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ABSTRACT

Dealing with missing values and incomplete time series is a labor-intensive, te-
dious, inevitable task when handling data coming from real-world applications.
Effective spatio-temporal representations would allow imputation methods to re-
construct missing temporal data by exploiting information coming from sensors at
different locations. However, standard methods fall short in capturing the nonlin-
ear time and space dependencies existing within networks of interconnected sen-
sors and do not take full advantage of the available – and often strong – relational
information. Notably, most state-of-the-art imputation methods based on deep
learning do not explicitly model relational aspects and, in any case, do not exploit
processing frameworks able to adequately represent structured spatio-temporal
data. Conversely, graph neural networks have recently surged in popularity as
both expressive and scalable tools for processing sequential data with relational
inductive biases. In this work, we present the first assessment of graph neural
networks in the context of multivariate time series imputation. In particular, we
introduce a novel graph neural network architecture, named GRIN, which aims at
reconstructing missing data in the different channels of a multivariate time series
by learning spatio-temporal representations through message passing. Empirical
results show that our model outperforms state-of-the-art methods in the imputation
task on relevant real-world benchmarks with mean absolute error improvements
often higher than 20%.

1 INTRODUCTION

Imputation of missing values is a prominent problem in multivariate time-series analysis (TSA) from
both theoretical and practical perspectives (Little & Rubin, 2019). In fact, in a world of complex in-
terconnected systems such as those characterizing sensor networks or the Internet of Things, faulty
sensors and network failures are widespread phenomena that cause disruptions in the data acqui-
sition process. Luckily, failures of these types are often sparse and localized at the single sensor
level, i.e., they do not compromise the entire sensor network at once. In other terms, it is often
the case that, at a certain time step, missing data appear only at some of the channels of the result-
ing multivariate time series. In this context, spatio-temporal imputation methods (Yi et al., 2016;
Yoon et al., 2018b) aim at reconstructing the missing parts of the signals by possibly exploiting
both temporal and spatial dependencies. In particular, effective spatio-temporal approaches would
reconstruct missing values by taking into account past and future values, and the concurrent mea-
surements of spatially close neighboring sensors too. Here, spatial similarity does not necessarily
mean physical (e.g., geographic) proximity, but rather indicates that considered sensors are related
w.r.t. a generic (quantifiable) functional dependency (e.g., Pearson correlation or Granger causality
– Granger, 1969) and/or that are close in a certain latent space. Relational information, then, can
be interpreted as a set of constraints – linking the different time series – that allows replacing the
malfunctioning sensors with virtual ones.

Among different imputation methods, approaches based on deep learning (LeCun et al., 2015;
Schmidhuber, 2015; Goodfellow et al., 2016) have become increasingly popular (Yoon et al., 2018a;
Cao et al., 2018; Liu et al., 2019). However, these methods often completely disregard available rela-
tional information or rely on rather simplistic modifications of standard neural architectures tailored
∗Equal contribution. Correspondence to andrea.cini@usi.ch.
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for sequence processing (Hochreiter & Schmidhuber, 1997; Chung et al., 2014; Bai et al., 2018;
Vaswani et al., 2017). We argue that stronger, structural, inductive biases are needed to advance the
state of the art in time series imputation and allow to build effective inference engines in the context
of large and complex sensor networks as those found in real-world applications.

In this work, we model input multivariate time series as sequences of graphs where edges represent
relationships among different channels. We propose graph neural networks (GNNs) (Scarselli et al.,
2008; Bronstein et al., 2017; Battaglia et al., 2018) as the building block of a novel, bidirectional,
recurrent neural network for multivariate time series imputation (MTSI). Our method, named Graph
Recurrent Imputation Network (GRIN), has at its core a recurrent neural network cell where gates
are implemented by message-passing neural networks (MPNNs; Gilmer et al., 2017). Two of these
networks process the input multivariate time series in both forward and backward time directions
at each node, while hidden states are processed by a message-passing imputation layer which is
constrained to learn how to perform imputation by looking at neighboring nodes. In fact, by consid-
ering each edge as a soft functional dependency that constraints the value observed at corresponding
nodes, we argue that operating in the context of graphs introduces a positive inductive bias for MTSI.
Our contributions are manifold: 1) we introduce a methodological framework to exploit graph neural
networks in the context of MTSI, 2) we propose a novel, practical and effective implementation of a
GNN-based architecture for MTSI, and 3) we achieve state-of-the-art results on several and varied
MTSI benchmarks. Our method does not rely on any assumption on the distribution of the miss-
ing values (e.g., presence and duration of transient dynamics and/or length of missing sequences)
other than stationarity of the underlying process. The rest of the paper is organized as follows. In
Section 2 we discuss the related works. Then, in Section 3, we formally introduce the problem set-
tings and the task of MTSI. We present our approach to MTSI in Section 4, by describing the novel
framework to implement imputation architectures based on GNNs. We proceed with an empirical
evaluation of the presented method against state-of-the-art baselines in Section 5 and, finally, we
draw our conclusions in Section 6.

2 RELATED WORKS

Time series imputation There exists a large literature addressing missing value imputation in time
series. Besides the simple and standard interpolation methods based on polynomial curve fitting,
popular approaches aim at filling up missing values by taking advantage of standard forecasting
methods and similarities among time series. For example, several approaches rely on k-nearest
neighbors (Troyanskaya et al., 2001; Beretta & Santaniello, 2016), the expectation-maximization
algorithm (Ghahramani & Jordan, 1994; Nelwamondo et al., 2007) or linear predictors and state-
space models (Durbin & Koopman, 2012; Kihoro et al., 2013). Low-rank approximation methods,
such as matrix factorization (Cichocki & Phan, 2009), are also popular alternatives which can also
account for spatial (Cai et al., 2010; Rao et al., 2015) and temporal (Yu et al., 2016; Mei et al.,
2017) information. Among linear methods, STMVL (Yi et al., 2016) combines temporal and spatial
interpolation to fill missing values in geographically tagged time series.

More recently, several deep learning approaches have been proposed for MTSI. Among the oth-
ers, deep autoregressive methods based on recurrent neural networks (RNNs) found widespread
success (Lipton et al., 2016; Che et al., 2018; Luo et al., 2018; Yoon et al., 2018b; Cao et al.,
2018). GRU-D (Che et al., 2018) learns how to process sequences with missing data by controlling
the decay of the hidden states of a gated RNN. Cao et al. (2018) propose BRITS, a bidirectional
GRU-D-like RNN for multivariate time series imputation that takes into account correlation among
different channels to perform spatial imputation. Other successful strategies in the literature have
been proposed that exploit the adversarial training framework to generate realistic reconstructed se-
quences (Yoon et al., 2018a; Fedus et al., 2018; Luo et al., 2018; 2019). Notably, GAIN (Yoon et al.,
2018a) uses GANs (Goodfellow et al., 2014) to learn models that perform imputation in the i.i.d.
settings. Luo et al. (2018; 2019) aim, instead, at learning models that generate realistic synthetic se-
quences and exploit them to fill missing values. Miao et al. (2021) use an approach similar to GAIN,
but condition the generator on the predicted label for the target incomplete time series. Concurrently
to our work, Kuppannagari et al. (2021) developed a graph-based spatio-temporal denoising autoen-
coder for spatio-temporal data coming from smart grids with known topology. Liu et al. (2019),
instead, uses adversarial learning to train a multiscale model that imputes highly sparse time series
in a hierarchical fashion. However, we argue that none of the above-cited methods can take full
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Figure 1: Representation of a multivariate time series as a sequence of graphs. Red circles denote
nodes with missing values, nodes are identified.

advantage of relational information and nonlinear spatio-temporal dependencies. Most importantly,
the above methods do not fully exploit the flexibility and expressiveness enabled by operating in the
context of graph processing.

Graph neural networks for TSA Graph neural networks have been exploited in TSA mostly in
spatio-temporal forecasting methods. The idea behind most of the methods present in the literature
is to modify standard neural network architectures for sequential data by relying on operators that
work in the graph domain. For example, Seo et al. (2018) propose a GRU cell where gates are imple-
mented by spectral GNNs (Defferrard et al., 2016); Li et al. (2018) propose an analogous architecture
replacing spectral GNNs with a diffusion-convolutional network (Atwood & Towsley, 2016). Note
that these models are different w.r.t. approaches that use recurrent networks to propagate information
graph-wise (Scarselli et al., 2008; Li et al., 2016). Yu et al. (2017) and Wu et al. (2019; 2020b) pro-
pose, instead, spatio-temporal convolutional neural networks that alternate convolutions on temporal
and spatial dimensions. Similar approaches have also been studied in the context of attention-based
models (Vaswani et al., 2017) with spatio-temporal Transformer-like architectures (Zhang et al.,
2018; Cai et al., 2020). Another particularly interesting line of research is related to the problem
of learning the graph structure underlying an input multivariate time series (Kipf et al., 2018; Wu
et al., 2020b; Shang et al., 2020). While previously mentioned approaches focus on multivariate
time series prediction, other methods aim at predicting changes in graph topology (Zambon et al.,
2019; Paassen et al., 2020). Conversely, methods such as Temporal Graph Networks (Rossi et al.,
2020) are tailored to learn node embeddings in dynamical graphs. Finally, recent works have pro-
posed GNNs for imputing missing features in the context of i.i.d. data. Among the others, Spinelli
et al. (2020) propose an adversarial framework to train GNNs on the data reconstruction task, while
You et al. (2020) propose a bipartite graph representation for feature imputation. Lately, GNNs have
also been exploited for spatial interpolation (Appleby et al., 2020; Wu et al., 2020a) – sometimes
referred to as kriging (Stein, 1999). To the best of our knowledge, no previous GNN-based method
targeted missing value imputation for generic multivariate time series.

3 PRELIMINARIES

Sequences of graphs We consider sequences of weighted directed graphs, where we observe a
graph Gt withNt nodes at each time step t. A graph is a couple Gt = 〈Xt,Wt〉, where Xt ∈ RNt×d

is the node-attribute matrix whose i-th row contains the d-dimensional node-attribute vector xit ∈ Rd
associated with the i-th node; entry wi,jt of the adjacency matrix Wt ∈ RNt×Nt denotes the scalar
weight of the edge (if any) connecting the i-th and j-th node. Fig. 1 exemplifies this modelling
framework. We assume nodes to be identified, i.e., to have a unique ID that enables time-wise
consistent processing. This problem setting can be easily extended to more general classes of graphs
with attributed edges and global attributes. In this work, we mainly focus on problems where the
topology of the graph is fixed and does not change over time, i.e., at each time step Wt = W and
Nt = N .

Any generic multivariate time series fits the above framework by letting each channel of the se-
quence (i.e., each sensor) correspond to a node and using the available relation information to build
an adjacency matrix. If no relational information is available, one could use the identity matrix, but
this would defeat the purpose of the formulation. A more proper choice of Wt can be made using
any standard similarity score (e.g., Pearson correlation) or a (thresholded) kernel. A more advanced
approach instead could aim at learning an adjacency directly from data by using, for instance, spatial
attention scores or resorting to graph learning techniques, e.g., Kipf et al. (2018). From now on, we
assume that input multivariate time series have homogeneous channels, i.e., sensors are of the same
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type. Note that this assumption does not imply a loss in generality: it is always possible to standard-
ize node features by adding sensor type attributes and additional dimensions to accommodate the
different types of sensor readings. Alternatively, one might directly model the problem by exploiting
heterogeneous graphs (Schlichtkrull et al., 2018).

Multivariate time series imputation To model the presence of missing values, we consider, at
each step, a binary mask Mt ∈ {0, 1}Nt×d where each row mi

t indicates which of the corresponding
node attributes of xit are available in Xt. It follows that, mi,j

t = 0 implies xi,jt to be missing;
conversely, if mi,j

t = 1, then xi,jt stores the actual sensor reading. We denote by X̃t the unknown
ground truth node-attribute matrix, i.e., the complete node-attribute matrix without any missing data.
We assume stationarity of missing data distribution and, in experiments, we mostly focus on the
missing at random (MAR) scenario (Rubin, 1976). We neither make assumptions on the number of
concurrent sensor failures, nor on the length of missing data blocks, i.e., multiple failures extended
over time are accounted for. Clearly, one should expect imputation performance to scale with the
number of concurrent faults and the time length of missing data bursts.

The objective of MTSI is to impute missing values in a sequence of input data. More formally, given
a graph sequence G[t,t+T ] of length T , we can define the missing data reconstruction error as

L
(
X̂[t,t+T ], X̃[t,t+T ],M [t,t+T ]

)
=
∑t+T

h=t

∑Nt

i=1

〈mi
h, `
(
x̂i

h, x̃
i
h

)
〉

〈mi
h,m

i
h〉

, (1)

where x̂ih is the reconstructed x̃ih; M [t,t+T ] and mi
h are respectively the logical binary complement

of M[t,t+T ] and mi
h, `( · , · ) is an element-wise error function (e.g., absolute or squared error)

and 〈 · , · 〉 indicates the standard dot product. Note that, in practice, it is impossible to have
access to X̃[t,t+T ] and, as a consequence, it is necessary to define a surrogate optimization objective
by, for example, using a forecasting loss or generating synthetic missing values. In the context of
trainable, parametric, imputation methods, we consider two different operational settings. In the
first one, named in-sample imputation, the model is trained to reconstruct missing values in a given
fixed input sequence X[t,t+T ], i.e., the model is trained on all the available data except those that
are missing and those that have been removed from the sequence to emulate additional failures for
evaluation. Differently, in the second one (referred to as out-of-sample imputation), the model is
trained and evaluated on disjoint sequences. Note that in both cases the model does not have access
to the ground-truth data used for the final evaluation. The first operational setting simulates the case
where a practitioner fits the model directly on the sequence to fill up its gaps. The second, instead,
simulates the case where one wishes to use a model fitted on a set of historical data to impute missing
values in an unseen target sequence.

4 GRAPH RECURRENT IMPUTATION NETWORK

In this section, we present our approach, the Graph Recurrent Imputation Network (GRIN), a graph-
based, recurrent neural architecture for MTSI. Given a multivariate time series X[t,t+T ] with mask
M[t,t+T ], our objective is to reconstruct missing values in the input sequence by combining the
information coming from both the temporal and spatial dimensions. To do so, we design a novel
bidirectional graph recurrent neural network which progressively processes the input sequence both
forward and backward in time by performing two stages of imputation for each direction. Then, a
feed-forward network takes as input the representation learned by the forward and backward models
and performs a final – refined – imputation for each node of the graph and step of the sequence.
More precisely, the final imputation depends on the output of two GRIN modules whose learned
representations are finally processed (space and time wise) by a last decoding multilayer percep-
tron (MLP). An overview of the complete architecture is given in Fig. 2. As shown in the figure, the
two modules impute missing values iteratively, using at each time step previously imputed values
as input. We proceed by first describing in detail the unidirectional model, and then we provide the
bidirectional extension.

Unidirectional model Each GRIN module is composed of two blocks, a spatio-temporal encoder
and a spatial decoder, which process the input sequence of graphs in two stages. The spatio-temporal
encoder maps the input sequence X[t,t+T ] to a spatio-temporal representation H[t,t+T ] ∈ RNt×l by
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Figure 2: An overview of the bidirectional architecture. Here, each unidirectional GRIN module is
processing the τ -th step of an input sequence with 4 dimensions (sensors). Two values are missing at
the considered time step. GRIN performs a first imputation, which is then processed and refined by
the spatial decoder. These second-stage imputations are then used to continue the processing at the
next step. An MLP processes learned representations node and time wise to obtain final imputations.

exploiting an ad-hoc designed recurrent GNN. The spatial decoder, instead, takes advantage of the
learned representations to perform two consecutive rounds of imputation. A first-stage imputation
is obtained from the representation by using a linear readout; the second one exploits available
relational, spatial, information at time step t. In particular, the decoder is implemented by an MPNN
which learns to infer the observed values at each i-th node – xit – by refining first-stage imputations
considering – locally – Ht−1 and values observed at neighboring nodes.

Spatio-temporal Encoder In the encoder, the input sequence X[t,t+T ] and mask M[t,t+T ] are
processed sequentially one step at a time, by means of a recurrent neural network with gates imple-
mented by message-passing layers. Any message-passing operator could be used in principle. In
particular, given zit,k−1, i.e., the node features vector at layer k− 1, we consider the general class of
MPNNs described as

MPNNk(zi
t,k−1,Wt) = γk

(
zi
t,k−1,

∑
j∈N (i)

ρk
(
zi
t,k−1,z

j
t,k−1

))
= zi

t,k, (2)

whereN (i) is the set of neighbors of the i-th node in Gt, γk and ρk are generic, differentiable, update
and message functions (e.g., MLPs), and Σ is a permutation invariant, differentiable aggregation
function (e.g., sum or mean). Note that several definitions of neighborhood are possible, e.g., one
might consider nodes connected by paths up to a certain length l. For the sake of simplicity, from
now on, we indicate with MPNN(zit,Wt) the forward pass of a generic K-layered message-passing
neural network. In the following, we use MPNNs as the building blocks for our spatio-temporal
feature extractors. To learn the dynamics of the system, we leverage on gated recurrent units (GRUs;
Cho et al., 2014). As previously mentioned, similarly to Seo et al. (2018) and Li et al. (2018), we
implement the GRU gates by relying on the message-passing layers defined above. At the node
level, the elements of the message-passing GRU (MPGRU) can be described as:

rit = σ
(
MPNN

([
x̂
i(2)
t ||mi

t||hit−1

]
,Wt

))
(3)

uit = σ
(
MPNN

([
x̂
i(2)
t ||mi

t||hit−1

]
,Wt

))
(4)

cit = tanh
(
MPNN

([
x̂
i(2)
t ||mi

t||rit � hit−1

]
,Wt

))
(5)

hit = uit � hit−1 + (1− uit)� cit (6)

where rit,u
i
t are the reset and update gates, respectively, hit is the hidden representation of the i-th

node at time t, and x̂
i(2)
t is the output of the decoding block at the previous time-step (see next

paragraph). The symbols � and || denote the Hadamard product and the concatenation operator, re-
spectively. The initial representation Ht−1 can either be initialized as a constant or with a learnable
embedding. Note that for the steps where input data are missing, the encoder is fed with predictions
from the decoder block, as explained in the next subsection. By carrying out the above computation
time and node wise, we get the encoded sequence H[t,t+T ].
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Spatial Decoder As a first decoding step, we generate one-step-ahead predictions from the hidden
representations of the MPGRU by means of a linear readout

Ŷ
(1)
t = Ht−1Vh + bh, (7)

where Vh ∈ Rl×d is a learnable weight matrix and bh ∈ Rd is a learnable bias vector. We then
define the filler operator as

Φ(Yt) = Mt �Xt + M t � Yt; (8)
intuitively, the filler operator replaces the missing values in the input Xt with the values at the
same positions in Yt. By feeding Ŷ

(1)
t to the filler operator, we get the first-stage imputation X̂

(1)
t

such that the output is Xt with missing values replaced by the one-step-ahead predictions Ŷ (1)
t . The

resulting node-level predictions are then concatenated to the mask Mt and the hidden representation
Ht−1, and processed by a final one-layer MPNN which computes for each node an imputation
representation sit as

si
t = γ

(
hi

t−1,
∑

j∈N (i)/i
ρ
([

Φ(x̂
j(1)
t )||hj

t−1||m
j
t

]))
. (9)

Notice that, as previously highlighted, the imputation representations only depend on messages
received from neighboring nodes and the representation at the previous step. In fact, by aggregating
only messages from the one-hop neighborhood, the representations sit are independent of the input
features xit of the i-th node itself. This constraint forces the model to learn how to reconstruct a target
input by taking into account spatial dependencies: this has a regularizing effect since the model is
constrained to focus on local information. Afterward, we concatenate imputation representation St
with hidden representation Ht−1, and generate second-stage imputations by using a second linear
readout and applying the filler operator:

Ŷ
(2)
t = [St||Ht−1]Vs + bs; X̂

(2)
t = Φ(Ŷ

(2)
t ) (10)

Finally, we feed X̂
(2)
t as input to the MPGRU (Eq. 3 – 6) to update the hidden representation and

proceed to process the next input graph Gt+1.

Bidirectional Model Extending GRIN to account for both forward and backward dynamics is
straightforward and can be achieved by duplicating the architecture described in the two previous
paragraphs. The first module will process the sequence in the forward direction (from the beginning
of the sequence towards its end), while the second one in the other way around. The final imputation
is then obtained with an MLP aggregating representations extracted by the two modules:

ŷit = MLP
([
si,fwdt ||hi,fwdt−1 ||si,bwdt ||hi,bwdt+1

])
, (11)

where fwd and bwd denote the forward and backward modules, respectively. The final output can
then be easily obtained as X̂[t,t+T ] = Φ(Ŷ[t,t+T ]). Note that, by construction, our model can
exploit all the available relevant spatio-temporal information, since the only value explicitly masked
out for each node is xit. At the same time, it is important to realize that our model does not merely
reconstruct the input as an autoencoder, but it is specifically tailored for the imputation task due to
its inductive biases. The model is trained by minimizing the reconstruction error of all imputation
stages in both directions (see Appendix A).

5 EMPIRICAL EVALUATION

In this section, we empirically evaluate our approach against state-of-the-art baselines on four
datasets coming from three relevant application domains. Our approach, remarkably, achieves state-
of-the-art performance on all of them.

• Air Quality (AQI): dataset of recordings of several air quality indices from 437 monitoring
stations spread across 43 Chinese cities. We consider only the PM2.5 pollutant. Prior
works on imputation (Yi et al., 2016; Cao et al., 2018) consider a reduced version of this
dataset, including only 36 sensors (AQI-36 in the following). We evaluate our model on
both datasets. We use as adjacency matrix a thresholded Gaussian kernel (Shuman et al.,
2013) computed from pairwise geographic distances.
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Table 1: Results on the air datasets. Performance averaged over 5 runs.

In-sample Out-of-sample
D M MAE MSE MRE (%) MAE MSE MRE (%)

A
Q

I-
36

Mean 53.48 ± 0.00 4578.08 ± 00.00 76.77 ± 0.00 53.48 ± 0.00 4578.08 ± 00.00 76.77 ± 0.00

KNN 30.21 ± 0.00 2892.31 ± 00.00 43.36 ± 0.00 30.21 ± 0.00 2892.31 ± 00.00 43.36 ± 0.00

MF 30.54 ± 0.26 2763.06 ± 63.35 43.84 ± 0.38 – – –
MICE 29.89 ± 0.11 2575.53 ± 07.67 42.90 ± 0.15 30.37 ± 0.09 2594.06 ± 07.17 43.59 ± 0.13

VAR 13.16 ± 0.21 513.90 ± 12.39 18.89 ± 0.31 15.64 ± 0.08 833.46 ± 13.85 22.02 ± 0.11

rGAIN 12.23 ± 0.17 393.76 ± 12.66 17.55 ± 0.25 15.37 ± 0.26 641.92 ± 33.89 21.63 ± 0.36

BRITS 12.24 ± 0.26 495.94 ± 43.56 17.57 ± 0.38 14.50 ± 0.35 662.36 ± 65.16 20.41 ± 0.50

MPGRU 12.46 ± 0.35 517.21 ± 41.02 17.88 ± 0.50 16.79 ± 0.52 1103.04 ± 106.83 23.63 ± 0.73

GRIN 10.51 ± 0.28 371.47 ± 17.38 15.09 ± 0.40 12.08 ± 0.47 523.14 ± 57.17 17.00 ± 0.67

A
Q

I

Mean 39.60 ± 0.00 3231.04 ± 00.00 59.25 ± 0.00 39.60 ± 0.00 3231.04 ± 00.00 59.25 ± 0.00

KNN 34.10 ± 0.00 3471.14 ± 00.00 51.02 ± 0.00 34.10 ± 0.00 3471.14 ± 00.00 51.02 ± 0.00

MF 26.74 ± 0.24 2021.44 ± 27.98 40.01 ± 0.35 – – –
MICE 26.39 ± 0.13 1872.53 ± 15.97 39.49 ± 0.19 26.98 ± 0.10 1930.92 ± 10.08 40.37 ± 0.15

VAR 18.13 ± 0.84 918.68 ± 56.55 27.13 ± 1.26 22.95 ± 0.30 1402.84 ± 52.63 33.99 ± 0.44

rGAIN 17.69 ± 0.17 861.66 ± 17.49 26.48 ± 0.25 21.78 ± 0.50 1274.93 ± 60.28 32.26 ± 0.75

BRITS 17.24 ± 0.13 924.34 ± 18.26 25.79 ± 0.20 20.21 ± 0.22 1157.89 ± 25.66 29.94 ± 0.33

MPGRU 15.80 ± 0.05 816.39 ± 05.99 23.63 ± 0.08 18.76 ± 0.11 1194.35 ± 15.23 27.79 ± 0.16

GRIN 13.10 ± 0.08 615.80 ± 10.09 19.60 ± 0.11 14.73 ± 0.15 775.91 ± 28.49 21.82 ± 0.23

• Traffic: we consider the PEMS-BAY and METR-LA datasets from Li et al. (2018), con-
taining data from traffic sensors from the San Francisco Bay Area and the Los Angeles
County Highway. We use the same approach of Li et al. (2018) and Wu et al. (2019) to
obtain an adjacency matrix.

• Smart grids: we consider data from the Irish Commission for Energy Regulation Smart
Metering Project (CER-E; Commission for Energy Regulation, 2016). We select only
the subset of the available smart meters monitoring the energy consumption of small and
medium-sized enterprises (SMEs), i.e., 485 time series with samples acquired every 30
minutes. We build an adjacency matrix by extracting a k-nearest neighbor graph (with
k = 10) from the similarity matrix built by computing the correntropy (Liu et al., 2007)
among the time series.

For the air quality datasets, we adopt the same evaluation protocol of previous works (Yi et al., 2016;
Cao et al., 2018) and we show results for both the in-sample and out-of-sample settings. For the traf-
fic and energy consumption datasets, we consider only the out-of-sample scenario (except for matrix
factorization which only works in-sample). We simulate the presence of missing data by considering
2 different settings: 1) Block missing, i.e, at each step, for each sensor, we randomly drop 5% of the
available data and, in addition, we simulate a failure with probability pfailure = 0.15% and sample
its duration uniformly in the interval [min steps,max steps], where min steps and max steps
are the number of time steps corresponding respectively to 1 and 4 hours in the traffic case and 2
hours and 2 days for CER-E; 2) Point missing, i.e., we simply randomly mask out 25% of the avail-
able data. We split all the datasets into training/validation/test sets. We use as performance metrics
the mean absolute error (MAE), mean squared error (MSE) and mean relative error (MRE; Cao
et al., 2018) computed over the imputation window. For all the experiments, we use as message-
passing operator the diffusion convolution introduced by Atwood & Towsley (2016). We consider
BRITS (Cao et al., 2018) as the principal competing alternative among non-adversarial deep autore-
gressive approaches, as it shares architectural similarities with our methods. As additional baselines
we consider: 1) MEAN, i.e., imputation using the node-level average; 2) KNN, i.e., imputation by
averaging values of the k = 10 neighboring nodes with the highest weight in the adjacency matrix
Wt; 3) MICE (White et al., 2011), limiting the maximum number of iterations to 100 and the num-
ber of nearest features to 10; 4) Matrix Factorization (MF) with rank = 10; 5) VAR, i.e., a Vector
Autoregressive one-step-ahead predictor; 6) rGAIN, i.e., an unsupervised version of SSGAN (Miao
et al., 2021) which can be seen as GAIN (Yoon et al., 2018a) with bidirectional recurrent encoder
and decoder; 7) MPGRU, a one-step-ahead GNN-based predictor similar to DCRNN (Li et al., 2018).
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Table 2: Results on the traffic and smart grids datasets. Performance averaged over 5 runs.

Block missing Point missing
D M MAE MSE MRE(%) MAE MSE MRE(%)

PE
M

S-
B

A
Y

Mean 5.46 ± 0.00 87.56 ± 0.00 8.75 ± 0.00 5.42 ± 0.00 86.59 ± 0.00 8.67 ± 0.00

KNN 4.30 ± 0.00 49.90 ± 0.00 6.90 ± 0.00 4.30 ± 0.00 49.80 ± 0.00 6.88 ± 0.00

MF 3.28 ± 0.01 50.14 ± 0.13 5.26 ± 0.01 3.29 ± 0.01 51.39 ± 0.64 5.27 ± 0.02

MICE 2.94 ± 0.02 28.28 ± 0.37 4.71 ± 0.03 3.09 ± 0.02 31.43 ± 0.41 4.95 ± 0.02

VAR 2.09 ± 0.10 16.06 ± 0.73 3.35 ± 0.16 1.30 ± 0.00 6.52 ± 0.01 2.07 ± 0.01

rGAIN 2.18 ± 0.01 13.96 ± 0.20 3.50 ± 0.02 1.88 ± 0.02 10.37 ± 0.20 3.01 ± 0.04

BRITS 1.70 ± 0.01 10.50 ± 0.07 2.72 ± 0.01 1.47 ± 0.00 7.94 ± 0.03 2.36 ± 0.00

MPGRU 1.59 ± 0.00 14.19 ± 0.11 2.56 ± 0.01 1.11 ± 0.00 7.59 ± 0.02 1.77 ± 0.00

GRIN 1.14 ± 0.01 6.60 ± 0.10 1.83 ± 0.02 0.67 ± 0.00 1.55 ± 0.01 1.08 ± 0.00

M
E

T
R

-L
A

Mean 7.48 ± 0.00 139.54 ± 0.00 12.96 ± 0.00 7.56 ± 0.00 142.22 ± 0.00 13.10 ± 0.00

KNN 7.79 ± 0.00 124.61 ± 0.00 13.49 ± 0.00 7.88 ± 0.00 129.29 ± 0.00 13.65 ± 0.00

MF 5.46 ± 0.02 109.61 ± 0.78 9.46 ± 0.04 5.56 ± 0.03 113.46 ± 1.08 9.62 ± 0.05

MICE 4.22 ± 0.05 51.07 ± 1.25 7.31 ± 0.09 4.42 ± 0.07 55.07 ± 1.46 7.65 ± 0.12

VAR 3.11 ± 0.08 28.00 ± 0.76 5.38 ± 0.13 2.69 ± 0.00 21.10 ± 0.02 4.66 ± 0.00

rGAIN 2.90 ± 0.01 21.67 ± 0.15 5.02 ± 0.02 2.83 ± 0.01 20.03 ± 0.09 4.91 ± 0.01

BRITS 2.34 ± 0.01 17.00 ± 0.14 4.05 ± 0.01 2.34 ± 0.00 16.46 ± 0.05 4.05 ± 0.00

MPGRU 2.57 ± 0.01 25.15 ± 0.17 4.44 ± 0.01 2.44 ± 0.00 22.17 ± 0.03 4.22 ± 0.00

GRIN 2.03 ± 0.00 13.26 ± 0.05 3.52 ± 0.01 1.91 ± 0.00 10.41 ± 0.03 3.30 ± 0.00

C
E

R
-E

Mean 1.49 ± 0.00 5.96 ± 0.00 72.47 ± 0.00 1.51 ± 0.00 6.09 ± 0.00 71.51 ± 0.00

KNN 1.15 ± 0.00 6.53 ± 0.00 56.11 ± 0.00 1.22 ± 0.00 7.23 ± 0.00 57.71 ± 0.00

MF 0.97 ± 0.01 4.38 ± 0.06 47.20 ± 0.31 1.01 ± 0.01 4.65 ± 0.07 47.87 ± 0.36

MICE 0.96 ± 0.01 3.08 ± 0.03 46.65 ± 0.44 0.98 ± 0.00 3.21 ± 0.04 46.59 ± 0.23

VAR 0.64 ± 0.03 1.75 ± 0.06 31.21 ± 1.60 0.53 ± 0.00 1.26 ± 0.00 24.94 ± 0.02

rGAIN 0.74 ± 0.00 1.77 ± 0.02 36.06 ± 0.14 0.71 ± 0.00 1.62 ± 0.02 33.45 ± 0.16

BRITS 0.64 ± 0.00 1.61 ± 0.01 31.05 ± 0.05 0.64 ± 0.00 1.59 ± 0.01 30.07 ± 0.11

MPGRU 0.53 ± 0.00 1.84 ± 0.01 25.88 ± 0.09 0.41 ± 0.00 1.22 ± 0.01 19.51 ± 0.03

GRIN 0.42 ± 0.00 1.07 ± 0.01 20.24 ± 0.04 0.29 ± 0.00 0.53 ± 0.00 13.71 ± 0.03

We provide further comment and in depth details on baselines and datasets, together with additional
experiments on synthetic data in the appendix.

5.1 RESULTS

Empirical results show that GRIN can achieve large improvements in imputation performance on
several scenarios, as well as increased flexibility. In fact, differently from the other state-of-the-
art baselines, GRIN can handle input with a variable number of dimensions. Tab. 1 shows the
experimental results on the air quality datasets. In the in-sample settings, we compute metrics
using as imputation the value obtained by averaging predictions over all the overlapping win-
dows; in the out-of-sample settings, instead, we simply report results by averaging the error over
windows. GRIN largely outperforms other baselines on both settings. In particular, in the lat-
ter case, GRIN decreases MAE w.r.t. the closest baseline by more than 20% in AQI. Interest-
ingly, GRIN consistently outperforms BRITS in imputing missing values also for sensors corre-
sponding to isolated (disconnected) nodes, i.e., nodes corresponding to stations more than 40 km
away from any other station (see B.1): this is empirical evidence of the positive regularizations
encoded into GRIN. Our method achieves more accurate imputation also in the 36-dimensional
dataset, where we could expect the graph representation to have a lower impact. Results for the
traffic and smart grids datasets are shown in Tab. 2. In the traffic dataset, our method outper-
forms both BRITS and rGAIN by a wide margin in all the considered settings while using a much
lower number of parameters (see A). In the traffic datasets, on average, GRIN reduces MAE by
≈ 29% w.r.t. BRITS and, in particular, in the Point missing setting of the PEMS-BAY dataset,
the error is halved. In CER-E, GRIN consistently outperforms other baselines. Besides show-

8



Published as a conference paper at ICLR 2022

ing the effectiveness of our approach in a relevant application field, this experiment also goes to
show that GRIN can be exploited in settings where relational information is not readily available.

Table 3: Ablation study. Averages over 5 runs.

Model AQI METR-LA CER-E

GRIN 14.73 ± 0.15 2.03 ± 0.00 0.29 ± 0.00

w/o sp. dec. 15.40 ± 0.14 2.32 ± 0.01 0.29 ± 0.00

w/ denoise dec. 17.23 ± 1.12 2.96 ± 0.18 0.32 ± 0.00

MPGRU 18.76 ± 0.11 2.57 ± 0.01 0.41 ± 0.00

Finally, Tab. 3 show results – in terms of MAE
– of an ablation study on the out-of-sample sce-
nario in AQI, METR-LA (in the Block Missing
settings), and CER-E (Point Missing setting).
In particular, we compare GRIN against 3 base-
lines to assess the impact of the spatial decoder
and of the bidirectional architecture. The first
baseline is essentially a bidirectional MPGRU
where values are imputed by a final MLP taking as inputs hfwdt−1 and hbwdt+1 , while the second one has
an analogous architecture, but uses hidden representation and time step t (for both directions) and,
thus, behaves similarly to a denoising autoencoder. As reference, we report the results of the uni-
directional MPGRU. Results show that the components we introduce do contribute to significantly
reduce imputation error. It is clear that spatial decoding and the bidirectional architecture are im-
portant to obtain accurate missing data reconstruction, especially in realistic settings with blocks of
missing data. Interestingly, the denoising model suffers in the Block missing scenario, while, as one
might expect, works well in the Point Missing setting. For additional results and discussion about
scalability issues, we refer to the appendix of the paper.

5.2 VIRTUAL SENSING
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Figure 3: Reconstruction of observations from
sensors removed from the training set. Plots show
that GRIN might be used for virtual sensing.

As a final experiment, we provide a quantita-
tive and qualitative assessment of the proposed
method in virtual sensing. The idea (often stud-
ied in the context of kriging – see Section 2) is
to simulate the presence of a sensor by adding a
node with no available data and, then, let the
model reconstruct the corresponding time se-
ries. Note that for the approach to work several
assumptions are needed: 1) we have to assume
that the physical quantity being monitored can
be reconstructed from observations at neighbor-
ing sensors; 2) we should assume a high-degree
of homogeneity of sensors (e.g., in the case of
air quality stations we should assume that sen-
sors are placed at the same height) or that the
features characterizing each neighboring sen-
sor (e.g., placement) are available to the model. In this context, it is worth noting that, due to
the inductive biases embedded in the model, GRIN performs reconstruction not only by minimizing
reconstruction error at the single node, but by regularizing the reconstructed value for imputation
at neighboring sensors. We masked out observed values of the two nodes of AQI-36 with high-
est (station no. 1014) and lowest (no. 1031) connectivity, and trained GRIN on the remaining part
of the data as usual. Results, in Fig. 3, qualitatively show that GRIN can infer the trend and scale
for unseen sensors. In terms of MAE, GRIN scored 11.74 for sensor 1014 and 20.00 for sensor
1031 (averages over 5 independent runs).

6 CONCLUSIONS

We presented GRIN, a novel approach for MTSI exploiting modern graph neural networks. Our
method imputes missing data by leveraging the relational information characterizing the underlying
network of sensors and the functional dependencies among them. Compared against state-of-the-art
baselines, our framework offers higher flexibility and achieves better reconstruction accuracy on all
the considered scenarios. There are several possible directions for future works. From a theoret-
ical perspective, it would be interesting to study the properties that would guarantee an accurate
reconstruction. Furthermore, future work should study extensions able to deal with a non-stationary
setting and further assess applications of GRIN in virtual and active sensing.
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REPRODUCIBILITY STATEMENT

Code to reproduce experiments presented in the paper is provided as supplementary material to-
gether with configuration files to replicate reported results. All datasets, except CER-E, are open
and downloading links are provided in the supplementary material. The CER-E dataset can be
obtained free of charge for research purposes (see appendix). For experiments where failures are
simulated, we use random number generators with fixed seed for missing data generation to ensure
reproducibility and consistency among experiments and baselines.
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APPENDIX

A DETAILED EXPERIMENTAL SETTINGS

In this appendix, we give more details on the experimental settings used to evaluate our approach.
We train all the models by sampling at random 160 batches of 32 elements for each epoch, we fix the
maximum number of epochs to 300 and we use early stopping on the validation set with a patience
of 40 epochs. All methods are trained using a cosine learning rate scheduler with initial value of
0.001, decayed over the 300 training epochs. During training, we randomly mask out an additional
5% of the input data for each batch to foster robustness to noise and missing data.

For GRIN we minimize the following loss function is

L = L
(
Y[t,t+T ],X[t,t+T ],M[t,t+T ]

)
+ L

(
Y

(1),fwd
[t,t+T ] ,X[t,t+T ],M[t,t+T ]

)
+ L

(
Y

(2),fwd
[t,t+T ] ,X[t,t+T ],M[t,t+T ]

)
+ L

(
Y

(1),bwd
[t,t+T ] ,X[t,t+T ],M[t,t+T ]

)
+ L

(
Y

(2),bwd
[t,t+T ] ,X[t,t+T ],M[t,t+T ]

)
,

where each L ( · , · , · ) is of the form of Eq. 1 and the element-wise error function is MAE. Note
that here we are using X[t,t+T ] and M[t,t+T ] instead of X̂[t,t+T ] and M [t,t+T ].

For BRITS, we use the same network hyperparameters of Cao et al. (2018) for the AQI-36 dataset.
To account for the larger input dimension, for the other datasets we increase the number of hidden
neurons in the RNNs cells to 128 for AQI/METR-LA and 256 for PEMS-BAY/CER-E. The number
of neurons was tuned on the validation sets. For rGAIN we use the same number of units in the
cells of the bidirectional RNN used by BRITS, but we concatenate a random vector (sampled from
a uniform distribution) of dimension z = 4 to the input vector in order to model the sampling of
the data generating process. To obtain predictions, we average out the outputs of k = 5 forward
passes. For VAR we used an order of 5 and trained the model with SGD. Since the VAR model
needs past 5 observations to predict the next step, we pad each sequence using the mean for each
channel. Here we used a batch size to 64 and a learning rate of 0.0005. The order was selected with
a small search in the range [2, 12]: we found out a window size of 5 to be ideal for all the considered
datasets. For GRIN we use the same hyperparameters in all the datasets: a hidden dimension of
64 neurons for both the spatio-temporal encoder and the spatial decoder and of 64 neurons for the
MLP. We use diffusion convolution as message-passing operation, with a diffusion step k = 2 in
the spatio-temporal encoder and k = 1 in the temporal decoder. Note that, due to the architectural
differences, the other neural network baselines have a number of parameters that is far higher than
GRIN (depending on the considered dataset, up to ≈ 4M against ≈ 200K). For MPGRU we use
the same hyperparameters of GRIN (64 units for both the spatio-temporal encoder and the decoder).

For data processing we use the same steps of Li et al. (2018), data are normalized across the fea-
ture dimension (which means graph-wise for GRIN and node-wise for BRITS/rGAIN/VAR). Data
masked out for evaluation are never used to train any model.

All the models were developed in Python (Van Rossum & Drake, 2009) using the following open-
source libraries:

• PyTorch (Paszke et al., 2019);

• numpy (Harris et al., 2020);

• Neptune1 (neptune.ai, 2021);

• scikit-learn (Pedregosa et al., 2011);

• fancyimpute (Rubinsteyn & Feldman).

1https://neptune.ai/
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The implementation of the diffusion convolutional operator was adapted from the Graph-WaveNet
codebase 2. For the implementation of BRITS, we used the code provided by the authors3. The code
to reproduce the experiments of the paper is available online4.

Table 4: Statistics on adjacency matrices used in the experiments. Self loops are excluded.

GRAPH N. NEIGHBORS

Dataset type nodes edges mean median isolated nodes

AQI undirected 437 2699 12.35 9.0 14
CER-E directed 485 4365 9.0 9.0 0
PEMS-BAY directed 325 2369 7.29 7.0 12
METR-LA directed 207 1515 7.32 7.0 5

B DATASETS

In this appendix, we provide more details on the datasets that we used to run experiments. Tab. 4
shows detailed statistics for graph structure associated with each dataset, while Fig. 4 shows the
corresponding adjacency matrices. Tab. 5 shows missing data statistics. In the following subsections,
we go deeper into details for each dataset.

Table 5: Statistics on missing data distribution. (P) and (B) indicate the Point Missing and Block
Missing settings, respectively. With block, we refer to missing data bursts longer than 2 time steps
and shorter than or equal to 48.

ORIGINAL DATA INJECTED FAULTS

D % missing avg. block median block % avg. block median block

AQI 25.67 6.69 4.0 10.67 7.59 4.0

AQI-36 13.24 7.24 4.0 11.33 6.52 4.0

PEMS-BAY (P) 0.02 12.0 12.0 25.0 3.33 3.0
(B) 9.07 27.26 28.0

METR-LA (P) 8.10 12.44 9.0 23.00 3.33 3.0
(B) 8.4 25.68 26.0

CER-E (P) 0.04 48.0 48.0 24.97 3.33 3.0
(B) 8.38 22.45 21.0

B.1 AIR QUALITY

Air pollution is nowadays a ubiquitous problem. The Urban Computing project (Zheng et al., 2014;
2015) published several datasets containing real measurements of different indices affecting human
life in urban spaces. We consider as benchmark the dataset regarding the air quality index (AQI).
The complete dataset contains hourly measurements of six pollutants from 437 air quality moni-
toring stations, spread over 43 cities in China, over a period of one year (from May 2014 to April
2015). Prior works on imputation (Yi et al., 2016; Cao et al., 2018) considered a reduced version of
this dataset, including only 36 sensors (AQI-36). This dataset is particularly interesting as a bench-
mark for imputation due to the high rate of missing values (25.7% in AQI and 13.2% in AQI-36).
Along with Yi et al. (2016), we consider as the test set the months of March, June, September and
December. We consider both the in-sample and out-of-sample scenarios. In latter case, we do not
consider windows overlapping with any of the test months. We use the same procedure of Yi et al.
(2016) to simulate the presence of missing data for evaluation.

2https://github.com/nnzhan/Graph-WaveNet
3https://github.com/caow13/BRITS
4https://github.com/Graph-Machine-Learning-Group/grin
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Figure 4: Adjacency matrices of the different datasets.

We select windows of data of length T = 24 for AQI and T = 36 for AQI-36 (in line with Cao et al.
(2018)). To evaluate the imputation performances, we mask out from the test set and use as ground-
truth the value xi,jt if: (1) the value is not missing (mi,j

t = 1) and (2) the value is missing at the same
hour and day in the following month. Besides air quality readings, the dataset provides geographic
coordinates of each monitoring station. To obtain an adjacency matrix from the geographic distances
between nodes, we use a thresholded Gaussian kernel (Shuman et al., 2013): the weight wi,jt = wi,j

of the edge connecting i-th and j-th node is

wi,j =

{
exp

(
−dist(i,j)2

γ

)
dist (i, j) ≤ δ

0 otherwise
, (12)

where dist ( · , · ) is the geographical distance operator, γ controls the width of the kernel and δ
is the threshold. We set γ to the standard deviation of geographical distances in AQI-36 in both
datasets. We set δ so that it corresponds to a distance of ≈ 40 km.

B.2 TRAFFIC

The study of traffic networks is key for the development of intelligent transportation systems and
a relevant application field for network science. While previous works (Yu et al., 2017; Li et al.,
2018; Wu et al., 2019; Shang et al., 2020) have assessed spatio-temporal deep learning methods for
the traffic forecasting task, we focus on reconstruction. We use as benchmark the PEMS-BAY and
METR-LA datasets from Li et al. (2018). PEMS-BAY contains 6 months of data from 325 traffic
sensors in San Francisco Bay Area, while METR-LA contains 4 months of sensor readings from
207 detectors in the Los Angeles County Highway (Jagadish et al., 2014); for both datasets, the
sampling rate corresponds to 5 minutes.

We use input sequences of 24 steps, which correspond to 2 hours of data. For adjacency, we use
a thresholded Gaussian kernel applied to geographic distances following previous works Wu et al.
(2019). We split the data into three folds, using 70% of them for training and the remaining 10%
and 20% for validation and testing, respectively.

B.3 SMART GRIDS

We consider data from the Irish Commission for Energy Regulation (CER) Smart Metering Project5.
We select only the subset of the available smart meters monitoring energy consumption of small and
medium-sized enterprises (SMEs), i.e., 485 time series with samples acquired every 30 minutes.
Note that access to dataset can be obtained free of charge for research purposes.

We build an adjacency matrix by extracting a k-nearest neighbor graph (with k = 10) from the
similarity matrix built by computing the week-wise correntropy (Liu et al., 2007) among time series.
As in the traffic case, we use a 70%/10%/20% split for training, validation and testing and use a
window size of 24 steps. Data were normalized using standard scaling as in the previous settings,
and we did not perform additional preprocessing steps.

5https://www.ucd.ie/issda/data/commissionforenergyregulationcer
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C ADDITIONAL RESULTS

In this appendix, we show an additional experiment in a controlled environment, comparison against
additional baselines, additional ablation studies, and sensitivity analyses.

C.1 SYNTHETIC DATA

In this experiment, we test our method on the simulated particle system introduced by Kipf et al.
(2018)6. We simulate the trajectories of N = 10 particles in a (10× 10) box with elastic collision.
Each particle carries a either positive or negative charge q ∈ {1,−1}. Two particles attract each
other if they have opposite sign, otherwise they repel. Interaction forces between two particles are
ruled by Coulomb’s law. We collect two datasets, each containing 5000 independent simulations
of T = 36 steps each. In the first dataset, particles have the same charge in every simulation. In
the second one, we sample the charges uniformly at random at the beginning of every simulation.
In both scenarios, the initial location and velocity of the particles are drawn randomly. At each
step, we randomly remove blocks of consecutive readings with a probability pfailure = 2.5% and a
length sampled uniformly from the interval [4, 9]. Here, a reading consists of the (x, y) coordinates
of the particle’s position. We further mask out 2.5% of positions at random. The percentage of
values not masked out is≈ 74%. For evaluation purposes, we generate another mask using the same
missing data distribution and use the masked values as ground-truth for evaluation. We split dataset
in training/validation/test folds using 70%/10%/20% splits, respectively.

Table 6: Results on the synthetic datasets. Performance averaged over 5 runs.

Fixed charge Varying charge
Model MAE MSE MAE MSE

BRITS 0.1203 ± 0.0003 0.0878 ± 0.0002 0.1089 ± 0.0007 0.0840 ± 0.0001

GRIN 0.0500 ± 0.0055 0.0061 ± 0.0010 0.0530 ± 0.0092 0.0074 ± 0.0033

Improv. 2.41× 14.39× 2.05× 11.35×

We test our method (GRIN) and BRITS in both synthetic datasets. We use 32 units for the hidden
layer of BRITS (≈ 25K parameters) and 16 units for both the encoder and decoder of GRIN (≈ 10K
parameters). Results are reported in Tab. 6. Both the methods take as input only the particles’ po-
sitions, with no information about the charges. As can be seen, consistently with what observed
by Kipf et al. (2018), relational representations are impressively effective in this scenario. Our
method outperforms the baseline by more than an order of magnitude in terms of MSE. Surpris-
ingly, BRITS is more accurate in the setting with varying charge. Our hypothesis is that the added
stochasticity acts as a regularization and forces BRITS to learn a more general model.

C.2 EMPIRICAL COMPARISON AGAINST MATRIX FACTORIZATION WITH SIDE INFORMATION

Table 7: Comparison of regularized matrix factorization methods on air quality datasets. Results
averaged over 5 independent runs.

AQI-36 AQI
Model MAE MSE MRE (%) MAE MSE MRE (%)

MF 30.54 ± 0.26 2763.06 ± 63.35 43.84 ± 0.38 26.74 ± 0.24 2021.44 ± 27.98 40.01 ± 0.35

GRMF 19.29 ± 0.39 1054.48 ± 40.79 27.68 ± 0.56 26.38 ± 0.32 2031.21 ± 72.10 39.48 ± 0.48

TRMF 15.97 ± 0.14 1178.65 ± 60.14 22.92 ± 0.20 21.86 ± 0.28 1516.81 ± 45.53 32.71 ± 0.42

GRIN 10.51 ± 0.28 371.47 ± 17.38 15.09 ± 0.40 13.10 ± 0.08 615.80 ± 10.09 19.60 ± 0.11

As mentioned in Section 2, several matrix factorization approaches – often studied in the context
of recommender systems – can be regularized by considering priors on the spatio-temporal struc-

6https://github.com/ethanfetaya/NRI
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ture of the data. Intuitively, spatial regularization is achieved by imposing soft constraints on the
smoothness of the interpolated function w.r.t. nodes of an underlying graph (Cai et al., 2010; Rao
et al., 2015). Temporal regularization can be obtained by imposing analogous constraints modelling
temporal dependencies as – eventually weighted – edges of a graph. In temporal regularized matrix
factorization (TRMF; Yu et al., 2016), similarly, coefficients of an autoregressive model are used as
temporal regularizer.

Tab. 7 shows a comparison of different matrix factorization approaches on imputation in the air
quality datasets (where we considered the in-sample setting in Section 5). For TRMF we used an
implementation adapted from the Transdim repository7, while for graph regularized matrix factor-
ization (GMRF) we use a custom implementation of the method proposed by Cai et al. (2010). We
fixed the rank to be equal to 10 (as the one used in all the experiments for standard MF) and tuned the
regularization coefficients on a validation set. Results do show that introducing spatial and temporal
regularization improve w.r.t. vanilla MF; however, deep learning methods – and even linear VAR
predictors – achieve far superior reconstruction accuracy here. Arguably, low-rank approximation
methods might instead have an edge in a low-data regime: this type of analysis is, however, out of
the scope of this work.

C.3 SCALABILITY

With reference to a standard bidirectional GRU, using MPNNs to implement the cell’s gates in-
creases the computational complexity by a factor that scales with the number of edges O(E) – if
using an efficient sparse implementation – or with the number of nodes squared O(N2). Luckily,
this overhead can be amortized as most of the computation can be parallelized. Research on scalable
and memory efficient GNNs is a very active field (e.g., Hamilton et al., 2017; Frasca et al., 2020):
depending on the task, the designer can opt for massage passing operators that meet the application
requirements in terms of performance, time and space constraints.

C.4 ABLATION STUDY

Here we provide two different ablation studies, the first one on the architecture of GRIN and the
second one on the graph structure.

C.4.1 ARCHITECTURAL ABLATIONS

Tab. 8 shows additional results for the ablation study presented in Section 5. Consistently with what
we already observed, the spatial decoder and bidirectional architecture improve performance and
appear particularly relevant in settings with blocks of missing data.

Table 8: Ablation study. MAE averaged over 5 runs. (P) and (B) indicate the Point Missing and
Block Missing settings, respectively.

Model AQI METR-LA (B) METR-LA (P) CER-E (B) CER-E (P)

GRIN 14.73 ± 0.15 2.03 ± 0.00 1.91 ± 0.00 0.42 ± 0.00 0.29 ± 0.00

w/o sp. dec. 15.40 ± 0.14 2.32 ± 0.01 2.01 ± 0.00 0.49 ± 0.00 0.29 ± 0.00

w/ denoise dec. 17.23 ± 1.12 2.96 ± 0.18 2.09 ± 0.02 0.61 ± 0.02 0.32 ± 0.00

MPGRU 18.76 ± 0.11 2.57 ± 0.01 2.44 ± 0.00 0.53 ± 0.00 0.41 ± 0.00

C.4.2 GRAPH STRUCTURE ABLATIONS

Here we study how exploiting the relational structure of the problem affects the accuracy of the
reconstruction. In particular, we run two additional experiments on the METR-LA dataset (Block
missing settings), where instead of using as adjacency matrix the thresholded kernel in Eq. 12, we
use (1) a fully connected graph (W = 1) and (2) a graph with no edges (W = I). To provide node
– i.e., sensor – identification, we use learnable embeddings as additional node features. Results are

7https://github.com/xinychen/transdim
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shown in Tab. 9, performance for BRITS are reported as reference. It is clear that the constraints
posed by the graph structure do have an impact on the accuracy of missing data imputation and, at
the same time, that spatial information is relevant for the task.

Table 9: Performance with different adjacency matrices. Results averaged over 5 runs. (B) indicates
the Block Missing setting.

METR-LA (B)

Method MAE MSE MRE (%)

GRIN 2.03 ± 0.00 13.26 ± 0.05 3.52 ± 0.01

fully connected 2.63 ± 0.01 27.37 ± 0.38 4.56 ± 0.02

no edges 3.42 ± 0.04 51.68 ± 0.71 5.93 ± 0.08

BRITS 2.34 ± 0.01 17.00 ± 0.14 4.05 ± 0.01

C.5 SENSITIVITY ANALYSIS

Finally, in this subsection we carry out an assessment of performance degradation w.r.t. the amount
of missing data. Before discussing results, there are a few remarks that are worth bringing up
regarding imputation in highly sparse settings. In the first place, GRIN, as well as a large portion
of the state-of-the-art baselines, is an autoregressive model, which means that it might be subject
to error accumulation over long time horizons. Furthermore, here, consistently with Section 5, we
consider the out-of-sample setting which is particularly challenging in the sparse data regime. That
being said, GRIN achieves remarkable performance also in this benchmark.

We train one model each for GRIN and BRITS by randomly masking out 60% of input data for
each batch during training, then, we run the models on the test set by using evaluation masks with
increasing sparsity (note that this causes a distribution shift in evaluation). For each level of sparsity,
evaluation is repeated 5 times by sampling different evaluation masks. Results are reported in Tab. 10
and Fig. 5 shows that GRIN outperforms BRITS in all the considered scenarios.

Table 10: Performance with different amounts of missing data. Results averaged over 5 different
evaluation masks in the out-sample setting. (P) indicates the Point Missing setting.

METR-LA (P)

% Missing 10 20 30 40 50 60 70 80 90

GRIN 1.87 ± 0.01 1.90 ± 0.00 1.94 ± 0.00 1.98 ± 0.00 2.04 ± 0.00 2.11 ± 0.00 2.22 ± 0.00 2.40 ± 0.00 2.84 ± 0.00

BRITS 2.32 ± 0.01 2.34 ± 0.00 2.36 ± 0.00 2.40 ± 0.00 2.47 ± 0.00 2.57 ± 0.01 2.76 ± 0.00 3.08 ± 0.00 4.02 ± 0.01
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Figure 5: The plot shows graphically the results in Tab. 10.
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