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Abstract

Different environments pose a great challenge on the outdoor robust visual percep-1

tion for long-term autonomous driving and the generalization of learning-based2

algorithms on different environmental effects is still an open problem. Although3

monocular depth prediction has been well studied recently, there is few work focus-4

ing on the robust learning-based depth prediction across different environments, e.g.5

changing illumination and seasons, owing to the lack of such a multi-environment6

real-world dataset and benchmark. To this end, the first cross-season monocular7

depth prediction dataset and benchmark SeasonDepth 1 is built based on CMU8

Visual Localization dataset. To benchmark the depth estimation performance under9

different environments, we investigate representative and recent state-of-the-art10

open-source supervised, self-supervised and domain adaptation depth prediction11

methods from KITTI benchmark using several newly-formulated metrics. Through12

extensive experimental evaluation on the proposed dataset, the influence of mul-13

tiple environments on performance and robustness is analyzed both qualitatively14

and quantitatively, showing that the long-term monocular depth prediction is far15

from solved even with fine-tuning. We further give promising avenues that self-16

supervised training and stereo geometry constraint help to enhance the robustness17

to changing environments.18

1 Introduction19

Outdoor perception and localization for autonomous driving and mobile robotics has made significant20

progress due to the boost of deep convolutional neural networks [1, 2, 3, 4] in recent years. However,21

since the outdoor environmental conditions are changing because of different seasons, weather and22

day time [5, 6, 7], the pixel-level appearance is drastically affected, which casts a huge challenge for23

the robust long-term visual perception and localization. Monocular depth prediction plays an critical24

role in the long-term visual perception and localization [8, 9, 10, 11, 12] and is also significant to the25

safe applications such as self-driving cars under different environmental conditions. Although some26

depth prediction datasets [13, 14, 15] include some different environments for diversity, however, it27

is still not clear what kind of algorithm is more robust to adverse conditions and how they influence28

depth prediction performance. Besides, the generalization of learning-based depth prediction methods29

on different weather and illumination effects are still an open problem. Therefore,it is indeed needed30

to build a new dataset and benchmark under multiple environments to systematically study this31

problem. To the best of knowledge, we are the first to study the generalization of learning-based depth32
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Figure 1: SeasonDepth samples with depth map groundtruths under Cloudy + Foliage, Low Sun +
Foliage, Cloudy + Mixed Foliage, Overcast + Mixed Foliage and Low Sun + Mixed Foliage.

prediction under changing environments, which is essential and significant to both robust learning33

algorithms and practical applications like autonomous driving.34

Groundtruth for outdoor high-quality dense depth map is not easy to obtain using LiDAR or laser35

scanner projection [16, 17, 15], or stereo matching [13, 18, 19], let alone collection under multiple36

environments. We adopt Structure from Motion (SfM) and Multi-View Stereo (MVS) pipeline with37

RANSAC followed by careful manual post-processing to build a scaleless dense depth prediction38

dataset SeasonDepth with multi-environment traverses based on the urban part of CMU Visual39

Localization dataset [6, 20]. Some examples in the dataset are shown in Fig. 1.40

For the benchmark on the proposed dataset, several statistical metrics are proposed for the experimen-41

tal evaluation of the representative and state-of-the-art open-source methods from KITTI benchmark42

[16, 21]. The typical baselines we choose include supervised [1, 22, 23, 24], stereo training based43

self-supervised [25, 26, 27], monocular video based self-supervised [28, 29, 30, 31, 32] and domain44

adaptation [33, 34, 35] algorithms. Through thoroughly analyzing benchmark results, we find that no45

method can present satisfactory performance in terms of Average, V ariance and RelativeRange46

metrics simultaneously even if some methods give impressive results on KITTI Eigen split [1] and47

are well fine-tuned on our dataset. We further give the hints of promising avenues to addressing this48

problem through self-supervised learning or setreo geometry constraint for model trainng. Further-49

more, the performance under each environment is investigated both qualitatively and quantitatively50

for adverse environments.51

In summary, our contributions in this work are listed as follows. First, a new monocular depth52

prediction dataset SeasonDepth with same multi-traverse routes under changing environments is53

introduced through SfM and MVS pipeline and is publicly available. Second, we benchmark54

representative open-sourced supervised, self-supervised and domain adaptation depth prediction55

methods from KITTI leaderboard on SeasonDepth using several statistical metrics. Finally, from56

the extensive cross-environment evaluation, we point out that which kind of methods are robust to57

different environments and how changing environments affects the depth prediction to give future58

research directions. The rest of the paper is structured as follows. Sec. 2 analyzes the related work in59

depth prediction datasets and algorithms. Sec. 3 presents the process of building SeasonDepth. Sec.60

4 introduces the metrics and benchmark setup. The experimental evaluation and analysis are shown61

in Sec. 5. Finally, in Sec. 6 we give the conclusions.62

2 Related Work63

2.1 Monocular Depth Prediction Datasets64

Depth prediction plays an important role in the perception and localization of autonomous driving and65

other computer vision applications. Many indoor datasets are built through calibrated RGBD camera66

[36, 37, 38], expensive laser scanner [17, 39] and web stereo photos [40, 18, 19, 14]. However,67

outdoor depth map groundtruths are more complex to get, e.g. projecting 3D point cloud data onto the68

image plane [16, 17, 15] for sparse map and using stereo matching to calculate inaccurate and limited-69

scope depth [13, 14, 18]. Another way to get the depth map is through SfM [41, 24, 42, 15] from70

monocular sequences. Although this method is time-consuming, it generates pretty accurate relatively-71
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scaled dense depth maps , which is more general for depth prediction under different scenarios. For

RGB Images After SfM Range Filtering HSV Filtering Post-processing

Figure 2: The illustration of depth map processing.

72
changing environments, though some real-world datasets [13, 15, 14] include environmental changes,73

there are still no multi-environment traverses with identical scenarios. Evaluation of robustness74

across different environments is essential for fairness and reliability. Since graphical rendering is75

becoming more and more realistic, some virtual synthetic datasets [43, 44, 45, 46] contain multi-76

environment traverses though the rendered RGB images are still different from real-world ones, where77

domain adaptation is indispensable and cannot be used to benchmark real-world cross-environment78

performance. The details of comparison between datasets are shown in Sec. 3.2.79

2.2 Outdoor Monocular Depth Prediction Algorithms80

Monocular depth prediction task aims to predict the dense depth map in an active way given one81

single RGB image. Early studies including MRF and other graph models [47, 17, 48] largely depend82

on man-made descriptors, constraining the performance of depth prediction. Afterwards, studies83

based on CNNs [1, 49, 3] have shown promising results for monocular depth estimation. Eigen et84

al. [1] first predict depth map using CNN model, while [3] introduces fully convolutional neural85

networks to regress the depth value. After that, supervised methods for monocular depth prediction86

have been well studied through normal estimation [23, 50], the supervision of depth map and stereo87

disparity groundtruth [24, 51, 22, 19, 52]. However, since outdoor depth map groundtruths are88

expensive and time-consuming to obtain, self-supervised depth estimation methods have appeared89

using stereo geometric left-right consistency [53, 25, 54, 26, 27, 55], egomotion-pose constraint90

through monocular video [28, 56, 57, 29, 30] and multi-task learning with optical flow, motion91

and semantics segmentation [58, 59, 31, 32] inside monocular video training pipeline as secondary92

supervisory signals. Besides, to avoid using expensive real-world depth map groundtruths, other93

algorithms are trained on synthetic virtual datasets [43, 44, 45, 46] to leverage high-quality depth map94

groundtruths with zero cost. Such methods [34, 33, 60, 35, 61] confront with the domain adaptation95

from synthetic to real-world domain only with supervision on virtual datasets for model training.96

3 SeasonDepth Dataset97

Our proposed dataset SeasonDepth is derived from CMU Visual Localization dataset [20] through98

SfM algorithm. The original CMU Visual Localization dataset covers over one year in Pittsburgh,99

USA, including 12 different environmental conditions. Images were collected from two identical100

cameras on the left and right of the vehicle along a route of 8.5 kilometers. And this dataset is also101

derived for long-term visual localization [6] by calculating the 6-DoF camera pose of images with102

more reasonable categories about weather, vegetation and area. To be consistent with the content of103

driving scenes in other datasets like KITTI, we adopt images from Urban area categorized in [6] to104

build our dataset. More details about the dataset can be found in Supplementary Material Section 1.105
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Table 1: Comparison between SeasonDepth and Other Datasets

Name Scene Real or
Virtual

Depth
Value

Sparse or
Dense

Multiple
Traverses

Different
Environments

Dynamic
Objects

NYUV2 [36] Indoor Real Absolute Dense × × X
DIML [37] Indoor Real Absolute Dense × × ×

iBims-1 [38] Indoor Real Absolute Dense × × ×
Make3D [17] Outdoor & Indoor Real Absolute Sparse × × ×
ReDWeb [18] Outdoor & Indoor Real Relative Dense × × X
WSVD [40] Outdoor & Indoor Real Relative Dense × × X

HR-WSI [19] Outdoor & Indoor Real Absolute Dense × × X
DIODE [39] Outdoor & Indoor Real Absolute Dense × × ×
OASIS [42] Outdoor & Indoor Real Relative Dense × × ×

3D Movies [14] Outdoor & Indoor Real Relative Dense × X X
KITTI [16] Outdoor Real Absolute Sparse × × X

CityScapes [13] Outdoor Real Absolute Dense × X X
DIW [41] Outdoor Real Relative Sparse × × X

MegaDepth [24] Outdoor Real Relative Dense × × X
DDAD [29] Outdoor Real Absolute Dense × × X
MPSD [15] Outdoor Real Absolute Dense × X X

V-KITTI [43] Outdoor Virtual Absolute Dense X X X
SYNTHIA [44] Outdoor Virtual Absolute Dense × × ×
TartanAir [45] Outdoor & Indoor Virtual Absolute Dense X X X

DeepGTAV [46] Outdoor Virtual Absolute Dense X X X
SeasonDepth Outdoor Real Relative Dense X X ×

Figure 3: Comparison of relative depth distributions of several datasets.

3.1 Depth Dense Reconstruction and Post-processing106

We reconstruct the dense model for each traversal under every environmental condition through107

SfM and MVS pipeline [62], which is commonly used for depth reconstruction [29, 24] and most108

suitable for multi-environment dense reconstruction for 3D mapping [63, 6] and show advantage on109

the aspects of high dense quality despite of huge computational efforts compared to active sensing110

from LiDAR. Specifically, similar to MegaDepth [24], COLMAP [64, 62] with SIFT descriptor [65]111

is used to obtain the depth maps through photometric and geometric consistency from sequential112

images. Furthermore, we adopt RANSAC algorithm in the SfM to remove the inaccurate values of113

dynamic objects in the images through effective modification in SIFT matching triangulation based114

on original COLMAP, where dynamic objects with additional motion besides relative motion to115

camera do not obey the multi-view geometry constraint and should be removed as noise via RANSAC116

in bundle adjustment optimization. Since the MVS algorithm generates the depth maps with error117

pixel values which are out of range or too close, like the cloud in the sky or noisy points on the very118

near road, we filter those outside the normal range of the depth map.119

After the reconstruction, based on the observation of noise distribution in the HSV color space,120

e.g. blue pixels always appear in the sky and dark pixels always appear in the shade of low sun121

which tend to be noise in most cases, we remove the noisy values in the HSV color space given122

some specific thresholds. Though outliers are set to be empty in RANSAC, instance segmentation is123

adopted through MaskRCNN [66] to fully remove the noise of dynamic objects. However, since it is124

difficult to generate accurate segmentation maps only for dynamic objects under drastically changing125

environments, we leverage human annotation as the last step to finally check the depth map. Note126

that since there are often more mis-reconstructed depth pixels around thin objects like branches and127

poles, we manually filter some of them in the processing for accuracy and reliable evaluation. The128

data processing is shown in Fig.2 with normalization after each step. More details can be found in129

Supplementary Material Section 1.1.130
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3.2 Comparison with Other Datasets131

The current datasets are introduced in Sec. 2.1. The comparison between SeasonDepth and current132

datasets is shown in Tab. 1. The distinctive feature of the proposed dataset is that SeasonDepth133

contains comprehensive outdoor real-world multi-environment sequences with repeated scenes, just134

like virtual synthetic datasets [43, 46, 45] but they are rendered from computer graphics and suffer135

from the huge domain gap. Though real-word datasets [15, 14, 13] include different environments,136

they lack the same-route traverses under different conditions so they are not able to fairly evaluate the137

performance across changing environments. Similar to outdoor datasets [41, 24, 42], the depth maps138

of ours are scaleless with relative depth values, where the metrics should be designed for evaluation139

as the following section shows. The depth map groundtruths from SfM are dense compared to140

LiDAR-based sparse depth maps. Besides, since dynamic objects act as noise theoretically for SfM141

and depth reconstruction, we remove dynamic objects are via RANSAC and instance segmentation142

but static vehicles are kept with threshold hyperparameters shown in Supplementary Material Tab.143

2, which makes the dataset benchmark more reliable and accurate than [29, 24]. And it does not144

affect the evaluation for driving applications with dynamic objects because it cannot be distinguished145

whether the objects are dynamic or static given a single monocular image when testing. Consequently,146

the evaluation on the depth prediction of static objects can reveal the performance of dynamic objects147

as well although they are not involved in the ground truth.148

Besides, the comparison of depth value distribution is shown in Fig. 3. Note that the values of our149

dataset are scaleless and relative so the x-axes of other dataset are also omitted for fair comparison.150

We normalize the depth values for all the environments to mitigate the influence of the aggregation151

from relative depth distributions under different environments to get the final distribution map. The152

details of implementation can be found in Supplementary Material Section 1.2. From Fig. 3, it can be153

seen that our dataset also follows the long-tail distribution [67] which is the same as other datasets,154

with a difference of missing large-depth part due to range truncation during building process in Sec.155

3.1.156

4 Benchmark Setup157

The toolkit for the evaluation and benchmark are available here 2.158

4.1 Evaluation Metrics159

The challenge for the design of evaluation metrics lies in two folds. One is to cope with scaleless160

and partially-valid dense depth map groundtruths, and the other is to fully measure both the depth161

prediction average performance and the stability or robustness across different environments. Due162

to scaleless groudtruths of relative depth value, common metrics [21] cannot be used for evaluation163

directly. Since focal lengths of two cameras are close enough to generate similarly-distributed depth164

values, unlike [28, 24, 42], we align the distribution of depth prediction to that of depth groundtruths165

via mean value and variance for fair evaluation. The other key point for multi-environment evaluation166

lies in the reflection of robustness to changing environments for same-route sequences, which has not167

been studied in the previous work to the best of our knowledge. We formulate our metrics below.168

First, for each pair of predicted and groundtruth depth maps, the valid pixels Di,j
validpredicted

of the169

predicted depth map Dvalidpredicted
are determined by non-empty valid pixels Di,j

validGT
of the depth170

map groundtruth. And then the valid mean and variance of both DvalidGT
and Dvalidpredicted

are171

calculated asAvgGT ,Avgpred and V arGT ,V arpred. Then we adjust the predicted depth mapDadj to172

get the same distribution withDvalidGT
,Dadj = (Dpred−Avgpred)×

√
V arGT /V arpred+AvgGT173

The examples of adjusted depth prediction are shown in Fig. 4. After this operation, we can eliminate174

scale difference for depth prediction across datasets, which makes this zero-shot evaluation on175

SeasonDepth reliable and applicable to all the models even though they predict absolute depth values,176

showing generalization ability on new dataset and robustness across different environments. Denote177

the adjusted valid depth prediction Dadj as DP in the following formulation. To measure the depth178

prediction performance, we choose the most distinguishable metrics under multiple environments179

from commonly-used metrics in [21], AbsRel and δ < 1.25 (a1).180

2Available on https://github.com/SeasonDepth/SeasonDepth.
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RGB and Groundtruth PackNet [29] VNL [23] GASDA [35]

Figure 4: The examples of depth adjustment (from the first to second row) for prediction results.

For environment k, we have AbsRelk = 1
n

n∑
i,j

∣∣DP
k
i,j −DGT

k
i,j

∣∣/DGT
k
i,j and181

ak1 = 1
n

n∑
i,j

1(max{ DP
k
i,j

DGT
k
i,j
,
DGT

k
i,j

DP
k
i,j
} < 1.25). For the evaluation under different en-182

vironments, six secondary metrics are derived based on original metrics and statis-183

tics, AbsRelavg = 1
m

∑
k

AbsRelk, AbsRelvar = 1
m

∑
k

∣∣∣∣AbsRelk − 1
m

∑
k

AbsRelk
∣∣∣∣2,184

AbsRelrelRng = (max{AbsRelk} −min{AbsRelk})
/

1
m

∑
k

AbsRelk and aavg1 = 1
m

∑
k

ak1 ,185

avar1 = 1
m

∑
k

∣∣∣∣ak1 − 1
m

∑
k

ak1

∣∣∣∣2, arelRng
1 = (max{1− ak1} −min{1− ak1})

/
1
m

∑
k

(1− ak1),186

where avg terms AbsRelavg, aavg1 and var terms AbsRelvar, avar1 come from Mean and Variance187

in statistics, indicating the average performance and the fluctuation around the mean value across188

multiple environments.189

Considering the depth prediction applications, it should be more rigorous to prevent the fluctuation of190

better results than that of worse results under changing conditions. Therefore, we use the Relative191

Range terms AbsRelrelRng, arelRng
1 to calculate the relative difference of maximum and minimum192

for all the environments. Relative Range terms for AbsRel and 1−a1 are more strict than the Variance193

termsAbsRelvar, avar1 and note that 1−a1 instead of a1 is used to calculate arelRng
1 to make relative194

range fluctuation more distinguishable for better methods.195

4.2 Evaluated Algorithms196

Following the category introduced in Sec. 2.2, we have chosen the representative baseline methods197

together with recent open-source state-of-the-art models on KITTI leaderboard [21] to evaluate198

the performance on the SeasonDepth dataset. The evaluated methods include supervised and self-199

supervised models trained on real-world images, and domain adaptation models trained on virtual200

synthetic images. More details about the benchmark models including fine-tuning details can be201

found in Supplementary Material Section 2.1.202

For the supervised methods, we choose Eigen et al. [1], BTS [22], MegaDepth [24] and VNL [23].203

Eigen et al. propose the first method using CNNs to predict depth map with scale-invariant loss. BTS204

proposes novel multi-scale local planar guidance layers in decoders for full spatial resolution to get205

impressive ranked-4th performance. MegaDepth introduces an end-to-end hourglass network for206

depth prediction using semantic and geometric information as supervision. VNL proposes the virtual207

normal estimation which utilizes a stable geometric constraint for long-range relations in a global208

view to predict depth.209

We further choose self-supervised models of stereo training, monocular video training and multi-task210

learning as secondary signals with video training. Previous work Monodepth [25] and two recent work211
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Table 2: SeasonDepth Benchmark Results (↓: Lower Better, ↑: Higher Better, Best, Second Best)

KITTI Eigen Split SeasonDepth: Average Variance(10−2) Relative RangeMethod
AbsRel ↓ a1 ↑ AbsRel ↓ a1 ↑ AbsRel ↓ a1 ↓ AbsRel ↓ 1− a1 ↓

Eigen et al. [1] 0.203 0.702 1.093 0.340 0.346 0.0170 0.206 0.0746
BTS [22] 0.060 0.955 0.677 0.209 0.539 0.0650 0.404 0.129

BTS (fine-tuned) — — 0.564 0.295 0.248 0.0943 0.309 0.151
MegaDepth [24] 0.220 0.632 0.515 0.417 0.0874 0.0285 0.200 0.107

Supervised

VNL [23] 0.072 0.938 0.306 0.527 0.126 0.166 0.400 0.290

Monodepth [25] 0.148 0.803 0.436 0.455 0.0475 0.0213 0.198 0.104
adareg [26] 0.126 0.840 0.507 0.405 0.0630 0.0474 0.178 0.0137Self-supervised

Stereo Training monoResMatch [27] 0.096 0.890 0.487 0.389 0.286 0.0871 0.414 0.160

SfMLearner [28] 0.181 0.733 0.693 0.265 0.151 0.0177 0.199 0.0640
SfMLearner (fine-tuned) — — 0.485 0.455 0.412 0.103 0.405 0.241

PackNet [29] 0.116 0.865 0.722 0.421 0.187 0.0705 0.186 0.155
Monodepth2 [30] 0.106 0.874 0.420 0.429 0.0848 0.0907 0.229 0.188

CC [31] 0.140 0.826 0.648 0.479 0.223 0.0881 0.280 0.241

Self-supervised
Monocular

Video Training

SGDepth [32] 0.113 0.879 0.648 0.480 0.0987 0.0498 0.197 0.169

Atapour et al. [33] 0.110 0.923 0.687 0.300 0.224 0.0220 0.231 0.0622
T2Net [34] 0.169 0.769 0.827 0.391 0.399 0.0799 0.286 0.146

Syn-to-real
Domain

Adaptation GASDA [35] 0.143 0.836 0.438 0.411 0.121 0.0665 0.271 0.145

adareg [26], monoResMatch [27] are evaluated to present the performance of models trained with212

stereo geometric constraint. For joint pose regression and depth prediction using video sequences,213

we test the first method SfMLearner [28] and two recent methods Monodepth2 [30], PackNet [29],214

where Monodepth2 model also involves stereo geometric information in model training. Besides,215

we evaluate CC [31] with optical flow estimation and motion segmentation, and SGDepth [32] with216

supervised semantic segmentation inside the monocular video based self-supervised framework.217

For models trained on the virtual dataset with multiple environments, we evaluate several recent218

competitive algorithms Atapour et al. [33], T2Net [34] and GASDA [35]. Atapour et al. [33] use219

CycleGAN [68] to train depth predictor with translated synthetic images using virtual groundtruths220

from DeepGTAV [46]. T2Net is a fully supervised method both on KITTI and V-KITTI dataset221

and it enables synthetic-to-real translation and depth prediction simultaneously. But GASDA is222

self-supervised for real-world images by incorporating geometry-aware loss through wrapping stereo223

images together with image translation from synthetic to real-world domain.224

5 Experimental Evaluation Results225

5.1 Evaluation Comparison from Overall Metrics226

In this section we analyze and discuss what kinds of algorithms are more robust to changing227

environments by giving several main findings and avenues and their impacts on the performance. The228

qualitative results of open-source best depth prediction baselines can be found in Tab. 2. To alleviate229

the impact of dataset bias between KITTI and SeasonDepth, we adopt one held-out training set to230

fine-tune one supervised [22] and one self-supervised model [28], which perform poor zero-shot231

results. Since our dataset does not contain stereo images and share scenarios in V-KITTI dataset, the232

stereo training based, multi-task training with semantic segmentation and domain adaptation models233

are omitted to be fine-tuned for fairness.234

To make sure the findings and claims are predominantly owing to the different conditions instead of235

the domain shift, the analysis of fine-tuning is first presented before other critical findings and avenues236

to this problem. We choose the best results of Average value on SeasonDepth for the fine-tuned237

models while they still present great limitations on V ariance and RelativeRange compared to238

other baselines or even themselves without fine-tuning. Consequently, fine-tuning helps little to the239

robustness to changing environments though average performance is improved because of reducing240

the domain gap, indicating that solely increasing the variability of training data cannot deal with the241

challenge of environmental changes. After the validation of ineffectiveness of fine-tuned models,242

to make the evaluation and comparison fair, we draw our conclusion considering all the models243

regardless they are fine-tuned or not. But one thing for sure is that, all the findings and comparisons244

below are fair and the performance on V ariance and RelativeRange is convincing to purely reflect245

robustness across different environments since fine-tuning reduces domain gap but does not work for246

robustness in this case.247
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RGB Groundtruth BTS[22]
Supervised

VNL[23]
Supervised

Monodepth
S-Sup-S [25]

adareg[26]
S-Sup-S

PackNet[29]
S-Sup-M

Monodepth2
S-Sup-M [30]

SGDepth[32]
S-Sup-M

T2Net[34]
Syn-to-Real

GASDA[34]
Syn-to-Real

Figure 5: Qualitative results for supervised, self-supervised stereo based (S-Sup-S), self-supervised
monocular video based (S-Sup-M) and domain adaptation (Syn-to-Real) methods . The conditions
from top to down are S+NF, Apr. 4th, LS+MF, Nov. 3rd and LS+MF, Nov. 12th. Methods denoted
with underline are trained with stereo geometry constraint for easier reference and comparison.

Figure 6: Results on SeasonDepth dataset under 12 different environments with dates. The shadows
indicate error bars around mean values with 0.2× Standard Deviation for more clarity.

The self-supervised methods show more robustness to different environments compared to super-248

vised methods due to the influence of overfitting from KITTI in SeasonDepth dataset. Supervised249

methods suffer from large values of V ariance and RelativeRange across multiple environments250

compared to self-supervised methods, showing that supervised methods are more sensitive to chang-251

ing environments and even the best fine-tuned model on Average presents poor V ariance and252

RelativeRange performance as well. Besides, although the first proposed several depth prediction253

methods [1, 25, 28, 33] perform worse than recent methods on KITTI and overall Average, they254

show impressive stability to different environments through low V ariance and RelativeRange.255

The second finding is that inside the self-supervised methods, stereo training based methods [25, 26,256

27] are more robust to different environments than monocular video training based methods [28, 29]257

or even with multi-task learning [31, 32] via the comparison on V ariance and RelativeRange.258

More broadly, training with stereo geometry constraint clearly helps to improve the robustness to the259

changing environments compared to those without it for monocular video training based and syn-to-260

real domain adaptation models, as shown by the quantitative results [30, 35] with light blue shade in261

Tab. 2 and qualitative results with underline in Fig. 5. Interestingly, the methods with good V ariance262

performance are not consistent with those with good Average performance, which indicates that263

algorithms tend to work well in specific environments instead of being effective and robust to all264

conditions, validating the significance of the cross-environment study with SeasonDepth dataset and265

benchmark.266

Qualitative results for different types of baselines are shown in Fig. 5. It can be seen that supervised267

methods BTS [22] and VNL [23] clearly suffer from overfitting through the predicted pattern where268

the top and bottom areas are dark while the middle areas are light, even for buildings. Stereo training269

involved methods with underlines [30, 35] perform continuous depth results for the same entity under270

all environments, e.g. the depth prediction of buildings compared to other self-supervised monocular271

(S-Sup-M) video based methods [29, 32] and syn-to-real (Syn-to-Real) domain adaptation method272

[34], validating the improvement of robustness using stereo geometry constraint like quantitative273

results in Tab. 2. See Supplementary Material Section 2.2 for more qualitative results and analysis.274
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Table 3: AbsRel Results (Lower Better) under Each Environment: Mean(Standard Deviation)

Method S+NF
Apr. 4th

S+F
Sept. 1st

S+F
Sept. 15th

C+F
Oct. 1st

S+F
Oct. 19th

O+MF
Oct. 28th

LS+MF
Nov. 3rd

LS+MF
Nov. 12th

C+MF
Nov. 22nd

LS+NF+Sn
Dec. 21st

LS+F
Mar. 4th

O+F
Jul. 28th

Eigen et al. [1] 1.080(0.39) 1.111(0.40) 1.034(0.43) 1.061(0.40) 1.043(0.40) 1.072(0.38) 1.233(0.43) 1.125(0.37) 1.008(0.32) 1.067(0.42) 1.136(0.54) 1.150(0.55)
BTS [22] 0.697(0.29) 0.652(0.24) 0.605(0.24) 0.641(0.29) 0.647(0.27) 0.646(0.28) 0.758(0.35) 0.574(0.27) 0.637(0.27) 0.848(0.36) 0.761(0.38) 0.657(0.28)

MegaDepth [24] 0.514(0.20) 0.494(0.16) 0.471(0.17) 0.494(0.18) 0.486(0.18) 0.510(0.18) 0.574(0.21) 0.512(0.18) 0.489(0.19) 0.553(0.26) 0.547(0.25) 0.530(0.24)
VNL [23] 0.321(0.16) 0.294(0.13) 0.257(0.11) 0.281(0.14) 0.281(0.13) 0.302(0.16) 0.357(0.20) 0.271(0.14) 0.282(0.14) 0.380(0.21) 0.342(0.21) 0.306(0.15)

Monodepth [25] 0.450(0.19) 0.437(0.16) 0.389(0.14) 0.424(0.18) 0.434(0.18) 0.432(0.16) 0.475(0.20) 0.418(0.17) 0.421(0.16) 0.465(0.21) 0.441(0.20) 0.449(0.20)
adareg [26] 0.553(0.22) 0.515(0.16) 0.473(0.18) 0.489(0.20) 0.509(0.19) 0.493(0.19) 0.515(0.17) 0.463(0.18) 0.498(0.20) 0.523(0.20) 0.543(0.29) 0.515(0.25)

monoResMatch [27] 0.536(0.31) 0.466(0.24) 0.398(0.19) 0.444(0.27) 0.463(0.25) 0.479(0.31) 0.526(0.28) 0.428(0.25) 0.486(0.28) 0.600(0.40) 0.544(0.39) 0.475(0.26)
SfMLearner [28] 0.745(0.29) 0.682(0.26) 0.644(0.27) 0.657(0.28) 0.684(0.29) 0.671(0.28) 0.718(0.35) 0.627(0.27) 0.698(0.27) 0.765(0.32) 0.714(0.29) 0.713(0.31)

PackNet [29] 0.715(0.27) 0.740(0.23) 0.680(0.26) 0.692(0.26) 0.672(0.24) 0.728(0.27) 0.806(0.27) 0.732(0.22) 0.682(0.25) 0.684(0.22) 0.727(0.36) 0.803(0.43)
Monodepth2 [30] 0.476(0.18) 0.414(0.15) 0.383(0.17) 0.412(0.17) 0.396(0.17) 0.412(0.17) 0.441(0.23) 0.380(0.16) 0.414(0.16) 0.452(0.20) 0.459(0.20) 0.402(0.16)

CC [31] 0.613(0.23) 0.633(0.23) 0.587(0.25) 0.640(0.24) 0.627(0.27) 0.652(0.24) 0.768(0.25) 0.649(0.23) 0.593(0.24) 0.644(0.28) 0.673(0.34) 0.703(0.39)
SGDepth [32] 0.635(0.24) 0.650(0.21) 0.605(0.23) 0.640(0.23) 0.628(0.23) 0.649(0.24) 0.726(0.26) 0.659(0.20) 0.599(0.19) 0.651(0.23) 0.661(0.31) 0.671(0.29)

Atapour et al. [33] 0.741(0.27) 0.658(0.22) 0.619(0.24) 0.643(0.27) 0.667(0.27) 0.686(0.29) 0.658(0.28) 0.627(0.29) 0.708(0.27) 0.778(0.32) 0.728(0.29) 0.724(0.30)
T2Net [34] 0.809(0.39) 0.830(0.29) 0.732(0.34) 0.796(0.35) 0.760(0.33) 0.831(0.35) 0.968(0.33) 0.797(0.29) 0.776(0.33) 0.869(0.37) 0.912(0.48) 0.849(0.45)

GASDA [35] 0.443(0.24) 0.414(0.20) 0.402(0.21) 0.420(0.26) 0.426(0.24) 0.412(0.22) 0.495(0.26) 0.416(0.24) 0.429(0.24) 0.521(0.29) 0.460(0.26) 0.423(0.26)

Table 4: a1 Results (Higher Better) under Each Environment: Mean(Standard Deviation)

Method S+NF
Apr. 4th

S+F
Sept. 1st

S+F
Sept. 15th

C+F
Oct. 1st

S+F
Oct. 19th

O+MF
Oct. 28th

LS+MF
Nov. 3rd

LS+MF
Nov. 12th

C+MF
Nov. 22nd

LS+NF+Sn
Dec. 21st

LS+F
Mar. 4th

O+F
Jul. 28th

Eigen et al. [1] 0.336(0.14) 0.335(0.12) 0.337(0.14) 0.352(0.14) 0.348(0.13) 0.345(0.13) 0.311(0.12) 0.338(0.13) 0.360(0.12) 0.351(0.13) 0.341(0.13) 0.321(0.13)
BTS [22] 0.200(0.11) 0.201(0.10) 0.233(0.10) 0.218(0.11) 0.225(0.12) 0.217(0.12) 0.183(0.12) 0.263(0.15) 0.221(0.11) 0.161(0.10) 0.185(0.10) 0.201(0.11)

MegaDepth [24] 0.417(0.14) 0.430(0.13) 0.439(0.15) 0.422(0.16) 0.427(0.13) 0.420(0.15) 0.377(0.13) 0.408(0.15) 0.436(0.15) 0.399(0.17) 0.402(0.17) 0.421(0.15)
VNL [23] 0.513(0.21) 0.532(0.18) 0.579(0.18) 0.554(0.20) 0.550(0.19) 0.535(0.20) 0.463(0.20) 0.579(0.19) 0.557(0.21) 0.442(0.19) 0.499(0.23) 0.528(0.21)

Monodepth [25] 0.456(0.17) 0.446(0.15) 0.485(0.13) 0.463(0.15) 0.453(0.14) 0.460(0.15) 0.434(0.14) 0.463(0.14) 0.463(0.14) 0.428(0.17) 0.464(0.16) 0.445(0.15)
adareg [26] 0.363(0.18) 0.387(0.14) 0.419(0.15) 0.422(0.17) 0.389(0.14) 0.417(0.15) 0.389(0.15) 0.444(0.16) 0.405(0.17) 0.393(0.15) 0.398(0.16) 0.431(0.18)

monoResMatch [27] 0.363(0.21) 0.386(0.18) 0.439(0.18) 0.428(0.20) 0.391(0.17) 0.400(0.19) 0.354(0.18) 0.429(0.20) 0.385(0.19) 0.342(0.19) 0.368(0.20) 0.386(0.17)
SfMLearner [28] 0.251(0.10) 0.268(0.09) 0.270(0.09) 0.284(0.11) 0.268(0.11) 0.271(0.10) 0.271(0.11) 0.292(0.12) 0.258(0.09) 0.245(0.09) 0.253(0.09) 0.254(0.09)

PackNet [29] 0.436(0.13) 0.394(0.13) 0.422(0.15) 0.435(0.15) 0.430(0.14) 0.429(0.14) 0.368(0.13) 0.403(0.12) 0.458(0.13) 0.450(0.13) 0.444(0.14) 0.386(0.17)
Monodepth2 [30] 0.366(0.17) 0.423(0.16) 0.465(0.19) 0.438(0.17) 0.454(0.18) 0.442(0.16) 0.418(0.19) 0.473(0.18) 0.426(0.17) 0.403(0.17) 0.391(0.18) 0.452(0.16)

CC [31] 0.493(0.19) 0.478(0.18) 0.501(0.21) 0.480(0.20) 0.494(0.19) 0.479(0.19) 0.400(0.15) 0.480(0.18) 0.525(0.18) 0.488(0.19) 0.483(0.20) 0.445(0.21)
SGDepth [32] 0.497(0.17) 0.459(0.16) 0.487(0.19) 0.475(0.18) 0.487(0.17) 0.487(0.18) 0.437(0.14) 0.475(0.15) 0.525(0.15) 0.483(0.16) 0.495(0.18) 0.449(0.19)

Atapour et al. [33] 0.281(0.12) 0.304(0.12) 0.313(0.12) 0.320(0.13) 0.309(0.13) 0.301(0.11) 0.309(0.13) 0.325(0.15) 0.287(0.11) 0.287(0.11) 0.282(0.11) 0.284(0.12)
T2Net [34] 0.421(0.17) 0.367(0.15) 0.416(0.17) 0.403(0.17) 0.416(0.16) 0.390(0.16) 0.340(0.13) 0.404(0.15) 0.429(0.17) 0.349(0.14) 0.363(0.16) 0.393(0.17)

GASDA [35] 0.414(0.18) 0.418(0.16) 0.426(0.14) 0.429(0.17) 0.428(0.16) 0.427(0.15) 0.377(0.16) 0.433(0.18) 0.420(0.17) 0.347(0.19) 0.383(0.19) 0.427(0.16)

5.2 Performance under Different Environmental Conditions275

In this section, we further study how different environments influence the depth prediction results.276

Different from how different methods perform under multiple environments, this section investigate277

which environment is the difficult to the current depth prediction models, where Standard Deviation278

can clearly show that. The detailed results with mean values and standard deviations are shown in279

Tab. 3 and Tab. 4 and the line chart with shadow error bar in Fig. 6 shows performance in changing280

environments intuitively. The abbreviations of environments are S for Sunny, C for Cloudy, O for281

Overcast, LS for Low Sun, Sn for Snow, F for Foliage, NF for No Foliage, and MF for Mixed Foliage.282

From Fig. 6, we can see that although different methods perform differently on AbsRel and a1, the283

influence of some environments is similar for all the methods. Most methods perform well under284

S+F, Sept. 15th and LS+MF, Nov. 12th while dusk scenes in LS+MF, Nov. 3rd and snowy scenes285

in LS+NF+Sn, Dec. 21st pose great challenge for most algorithms, which points out directions for286

future research and safe applications.287

Under these adverse environmental conditions, the promising algorithms can also be found. For the288

dusk or snowy scenes, domain adaptation methods [33, 34] present impressive robustness due to the289

various appearances of synthetic images. Besides, for the snowy scenes, self-supervised stereo-based290

[26, 25, 30] and monocular video training models [31, 32, 29] are less influenced compared to291

supervised methods. From the error bar and standard deviation in Tab. 3 and Tab. 4, it can be seen292

that models with larger mean values tend to have larger deviation for each environment, while more293

adverse environments always result in larger deviations for all algorithms, indicating that adverse294

environments influence the results of all the methods.295

Furthermore, qualitative experimental results are shown in Fig. 7 to show how extreme illumination296

or vegetation changes affect the depth prediction. We visualize the adjusted results of three overall297

good methods with robustness to changing environments according to Sec. 5.1 and Tab. 2. From the298

top two rows, it can be seen that illumination change of low sun makes the depth prediction of tree299

trunks less clear under the same vegetation condition as green and red blocks show. Also, no foliage300

tends to make telephone pole and tree trunk less distinguishable by comparing red and green blocks301

from the last two rows, while the depth prediction of heavy vegetation is difficult as red blocks show302

on the fourth row given the same illumination and weather condition. More qualitative results can be303

found in Supplementary Material Section 2.2.304
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RGB Groundtruths VNL [23] adareg [26] Monodepth2 [30]

Figure 7: Qualitative comparison results with illumination or vegetation changes. The conditions
from top to down are C+MF, Nov. 22nd, LS+MF, Nov. 3rd, C+MF, Nov. 22nd and C+F, Oct. 1st.
Green blocks indicate good performance while red blocks are for bad results.

5.3 Limitation and Discussion305

In this section, we discuss the limitation in our work. As mentioned before, our SeasonDepth dataset is306

built based on CMU Visual Localization dataset, which was originally collected for visual localization307

and contained multiple scenes but without challenging night scenes. Although it is different from308

the dataset for autonomous driving like KITTI, which causes the concern about the evaluation due309

to the domain gap. But it is acceptable based on the experimental evidence that fine-tuned models310

will not perform better in terms of V ariance and RelativeRange. Since dynamic objects are not311

included in the dataset to ensure accuracy and reliability and it brings about concerns on the driving312

application. But dynamic object will not hurt to the evaluation of multi-environment depth prediction313

performance and robustness as shown in Sec. 3.2. For the benchmark, although we try our best314

to survey and test the open-source representative models as many as possible, it is not possible to315

involve all the monocular depth prediction methods in our benchmark. So we will release the test set316

and benchmark toolkit to make up for it. Besides, though some large standard deviations in Tab. 3317

and Tab. 4 weaken the credibility and reliability for the performance of methods, the quality of depth318

map groundtruths is assured so we attribute it to the poor generalization ability of those algorithms319

since not all the methods present such poor results with too large variances, which cannot be correctly320

analyzed.321

6 Conclusion322

In this paper, a new dataset SeasonDepth is built for monocular depth prediction under different323

environments. Best open-source supervised, self-supervised and domain adaptation depth prediction324

algorithms from KITTI benchmark are evaluated. From the experimental results, we find that there325

is still a long way to go to achieve robustness for long-term depth prediction and several promising326

aspects are given. Self-supervised methods present better robustness than supervised methods to327

changing environments and stereo geometry involved model training is shown to help to stabilize328

the cross-environment performance. Through giving hints of how adverse environments influence329

environments, our findings via the dataset and benchmark will impact the research on long-term330

robust perception and related application.331
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