi,j)− ℓ(Wi, Zi,j)]E

[
(−1)U

i,Vi
j

(
ℓ(Wi, Z̃

i,Vi

j,1 )− ℓ(Wi, Z̃
i,Vi

j,0 )
)]

+
L

αK2n

n∑
j=1

E
[
(−1)U

i,Vi
j

(
ℓ(Wi, Z̃

i,Vi

j,1 )− ℓ(Wi, Z̃
i,Vi

j,0 )
)]

. (48)
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The remaining task is to bound E
[
(−1)U

i,Vi
j

(
ℓ(Wi, Z̃

i,Vi

j,1 )− ℓ(Wi, Z̃
i,Vi

j,0 )
)]

. Recall that each Ai is an interpolating
algorithm, we adapt similar techniques from Theorem 4.1, obtaining the following bound would be straightforward

E
[
(−1)U

i,Vi
j

(
ℓ(Wi, Z̃

i,Vi

j,1 )− ℓ(Wi, Z̃
i,Vi

j,0 )
)]

≤
2I(Wi;U

i,Vi

j |Z̃i, Vi)

log 2
,

Here, the constant C4 = log 2/2 arises from the fact that the empirical risk is zero (due to interpolation), allowing the
multiplier C2 in Eq. (42) to become arbitrarily large and thus broadening the optimization range for C4. By solving the
inequality e−2C4C2 + e2C4 ≤ 2 in the limit C2 → ∞, we have C4 = log 2

2 .

Consequently, we have

EOG(A) =
1

K

K∑
i=1

 1

n

n∑
j=1

E
[
ℓ(W,Z ′

i,j)− ℓ(W,Zi,j)
]

≤ 2

K2n

K∑
i=1

n∑
j=1

√
2L

α log 2
E [ℓ(W,Zi,j)]I(Wi;U

i,Vi

j |Z̃i, Vi) +
2L

αK3n log 2

K∑
i=1

n∑
j=1

I(Wi;U
i,Vi

j |Z̃i, Vi).

This completes the proof.

G. Additional Result: Loss-Difference CMI Version of Theorem 3.1
We apply the loss-difference (LD)-CMI technique from Wang & Mao (2023b) to derive a tighter version of Theorem 3.1.

Let L̄+
i = ℓ(W, Z̃i,0

1,U
i,0
1

) and L̄−
i = ℓ(W, Z̃i,1

1,U
i,1
1

). Let Li+
j = ℓ(W, Z̃i,Vi

j,0 ) and Li−
j = ℓ(W, Z̃i,Vi

j,1 ). Denote ∆L̄i =

L̄−
i − L̄+

i and ∆Li
i = Li−

j − Li+
j . Using a similar development as in the proof of Theorem 3.1, we obtain the following

refined bound.

Theorem G.1. Assume ℓ(·, ·) ∈ [0, 1], then we have

|ED(A)| ≤ 1

K

K∑
i=1

√
2I(∆L̄i;Vi) +

1

Kn

K∑
i=1

n∑
j=1

EVi

√
2IVi(∆Li

j ;U
i,Vi

j ).

Proof Sketch. Following the proof of Theorem 3.1, the function g(z̃i, ui, w, vi) = (−1)vi

(
ℓ(w, z̃i,1

1,ui,1
1

)− ℓ(w, z̃i,0
1,ui,0

1

)
)

transforms into
g(∆L̄i, Vi) = (−1)Vi∆L̄i,

Similarly, the function h(z̃i, vi, w, u
i,vi
j ) = (−1)u

i,vi
j

(
ℓ(w, z̃i,vij,1 )− ℓ(w, z̃i,vij,0 )

)
now becomes

h(Vi,∆Li
j , U

i,Vi

j ) = (−1)U
i,Vi
j ∆Li

j .

The remaining steps follow the same structure as the original proof, with the expectation now taken over the newly defined
loss difference random variables.

By data-processing inequality and chain rule, Theorem G.1 is tighter than Theorem 3.1.

H. Additional Experiment Details
We adapt the code from https://github.com/hrayrhar/f-CMI for supersample construction and CMI computation, and we
use the FL training code from https://github.com/vaseline555/Federated-Learning-in-PyTorch. We now state the complete
experiment details below.

31



Conditional Mutual Information Framework for Federated Learning

MNIST We train a CNN with approximately 170K parameters. The model consists of two 5× 5 convolutional layers—the
first with 32 channels and the second with 64—each followed by 2×2 max pooling. These are followed by a fully connected
layer with 512 units and ReLU activation, and a final softmax output layer. Each local training algorithm Ai trains this
model using full-batch GD with an initial learning rate of 0.1, which decays by a factor of 0.01 every 10 steps. At each
FL round, clients train locally for 5 epochs before sending their models to the central server. The entire training process
spans communication 300 rounds between clients and the central server, reducing the commonly used 1000 rounds to lower
computational costs.

CIFAR-10 We use the same CNN model from McMahan et al. (2017), which has approximately 106 parameters. The
architecture consists of two convolutional layers, followed by two fully connected layers and a final linear transformation
layer. The CIFAR-10 images are preprocessed as part of the training pipeline, including cropping to 24 × 24, random
horizontal flipping, and adjustments to contrast, brightness, and whitening. Each local training algorithm Ai trains the CNN
model using SGD with a mini-batch size of 50 and follows the same learning rate schedule as in the MNIST experiment. As
in the MNIST setup, clients train locally for five epochs per round before sending their models to the central server, with
training spanning 300 communication rounds.

Non-IID Setting and Evaluation Metric For both of the classification tasks, we evaluate prediction error as our
performance metric, i.e. we utilize the zero-one loss function to compute generalization error. During training, we use
cross-entropy loss as a surrogate to enable optimization with gradient-based methods. To introduce a non-IID setting, we
apply a pathological non-IID data partitioning scheme as in McMahan et al. (2017). Specifically, all images are first sorted
by their labels, divided into shards, and then assigned to clients such that each client receives two shards, resulting in most
clients having examples from only two digit classes. Additionally, since we pre-define the non-participating clients from the
superclient, all participating clients are included in every round of training.

CMI Estimation For supersample and superclient construction, when analyzing generalization behavior concerning the
sample size n, we fix the superclient size at 100, leading 50 participating clients and 50 non-participating clients randomly
selected by V . The sample size per client varies within n ∈ {10, 50, 100, 250}. When analyzing generalization behavior
with respect to the number of participating clients K, we set n = 100 for MNIST and n = 50 for CIFAR-10, varying the
number of clients as K ∈ {10, 20, 30, 50}. To estimate the CMI terms, for both tasks, we draw three samples of Z̃ and V ,
and 15 samples of U for each given z̃ and v. In each experiment, for a fixed sample size and client number, the individual
CMI term I(Li+

j ;U i,Vi

j |Vi = vi) is estimated using 15 samples, while I(L̄+
i ;Vi) is estimated using 45 samples, utilizing a

simple mutual information estimator for discrete random variables as in Harutyunyan et al. (2021). In total, we conduct 720
runs of FedAvg for these classification tasks. All experiments are performed using NVIDIA A100 GPUs with 40 GB of
memory.
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